//===- OptimizationRemarkEmitter.cpp - Optimization Diagnostic --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Optimization diagnostic interfaces. It's packaged as an analysis pass so // that by using this service passes become dependent on BFI as well. BFI is // used to compute the "hotness" of the diagnostic message. //===----------------------------------------------------------------------===// #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/LazyBlockFrequencyInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/LLVMContext.h" using namespace llvm; OptimizationRemarkEmitter::OptimizationRemarkEmitter(const Function *F) : F(F), BFI(nullptr) { if (!F->getContext().getDiagnosticsHotnessRequested()) return; // First create a dominator tree. DominatorTree DT; DT.recalculate(*const_cast(F)); // Generate LoopInfo from it. LoopInfo LI; LI.analyze(DT); // Then compute BranchProbabilityInfo. BranchProbabilityInfo BPI; BPI.calculate(*F, LI); // Finally compute BFI. OwnedBFI = llvm::make_unique(*F, BPI, LI); BFI = OwnedBFI.get(); } bool OptimizationRemarkEmitter::invalidate( Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv) { // This analysis has no state and so can be trivially preserved but it needs // a fresh view of BFI if it was constructed with one. if (BFI && Inv.invalidate(F, PA)) return true; // Otherwise this analysis result remains valid. return false; } Optional OptimizationRemarkEmitter::computeHotness(const Value *V) { if (!BFI) return None; return BFI->getBlockProfileCount(cast(V)); } void OptimizationRemarkEmitter::computeHotness( DiagnosticInfoIROptimization &OptDiag) { const Value *V = OptDiag.getCodeRegion(); if (V) OptDiag.setHotness(computeHotness(V)); } void OptimizationRemarkEmitter::emit( DiagnosticInfoOptimizationBase &OptDiagBase) { auto &OptDiag = cast(OptDiagBase); computeHotness(OptDiag); // Only emit it if its hotness meets the threshold. if (OptDiag.getHotness().getValueOr(0) < F->getContext().getDiagnosticsHotnessThreshold()) { return; } F->getContext().diagnose(OptDiag); } OptimizationRemarkEmitterWrapperPass::OptimizationRemarkEmitterWrapperPass() : FunctionPass(ID) { initializeOptimizationRemarkEmitterWrapperPassPass( *PassRegistry::getPassRegistry()); } bool OptimizationRemarkEmitterWrapperPass::runOnFunction(Function &Fn) { BlockFrequencyInfo *BFI; if (Fn.getContext().getDiagnosticsHotnessRequested()) BFI = &getAnalysis().getBFI(); else BFI = nullptr; ORE = llvm::make_unique(&Fn, BFI); return false; } void OptimizationRemarkEmitterWrapperPass::getAnalysisUsage( AnalysisUsage &AU) const { LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); AU.setPreservesAll(); } AnalysisKey OptimizationRemarkEmitterAnalysis::Key; OptimizationRemarkEmitter OptimizationRemarkEmitterAnalysis::run(Function &F, FunctionAnalysisManager &AM) { BlockFrequencyInfo *BFI; if (F.getContext().getDiagnosticsHotnessRequested()) BFI = &AM.getResult(F); else BFI = nullptr; return OptimizationRemarkEmitter(&F, BFI); } char OptimizationRemarkEmitterWrapperPass::ID = 0; static const char ore_name[] = "Optimization Remark Emitter"; #define ORE_NAME "opt-remark-emitter" INITIALIZE_PASS_BEGIN(OptimizationRemarkEmitterWrapperPass, ORE_NAME, ore_name, false, true) INITIALIZE_PASS_DEPENDENCY(LazyBFIPass) INITIALIZE_PASS_END(OptimizationRemarkEmitterWrapperPass, ORE_NAME, ore_name, false, true)