//===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_PARALLEL_H #define LLVM_SUPPORT_PARALLEL_H #include "llvm/ADT/STLExtras.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/MathExtras.h" #include #include #include #include namespace llvm { namespace parallel { struct sequential_execution_policy {}; struct parallel_execution_policy {}; template struct is_execution_policy : public std::integral_constant< bool, llvm::is_one_of::value> {}; constexpr sequential_execution_policy seq{}; constexpr parallel_execution_policy par{}; namespace detail { #if LLVM_ENABLE_THREADS class Latch { uint32_t Count; mutable std::mutex Mutex; mutable std::condition_variable Cond; public: explicit Latch(uint32_t Count = 0) : Count(Count) {} ~Latch() { sync(); } void inc() { std::lock_guard lock(Mutex); ++Count; } void dec() { std::lock_guard lock(Mutex); if (--Count == 0) Cond.notify_all(); } void sync() const { std::unique_lock lock(Mutex); Cond.wait(lock, [&] { return Count == 0; }); } }; class TaskGroup { Latch L; bool Parallel; public: TaskGroup(); ~TaskGroup(); void spawn(std::function f); void sync() const { L.sync(); } }; const ptrdiff_t MinParallelSize = 1024; /// Inclusive median. template RandomAccessIterator medianOf3(RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp) { RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2); return Comp(*Start, *(End - 1)) ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start) : End - 1) : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1) : Start); } template void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp, TaskGroup &TG, size_t Depth) { // Do a sequential sort for small inputs. if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) { llvm::sort(Start, End, Comp); return; } // Partition. auto Pivot = medianOf3(Start, End, Comp); // Move Pivot to End. std::swap(*(End - 1), *Pivot); Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) { return Comp(V, *(End - 1)); }); // Move Pivot to middle of partition. std::swap(*Pivot, *(End - 1)); // Recurse. TG.spawn([=, &Comp, &TG] { parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1); }); parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1); } template void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp) { TaskGroup TG; parallel_quick_sort(Start, End, Comp, TG, llvm::Log2_64(std::distance(Start, End)) + 1); } template void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) { // TaskGroup has a relatively high overhead, so we want to reduce // the number of spawn() calls. We'll create up to 1024 tasks here. // (Note that 1024 is an arbitrary number. This code probably needs // improving to take the number of available cores into account.) ptrdiff_t TaskSize = std::distance(Begin, End) / 1024; if (TaskSize == 0) TaskSize = 1; TaskGroup TG; while (TaskSize < std::distance(Begin, End)) { TG.spawn([=, &Fn] { std::for_each(Begin, Begin + TaskSize, Fn); }); Begin += TaskSize; } std::for_each(Begin, End, Fn); } template void parallel_for_each_n(IndexTy Begin, IndexTy End, FuncTy Fn) { ptrdiff_t TaskSize = (End - Begin) / 1024; if (TaskSize == 0) TaskSize = 1; TaskGroup TG; IndexTy I = Begin; for (; I + TaskSize < End; I += TaskSize) { TG.spawn([=, &Fn] { for (IndexTy J = I, E = I + TaskSize; J != E; ++J) Fn(J); }); } for (IndexTy J = I; J < End; ++J) Fn(J); } #endif template using DefComparator = std::less::value_type>; } // namespace detail // sequential algorithm implementations. template > void sort(Policy policy, RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp = Comparator()) { static_assert(is_execution_policy::value, "Invalid execution policy!"); llvm::sort(Start, End, Comp); } template void for_each(Policy policy, IterTy Begin, IterTy End, FuncTy Fn) { static_assert(is_execution_policy::value, "Invalid execution policy!"); std::for_each(Begin, End, Fn); } template void for_each_n(Policy policy, IndexTy Begin, IndexTy End, FuncTy Fn) { static_assert(is_execution_policy::value, "Invalid execution policy!"); for (IndexTy I = Begin; I != End; ++I) Fn(I); } // Parallel algorithm implementations, only available when LLVM_ENABLE_THREADS // is true. #if LLVM_ENABLE_THREADS template > void sort(parallel_execution_policy policy, RandomAccessIterator Start, RandomAccessIterator End, const Comparator &Comp = Comparator()) { detail::parallel_sort(Start, End, Comp); } template void for_each(parallel_execution_policy policy, IterTy Begin, IterTy End, FuncTy Fn) { detail::parallel_for_each(Begin, End, Fn); } template void for_each_n(parallel_execution_policy policy, IndexTy Begin, IndexTy End, FuncTy Fn) { detail::parallel_for_each_n(Begin, End, Fn); } #endif } // namespace parallel } // namespace llvm #endif // LLVM_SUPPORT_PARALLEL_H