//===---- lib/fp_mul_impl.inc - floating point multiplication -----*- C -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements soft-float multiplication with the IEEE-754 default // rounding (to nearest, ties to even). // //===----------------------------------------------------------------------===// #include "fp_lib.h" static __inline fp_t __mulXf3__(fp_t a, fp_t b) { const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit; rep_t aSignificand = toRep(a) & significandMask; rep_t bSignificand = toRep(b) & significandMask; int scale = 0; // Detect if a or b is zero, denormal, infinity, or NaN. if (aExponent - 1U >= maxExponent - 1U || bExponent - 1U >= maxExponent - 1U) { const rep_t aAbs = toRep(a) & absMask; const rep_t bAbs = toRep(b) & absMask; // NaN * anything = qNaN if (aAbs > infRep) return fromRep(toRep(a) | quietBit); // anything * NaN = qNaN if (bAbs > infRep) return fromRep(toRep(b) | quietBit); if (aAbs == infRep) { // infinity * non-zero = +/- infinity if (bAbs) return fromRep(aAbs | productSign); // infinity * zero = NaN else return fromRep(qnanRep); } if (bAbs == infRep) { // non-zero * infinity = +/- infinity if (aAbs) return fromRep(bAbs | productSign); // zero * infinity = NaN else return fromRep(qnanRep); } // zero * anything = +/- zero if (!aAbs) return fromRep(productSign); // anything * zero = +/- zero if (!bAbs) return fromRep(productSign); // One or both of a or b is denormal. The other (if applicable) is a // normal number. Renormalize one or both of a and b, and set scale to // include the necessary exponent adjustment. if (aAbs < implicitBit) scale += normalize(&aSignificand); if (bAbs < implicitBit) scale += normalize(&bSignificand); } // Set the implicit significand bit. If we fell through from the // denormal path it was already set by normalize( ), but setting it twice // won't hurt anything. aSignificand |= implicitBit; bSignificand |= implicitBit; // Perform a basic multiplication on the significands. One of them must be // shifted beforehand to be aligned with the exponent. rep_t productHi, productLo; wideMultiply(aSignificand, bSignificand << exponentBits, &productHi, &productLo); int productExponent = aExponent + bExponent - exponentBias + scale; // Normalize the significand and adjust the exponent if needed. if (productHi & implicitBit) productExponent++; else wideLeftShift(&productHi, &productLo, 1); // If we have overflowed the type, return +/- infinity. if (productExponent >= maxExponent) return fromRep(infRep | productSign); if (productExponent <= 0) { // The result is denormal before rounding. // // If the result is so small that it just underflows to zero, return // zero with the appropriate sign. Mathematically, there is no need to // handle this case separately, but we make it a special case to // simplify the shift logic. const unsigned int shift = REP_C(1) - (unsigned int)productExponent; if (shift >= typeWidth) return fromRep(productSign); // Otherwise, shift the significand of the result so that the round // bit is the high bit of productLo. wideRightShiftWithSticky(&productHi, &productLo, shift); } else { // The result is normal before rounding. Insert the exponent. productHi &= significandMask; productHi |= (rep_t)productExponent << significandBits; } // Insert the sign of the result. productHi |= productSign; // Perform the final rounding. The final result may overflow to infinity, // or underflow to zero, but those are the correct results in those cases. // We use the default IEEE-754 round-to-nearest, ties-to-even rounding mode. if (productLo > signBit) productHi++; if (productLo == signBit) productHi += productHi & 1; return fromRep(productHi); }