//===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the interface for lazy computation of value constraint // information. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueLattice.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/AssemblyAnnotationWriter.h" #include "llvm/IR/CFG.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/ValueHandle.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "lazy-value-info" // This is the number of worklist items we will process to try to discover an // answer for a given value. static const unsigned MaxProcessedPerValue = 500; char LazyValueInfoWrapperPass::ID = 0; LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); } INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", "Lazy Value Information Analysis", false, true) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", "Lazy Value Information Analysis", false, true) namespace llvm { FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } } AnalysisKey LazyValueAnalysis::Key; /// Returns true if this lattice value represents at most one possible value. /// This is as precise as any lattice value can get while still representing /// reachable code. static bool hasSingleValue(const ValueLatticeElement &Val) { if (Val.isConstantRange() && Val.getConstantRange().isSingleElement()) // Integer constants are single element ranges return true; if (Val.isConstant()) // Non integer constants return true; return false; } /// Combine two sets of facts about the same value into a single set of /// facts. Note that this method is not suitable for merging facts along /// different paths in a CFG; that's what the mergeIn function is for. This /// is for merging facts gathered about the same value at the same location /// through two independent means. /// Notes: /// * This method does not promise to return the most precise possible lattice /// value implied by A and B. It is allowed to return any lattice element /// which is at least as strong as *either* A or B (unless our facts /// conflict, see below). /// * Due to unreachable code, the intersection of two lattice values could be /// contradictory. If this happens, we return some valid lattice value so as /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but /// we do not make this guarantee. TODO: This would be a useful enhancement. static ValueLatticeElement intersect(const ValueLatticeElement &A, const ValueLatticeElement &B) { // Undefined is the strongest state. It means the value is known to be along // an unreachable path. if (A.isUnknown()) return A; if (B.isUnknown()) return B; // If we gave up for one, but got a useable fact from the other, use it. if (A.isOverdefined()) return B; if (B.isOverdefined()) return A; // Can't get any more precise than constants. if (hasSingleValue(A)) return A; if (hasSingleValue(B)) return B; // Could be either constant range or not constant here. if (!A.isConstantRange() || !B.isConstantRange()) { // TODO: Arbitrary choice, could be improved return A; } // Intersect two constant ranges ConstantRange Range = A.getConstantRange().intersectWith(B.getConstantRange()); // Note: An empty range is implicitly converted to overdefined internally. // TODO: We could instead use Undefined here since we've proven a conflict // and thus know this path must be unreachable. return ValueLatticeElement::getRange(std::move(Range)); } //===----------------------------------------------------------------------===// // LazyValueInfoCache Decl //===----------------------------------------------------------------------===// namespace { /// A callback value handle updates the cache when values are erased. class LazyValueInfoCache; struct LVIValueHandle final : public CallbackVH { // Needs to access getValPtr(), which is protected. friend struct DenseMapInfo; LazyValueInfoCache *Parent; LVIValueHandle(Value *V, LazyValueInfoCache *P) : CallbackVH(V), Parent(P) { } void deleted() override; void allUsesReplacedWith(Value *V) override { deleted(); } }; } // end anonymous namespace namespace { /// This is the cache kept by LazyValueInfo which /// maintains information about queries across the clients' queries. class LazyValueInfoCache { /// This is all of the cached block information for exactly one Value*. /// The entries are sorted by the BasicBlock* of the /// entries, allowing us to do a lookup with a binary search. /// Over-defined lattice values are recorded in OverDefinedCache to reduce /// memory overhead. struct ValueCacheEntryTy { ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {} LVIValueHandle Handle; SmallDenseMap, ValueLatticeElement, 4> BlockVals; }; /// This tracks, on a per-block basis, the set of values that are /// over-defined at the end of that block. typedef DenseMap, SmallPtrSet> OverDefinedCacheTy; /// Keep track of all blocks that we have ever seen, so we /// don't spend time removing unused blocks from our caches. DenseSet > SeenBlocks; /// This is all of the cached information for all values, /// mapped from Value* to key information. DenseMap> ValueCache; OverDefinedCacheTy OverDefinedCache; public: void insertResult(Value *Val, BasicBlock *BB, const ValueLatticeElement &Result) { SeenBlocks.insert(BB); // Insert over-defined values into their own cache to reduce memory // overhead. if (Result.isOverdefined()) OverDefinedCache[BB].insert(Val); else { auto It = ValueCache.find_as(Val); if (It == ValueCache.end()) { ValueCache[Val] = std::make_unique(Val, this); It = ValueCache.find_as(Val); assert(It != ValueCache.end() && "Val was just added to the map!"); } It->second->BlockVals[BB] = Result; } } bool isOverdefined(Value *V, BasicBlock *BB) const { auto ODI = OverDefinedCache.find(BB); if (ODI == OverDefinedCache.end()) return false; return ODI->second.count(V); } bool hasCachedValueInfo(Value *V, BasicBlock *BB) const { if (isOverdefined(V, BB)) return true; auto I = ValueCache.find_as(V); if (I == ValueCache.end()) return false; return I->second->BlockVals.count(BB); } ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const { if (isOverdefined(V, BB)) return ValueLatticeElement::getOverdefined(); auto I = ValueCache.find_as(V); if (I == ValueCache.end()) return ValueLatticeElement(); auto BBI = I->second->BlockVals.find(BB); if (BBI == I->second->BlockVals.end()) return ValueLatticeElement(); return BBI->second; } /// clear - Empty the cache. void clear() { SeenBlocks.clear(); ValueCache.clear(); OverDefinedCache.clear(); } /// Inform the cache that a given value has been deleted. void eraseValue(Value *V); /// This is part of the update interface to inform the cache /// that a block has been deleted. void eraseBlock(BasicBlock *BB); /// Updates the cache to remove any influence an overdefined value in /// OldSucc might have (unless also overdefined in NewSucc). This just /// flushes elements from the cache and does not add any. void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); friend struct LVIValueHandle; }; } void LazyValueInfoCache::eraseValue(Value *V) { for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) { // Copy and increment the iterator immediately so we can erase behind // ourselves. auto Iter = I++; SmallPtrSetImpl &ValueSet = Iter->second; ValueSet.erase(V); if (ValueSet.empty()) OverDefinedCache.erase(Iter); } ValueCache.erase(V); } void LVIValueHandle::deleted() { // This erasure deallocates *this, so it MUST happen after we're done // using any and all members of *this. Parent->eraseValue(*this); } void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { // Shortcut if we have never seen this block. DenseSet >::iterator I = SeenBlocks.find(BB); if (I == SeenBlocks.end()) return; SeenBlocks.erase(I); auto ODI = OverDefinedCache.find(BB); if (ODI != OverDefinedCache.end()) OverDefinedCache.erase(ODI); for (auto &I : ValueCache) I.second->BlockVals.erase(BB); } void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, BasicBlock *NewSucc) { // When an edge in the graph has been threaded, values that we could not // determine a value for before (i.e. were marked overdefined) may be // possible to solve now. We do NOT try to proactively update these values. // Instead, we clear their entries from the cache, and allow lazy updating to // recompute them when needed. // The updating process is fairly simple: we need to drop cached info // for all values that were marked overdefined in OldSucc, and for those same // values in any successor of OldSucc (except NewSucc) in which they were // also marked overdefined. std::vector worklist; worklist.push_back(OldSucc); auto I = OverDefinedCache.find(OldSucc); if (I == OverDefinedCache.end()) return; // Nothing to process here. SmallVector ValsToClear(I->second.begin(), I->second.end()); // Use a worklist to perform a depth-first search of OldSucc's successors. // NOTE: We do not need a visited list since any blocks we have already // visited will have had their overdefined markers cleared already, and we // thus won't loop to their successors. while (!worklist.empty()) { BasicBlock *ToUpdate = worklist.back(); worklist.pop_back(); // Skip blocks only accessible through NewSucc. if (ToUpdate == NewSucc) continue; // If a value was marked overdefined in OldSucc, and is here too... auto OI = OverDefinedCache.find(ToUpdate); if (OI == OverDefinedCache.end()) continue; SmallPtrSetImpl &ValueSet = OI->second; bool changed = false; for (Value *V : ValsToClear) { if (!ValueSet.erase(V)) continue; // If we removed anything, then we potentially need to update // blocks successors too. changed = true; if (ValueSet.empty()) { OverDefinedCache.erase(OI); break; } } if (!changed) continue; worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); } } namespace { /// An assembly annotator class to print LazyValueCache information in /// comments. class LazyValueInfoImpl; class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { LazyValueInfoImpl *LVIImpl; // While analyzing which blocks we can solve values for, we need the dominator // information. Since this is an optional parameter in LVI, we require this // DomTreeAnalysis pass in the printer pass, and pass the dominator // tree to the LazyValueInfoAnnotatedWriter. DominatorTree &DT; public: LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) : LVIImpl(L), DT(DTree) {} virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, formatted_raw_ostream &OS); virtual void emitInstructionAnnot(const Instruction *I, formatted_raw_ostream &OS); }; } namespace { // The actual implementation of the lazy analysis and update. Note that the // inheritance from LazyValueInfoCache is intended to be temporary while // splitting the code and then transitioning to a has-a relationship. class LazyValueInfoImpl { /// Cached results from previous queries LazyValueInfoCache TheCache; /// This stack holds the state of the value solver during a query. /// It basically emulates the callstack of the naive /// recursive value lookup process. SmallVector, 8> BlockValueStack; /// Keeps track of which block-value pairs are in BlockValueStack. DenseSet > BlockValueSet; /// Push BV onto BlockValueStack unless it's already in there. /// Returns true on success. bool pushBlockValue(const std::pair &BV) { if (!BlockValueSet.insert(BV).second) return false; // It's already in the stack. LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " << BV.first->getName() << "\n"); BlockValueStack.push_back(BV); return true; } AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. const DataLayout &DL; ///< A mandatory DataLayout DominatorTree *DT; ///< An optional DT pointer. DominatorTree *DisabledDT; ///< Stores DT if it's disabled. ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB); bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, ValueLatticeElement &Result, Instruction *CxtI = nullptr); bool hasBlockValue(Value *Val, BasicBlock *BB); // These methods process one work item and may add more. A false value // returned means that the work item was not completely processed and must // be revisited after going through the new items. bool solveBlockValue(Value *Val, BasicBlock *BB); bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val, BasicBlock *BB); bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val, BasicBlock *BB); bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN, BasicBlock *BB); bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S, BasicBlock *BB); Optional getRangeForOperand(unsigned Op, Instruction *I, BasicBlock *BB); bool solveBlockValueBinaryOpImpl( ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB, std::function OpFn); bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI, BasicBlock *BB); bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI, BasicBlock *BB); bool solveBlockValueOverflowIntrinsic( ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB); bool solveBlockValueSaturatingIntrinsic(ValueLatticeElement &BBLV, SaturatingInst *SI, BasicBlock *BB); bool solveBlockValueIntrinsic(ValueLatticeElement &BBLV, IntrinsicInst *II, BasicBlock *BB); bool solveBlockValueExtractValue(ValueLatticeElement &BBLV, ExtractValueInst *EVI, BasicBlock *BB); void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, ValueLatticeElement &BBLV, Instruction *BBI); void solve(); public: /// This is the query interface to determine the lattice /// value for the specified Value* at the end of the specified block. ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, Instruction *CxtI = nullptr); /// This is the query interface to determine the lattice /// value for the specified Value* at the specified instruction (generally /// from an assume intrinsic). ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); /// This is the query interface to determine the lattice /// value for the specified Value* that is true on the specified edge. ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI = nullptr); /// Complete flush all previously computed values void clear() { TheCache.clear(); } /// Printing the LazyValueInfo Analysis. void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { LazyValueInfoAnnotatedWriter Writer(this, DTree); F.print(OS, &Writer); } /// This is part of the update interface to inform the cache /// that a block has been deleted. void eraseBlock(BasicBlock *BB) { TheCache.eraseBlock(BB); } /// Disables use of the DominatorTree within LVI. void disableDT() { if (DT) { assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!"); std::swap(DT, DisabledDT); } } /// Enables use of the DominatorTree within LVI. Does nothing if the class /// instance was initialized without a DT pointer. void enableDT() { if (DisabledDT) { assert(!DT && "Both DT and DisabledDT are not nullptr!"); std::swap(DT, DisabledDT); } } /// This is the update interface to inform the cache that an edge from /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, DominatorTree *DT = nullptr) : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {} }; } // end anonymous namespace void LazyValueInfoImpl::solve() { SmallVector, 8> StartingStack( BlockValueStack.begin(), BlockValueStack.end()); unsigned processedCount = 0; while (!BlockValueStack.empty()) { processedCount++; // Abort if we have to process too many values to get a result for this one. // Because of the design of the overdefined cache currently being per-block // to avoid naming-related issues (IE it wants to try to give different // results for the same name in different blocks), overdefined results don't // get cached globally, which in turn means we will often try to rediscover // the same overdefined result again and again. Once something like // PredicateInfo is used in LVI or CVP, we should be able to make the // overdefined cache global, and remove this throttle. if (processedCount > MaxProcessedPerValue) { LLVM_DEBUG( dbgs() << "Giving up on stack because we are getting too deep\n"); // Fill in the original values while (!StartingStack.empty()) { std::pair &e = StartingStack.back(); TheCache.insertResult(e.second, e.first, ValueLatticeElement::getOverdefined()); StartingStack.pop_back(); } BlockValueSet.clear(); BlockValueStack.clear(); return; } std::pair e = BlockValueStack.back(); assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); if (solveBlockValue(e.second, e.first)) { // The work item was completely processed. assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); assert(TheCache.hasCachedValueInfo(e.second, e.first) && "Result should be in cache!"); LLVM_DEBUG( dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " << TheCache.getCachedValueInfo(e.second, e.first) << "\n"); BlockValueStack.pop_back(); BlockValueSet.erase(e); } else { // More work needs to be done before revisiting. assert(BlockValueStack.back() != e && "Stack should have been pushed!"); } } } bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) { // If already a constant, there is nothing to compute. if (isa(Val)) return true; return TheCache.hasCachedValueInfo(Val, BB); } ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB) { // If already a constant, there is nothing to compute. if (Constant *VC = dyn_cast(Val)) return ValueLatticeElement::get(VC); return TheCache.getCachedValueInfo(Val, BB); } static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { switch (BBI->getOpcode()) { default: break; case Instruction::Load: case Instruction::Call: case Instruction::Invoke: if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) if (isa(BBI->getType())) { return ValueLatticeElement::getRange( getConstantRangeFromMetadata(*Ranges)); } break; }; // Nothing known - will be intersected with other facts return ValueLatticeElement::getOverdefined(); } bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { if (isa(Val)) return true; if (TheCache.hasCachedValueInfo(Val, BB)) { // If we have a cached value, use that. LLVM_DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << TheCache.getCachedValueInfo(Val, BB) << '\n'); // Since we're reusing a cached value, we don't need to update the // OverDefinedCache. The cache will have been properly updated whenever the // cached value was inserted. return true; } // Hold off inserting this value into the Cache in case we have to return // false and come back later. ValueLatticeElement Res; if (!solveBlockValueImpl(Res, Val, BB)) // Work pushed, will revisit return false; TheCache.insertResult(Val, BB, Res); return true; } bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res, Value *Val, BasicBlock *BB) { Instruction *BBI = dyn_cast(Val); if (!BBI || BBI->getParent() != BB) return solveBlockValueNonLocal(Res, Val, BB); if (PHINode *PN = dyn_cast(BBI)) return solveBlockValuePHINode(Res, PN, BB); if (auto *SI = dyn_cast(BBI)) return solveBlockValueSelect(Res, SI, BB); // If this value is a nonnull pointer, record it's range and bailout. Note // that for all other pointer typed values, we terminate the search at the // definition. We could easily extend this to look through geps, bitcasts, // and the like to prove non-nullness, but it's not clear that's worth it // compile time wise. The context-insensitive value walk done inside // isKnownNonZero gets most of the profitable cases at much less expense. // This does mean that we have a sensitivity to where the defining // instruction is placed, even if it could legally be hoisted much higher. // That is unfortunate. PointerType *PT = dyn_cast(BBI->getType()); if (PT && isKnownNonZero(BBI, DL)) { Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); return true; } if (BBI->getType()->isIntegerTy()) { if (auto *CI = dyn_cast(BBI)) return solveBlockValueCast(Res, CI, BB); if (BinaryOperator *BO = dyn_cast(BBI)) return solveBlockValueBinaryOp(Res, BO, BB); if (auto *EVI = dyn_cast(BBI)) return solveBlockValueExtractValue(Res, EVI, BB); if (auto *II = dyn_cast(BBI)) return solveBlockValueIntrinsic(Res, II, BB); } LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - unknown inst def found.\n"); Res = getFromRangeMetadata(BBI); return true; } static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { if (LoadInst *L = dyn_cast(I)) { return L->getPointerAddressSpace() == 0 && GetUnderlyingObject(L->getPointerOperand(), L->getModule()->getDataLayout()) == Ptr; } if (StoreInst *S = dyn_cast(I)) { return S->getPointerAddressSpace() == 0 && GetUnderlyingObject(S->getPointerOperand(), S->getModule()->getDataLayout()) == Ptr; } if (MemIntrinsic *MI = dyn_cast(I)) { if (MI->isVolatile()) return false; // FIXME: check whether it has a valuerange that excludes zero? ConstantInt *Len = dyn_cast(MI->getLength()); if (!Len || Len->isZero()) return false; if (MI->getDestAddressSpace() == 0) if (GetUnderlyingObject(MI->getRawDest(), MI->getModule()->getDataLayout()) == Ptr) return true; if (MemTransferInst *MTI = dyn_cast(MI)) if (MTI->getSourceAddressSpace() == 0) if (GetUnderlyingObject(MTI->getRawSource(), MTI->getModule()->getDataLayout()) == Ptr) return true; } return false; } /// Return true if the allocation associated with Val is ever dereferenced /// within the given basic block. This establishes the fact Val is not null, /// but does not imply that the memory at Val is dereferenceable. (Val may /// point off the end of the dereferenceable part of the object.) static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) { assert(Val->getType()->isPointerTy()); const DataLayout &DL = BB->getModule()->getDataLayout(); Value *UnderlyingVal = GetUnderlyingObject(Val, DL); // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge // inside InstructionDereferencesPointer either. if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) for (Instruction &I : *BB) if (InstructionDereferencesPointer(&I, UnderlyingVal)) return true; return false; } bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val, BasicBlock *BB) { ValueLatticeElement Result; // Start Undefined. // If this is the entry block, we must be asking about an argument. The // value is overdefined. if (BB == &BB->getParent()->getEntryBlock()) { assert(isa(Val) && "Unknown live-in to the entry block"); // Before giving up, see if we can prove the pointer non-null local to // this particular block. PointerType *PTy = dyn_cast(Val->getType()); if (PTy && (isKnownNonZero(Val, DL) || (isObjectDereferencedInBlock(Val, BB) && !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) { Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); } else { Result = ValueLatticeElement::getOverdefined(); } BBLV = Result; return true; } // Loop over all of our predecessors, merging what we know from them into // result. If we encounter an unexplored predecessor, we eagerly explore it // in a depth first manner. In practice, this has the effect of discovering // paths we can't analyze eagerly without spending compile times analyzing // other paths. This heuristic benefits from the fact that predecessors are // frequently arranged such that dominating ones come first and we quickly // find a path to function entry. TODO: We should consider explicitly // canonicalizing to make this true rather than relying on this happy // accident. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { ValueLatticeElement EdgeResult; if (!getEdgeValue(Val, *PI, BB, EdgeResult)) // Explore that input, then return here return false; Result.mergeIn(EdgeResult, DL); // If we hit overdefined, exit early. The BlockVals entry is already set // to overdefined. if (Result.isOverdefined()) { LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred (non local).\n"); // Before giving up, see if we can prove the pointer non-null local to // this particular block. PointerType *PTy = dyn_cast(Val->getType()); if (PTy && isObjectDereferencedInBlock(Val, BB) && !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) { Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); } BBLV = Result; return true; } } // Return the merged value, which is more precise than 'overdefined'. assert(!Result.isOverdefined()); BBLV = Result; return true; } bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN, BasicBlock *BB) { ValueLatticeElement Result; // Start Undefined. // Loop over all of our predecessors, merging what we know from them into // result. See the comment about the chosen traversal order in // solveBlockValueNonLocal; the same reasoning applies here. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *PhiBB = PN->getIncomingBlock(i); Value *PhiVal = PN->getIncomingValue(i); ValueLatticeElement EdgeResult; // Note that we can provide PN as the context value to getEdgeValue, even // though the results will be cached, because PN is the value being used as // the cache key in the caller. if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN)) // Explore that input, then return here return false; Result.mergeIn(EdgeResult, DL); // If we hit overdefined, exit early. The BlockVals entry is already set // to overdefined. if (Result.isOverdefined()) { LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred (local).\n"); BBLV = Result; return true; } } // Return the merged value, which is more precise than 'overdefined'. assert(!Result.isOverdefined() && "Possible PHI in entry block?"); BBLV = Result; return true; } static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest = true); // If we can determine a constraint on the value given conditions assumed by // the program, intersect those constraints with BBLV void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { BBI = BBI ? BBI : dyn_cast(Val); if (!BBI) return; for (auto &AssumeVH : AC->assumptionsFor(Val)) { if (!AssumeVH) continue; auto *I = cast(AssumeVH); if (!isValidAssumeForContext(I, BBI, DT)) continue; BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); } // If guards are not used in the module, don't spend time looking for them auto *GuardDecl = BBI->getModule()->getFunction( Intrinsic::getName(Intrinsic::experimental_guard)); if (!GuardDecl || GuardDecl->use_empty()) return; if (BBI->getIterator() == BBI->getParent()->begin()) return; for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()), BBI->getParent()->rend())) { Value *Cond = nullptr; if (match(&I, m_Intrinsic(m_Value(Cond)))) BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); } } bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *SI, BasicBlock *BB) { // Recurse on our inputs if needed if (!hasBlockValue(SI->getTrueValue(), BB)) { if (pushBlockValue(std::make_pair(BB, SI->getTrueValue()))) return false; BBLV = ValueLatticeElement::getOverdefined(); return true; } ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB); // If we hit overdefined, don't ask more queries. We want to avoid poisoning // extra slots in the table if we can. if (TrueVal.isOverdefined()) { BBLV = ValueLatticeElement::getOverdefined(); return true; } if (!hasBlockValue(SI->getFalseValue(), BB)) { if (pushBlockValue(std::make_pair(BB, SI->getFalseValue()))) return false; BBLV = ValueLatticeElement::getOverdefined(); return true; } ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB); // If we hit overdefined, don't ask more queries. We want to avoid poisoning // extra slots in the table if we can. if (FalseVal.isOverdefined()) { BBLV = ValueLatticeElement::getOverdefined(); return true; } if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { const ConstantRange &TrueCR = TrueVal.getConstantRange(); const ConstantRange &FalseCR = FalseVal.getConstantRange(); Value *LHS = nullptr; Value *RHS = nullptr; SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); // Is this a min specifically of our two inputs? (Avoid the risk of // ValueTracking getting smarter looking back past our immediate inputs.) if (SelectPatternResult::isMinOrMax(SPR.Flavor) && LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { ConstantRange ResultCR = [&]() { switch (SPR.Flavor) { default: llvm_unreachable("unexpected minmax type!"); case SPF_SMIN: /// Signed minimum return TrueCR.smin(FalseCR); case SPF_UMIN: /// Unsigned minimum return TrueCR.umin(FalseCR); case SPF_SMAX: /// Signed maximum return TrueCR.smax(FalseCR); case SPF_UMAX: /// Unsigned maximum return TrueCR.umax(FalseCR); }; }(); BBLV = ValueLatticeElement::getRange(ResultCR); return true; } if (SPR.Flavor == SPF_ABS) { if (LHS == SI->getTrueValue()) { BBLV = ValueLatticeElement::getRange(TrueCR.abs()); return true; } if (LHS == SI->getFalseValue()) { BBLV = ValueLatticeElement::getRange(FalseCR.abs()); return true; } } if (SPR.Flavor == SPF_NABS) { ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth())); if (LHS == SI->getTrueValue()) { BBLV = ValueLatticeElement::getRange(Zero.sub(TrueCR.abs())); return true; } if (LHS == SI->getFalseValue()) { BBLV = ValueLatticeElement::getRange(Zero.sub(FalseCR.abs())); return true; } } } // Can we constrain the facts about the true and false values by using the // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). // TODO: We could potentially refine an overdefined true value above. Value *Cond = SI->getCondition(); TrueVal = intersect(TrueVal, getValueFromCondition(SI->getTrueValue(), Cond, true)); FalseVal = intersect(FalseVal, getValueFromCondition(SI->getFalseValue(), Cond, false)); // Handle clamp idioms such as: // %24 = constantrange<0, 17> // %39 = icmp eq i32 %24, 0 // %40 = add i32 %24, -1 // %siv.next = select i1 %39, i32 16, i32 %40 // %siv.next = constantrange<0, 17> not <-1, 17> // In general, this can handle any clamp idiom which tests the edge // condition via an equality or inequality. if (auto *ICI = dyn_cast(Cond)) { ICmpInst::Predicate Pred = ICI->getPredicate(); Value *A = ICI->getOperand(0); if (ConstantInt *CIBase = dyn_cast(ICI->getOperand(1))) { auto addConstants = [](ConstantInt *A, ConstantInt *B) { assert(A->getType() == B->getType()); return ConstantInt::get(A->getType(), A->getValue() + B->getValue()); }; // See if either input is A + C2, subject to the constraint from the // condition that A != C when that input is used. We can assume that // that input doesn't include C + C2. ConstantInt *CIAdded; switch (Pred) { default: break; case ICmpInst::ICMP_EQ: if (match(SI->getFalseValue(), m_Add(m_Specific(A), m_ConstantInt(CIAdded)))) { auto ResNot = addConstants(CIBase, CIAdded); FalseVal = intersect(FalseVal, ValueLatticeElement::getNot(ResNot)); } break; case ICmpInst::ICMP_NE: if (match(SI->getTrueValue(), m_Add(m_Specific(A), m_ConstantInt(CIAdded)))) { auto ResNot = addConstants(CIBase, CIAdded); TrueVal = intersect(TrueVal, ValueLatticeElement::getNot(ResNot)); } break; }; } } ValueLatticeElement Result; // Start Undefined. Result.mergeIn(TrueVal, DL); Result.mergeIn(FalseVal, DL); BBLV = Result; return true; } Optional LazyValueInfoImpl::getRangeForOperand(unsigned Op, Instruction *I, BasicBlock *BB) { if (!hasBlockValue(I->getOperand(Op), BB)) if (pushBlockValue(std::make_pair(BB, I->getOperand(Op)))) return None; const unsigned OperandBitWidth = DL.getTypeSizeInBits(I->getOperand(Op)->getType()); ConstantRange Range = ConstantRange::getFull(OperandBitWidth); if (hasBlockValue(I->getOperand(Op), BB)) { ValueLatticeElement Val = getBlockValue(I->getOperand(Op), BB); intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I); if (Val.isConstantRange()) Range = Val.getConstantRange(); } return Range; } bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI, BasicBlock *BB) { if (!CI->getOperand(0)->getType()->isSized()) { // Without knowing how wide the input is, we can't analyze it in any useful // way. BBLV = ValueLatticeElement::getOverdefined(); return true; } // Filter out casts we don't know how to reason about before attempting to // recurse on our operand. This can cut a long search short if we know we're // not going to be able to get any useful information anways. switch (CI->getOpcode()) { case Instruction::Trunc: case Instruction::SExt: case Instruction::ZExt: case Instruction::BitCast: break; default: // Unhandled instructions are overdefined. LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown cast).\n"); BBLV = ValueLatticeElement::getOverdefined(); return true; } // Figure out the range of the LHS. If that fails, we still apply the // transfer rule on the full set since we may be able to locally infer // interesting facts. Optional LHSRes = getRangeForOperand(0, CI, BB); if (!LHSRes.hasValue()) // More work to do before applying this transfer rule. return false; ConstantRange LHSRange = LHSRes.getValue(); const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); // NOTE: We're currently limited by the set of operations that ConstantRange // can evaluate symbolically. Enhancing that set will allows us to analyze // more definitions. BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), ResultBitWidth)); return true; } bool LazyValueInfoImpl::solveBlockValueBinaryOpImpl( ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB, std::function OpFn) { // Figure out the ranges of the operands. If that fails, use a // conservative range, but apply the transfer rule anyways. This // lets us pick up facts from expressions like "and i32 (call i32 // @foo()), 32" Optional LHSRes = getRangeForOperand(0, I, BB); Optional RHSRes = getRangeForOperand(1, I, BB); if (!LHSRes.hasValue() || !RHSRes.hasValue()) // More work to do before applying this transfer rule. return false; ConstantRange LHSRange = LHSRes.getValue(); ConstantRange RHSRange = RHSRes.getValue(); BBLV = ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); return true; } bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BO, BasicBlock *BB) { assert(BO->getOperand(0)->getType()->isSized() && "all operands to binary operators are sized"); if (BO->getOpcode() == Instruction::Xor) { // Xor is the only operation not supported by ConstantRange::binaryOp(). LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown binary operator).\n"); BBLV = ValueLatticeElement::getOverdefined(); return true; } if (auto *OBO = dyn_cast(BO)) { unsigned NoWrapKind = 0; if (OBO->hasNoUnsignedWrap()) NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; if (OBO->hasNoSignedWrap()) NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; return solveBlockValueBinaryOpImpl( BBLV, BO, BB, [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); }); } return solveBlockValueBinaryOpImpl( BBLV, BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.binaryOp(BO->getOpcode(), CR2); }); } bool LazyValueInfoImpl::solveBlockValueOverflowIntrinsic( ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB) { return solveBlockValueBinaryOpImpl(BBLV, WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.binaryOp(WO->getBinaryOp(), CR2); }); } bool LazyValueInfoImpl::solveBlockValueSaturatingIntrinsic( ValueLatticeElement &BBLV, SaturatingInst *SI, BasicBlock *BB) { switch (SI->getIntrinsicID()) { case Intrinsic::uadd_sat: return solveBlockValueBinaryOpImpl( BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.uadd_sat(CR2); }); case Intrinsic::usub_sat: return solveBlockValueBinaryOpImpl( BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.usub_sat(CR2); }); case Intrinsic::sadd_sat: return solveBlockValueBinaryOpImpl( BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.sadd_sat(CR2); }); case Intrinsic::ssub_sat: return solveBlockValueBinaryOpImpl( BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { return CR1.ssub_sat(CR2); }); default: llvm_unreachable("All llvm.sat intrinsic are handled."); } } bool LazyValueInfoImpl::solveBlockValueIntrinsic(ValueLatticeElement &BBLV, IntrinsicInst *II, BasicBlock *BB) { if (auto *SI = dyn_cast(II)) return solveBlockValueSaturatingIntrinsic(BBLV, SI, BB); LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown intrinsic).\n"); BBLV = ValueLatticeElement::getOverdefined(); return true; } bool LazyValueInfoImpl::solveBlockValueExtractValue( ValueLatticeElement &BBLV, ExtractValueInst *EVI, BasicBlock *BB) { if (auto *WO = dyn_cast(EVI->getAggregateOperand())) if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) return solveBlockValueOverflowIntrinsic(BBLV, WO, BB); // Handle extractvalue of insertvalue to allow further simplification // based on replaced with.overflow intrinsics. if (Value *V = SimplifyExtractValueInst( EVI->getAggregateOperand(), EVI->getIndices(), EVI->getModule()->getDataLayout())) { if (!hasBlockValue(V, BB)) { if (pushBlockValue({ BB, V })) return false; BBLV = ValueLatticeElement::getOverdefined(); return true; } BBLV = getBlockValue(V, BB); return true; } LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown extractvalue).\n"); BBLV = ValueLatticeElement::getOverdefined(); return true; } static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, bool isTrueDest) { Value *LHS = ICI->getOperand(0); Value *RHS = ICI->getOperand(1); CmpInst::Predicate Predicate = ICI->getPredicate(); if (isa(RHS)) { if (ICI->isEquality() && LHS == Val) { // We know that V has the RHS constant if this is a true SETEQ or // false SETNE. if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ)) return ValueLatticeElement::get(cast(RHS)); else if (!isa(RHS)) return ValueLatticeElement::getNot(cast(RHS)); } } if (!Val->getType()->isIntegerTy()) return ValueLatticeElement::getOverdefined(); // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible // range of Val guaranteed by the condition. Recognize comparisons in the from // of: // icmp Val, ... // icmp (add Val, Offset), ... // The latter is the range checking idiom that InstCombine produces. Subtract // the offset from the allowed range for RHS in this case. // Val or (add Val, Offset) can be on either hand of the comparison if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) { std::swap(LHS, RHS); Predicate = CmpInst::getSwappedPredicate(Predicate); } ConstantInt *Offset = nullptr; if (LHS != Val) match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset))); if (LHS == Val || Offset) { // Calculate the range of values that are allowed by the comparison ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), /*isFullSet=*/true); if (ConstantInt *CI = dyn_cast(RHS)) RHSRange = ConstantRange(CI->getValue()); else if (Instruction *I = dyn_cast(RHS)) if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) RHSRange = getConstantRangeFromMetadata(*Ranges); // If we're interested in the false dest, invert the condition CmpInst::Predicate Pred = isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate); ConstantRange TrueValues = ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); if (Offset) // Apply the offset from above. TrueValues = TrueValues.subtract(Offset->getValue()); return ValueLatticeElement::getRange(std::move(TrueValues)); } return ValueLatticeElement::getOverdefined(); } // Handle conditions of the form // extractvalue(op.with.overflow(%x, C), 1). static ValueLatticeElement getValueFromOverflowCondition( Value *Val, WithOverflowInst *WO, bool IsTrueDest) { // TODO: This only works with a constant RHS for now. We could also compute // the range of the RHS, but this doesn't fit into the current structure of // the edge value calculation. const APInt *C; if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) return ValueLatticeElement::getOverdefined(); // Calculate the possible values of %x for which no overflow occurs. ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( WO->getBinaryOp(), *C, WO->getNoWrapKind()); // If overflow is false, %x is constrained to NWR. If overflow is true, %x is // constrained to it's inverse (all values that might cause overflow). if (IsTrueDest) NWR = NWR.inverse(); return ValueLatticeElement::getRange(NWR); } static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, DenseMap &Visited); static ValueLatticeElement getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, DenseMap &Visited) { if (ICmpInst *ICI = dyn_cast(Cond)) return getValueFromICmpCondition(Val, ICI, isTrueDest); if (auto *EVI = dyn_cast(Cond)) if (auto *WO = dyn_cast(EVI->getAggregateOperand())) if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) return getValueFromOverflowCondition(Val, WO, isTrueDest); // Handle conditions in the form of (cond1 && cond2), we know that on the // true dest path both of the conditions hold. Similarly for conditions of // the form (cond1 || cond2), we know that on the false dest path neither // condition holds. BinaryOperator *BO = dyn_cast(Cond); if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) || (!isTrueDest && BO->getOpcode() != BinaryOperator::Or)) return ValueLatticeElement::getOverdefined(); // Prevent infinite recursion if Cond references itself as in this example: // Cond: "%tmp4 = and i1 %tmp4, undef" // BL: "%tmp4 = and i1 %tmp4, undef" // BR: "i1 undef" Value *BL = BO->getOperand(0); Value *BR = BO->getOperand(1); if (BL == Cond || BR == Cond) return ValueLatticeElement::getOverdefined(); return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited), getValueFromCondition(Val, BR, isTrueDest, Visited)); } static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, DenseMap &Visited) { auto I = Visited.find(Cond); if (I != Visited.end()) return I->second; auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited); Visited[Cond] = Result; return Result; } ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest) { assert(Cond && "precondition"); DenseMap Visited; return getValueFromCondition(Val, Cond, isTrueDest, Visited); } // Return true if Usr has Op as an operand, otherwise false. static bool usesOperand(User *Usr, Value *Op) { return find(Usr->operands(), Op) != Usr->op_end(); } // Return true if the instruction type of Val is supported by // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this // before calling constantFoldUser() to find out if it's even worth attempting // to call it. static bool isOperationFoldable(User *Usr) { return isa(Usr) || isa(Usr); } // Check if Usr can be simplified to an integer constant when the value of one // of its operands Op is an integer constant OpConstVal. If so, return it as an // lattice value range with a single element or otherwise return an overdefined // lattice value. static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, const APInt &OpConstVal, const DataLayout &DL) { assert(isOperationFoldable(Usr) && "Precondition"); Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); // Check if Usr can be simplified to a constant. if (auto *CI = dyn_cast(Usr)) { assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); if (auto *C = dyn_cast_or_null( SimplifyCastInst(CI->getOpcode(), OpConst, CI->getDestTy(), DL))) { return ValueLatticeElement::getRange(ConstantRange(C->getValue())); } } else if (auto *BO = dyn_cast(Usr)) { bool Op0Match = BO->getOperand(0) == Op; bool Op1Match = BO->getOperand(1) == Op; assert((Op0Match || Op1Match) && "Operand 0 nor Operand 1 isn't a match"); Value *LHS = Op0Match ? OpConst : BO->getOperand(0); Value *RHS = Op1Match ? OpConst : BO->getOperand(1); if (auto *C = dyn_cast_or_null( SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { return ValueLatticeElement::getRange(ConstantRange(C->getValue())); } } return ValueLatticeElement::getOverdefined(); } /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if /// Val is not constrained on the edge. Result is unspecified if return value /// is false. static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, ValueLatticeElement &Result) { // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we // know that v != 0. if (BranchInst *BI = dyn_cast(BBFrom->getTerminator())) { // If this is a conditional branch and only one successor goes to BBTo, then // we may be able to infer something from the condition. if (BI->isConditional() && BI->getSuccessor(0) != BI->getSuccessor(1)) { bool isTrueDest = BI->getSuccessor(0) == BBTo; assert(BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom"); Value *Condition = BI->getCondition(); // If V is the condition of the branch itself, then we know exactly what // it is. if (Condition == Val) { Result = ValueLatticeElement::get(ConstantInt::get( Type::getInt1Ty(Val->getContext()), isTrueDest)); return true; } // If the condition of the branch is an equality comparison, we may be // able to infer the value. Result = getValueFromCondition(Val, Condition, isTrueDest); if (!Result.isOverdefined()) return true; if (User *Usr = dyn_cast(Val)) { assert(Result.isOverdefined() && "Result isn't overdefined"); // Check with isOperationFoldable() first to avoid linearly iterating // over the operands unnecessarily which can be expensive for // instructions with many operands. if (isa(Usr->getType()) && isOperationFoldable(Usr)) { const DataLayout &DL = BBTo->getModule()->getDataLayout(); if (usesOperand(Usr, Condition)) { // If Val has Condition as an operand and Val can be folded into a // constant with either Condition == true or Condition == false, // propagate the constant. // eg. // ; %Val is true on the edge to %then. // %Val = and i1 %Condition, true. // br %Condition, label %then, label %else APInt ConditionVal(1, isTrueDest ? 1 : 0); Result = constantFoldUser(Usr, Condition, ConditionVal, DL); } else { // If one of Val's operand has an inferred value, we may be able to // infer the value of Val. // eg. // ; %Val is 94 on the edge to %then. // %Val = add i8 %Op, 1 // %Condition = icmp eq i8 %Op, 93 // br i1 %Condition, label %then, label %else for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { Value *Op = Usr->getOperand(i); ValueLatticeElement OpLatticeVal = getValueFromCondition(Op, Condition, isTrueDest); if (Optional OpConst = OpLatticeVal.asConstantInteger()) { Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL); break; } } } } } if (!Result.isOverdefined()) return true; } } // If the edge was formed by a switch on the value, then we may know exactly // what it is. if (SwitchInst *SI = dyn_cast(BBFrom->getTerminator())) { Value *Condition = SI->getCondition(); if (!isa(Val->getType())) return false; bool ValUsesConditionAndMayBeFoldable = false; if (Condition != Val) { // Check if Val has Condition as an operand. if (User *Usr = dyn_cast(Val)) ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && usesOperand(Usr, Condition); if (!ValUsesConditionAndMayBeFoldable) return false; } assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && "Condition != Val nor Val doesn't use Condition"); bool DefaultCase = SI->getDefaultDest() == BBTo; unsigned BitWidth = Val->getType()->getIntegerBitWidth(); ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); for (auto Case : SI->cases()) { APInt CaseValue = Case.getCaseValue()->getValue(); ConstantRange EdgeVal(CaseValue); if (ValUsesConditionAndMayBeFoldable) { User *Usr = cast(Val); const DataLayout &DL = BBTo->getModule()->getDataLayout(); ValueLatticeElement EdgeLatticeVal = constantFoldUser(Usr, Condition, CaseValue, DL); if (EdgeLatticeVal.isOverdefined()) return false; EdgeVal = EdgeLatticeVal.getConstantRange(); } if (DefaultCase) { // It is possible that the default destination is the destination of // some cases. We cannot perform difference for those cases. // We know Condition != CaseValue in BBTo. In some cases we can use // this to infer Val == f(Condition) is != f(CaseValue). For now, we // only do this when f is identity (i.e. Val == Condition), but we // should be able to do this for any injective f. if (Case.getCaseSuccessor() != BBTo && Condition == Val) EdgesVals = EdgesVals.difference(EdgeVal); } else if (Case.getCaseSuccessor() == BBTo) EdgesVals = EdgesVals.unionWith(EdgeVal); } Result = ValueLatticeElement::getRange(std::move(EdgesVals)); return true; } return false; } /// Compute the value of Val on the edge BBFrom -> BBTo or the value at /// the basic block if the edge does not constrain Val. bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, ValueLatticeElement &Result, Instruction *CxtI) { // If already a constant, there is nothing to compute. if (Constant *VC = dyn_cast(Val)) { Result = ValueLatticeElement::get(VC); return true; } ValueLatticeElement LocalResult; if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult)) // If we couldn't constrain the value on the edge, LocalResult doesn't // provide any information. LocalResult = ValueLatticeElement::getOverdefined(); if (hasSingleValue(LocalResult)) { // Can't get any more precise here Result = LocalResult; return true; } if (!hasBlockValue(Val, BBFrom)) { if (pushBlockValue(std::make_pair(BBFrom, Val))) return false; // No new information. Result = LocalResult; return true; } // Try to intersect ranges of the BB and the constraint on the edge. ValueLatticeElement InBlock = getBlockValue(Val, BBFrom); intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator()); // We can use the context instruction (generically the ultimate instruction // the calling pass is trying to simplify) here, even though the result of // this function is generally cached when called from the solve* functions // (and that cached result might be used with queries using a different // context instruction), because when this function is called from the solve* // functions, the context instruction is not provided. When called from // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, // but then the result is not cached. intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); Result = intersect(LocalResult, InBlock); return true; } ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, Instruction *CxtI) { LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" << BB->getName() << "'\n"); assert(BlockValueStack.empty() && BlockValueSet.empty()); if (!hasBlockValue(V, BB)) { pushBlockValue(std::make_pair(BB, V)); solve(); } ValueLatticeElement Result = getBlockValue(V, BB); intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); return Result; } ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() << "'\n"); if (auto *C = dyn_cast(V)) return ValueLatticeElement::get(C); ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); if (auto *I = dyn_cast(V)) Result = getFromRangeMetadata(I); intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); return Result; } ValueLatticeElement LazyValueInfoImpl:: getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI) { LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" << FromBB->getName() << "' to '" << ToBB->getName() << "'\n"); ValueLatticeElement Result; if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) { solve(); bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI); (void)WasFastQuery; assert(WasFastQuery && "More work to do after problem solved?"); } LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); return Result; } void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc) { TheCache.threadEdgeImpl(OldSucc, NewSucc); } //===----------------------------------------------------------------------===// // LazyValueInfo Impl //===----------------------------------------------------------------------===// /// This lazily constructs the LazyValueInfoImpl. static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, const DataLayout *DL, DominatorTree *DT = nullptr) { if (!PImpl) { assert(DL && "getCache() called with a null DataLayout"); PImpl = new LazyValueInfoImpl(AC, *DL, DT); } return *static_cast(PImpl); } bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { Info.AC = &getAnalysis().getAssumptionCache(F); const DataLayout &DL = F.getParent()->getDataLayout(); DominatorTreeWrapperPass *DTWP = getAnalysisIfAvailable(); Info.DT = DTWP ? &DTWP->getDomTree() : nullptr; Info.TLI = &getAnalysis().getTLI(F); if (Info.PImpl) getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear(); // Fully lazy. return false; } void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); } LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } LazyValueInfo::~LazyValueInfo() { releaseMemory(); } void LazyValueInfo::releaseMemory() { // If the cache was allocated, free it. if (PImpl) { delete &getImpl(PImpl, AC, nullptr); PImpl = nullptr; } } bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv) { // We need to invalidate if we have either failed to preserve this analyses // result directly or if any of its dependencies have been invalidated. auto PAC = PA.getChecker(); if (!(PAC.preserved() || PAC.preservedSet>()) || (DT && Inv.invalidate(F, PA))) return true; return false; } void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } LazyValueInfo LazyValueAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { auto &AC = FAM.getResult(F); auto &TLI = FAM.getResult(F); auto *DT = FAM.getCachedResult(F); return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT); } /// Returns true if we can statically tell that this value will never be a /// "useful" constant. In practice, this means we've got something like an /// alloca or a malloc call for which a comparison against a constant can /// only be guarding dead code. Note that we are potentially giving up some /// precision in dead code (a constant result) in favour of avoiding a /// expensive search for a easily answered common query. static bool isKnownNonConstant(Value *V) { V = V->stripPointerCasts(); // The return val of alloc cannot be a Constant. if (isa(V)) return true; return false; } Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB, Instruction *CxtI) { // Bail out early if V is known not to be a Constant. if (isKnownNonConstant(V)) return nullptr; const DataLayout &DL = BB->getModule()->getDataLayout(); ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); if (Result.isConstant()) return Result.getConstant(); if (Result.isConstantRange()) { const ConstantRange &CR = Result.getConstantRange(); if (const APInt *SingleVal = CR.getSingleElement()) return ConstantInt::get(V->getContext(), *SingleVal); } return nullptr; } ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB, Instruction *CxtI) { assert(V->getType()->isIntegerTy()); unsigned Width = V->getType()->getIntegerBitWidth(); const DataLayout &DL = BB->getModule()->getDataLayout(); ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); if (Result.isUnknown()) return ConstantRange::getEmpty(Width); if (Result.isConstantRange()) return Result.getConstantRange(); // We represent ConstantInt constants as constant ranges but other kinds // of integer constants, i.e. ConstantExpr will be tagged as constants assert(!(Result.isConstant() && isa(Result.getConstant())) && "ConstantInt value must be represented as constantrange"); return ConstantRange::getFull(Width); } /// Determine whether the specified value is known to be a /// constant on the specified edge. Return null if not. Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI) { const DataLayout &DL = FromBB->getModule()->getDataLayout(); ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); if (Result.isConstant()) return Result.getConstant(); if (Result.isConstantRange()) { const ConstantRange &CR = Result.getConstantRange(); if (const APInt *SingleVal = CR.getSingleElement()) return ConstantInt::get(V->getContext(), *SingleVal); } return nullptr; } ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI) { unsigned Width = V->getType()->getIntegerBitWidth(); const DataLayout &DL = FromBB->getModule()->getDataLayout(); ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); if (Result.isUnknown()) return ConstantRange::getEmpty(Width); if (Result.isConstantRange()) return Result.getConstantRange(); // We represent ConstantInt constants as constant ranges but other kinds // of integer constants, i.e. ConstantExpr will be tagged as constants assert(!(Result.isConstant() && isa(Result.getConstant())) && "ConstantInt value must be represented as constantrange"); return ConstantRange::getFull(Width); } static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, const DataLayout &DL, TargetLibraryInfo *TLI) { // If we know the value is a constant, evaluate the conditional. Constant *Res = nullptr; if (Val.isConstant()) { Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); if (ConstantInt *ResCI = dyn_cast(Res)) return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; return LazyValueInfo::Unknown; } if (Val.isConstantRange()) { ConstantInt *CI = dyn_cast(C); if (!CI) return LazyValueInfo::Unknown; const ConstantRange &CR = Val.getConstantRange(); if (Pred == ICmpInst::ICMP_EQ) { if (!CR.contains(CI->getValue())) return LazyValueInfo::False; if (CR.isSingleElement()) return LazyValueInfo::True; } else if (Pred == ICmpInst::ICMP_NE) { if (!CR.contains(CI->getValue())) return LazyValueInfo::True; if (CR.isSingleElement()) return LazyValueInfo::False; } else { // Handle more complex predicates. ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( (ICmpInst::Predicate)Pred, CI->getValue()); if (TrueValues.contains(CR)) return LazyValueInfo::True; if (TrueValues.inverse().contains(CR)) return LazyValueInfo::False; } return LazyValueInfo::Unknown; } if (Val.isNotConstant()) { // If this is an equality comparison, we can try to fold it knowing that // "V != C1". if (Pred == ICmpInst::ICMP_EQ) { // !C1 == C -> false iff C1 == C. Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, Val.getNotConstant(), C, DL, TLI); if (Res->isNullValue()) return LazyValueInfo::False; } else if (Pred == ICmpInst::ICMP_NE) { // !C1 != C -> true iff C1 == C. Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, Val.getNotConstant(), C, DL, TLI); if (Res->isNullValue()) return LazyValueInfo::True; } return LazyValueInfo::Unknown; } return LazyValueInfo::Unknown; } /// Determine whether the specified value comparison with a constant is known to /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. LazyValueInfo::Tristate LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI) { const DataLayout &DL = FromBB->getModule()->getDataLayout(); ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); return getPredicateResult(Pred, C, Result, DL, TLI); } LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, Instruction *CxtI) { // Is or is not NonNull are common predicates being queried. If // isKnownNonZero can tell us the result of the predicate, we can // return it quickly. But this is only a fastpath, and falling // through would still be correct. const DataLayout &DL = CxtI->getModule()->getDataLayout(); if (V->getType()->isPointerTy() && C->isNullValue() && isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { if (Pred == ICmpInst::ICMP_EQ) return LazyValueInfo::False; else if (Pred == ICmpInst::ICMP_NE) return LazyValueInfo::True; } ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI); Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); if (Ret != Unknown) return Ret; // Note: The following bit of code is somewhat distinct from the rest of LVI; // LVI as a whole tries to compute a lattice value which is conservatively // correct at a given location. In this case, we have a predicate which we // weren't able to prove about the merged result, and we're pushing that // predicate back along each incoming edge to see if we can prove it // separately for each input. As a motivating example, consider: // bb1: // %v1 = ... ; constantrange<1, 5> // br label %merge // bb2: // %v2 = ... ; constantrange<10, 20> // br label %merge // merge: // %phi = phi [%v1, %v2] ; constantrange<1,20> // %pred = icmp eq i32 %phi, 8 // We can't tell from the lattice value for '%phi' that '%pred' is false // along each path, but by checking the predicate over each input separately, // we can. // We limit the search to one step backwards from the current BB and value. // We could consider extending this to search further backwards through the // CFG and/or value graph, but there are non-obvious compile time vs quality // tradeoffs. if (CxtI) { BasicBlock *BB = CxtI->getParent(); // Function entry or an unreachable block. Bail to avoid confusing // analysis below. pred_iterator PI = pred_begin(BB), PE = pred_end(BB); if (PI == PE) return Unknown; // If V is a PHI node in the same block as the context, we need to ask // questions about the predicate as applied to the incoming value along // each edge. This is useful for eliminating cases where the predicate is // known along all incoming edges. if (auto *PHI = dyn_cast(V)) if (PHI->getParent() == BB) { Tristate Baseline = Unknown; for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { Value *Incoming = PHI->getIncomingValue(i); BasicBlock *PredBB = PHI->getIncomingBlock(i); // Note that PredBB may be BB itself. Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI); // Keep going as long as we've seen a consistent known result for // all inputs. Baseline = (i == 0) ? Result /* First iteration */ : (Baseline == Result ? Baseline : Unknown); /* All others */ if (Baseline == Unknown) break; } if (Baseline != Unknown) return Baseline; } // For a comparison where the V is outside this block, it's possible // that we've branched on it before. Look to see if the value is known // on all incoming edges. if (!isa(V) || cast(V)->getParent() != BB) { // For predecessor edge, determine if the comparison is true or false // on that edge. If they're all true or all false, we can conclude // the value of the comparison in this block. Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); if (Baseline != Unknown) { // Check that all remaining incoming values match the first one. while (++PI != PE) { Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); if (Ret != Baseline) break; } // If we terminated early, then one of the values didn't match. if (PI == PE) { return Baseline; } } } } return Unknown; } void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc) { if (PImpl) { const DataLayout &DL = PredBB->getModule()->getDataLayout(); getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc); } } void LazyValueInfo::eraseBlock(BasicBlock *BB) { if (PImpl) { const DataLayout &DL = BB->getModule()->getDataLayout(); getImpl(PImpl, AC, &DL, DT).eraseBlock(BB); } } void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { if (PImpl) { getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS); } } void LazyValueInfo::disableDT() { if (PImpl) getImpl(PImpl, AC, DL, DT).disableDT(); } void LazyValueInfo::enableDT() { if (PImpl) getImpl(PImpl, AC, DL, DT).enableDT(); } // Print the LVI for the function arguments at the start of each basic block. void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( const BasicBlock *BB, formatted_raw_ostream &OS) { // Find if there are latticevalues defined for arguments of the function. auto *F = BB->getParent(); for (auto &Arg : F->args()) { ValueLatticeElement Result = LVIImpl->getValueInBlock( const_cast(&Arg), const_cast(BB)); if (Result.isUnknown()) continue; OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; } } // This function prints the LVI analysis for the instruction I at the beginning // of various basic blocks. It relies on calculated values that are stored in // the LazyValueInfoCache, and in the absence of cached values, recalculate the // LazyValueInfo for `I`, and print that info. void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( const Instruction *I, formatted_raw_ostream &OS) { auto *ParentBB = I->getParent(); SmallPtrSet BlocksContainingLVI; // We can generate (solve) LVI values only for blocks that are dominated by // the I's parent. However, to avoid generating LVI for all dominating blocks, // that contain redundant/uninteresting information, we print LVI for // blocks that may use this LVI information (such as immediate successor // blocks, and blocks that contain uses of `I`). auto printResult = [&](const BasicBlock *BB) { if (!BlocksContainingLVI.insert(BB).second) return; ValueLatticeElement Result = LVIImpl->getValueInBlock( const_cast(I), const_cast(BB)); OS << "; LatticeVal for: '" << *I << "' in BB: '"; BB->printAsOperand(OS, false); OS << "' is: " << Result << "\n"; }; printResult(ParentBB); // Print the LVI analysis results for the immediate successor blocks, that // are dominated by `ParentBB`. for (auto *BBSucc : successors(ParentBB)) if (DT.dominates(ParentBB, BBSucc)) printResult(BBSucc); // Print LVI in blocks where `I` is used. for (auto *U : I->users()) if (auto *UseI = dyn_cast(U)) if (!isa(UseI) || DT.dominates(ParentBB, UseI->getParent())) printResult(UseI->getParent()); } namespace { // Printer class for LazyValueInfo results. class LazyValueInfoPrinter : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid LazyValueInfoPrinter() : FunctionPass(ID) { initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); } // Get the mandatory dominator tree analysis and pass this in to the // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. bool runOnFunction(Function &F) override { dbgs() << "LVI for function '" << F.getName() << "':\n"; auto &LVI = getAnalysis().getLVI(); auto &DTree = getAnalysis().getDomTree(); LVI.printLVI(F, DTree, dbgs()); return false; } }; } char LazyValueInfoPrinter::ID = 0; INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info", "Lazy Value Info Printer Pass", false, false) INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info", "Lazy Value Info Printer Pass", false, false)