//===-- Options.cpp ---------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "lldb/Interpreter/Options.h" #include #include #include #include #include "lldb/Host/OptionParser.h" #include "lldb/Interpreter/CommandCompletions.h" #include "lldb/Interpreter/CommandInterpreter.h" #include "lldb/Interpreter/CommandObject.h" #include "lldb/Interpreter/CommandReturnObject.h" #include "lldb/Target/Target.h" #include "lldb/Utility/StreamString.h" using namespace lldb; using namespace lldb_private; // Options Options::Options() : m_getopt_table() { BuildValidOptionSets(); } Options::~Options() {} void Options::NotifyOptionParsingStarting(ExecutionContext *execution_context) { m_seen_options.clear(); // Let the subclass reset its option values OptionParsingStarting(execution_context); } Status Options::NotifyOptionParsingFinished(ExecutionContext *execution_context) { return OptionParsingFinished(execution_context); } void Options::OptionSeen(int option_idx) { m_seen_options.insert(option_idx); } // Returns true is set_a is a subset of set_b; Otherwise returns false. bool Options::IsASubset(const OptionSet &set_a, const OptionSet &set_b) { bool is_a_subset = true; OptionSet::const_iterator pos_a; OptionSet::const_iterator pos_b; // set_a is a subset of set_b if every member of set_a is also a member of // set_b for (pos_a = set_a.begin(); pos_a != set_a.end() && is_a_subset; ++pos_a) { pos_b = set_b.find(*pos_a); if (pos_b == set_b.end()) is_a_subset = false; } return is_a_subset; } // Returns the set difference set_a - set_b, i.e. { x | ElementOf (x, set_a) && // !ElementOf (x, set_b) } size_t Options::OptionsSetDiff(const OptionSet &set_a, const OptionSet &set_b, OptionSet &diffs) { size_t num_diffs = 0; OptionSet::const_iterator pos_a; OptionSet::const_iterator pos_b; for (pos_a = set_a.begin(); pos_a != set_a.end(); ++pos_a) { pos_b = set_b.find(*pos_a); if (pos_b == set_b.end()) { ++num_diffs; diffs.insert(*pos_a); } } return num_diffs; } // Returns the union of set_a and set_b. Does not put duplicate members into // the union. void Options::OptionsSetUnion(const OptionSet &set_a, const OptionSet &set_b, OptionSet &union_set) { OptionSet::const_iterator pos; OptionSet::iterator pos_union; // Put all the elements of set_a into the union. for (pos = set_a.begin(); pos != set_a.end(); ++pos) union_set.insert(*pos); // Put all the elements of set_b that are not already there into the union. for (pos = set_b.begin(); pos != set_b.end(); ++pos) { pos_union = union_set.find(*pos); if (pos_union == union_set.end()) union_set.insert(*pos); } } bool Options::VerifyOptions(CommandReturnObject &result) { bool options_are_valid = false; int num_levels = GetRequiredOptions().size(); if (num_levels) { for (int i = 0; i < num_levels && !options_are_valid; ++i) { // This is the correct set of options if: 1). m_seen_options contains // all of m_required_options[i] (i.e. all the required options at this // level are a subset of m_seen_options); AND 2). { m_seen_options - // m_required_options[i] is a subset of m_options_options[i] (i.e. all // the rest of m_seen_options are in the set of optional options at this // level. // Check to see if all of m_required_options[i] are a subset of // m_seen_options if (IsASubset(GetRequiredOptions()[i], m_seen_options)) { // Construct the set difference: remaining_options = {m_seen_options} - // {m_required_options[i]} OptionSet remaining_options; OptionsSetDiff(m_seen_options, GetRequiredOptions()[i], remaining_options); // Check to see if remaining_options is a subset of // m_optional_options[i] if (IsASubset(remaining_options, GetOptionalOptions()[i])) options_are_valid = true; } } } else { options_are_valid = true; } if (options_are_valid) { result.SetStatus(eReturnStatusSuccessFinishNoResult); } else { result.AppendError("invalid combination of options for the given command"); result.SetStatus(eReturnStatusFailed); } return options_are_valid; } // This is called in the Options constructor, though we could call it lazily if // that ends up being a performance problem. void Options::BuildValidOptionSets() { // Check to see if we already did this. if (m_required_options.size() != 0) return; // Check to see if there are any options. int num_options = NumCommandOptions(); if (num_options == 0) return; auto opt_defs = GetDefinitions(); m_required_options.resize(1); m_optional_options.resize(1); // First count the number of option sets we've got. Ignore // LLDB_ALL_OPTION_SETS... uint32_t num_option_sets = 0; for (const auto &def : opt_defs) { uint32_t this_usage_mask = def.usage_mask; if (this_usage_mask == LLDB_OPT_SET_ALL) { if (num_option_sets == 0) num_option_sets = 1; } else { for (uint32_t j = 0; j < LLDB_MAX_NUM_OPTION_SETS; j++) { if (this_usage_mask & (1 << j)) { if (num_option_sets <= j) num_option_sets = j + 1; } } } } if (num_option_sets > 0) { m_required_options.resize(num_option_sets); m_optional_options.resize(num_option_sets); for (const auto &def : opt_defs) { for (uint32_t j = 0; j < num_option_sets; j++) { if (def.usage_mask & 1 << j) { if (def.required) m_required_options[j].insert(def.short_option); else m_optional_options[j].insert(def.short_option); } } } } } uint32_t Options::NumCommandOptions() { return GetDefinitions().size(); } Option *Options::GetLongOptions() { // Check to see if this has already been done. if (m_getopt_table.empty()) { auto defs = GetDefinitions(); if (defs.empty()) return nullptr; std::map option_seen; m_getopt_table.resize(defs.size() + 1); for (size_t i = 0; i < defs.size(); ++i) { const int short_opt = defs[i].short_option; m_getopt_table[i].definition = &defs[i]; m_getopt_table[i].flag = nullptr; m_getopt_table[i].val = short_opt; if (option_seen.find(short_opt) == option_seen.end()) { option_seen[short_opt] = i; } else if (short_opt) { m_getopt_table[i].val = 0; std::map::const_iterator pos = option_seen.find(short_opt); StreamString strm; if (isprint8(short_opt)) Host::SystemLog(Host::eSystemLogError, "option[%u] --%s has a short option -%c that " "conflicts with option[%u] --%s, short option won't " "be used for --%s\n", (int)i, defs[i].long_option, short_opt, pos->second, m_getopt_table[pos->second].definition->long_option, defs[i].long_option); else Host::SystemLog(Host::eSystemLogError, "option[%u] --%s has a short option 0x%x that " "conflicts with option[%u] --%s, short option won't " "be used for --%s\n", (int)i, defs[i].long_option, short_opt, pos->second, m_getopt_table[pos->second].definition->long_option, defs[i].long_option); } } // getopt_long_only requires a NULL final entry in the table: m_getopt_table.back().definition = nullptr; m_getopt_table.back().flag = nullptr; m_getopt_table.back().val = 0; } if (m_getopt_table.empty()) return nullptr; return &m_getopt_table.front(); } // This function takes INDENT, which tells how many spaces to output at the // front of each line; SPACES, which is a string containing 80 spaces; and // TEXT, which is the text that is to be output. It outputs the text, on // multiple lines if necessary, to RESULT, with INDENT spaces at the front of // each line. It breaks lines on spaces, tabs or newlines, shortening the line // if necessary to not break in the middle of a word. It assumes that each // output line should contain a maximum of OUTPUT_MAX_COLUMNS characters. void Options::OutputFormattedUsageText(Stream &strm, const OptionDefinition &option_def, uint32_t output_max_columns) { std::string actual_text; if (option_def.validator) { const char *condition = option_def.validator->ShortConditionString(); if (condition) { actual_text = "["; actual_text.append(condition); actual_text.append("] "); } } actual_text.append(option_def.usage_text); // Will it all fit on one line? if (static_cast(actual_text.length() + strm.GetIndentLevel()) < output_max_columns) { // Output it as a single line. strm.Indent(actual_text.c_str()); strm.EOL(); } else { // We need to break it up into multiple lines. int text_width = output_max_columns - strm.GetIndentLevel() - 1; int start = 0; int end = start; int final_end = actual_text.length(); int sub_len; while (end < final_end) { // Don't start the 'text' on a space, since we're already outputting the // indentation. while ((start < final_end) && (actual_text[start] == ' ')) start++; end = start + text_width; if (end > final_end) end = final_end; else { // If we're not at the end of the text, make sure we break the line on // white space. while (end > start && actual_text[end] != ' ' && actual_text[end] != '\t' && actual_text[end] != '\n') end--; } sub_len = end - start; if (start != 0) strm.EOL(); strm.Indent(); assert(start < final_end); assert(start + sub_len <= final_end); strm.Write(actual_text.c_str() + start, sub_len); start = end + 1; } strm.EOL(); } } bool Options::SupportsLongOption(const char *long_option) { if (!long_option || !long_option[0]) return false; auto opt_defs = GetDefinitions(); if (opt_defs.empty()) return false; const char *long_option_name = long_option; if (long_option[0] == '-' && long_option[1] == '-') long_option_name += 2; for (auto &def : opt_defs) { if (!def.long_option) continue; if (strcmp(def.long_option, long_option_name) == 0) return true; } return false; } enum OptionDisplayType { eDisplayBestOption, eDisplayShortOption, eDisplayLongOption }; static bool PrintOption(const OptionDefinition &opt_def, OptionDisplayType display_type, const char *header, const char *footer, bool show_optional, Stream &strm) { const bool has_short_option = isprint8(opt_def.short_option) != 0; if (display_type == eDisplayShortOption && !has_short_option) return false; if (header && header[0]) strm.PutCString(header); if (show_optional && !opt_def.required) strm.PutChar('['); const bool show_short_option = has_short_option && display_type != eDisplayLongOption; if (show_short_option) strm.Printf("-%c", opt_def.short_option); else strm.Printf("--%s", opt_def.long_option); switch (opt_def.option_has_arg) { case OptionParser::eNoArgument: break; case OptionParser::eRequiredArgument: strm.Printf(" <%s>", CommandObject::GetArgumentName(opt_def.argument_type)); break; case OptionParser::eOptionalArgument: strm.Printf("%s[<%s>]", show_short_option ? "" : "=", CommandObject::GetArgumentName(opt_def.argument_type)); break; } if (show_optional && !opt_def.required) strm.PutChar(']'); if (footer && footer[0]) strm.PutCString(footer); return true; } void Options::GenerateOptionUsage(Stream &strm, CommandObject *cmd, uint32_t screen_width) { const bool only_print_args = cmd->IsDashDashCommand(); auto opt_defs = GetDefinitions(); const uint32_t save_indent_level = strm.GetIndentLevel(); llvm::StringRef name; StreamString arguments_str; if (cmd) { name = cmd->GetCommandName(); cmd->GetFormattedCommandArguments(arguments_str); } else name = ""; strm.PutCString("\nCommand Options Usage:\n"); strm.IndentMore(2); // First, show each usage level set of options, e.g. [options-for- // level-0] // // [options-for-level-1] // etc. const uint32_t num_options = NumCommandOptions(); if (num_options == 0) return; uint32_t num_option_sets = GetRequiredOptions().size(); uint32_t i; if (!only_print_args) { for (uint32_t opt_set = 0; opt_set < num_option_sets; ++opt_set) { uint32_t opt_set_mask; opt_set_mask = 1 << opt_set; if (opt_set > 0) strm.Printf("\n"); strm.Indent(name); // Different option sets may require different args. StreamString args_str; if (cmd) cmd->GetFormattedCommandArguments(args_str, opt_set_mask); // First go through and print all options that take no arguments as a // single string. If a command has "-a" "-b" and "-c", this will show up // as [-abc] std::set options; std::set::const_iterator options_pos, options_end; for (auto &def : opt_defs) { if (def.usage_mask & opt_set_mask && isprint8(def.short_option)) { // Add current option to the end of out_stream. if (def.required && def.option_has_arg == OptionParser::eNoArgument) { options.insert(def.short_option); } } } if (!options.empty()) { // We have some required options with no arguments strm.PutCString(" -"); for (i = 0; i < 2; ++i) for (options_pos = options.begin(), options_end = options.end(); options_pos != options_end; ++options_pos) { if (i == 0 && ::islower(*options_pos)) continue; if (i == 1 && ::isupper(*options_pos)) continue; strm << (char)*options_pos; } } options.clear(); for (auto &def : opt_defs) { if (def.usage_mask & opt_set_mask && isprint8(def.short_option)) { // Add current option to the end of out_stream. if (!def.required && def.option_has_arg == OptionParser::eNoArgument) { options.insert(def.short_option); } } } if (!options.empty()) { // We have some required options with no arguments strm.PutCString(" [-"); for (i = 0; i < 2; ++i) for (options_pos = options.begin(), options_end = options.end(); options_pos != options_end; ++options_pos) { if (i == 0 && ::islower(*options_pos)) continue; if (i == 1 && ::isupper(*options_pos)) continue; strm << (char)*options_pos; } strm.PutChar(']'); } // First go through and print the required options (list them up front). for (auto &def : opt_defs) { if (def.usage_mask & opt_set_mask && isprint8(def.short_option)) { if (def.required && def.option_has_arg != OptionParser::eNoArgument) PrintOption(def, eDisplayBestOption, " ", nullptr, true, strm); } } // Now go through again, and this time only print the optional options. for (auto &def : opt_defs) { if (def.usage_mask & opt_set_mask) { // Add current option to the end of out_stream. if (!def.required && def.option_has_arg != OptionParser::eNoArgument) PrintOption(def, eDisplayBestOption, " ", nullptr, true, strm); } } if (args_str.GetSize() > 0) { if (cmd->WantsRawCommandString() && !only_print_args) strm.Printf(" --"); strm << " " << args_str.GetString(); if (only_print_args) break; } } } if (cmd && (only_print_args || cmd->WantsRawCommandString()) && arguments_str.GetSize() > 0) { if (!only_print_args) strm.PutChar('\n'); strm.Indent(name); strm << " " << arguments_str.GetString(); } strm.Printf("\n\n"); if (!only_print_args) { // Now print out all the detailed information about the various options: // long form, short form and help text: // -short ( --long_name ) // help text // This variable is used to keep track of which options' info we've printed // out, because some options can be in more than one usage level, but we // only want to print the long form of its information once. std::multimap options_seen; strm.IndentMore(5); // Put the unique command options in a vector & sort it, so we can output // them alphabetically (by short_option) when writing out detailed help for // each option. i = 0; for (auto &def : opt_defs) options_seen.insert(std::make_pair(def.short_option, i++)); // Go through the unique'd and alphabetically sorted vector of options, // find the table entry for each option and write out the detailed help // information for that option. bool first_option_printed = false; for (auto pos : options_seen) { i = pos.second; // Print out the help information for this option. // Put a newline separation between arguments if (first_option_printed) strm.EOL(); else first_option_printed = true; CommandArgumentType arg_type = opt_defs[i].argument_type; StreamString arg_name_str; arg_name_str.Printf("<%s>", CommandObject::GetArgumentName(arg_type)); strm.Indent(); if (opt_defs[i].short_option && isprint8(opt_defs[i].short_option)) { PrintOption(opt_defs[i], eDisplayShortOption, nullptr, nullptr, false, strm); PrintOption(opt_defs[i], eDisplayLongOption, " ( ", " )", false, strm); } else { // Short option is not printable, just print long option PrintOption(opt_defs[i], eDisplayLongOption, nullptr, nullptr, false, strm); } strm.EOL(); strm.IndentMore(5); if (opt_defs[i].usage_text) OutputFormattedUsageText(strm, opt_defs[i], screen_width); if (!opt_defs[i].enum_values.empty()) { strm.Indent(); strm.Printf("Values: "); bool is_first = true; for (const auto &enum_value : opt_defs[i].enum_values) { if (is_first) { strm.Printf("%s", enum_value.string_value); is_first = false; } else strm.Printf(" | %s", enum_value.string_value); } strm.EOL(); } strm.IndentLess(5); } } // Restore the indent level strm.SetIndentLevel(save_indent_level); } // This function is called when we have been given a potentially incomplete set // of options, such as when an alias has been defined (more options might be // added at at the time the alias is invoked). We need to verify that the // options in the set m_seen_options are all part of a set that may be used // together, but m_seen_options may be missing some of the "required" options. bool Options::VerifyPartialOptions(CommandReturnObject &result) { bool options_are_valid = false; int num_levels = GetRequiredOptions().size(); if (num_levels) { for (int i = 0; i < num_levels && !options_are_valid; ++i) { // In this case we are treating all options as optional rather than // required. Therefore a set of options is correct if m_seen_options is a // subset of the union of m_required_options and m_optional_options. OptionSet union_set; OptionsSetUnion(GetRequiredOptions()[i], GetOptionalOptions()[i], union_set); if (IsASubset(m_seen_options, union_set)) options_are_valid = true; } } return options_are_valid; } bool Options::HandleOptionCompletion(CompletionRequest &request, OptionElementVector &opt_element_vector, CommandInterpreter &interpreter) { // For now we just scan the completions to see if the cursor position is in // an option or its argument. Otherwise we'll call HandleArgumentCompletion. // In the future we can use completion to validate options as well if we // want. auto opt_defs = GetDefinitions(); llvm::StringRef cur_opt_str = request.GetCursorArgumentPrefix(); for (size_t i = 0; i < opt_element_vector.size(); i++) { size_t opt_pos = static_cast(opt_element_vector[i].opt_pos); size_t opt_arg_pos = static_cast(opt_element_vector[i].opt_arg_pos); int opt_defs_index = opt_element_vector[i].opt_defs_index; if (opt_pos == request.GetCursorIndex()) { // We're completing the option itself. if (opt_defs_index == OptionArgElement::eBareDash) { // We're completing a bare dash. That means all options are open. // FIXME: We should scan the other options provided and only complete // options // within the option group they belong to. std::string opt_str = "-a"; for (auto &def : opt_defs) { if (!def.short_option) continue; opt_str[1] = def.short_option; request.AddCompletion(opt_str, def.usage_text); } return true; } else if (opt_defs_index == OptionArgElement::eBareDoubleDash) { std::string full_name("--"); for (auto &def : opt_defs) { if (!def.short_option) continue; full_name.erase(full_name.begin() + 2, full_name.end()); full_name.append(def.long_option); request.AddCompletion(full_name, def.usage_text); } return true; } else if (opt_defs_index != OptionArgElement::eUnrecognizedArg) { // We recognized it, if it an incomplete long option, complete it // anyway (getopt_long_only is happy with shortest unique string, but // it's still a nice thing to do.) Otherwise return The string so the // upper level code will know this is a full match and add the " ". const OptionDefinition &opt = opt_defs[opt_defs_index]; llvm::StringRef long_option = opt.long_option; if (cur_opt_str.startswith("--") && cur_opt_str != long_option) { request.AddCompletion("--" + long_option.str(), opt.usage_text); return true; } else request.AddCompletion(request.GetCursorArgumentPrefix()); return true; } else { // FIXME - not handling wrong options yet: // Check to see if they are writing a long option & complete it. // I think we will only get in here if the long option table has two // elements // that are not unique up to this point. getopt_long_only does // shortest unique match for long options already. if (cur_opt_str.consume_front("--")) { for (auto &def : opt_defs) { llvm::StringRef long_option(def.long_option); if (long_option.startswith(cur_opt_str)) request.AddCompletion("--" + long_option.str(), def.usage_text); } } return true; } } else if (opt_arg_pos == request.GetCursorIndex()) { // Okay the cursor is on the completion of an argument. See if it has a // completion, otherwise return no matches. if (opt_defs_index != -1) { HandleOptionArgumentCompletion(request, opt_element_vector, i, interpreter); return true; } else { // No completion callback means no completions... return true; } } else { // Not the last element, keep going. continue; } } return false; } void Options::HandleOptionArgumentCompletion( CompletionRequest &request, OptionElementVector &opt_element_vector, int opt_element_index, CommandInterpreter &interpreter) { auto opt_defs = GetDefinitions(); std::unique_ptr filter_up; int opt_defs_index = opt_element_vector[opt_element_index].opt_defs_index; // See if this is an enumeration type option, and if so complete it here: const auto &enum_values = opt_defs[opt_defs_index].enum_values; if (!enum_values.empty()) for (const auto &enum_value : enum_values) request.TryCompleteCurrentArg(enum_value.string_value); // If this is a source file or symbol type completion, and there is a -shlib // option somewhere in the supplied arguments, then make a search filter for // that shared library. // FIXME: Do we want to also have an "OptionType" so we don't have to match // string names? uint32_t completion_mask = opt_defs[opt_defs_index].completion_type; if (completion_mask == 0) { lldb::CommandArgumentType option_arg_type = opt_defs[opt_defs_index].argument_type; if (option_arg_type != eArgTypeNone) { const CommandObject::ArgumentTableEntry *arg_entry = CommandObject::FindArgumentDataByType( opt_defs[opt_defs_index].argument_type); if (arg_entry) completion_mask = arg_entry->completion_type; } } if (completion_mask & CommandCompletions::eSourceFileCompletion || completion_mask & CommandCompletions::eSymbolCompletion) { for (size_t i = 0; i < opt_element_vector.size(); i++) { int cur_defs_index = opt_element_vector[i].opt_defs_index; // trying to use <0 indices will definitely cause problems if (cur_defs_index == OptionArgElement::eUnrecognizedArg || cur_defs_index == OptionArgElement::eBareDash || cur_defs_index == OptionArgElement::eBareDoubleDash) continue; int cur_arg_pos = opt_element_vector[i].opt_arg_pos; const char *cur_opt_name = opt_defs[cur_defs_index].long_option; // If this is the "shlib" option and there was an argument provided, // restrict it to that shared library. if (cur_opt_name && strcmp(cur_opt_name, "shlib") == 0 && cur_arg_pos != -1) { const char *module_name = request.GetParsedLine().GetArgumentAtIndex(cur_arg_pos); if (module_name) { FileSpec module_spec(module_name); lldb::TargetSP target_sp = interpreter.GetDebugger().GetSelectedTarget(); // Search filters require a target... if (target_sp) filter_up.reset(new SearchFilterByModule(target_sp, module_spec)); } break; } } } CommandCompletions::InvokeCommonCompletionCallbacks( interpreter, completion_mask, request, filter_up.get()); } void OptionGroupOptions::Append(OptionGroup *group) { auto group_option_defs = group->GetDefinitions(); for (uint32_t i = 0; i < group_option_defs.size(); ++i) { m_option_infos.push_back(OptionInfo(group, i)); m_option_defs.push_back(group_option_defs[i]); } } const OptionGroup *OptionGroupOptions::GetGroupWithOption(char short_opt) { for (uint32_t i = 0; i < m_option_defs.size(); i++) { OptionDefinition opt_def = m_option_defs[i]; if (opt_def.short_option == short_opt) return m_option_infos[i].option_group; } return nullptr; } void OptionGroupOptions::Append(OptionGroup *group, uint32_t src_mask, uint32_t dst_mask) { auto group_option_defs = group->GetDefinitions(); for (uint32_t i = 0; i < group_option_defs.size(); ++i) { if (group_option_defs[i].usage_mask & src_mask) { m_option_infos.push_back(OptionInfo(group, i)); m_option_defs.push_back(group_option_defs[i]); m_option_defs.back().usage_mask = dst_mask; } } } void OptionGroupOptions::Finalize() { m_did_finalize = true; } Status OptionGroupOptions::SetOptionValue(uint32_t option_idx, llvm::StringRef option_value, ExecutionContext *execution_context) { // After calling OptionGroupOptions::Append(...), you must finalize the // groups by calling OptionGroupOptions::Finlize() assert(m_did_finalize); Status error; if (option_idx < m_option_infos.size()) { error = m_option_infos[option_idx].option_group->SetOptionValue( m_option_infos[option_idx].option_index, option_value, execution_context); } else { error.SetErrorString("invalid option index"); // Shouldn't happen... } return error; } void OptionGroupOptions::OptionParsingStarting( ExecutionContext *execution_context) { std::set group_set; OptionInfos::iterator pos, end = m_option_infos.end(); for (pos = m_option_infos.begin(); pos != end; ++pos) { OptionGroup *group = pos->option_group; if (group_set.find(group) == group_set.end()) { group->OptionParsingStarting(execution_context); group_set.insert(group); } } } Status OptionGroupOptions::OptionParsingFinished(ExecutionContext *execution_context) { std::set group_set; Status error; OptionInfos::iterator pos, end = m_option_infos.end(); for (pos = m_option_infos.begin(); pos != end; ++pos) { OptionGroup *group = pos->option_group; if (group_set.find(group) == group_set.end()) { error = group->OptionParsingFinished(execution_context); group_set.insert(group); if (error.Fail()) return error; } } return error; } // OptionParser permutes the arguments while processing them, so we create a // temporary array holding to avoid modification of the input arguments. The // options themselves are never modified, but the API expects a char * anyway, // hence the const_cast. static std::vector GetArgvForParsing(const Args &args) { std::vector result; // OptionParser always skips the first argument as it is based on getopt(). result.push_back(const_cast("")); for (const Args::ArgEntry &entry : args) result.push_back(const_cast(entry.c_str())); result.push_back(nullptr); return result; } // Given a permuted argument, find it's position in the original Args vector. static Args::const_iterator FindOriginalIter(const char *arg, const Args &original) { return llvm::find_if( original, [arg](const Args::ArgEntry &D) { return D.c_str() == arg; }); } // Given a permuted argument, find it's index in the original Args vector. static size_t FindOriginalIndex(const char *arg, const Args &original) { return std::distance(original.begin(), FindOriginalIter(arg, original)); } // Construct a new Args object, consisting of the entries from the original // arguments, but in the permuted order. static Args ReconstituteArgsAfterParsing(llvm::ArrayRef parsed, const Args &original) { Args result; for (const char *arg : parsed) { auto pos = FindOriginalIter(arg, original); assert(pos != original.end()); result.AppendArgument(pos->ref(), pos->GetQuoteChar()); } return result; } static size_t FindArgumentIndexForOption(const Args &args, const Option &long_option) { std::string short_opt = llvm::formatv("-{0}", char(long_option.val)).str(); std::string long_opt = llvm::formatv("--{0}", long_option.definition->long_option); for (const auto &entry : llvm::enumerate(args)) { if (entry.value().ref().startswith(short_opt) || entry.value().ref().startswith(long_opt)) return entry.index(); } return size_t(-1); } static std::string BuildShortOptions(const Option *long_options) { std::string storage; llvm::raw_string_ostream sstr(storage); // Leading : tells getopt to return a : for a missing option argument AND to // suppress error messages. sstr << ":"; for (size_t i = 0; long_options[i].definition != nullptr; ++i) { if (long_options[i].flag == nullptr) { sstr << (char)long_options[i].val; switch (long_options[i].definition->option_has_arg) { default: case OptionParser::eNoArgument: break; case OptionParser::eRequiredArgument: sstr << ":"; break; case OptionParser::eOptionalArgument: sstr << "::"; break; } } } return std::move(sstr.str()); } llvm::Expected Options::ParseAlias(const Args &args, OptionArgVector *option_arg_vector, std::string &input_line) { Option *long_options = GetLongOptions(); if (long_options == nullptr) { return llvm::make_error("Invalid long options", llvm::inconvertibleErrorCode()); } std::string short_options = BuildShortOptions(long_options); Args args_copy = args; std::vector argv = GetArgvForParsing(args); std::unique_lock lock; OptionParser::Prepare(lock); int val; while (true) { int long_options_index = -1; val = OptionParser::Parse(argv, short_options, long_options, &long_options_index); if (val == ':') { return llvm::createStringError(llvm::inconvertibleErrorCode(), "last option requires an argument"); } if (val == -1) break; if (val == '?') { return llvm::make_error( "Unknown or ambiguous option", llvm::inconvertibleErrorCode()); } if (val == 0) continue; OptionSeen(val); // Look up the long option index if (long_options_index == -1) { for (int j = 0; long_options[j].definition || long_options[j].flag || long_options[j].val; ++j) { if (long_options[j].val == val) { long_options_index = j; break; } } } // See if the option takes an argument, and see if one was supplied. if (long_options_index == -1) { return llvm::make_error( llvm::formatv("Invalid option with value '{0}'.", char(val)).str(), llvm::inconvertibleErrorCode()); } StreamString option_str; option_str.Printf("-%c", val); const OptionDefinition *def = long_options[long_options_index].definition; int has_arg = (def == nullptr) ? OptionParser::eNoArgument : def->option_has_arg; const char *option_arg = nullptr; switch (has_arg) { case OptionParser::eRequiredArgument: if (OptionParser::GetOptionArgument() == nullptr) { return llvm::make_error( llvm::formatv("Option '{0}' is missing argument specifier.", option_str.GetString()) .str(), llvm::inconvertibleErrorCode()); } LLVM_FALLTHROUGH; case OptionParser::eOptionalArgument: option_arg = OptionParser::GetOptionArgument(); LLVM_FALLTHROUGH; case OptionParser::eNoArgument: break; default: return llvm::make_error( llvm::formatv("error with options table; invalid value in has_arg " "field for option '{0}'.", char(val)) .str(), llvm::inconvertibleErrorCode()); } if (!option_arg) option_arg = ""; option_arg_vector->emplace_back(std::string(option_str.GetString()), has_arg, std::string(option_arg)); // Find option in the argument list; also see if it was supposed to take an // argument and if one was supplied. Remove option (and argument, if // given) from the argument list. Also remove them from the // raw_input_string, if one was passed in. size_t idx = FindArgumentIndexForOption(args_copy, long_options[long_options_index]); if (idx == size_t(-1)) continue; if (!input_line.empty()) { auto tmp_arg = args_copy[idx].ref(); size_t pos = input_line.find(tmp_arg); if (pos != std::string::npos) input_line.erase(pos, tmp_arg.size()); } args_copy.DeleteArgumentAtIndex(idx); if ((long_options[long_options_index].definition->option_has_arg != OptionParser::eNoArgument) && (OptionParser::GetOptionArgument() != nullptr) && (idx < args_copy.GetArgumentCount()) && (args_copy[idx].ref() == OptionParser::GetOptionArgument())) { if (input_line.size() > 0) { auto tmp_arg = args_copy[idx].ref(); size_t pos = input_line.find(tmp_arg); if (pos != std::string::npos) input_line.erase(pos, tmp_arg.size()); } args_copy.DeleteArgumentAtIndex(idx); } } return std::move(args_copy); } OptionElementVector Options::ParseForCompletion(const Args &args, uint32_t cursor_index) { OptionElementVector option_element_vector; Option *long_options = GetLongOptions(); option_element_vector.clear(); if (long_options == nullptr) return option_element_vector; std::string short_options = BuildShortOptions(long_options); std::unique_lock lock; OptionParser::Prepare(lock); OptionParser::EnableError(false); int val; auto opt_defs = GetDefinitions(); std::vector dummy_vec = GetArgvForParsing(args); bool failed_once = false; uint32_t dash_dash_pos = -1; while (true) { bool missing_argument = false; int long_options_index = -1; val = OptionParser::Parse(dummy_vec, short_options, long_options, &long_options_index); if (val == -1) { // When we're completing a "--" which is the last option on line, if (failed_once) break; failed_once = true; // If this is a bare "--" we mark it as such so we can complete it // successfully later. Handling the "--" is a little tricky, since that // may mean end of options or arguments, or the user might want to // complete options by long name. I make this work by checking whether // the cursor is in the "--" argument, and if so I assume we're // completing the long option, otherwise I let it pass to // OptionParser::Parse which will terminate the option parsing. Note, in // either case we continue parsing the line so we can figure out what // other options were passed. This will be useful when we come to // restricting completions based on what other options we've seen on the // line. if (static_cast(OptionParser::GetOptionIndex()) < dummy_vec.size() && (strcmp(dummy_vec[OptionParser::GetOptionIndex() - 1], "--") == 0)) { dash_dash_pos = FindOriginalIndex( dummy_vec[OptionParser::GetOptionIndex() - 1], args); if (dash_dash_pos == cursor_index) { option_element_vector.push_back( OptionArgElement(OptionArgElement::eBareDoubleDash, dash_dash_pos, OptionArgElement::eBareDoubleDash)); continue; } else break; } else break; } else if (val == '?') { option_element_vector.push_back(OptionArgElement( OptionArgElement::eUnrecognizedArg, FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1], args), OptionArgElement::eUnrecognizedArg)); continue; } else if (val == 0) { continue; } else if (val == ':') { // This is a missing argument. val = OptionParser::GetOptionErrorCause(); missing_argument = true; } OptionSeen(val); // Look up the long option index if (long_options_index == -1) { for (int j = 0; long_options[j].definition || long_options[j].flag || long_options[j].val; ++j) { if (long_options[j].val == val) { long_options_index = j; break; } } } // See if the option takes an argument, and see if one was supplied. if (long_options_index >= 0) { int opt_defs_index = -1; for (size_t i = 0; i < opt_defs.size(); i++) { if (opt_defs[i].short_option != val) continue; opt_defs_index = i; break; } const OptionDefinition *def = long_options[long_options_index].definition; int has_arg = (def == nullptr) ? OptionParser::eNoArgument : def->option_has_arg; switch (has_arg) { case OptionParser::eNoArgument: option_element_vector.push_back(OptionArgElement( opt_defs_index, FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1], args), 0)); break; case OptionParser::eRequiredArgument: if (OptionParser::GetOptionArgument() != nullptr) { int arg_index; if (missing_argument) arg_index = -1; else arg_index = OptionParser::GetOptionIndex() - 2; option_element_vector.push_back(OptionArgElement( opt_defs_index, FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 2], args), arg_index)); } else { option_element_vector.push_back(OptionArgElement( opt_defs_index, FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1], args), -1)); } break; case OptionParser::eOptionalArgument: if (OptionParser::GetOptionArgument() != nullptr) { option_element_vector.push_back(OptionArgElement( opt_defs_index, FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 2], args), FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1], args))); } else { option_element_vector.push_back(OptionArgElement( opt_defs_index, FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 2], args), FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1], args))); } break; default: // The options table is messed up. Here we'll just continue option_element_vector.push_back(OptionArgElement( OptionArgElement::eUnrecognizedArg, FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1], args), OptionArgElement::eUnrecognizedArg)); break; } } else { option_element_vector.push_back(OptionArgElement( OptionArgElement::eUnrecognizedArg, FindOriginalIndex(dummy_vec[OptionParser::GetOptionIndex() - 1], args), OptionArgElement::eUnrecognizedArg)); } } // Finally we have to handle the case where the cursor index points at a // single "-". We want to mark that in the option_element_vector, but only // if it is not after the "--". But it turns out that OptionParser::Parse // just ignores an isolated "-". So we have to look it up by hand here. We // only care if it is AT the cursor position. Note, a single quoted dash is // not the same as a single dash... const Args::ArgEntry &cursor = args[cursor_index]; if ((static_cast(dash_dash_pos) == -1 || cursor_index < dash_dash_pos) && !cursor.IsQuoted() && cursor.ref() == "-") { option_element_vector.push_back( OptionArgElement(OptionArgElement::eBareDash, cursor_index, OptionArgElement::eBareDash)); } return option_element_vector; } llvm::Expected Options::Parse(const Args &args, ExecutionContext *execution_context, lldb::PlatformSP platform_sp, bool require_validation) { Status error; Option *long_options = GetLongOptions(); if (long_options == nullptr) { return llvm::make_error("Invalid long options.", llvm::inconvertibleErrorCode()); } std::string short_options = BuildShortOptions(long_options); std::vector argv = GetArgvForParsing(args); std::unique_lock lock; OptionParser::Prepare(lock); int val; while (true) { int long_options_index = -1; val = OptionParser::Parse(argv, short_options, long_options, &long_options_index); if (val == ':') { error.SetErrorStringWithFormat("last option requires an argument"); break; } if (val == -1) break; // Did we get an error? if (val == '?') { error.SetErrorStringWithFormat("unknown or ambiguous option"); break; } // The option auto-set itself if (val == 0) continue; OptionSeen(val); // Lookup the long option index if (long_options_index == -1) { for (int i = 0; long_options[i].definition || long_options[i].flag || long_options[i].val; ++i) { if (long_options[i].val == val) { long_options_index = i; break; } } } // Call the callback with the option if (long_options_index >= 0 && long_options[long_options_index].definition) { const OptionDefinition *def = long_options[long_options_index].definition; if (!platform_sp) { // User did not pass in an explicit platform. Try to grab from the // execution context. TargetSP target_sp = execution_context ? execution_context->GetTargetSP() : TargetSP(); platform_sp = target_sp ? target_sp->GetPlatform() : PlatformSP(); } OptionValidator *validator = def->validator; if (!platform_sp && require_validation) { // Caller requires validation but we cannot validate as we don't have // the mandatory platform against which to validate. return llvm::make_error( "cannot validate options: no platform available", llvm::inconvertibleErrorCode()); } bool validation_failed = false; if (platform_sp) { // Ensure we have an execution context, empty or not. ExecutionContext dummy_context; ExecutionContext *exe_ctx_p = execution_context ? execution_context : &dummy_context; if (validator && !validator->IsValid(*platform_sp, *exe_ctx_p)) { validation_failed = true; error.SetErrorStringWithFormat("Option \"%s\" invalid. %s", def->long_option, def->validator->LongConditionString()); } } // As long as validation didn't fail, we set the option value. if (!validation_failed) error = SetOptionValue(long_options_index, (def->option_has_arg == OptionParser::eNoArgument) ? nullptr : OptionParser::GetOptionArgument(), execution_context); // If the Option setting returned an error, we should stop parsing // and return the error. if (error.Fail()) break; } else { error.SetErrorStringWithFormat("invalid option with value '%i'", val); } } if (error.Fail()) return error.ToError(); argv.pop_back(); argv.erase(argv.begin(), argv.begin() + OptionParser::GetOptionIndex()); return ReconstituteArgsAfterParsing(argv, args); }