//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Aggregate Expr nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "CGObjCRuntime.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/StmtVisitor.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Intrinsics.h" using namespace clang; using namespace CodeGen; //===----------------------------------------------------------------------===// // Aggregate Expression Emitter //===----------------------------------------------------------------------===// namespace { class AggExprEmitter : public StmtVisitor { CodeGenFunction &CGF; CGBuilderTy &Builder; llvm::Value *DestPtr; bool VolatileDest; bool IgnoreResult; bool IsInitializer; bool RequiresGCollection; ReturnValueSlot getReturnValueSlot() const { // If the destination slot requires garbage collection, we can't // use the real return value slot, because we have to use the GC // API. if (RequiresGCollection) return ReturnValueSlot(); return ReturnValueSlot(DestPtr, VolatileDest); } public: AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v, bool ignore, bool isinit, bool requiresGCollection) : CGF(cgf), Builder(CGF.Builder), DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore), IsInitializer(isinit), RequiresGCollection(requiresGCollection) { } //===--------------------------------------------------------------------===// // Utilities //===--------------------------------------------------------------------===// /// EmitAggLoadOfLValue - Given an expression with aggregate type that /// represents a value lvalue, this method emits the address of the lvalue, /// then loads the result into DestPtr. void EmitAggLoadOfLValue(const Expr *E); /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false); void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false); void EmitGCMove(const Expr *E, RValue Src); bool TypeRequiresGCollection(QualType T); //===--------------------------------------------------------------------===// // Visitor Methods //===--------------------------------------------------------------------===// void VisitStmt(Stmt *S) { CGF.ErrorUnsupported(S, "aggregate expression"); } void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } // l-values. void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); } void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { EmitAggLoadOfLValue(E); } void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { EmitAggLoadOfLValue(E); } void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { EmitAggLoadOfLValue(E); } void VisitPredefinedExpr(const PredefinedExpr *E) { EmitAggLoadOfLValue(E); } // Operators. void VisitCastExpr(CastExpr *E); void VisitCallExpr(const CallExpr *E); void VisitStmtExpr(const StmtExpr *E); void VisitBinaryOperator(const BinaryOperator *BO); void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); void VisitBinAssign(const BinaryOperator *E); void VisitBinComma(const BinaryOperator *E); void VisitUnaryAddrOf(const UnaryOperator *E); void VisitObjCMessageExpr(ObjCMessageExpr *E); void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { EmitAggLoadOfLValue(E); } void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E); void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E); void VisitConditionalOperator(const ConditionalOperator *CO); void VisitChooseExpr(const ChooseExpr *CE); void VisitInitListExpr(InitListExpr *E); void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { Visit(DAE->getExpr()); } void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); void VisitCXXConstructExpr(const CXXConstructExpr *E); void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E); void VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E); void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } void VisitVAArgExpr(VAArgExpr *E); void EmitInitializationToLValue(Expr *E, LValue Address, QualType T); void EmitNullInitializationToLValue(LValue Address, QualType T); // case Expr::ChooseExprClass: void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } }; } // end anonymous namespace. //===----------------------------------------------------------------------===// // Utilities //===----------------------------------------------------------------------===// /// EmitAggLoadOfLValue - Given an expression with aggregate type that /// represents a value lvalue, this method emits the address of the lvalue, /// then loads the result into DestPtr. void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { LValue LV = CGF.EmitLValue(E); EmitFinalDestCopy(E, LV); } /// \brief True if the given aggregate type requires special GC API calls. bool AggExprEmitter::TypeRequiresGCollection(QualType T) { // Only record types have members that might require garbage collection. const RecordType *RecordTy = T->getAs(); if (!RecordTy) return false; // Don't mess with non-trivial C++ types. RecordDecl *Record = RecordTy->getDecl(); if (isa(Record) && (!cast(Record)->hasTrivialCopyConstructor() || !cast(Record)->hasTrivialDestructor())) return false; // Check whether the type has an object member. return Record->hasObjectMember(); } /// \brief Perform the final move to DestPtr if RequiresGCollection is set. /// /// The idea is that you do something like this: /// RValue Result = EmitSomething(..., getReturnValueSlot()); /// EmitGCMove(E, Result); /// If GC doesn't interfere, this will cause the result to be emitted /// directly into the return value slot. If GC does interfere, a final /// move will be performed. void AggExprEmitter::EmitGCMove(const Expr *E, RValue Src) { if (!RequiresGCollection) return; CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, DestPtr, Src.getAggregateAddr(), E->getType()); } /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) { assert(Src.isAggregate() && "value must be aggregate value!"); // If the result is ignored, don't copy from the value. if (DestPtr == 0) { if (!Src.isVolatileQualified() || (IgnoreResult && Ignore)) return; // If the source is volatile, we must read from it; to do that, we need // some place to put it. DestPtr = CGF.CreateMemTemp(E->getType(), "agg.tmp"); } if (RequiresGCollection) { CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, DestPtr, Src.getAggregateAddr(), E->getType()); return; } // If the result of the assignment is used, copy the LHS there also. // FIXME: Pass VolatileDest as well. I think we also need to merge volatile // from the source as well, as we can't eliminate it if either operand // is volatile, unless copy has volatile for both source and destination.. CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(), VolatileDest|Src.isVolatileQualified()); } /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) { assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc"); EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(), Src.isVolatileQualified()), Ignore); } //===----------------------------------------------------------------------===// // Visitor Methods //===----------------------------------------------------------------------===// void AggExprEmitter::VisitCastExpr(CastExpr *E) { if (!DestPtr && E->getCastKind() != CastExpr::CK_Dynamic) { Visit(E->getSubExpr()); return; } switch (E->getCastKind()) { default: assert(0 && "Unhandled cast kind!"); case CastExpr::CK_Dynamic: { assert(isa(E) && "CK_Dynamic without a dynamic_cast?"); LValue LV = CGF.EmitCheckedLValue(E->getSubExpr()); // FIXME: Do we also need to handle property references here? if (LV.isSimple()) CGF.EmitDynamicCast(LV.getAddress(), cast(E)); else CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); if (DestPtr) CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); break; } case CastExpr::CK_ToUnion: { // GCC union extension QualType PtrTy = CGF.getContext().getPointerType(E->getSubExpr()->getType()); llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr, CGF.ConvertType(PtrTy)); EmitInitializationToLValue(E->getSubExpr(), LValue::MakeAddr(CastPtr, Qualifiers()), E->getSubExpr()->getType()); break; } case CastExpr::CK_DerivedToBase: case CastExpr::CK_BaseToDerived: case CastExpr::CK_UncheckedDerivedToBase: { assert(0 && "cannot perform hierarchy conversion in EmitAggExpr: " "should have been unpacked before we got here"); break; } // FIXME: Remove the CK_Unknown check here. case CastExpr::CK_Unknown: case CastExpr::CK_NoOp: case CastExpr::CK_UserDefinedConversion: case CastExpr::CK_ConstructorConversion: assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), E->getType()) && "Implicit cast types must be compatible"); Visit(E->getSubExpr()); break; case CastExpr::CK_NullToMemberPointer: { // If the subexpression's type is the C++0x nullptr_t, emit the // subexpression, which may have side effects. if (E->getSubExpr()->getType()->isNullPtrType()) Visit(E->getSubExpr()); const llvm::Type *PtrDiffTy = CGF.ConvertType(CGF.getContext().getPointerDiffType()); llvm::Value *NullValue = llvm::Constant::getNullValue(PtrDiffTy); llvm::Value *Ptr = Builder.CreateStructGEP(DestPtr, 0, "ptr"); Builder.CreateStore(NullValue, Ptr, VolatileDest); llvm::Value *Adj = Builder.CreateStructGEP(DestPtr, 1, "adj"); Builder.CreateStore(NullValue, Adj, VolatileDest); break; } case CastExpr::CK_BitCast: { // This must be a member function pointer cast. Visit(E->getSubExpr()); break; } case CastExpr::CK_DerivedToBaseMemberPointer: case CastExpr::CK_BaseToDerivedMemberPointer: { QualType SrcType = E->getSubExpr()->getType(); llvm::Value *Src = CGF.CreateMemTemp(SrcType, "tmp"); CGF.EmitAggExpr(E->getSubExpr(), Src, SrcType.isVolatileQualified()); llvm::Value *SrcPtr = Builder.CreateStructGEP(Src, 0, "src.ptr"); SrcPtr = Builder.CreateLoad(SrcPtr); llvm::Value *SrcAdj = Builder.CreateStructGEP(Src, 1, "src.adj"); SrcAdj = Builder.CreateLoad(SrcAdj); llvm::Value *DstPtr = Builder.CreateStructGEP(DestPtr, 0, "dst.ptr"); Builder.CreateStore(SrcPtr, DstPtr, VolatileDest); llvm::Value *DstAdj = Builder.CreateStructGEP(DestPtr, 1, "dst.adj"); // Now See if we need to update the adjustment. const CXXRecordDecl *BaseDecl = cast(SrcType->getAs()-> getClass()->getAs()->getDecl()); const CXXRecordDecl *DerivedDecl = cast(E->getType()->getAs()-> getClass()->getAs()->getDecl()); if (E->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer) std::swap(DerivedDecl, BaseDecl); if (llvm::Constant *Adj = CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl, E->getBasePath())) { if (E->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer) SrcAdj = Builder.CreateSub(SrcAdj, Adj, "adj"); else SrcAdj = Builder.CreateAdd(SrcAdj, Adj, "adj"); } Builder.CreateStore(SrcAdj, DstAdj, VolatileDest); break; } } } void AggExprEmitter::VisitCallExpr(const CallExpr *E) { if (E->getCallReturnType()->isReferenceType()) { EmitAggLoadOfLValue(E); return; } RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); EmitGCMove(E, RV); } void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); EmitGCMove(E, RV); } void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot()); EmitGCMove(E, RV); } void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr( ObjCImplicitSetterGetterRefExpr *E) { RValue RV = CGF.EmitObjCPropertyGet(E, getReturnValueSlot()); EmitGCMove(E, RV); } void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { CGF.EmitAnyExpr(E->getLHS(), 0, false, true); CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest, /*IgnoreResult=*/false, IsInitializer); } void AggExprEmitter::VisitUnaryAddrOf(const UnaryOperator *E) { // We have a member function pointer. const MemberPointerType *MPT = E->getType()->getAs(); (void) MPT; assert(MPT->getPointeeType()->isFunctionProtoType() && "Unexpected member pointer type!"); // The creation of member function pointers has no side effects; if // there is no destination pointer, we have nothing to do. if (!DestPtr) return; const DeclRefExpr *DRE = cast(E->getSubExpr()); const CXXMethodDecl *MD = cast(DRE->getDecl())->getCanonicalDecl(); const llvm::Type *PtrDiffTy = CGF.ConvertType(CGF.getContext().getPointerDiffType()); llvm::Value *DstPtr = Builder.CreateStructGEP(DestPtr, 0, "dst.ptr"); llvm::Value *FuncPtr; if (MD->isVirtual()) { int64_t Index = CGF.CGM.getVTables().getMethodVTableIndex(MD); // FIXME: We shouldn't use / 8 here. uint64_t PointerWidthInBytes = CGF.CGM.getContext().Target.getPointerWidth(0) / 8; // Itanium C++ ABI 2.3: // For a non-virtual function, this field is a simple function pointer. // For a virtual function, it is 1 plus the virtual table offset // (in bytes) of the function, represented as a ptrdiff_t. FuncPtr = llvm::ConstantInt::get(PtrDiffTy, (Index * PointerWidthInBytes) + 1); } else { const FunctionProtoType *FPT = MD->getType()->getAs(); const llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(CGF.CGM.getTypes().getFunctionInfo(MD), FPT->isVariadic()); llvm::Constant *Fn = CGF.CGM.GetAddrOfFunction(MD, Ty); FuncPtr = llvm::ConstantExpr::getPtrToInt(Fn, PtrDiffTy); } Builder.CreateStore(FuncPtr, DstPtr, VolatileDest); llvm::Value *AdjPtr = Builder.CreateStructGEP(DestPtr, 1, "dst.adj"); // The adjustment will always be 0. Builder.CreateStore(llvm::ConstantInt::get(PtrDiffTy, 0), AdjPtr, VolatileDest); } void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest); } void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { if (E->getOpcode() == BinaryOperator::PtrMemD || E->getOpcode() == BinaryOperator::PtrMemI) VisitPointerToDataMemberBinaryOperator(E); else CGF.ErrorUnsupported(E, "aggregate binary expression"); } void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( const BinaryOperator *E) { LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); EmitFinalDestCopy(E, LV); } void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { // For an assignment to work, the value on the right has // to be compatible with the value on the left. assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), E->getRHS()->getType()) && "Invalid assignment"); LValue LHS = CGF.EmitLValue(E->getLHS()); // We have to special case property setters, otherwise we must have // a simple lvalue (no aggregates inside vectors, bitfields). if (LHS.isPropertyRef()) { llvm::Value *AggLoc = DestPtr; if (!AggLoc) AggLoc = CGF.CreateMemTemp(E->getRHS()->getType()); CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(), RValue::getAggregate(AggLoc, VolatileDest)); } else if (LHS.isKVCRef()) { llvm::Value *AggLoc = DestPtr; if (!AggLoc) AggLoc = CGF.CreateMemTemp(E->getRHS()->getType()); CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest); CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(), RValue::getAggregate(AggLoc, VolatileDest)); } else { bool RequiresGCollection = false; if (CGF.getContext().getLangOptions().getGCMode()) RequiresGCollection = TypeRequiresGCollection(E->getLHS()->getType()); // Codegen the RHS so that it stores directly into the LHS. CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified(), false, false, RequiresGCollection); EmitFinalDestCopy(E, LHS, true); } } void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) { if (!E->getLHS()) { CGF.ErrorUnsupported(E, "conditional operator with missing LHS"); return; } llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); CGF.BeginConditionalBranch(); CGF.EmitBlock(LHSBlock); // Handle the GNU extension for missing LHS. assert(E->getLHS() && "Must have LHS for aggregate value"); Visit(E->getLHS()); CGF.EndConditionalBranch(); CGF.EmitBranch(ContBlock); CGF.BeginConditionalBranch(); CGF.EmitBlock(RHSBlock); Visit(E->getRHS()); CGF.EndConditionalBranch(); CGF.EmitBranch(ContBlock); CGF.EmitBlock(ContBlock); } void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { Visit(CE->getChosenSubExpr(CGF.getContext())); } void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); if (!ArgPtr) { CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); return; } EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, Qualifiers())); } void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { llvm::Value *Val = DestPtr; if (!Val) { // Create a temporary variable. Val = CGF.CreateMemTemp(E->getType(), "tmp"); // FIXME: volatile CGF.EmitAggExpr(E->getSubExpr(), Val, false); } else Visit(E->getSubExpr()); // Don't make this a live temporary if we're emitting an initializer expr. if (!IsInitializer) CGF.PushCXXTemporary(E->getTemporary(), Val); } void AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { llvm::Value *Val = DestPtr; if (!Val) { // Create a temporary variable. Val = CGF.CreateMemTemp(E->getType(), "tmp"); } if (E->requiresZeroInitialization()) EmitNullInitializationToLValue(LValue::MakeAddr(Val, // FIXME: Qualifiers()? E->getType().getQualifiers()), E->getType()); CGF.EmitCXXConstructExpr(Val, E); } void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { llvm::Value *Val = DestPtr; CGF.EmitCXXExprWithTemporaries(E, Val, VolatileDest, IsInitializer); } void AggExprEmitter::VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E) { llvm::Value *Val = DestPtr; if (!Val) { // Create a temporary variable. Val = CGF.CreateMemTemp(E->getType(), "tmp"); } LValue LV = LValue::MakeAddr(Val, Qualifiers()); EmitNullInitializationToLValue(LV, E->getType()); } void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { llvm::Value *Val = DestPtr; if (!Val) { // Create a temporary variable. Val = CGF.CreateMemTemp(E->getType(), "tmp"); } LValue LV = LValue::MakeAddr(Val, Qualifiers()); EmitNullInitializationToLValue(LV, E->getType()); } void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { // FIXME: Ignore result? // FIXME: Are initializers affected by volatile? if (isa(E)) { EmitNullInitializationToLValue(LV, T); } else if (T->isReferenceType()) { RValue RV = CGF.EmitReferenceBindingToExpr(E, /*IsInitializer=*/false); CGF.EmitStoreThroughLValue(RV, LV, T); } else if (T->isAnyComplexType()) { CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); } else if (CGF.hasAggregateLLVMType(T)) { CGF.EmitAnyExpr(E, LV.getAddress(), false); } else { CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T); } } void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) { if (!CGF.hasAggregateLLVMType(T)) { // For non-aggregates, we can store zero llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T)); CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T); } else { // There's a potential optimization opportunity in combining // memsets; that would be easy for arrays, but relatively // difficult for structures with the current code. CGF.EmitNullInitialization(LV.getAddress(), T); } } void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { #if 0 // FIXME: Assess perf here? Figure out what cases are worth optimizing here // (Length of globals? Chunks of zeroed-out space?). // // If we can, prefer a copy from a global; this is a lot less code for long // globals, and it's easier for the current optimizers to analyze. if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { llvm::GlobalVariable* GV = new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, llvm::GlobalValue::InternalLinkage, C, ""); EmitFinalDestCopy(E, LValue::MakeAddr(GV, Qualifiers())); return; } #endif if (E->hadArrayRangeDesignator()) { CGF.ErrorUnsupported(E, "GNU array range designator extension"); } // Handle initialization of an array. if (E->getType()->isArrayType()) { const llvm::PointerType *APType = cast(DestPtr->getType()); const llvm::ArrayType *AType = cast(APType->getElementType()); uint64_t NumInitElements = E->getNumInits(); if (E->getNumInits() > 0) { QualType T1 = E->getType(); QualType T2 = E->getInit(0)->getType(); if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) { EmitAggLoadOfLValue(E->getInit(0)); return; } } uint64_t NumArrayElements = AType->getNumElements(); QualType ElementType = CGF.getContext().getCanonicalType(E->getType()); ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType(); // FIXME: were we intentionally ignoring address spaces and GC attributes? Qualifiers Quals = CGF.MakeQualifiers(ElementType); for (uint64_t i = 0; i != NumArrayElements; ++i) { llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array"); if (i < NumInitElements) EmitInitializationToLValue(E->getInit(i), LValue::MakeAddr(NextVal, Quals), ElementType); else EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, Quals), ElementType); } return; } assert(E->getType()->isRecordType() && "Only support structs/unions here!"); // Do struct initialization; this code just sets each individual member // to the approprate value. This makes bitfield support automatic; // the disadvantage is that the generated code is more difficult for // the optimizer, especially with bitfields. unsigned NumInitElements = E->getNumInits(); RecordDecl *SD = E->getType()->getAs()->getDecl(); unsigned CurInitVal = 0; if (E->getType()->isUnionType()) { // Only initialize one field of a union. The field itself is // specified by the initializer list. if (!E->getInitializedFieldInUnion()) { // Empty union; we have nothing to do. #ifndef NDEBUG // Make sure that it's really an empty and not a failure of // semantic analysis. for (RecordDecl::field_iterator Field = SD->field_begin(), FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); #endif return; } // FIXME: volatility FieldDecl *Field = E->getInitializedFieldInUnion(); LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0); if (NumInitElements) { // Store the initializer into the field EmitInitializationToLValue(E->getInit(0), FieldLoc, Field->getType()); } else { // Default-initialize to null EmitNullInitializationToLValue(FieldLoc, Field->getType()); } return; } // If we're initializing the whole aggregate, just do it in place. // FIXME: This is a hack around an AST bug (PR6537). if (NumInitElements == 1 && E->getType() == E->getInit(0)->getType()) { EmitInitializationToLValue(E->getInit(0), LValue::MakeAddr(DestPtr, Qualifiers()), E->getType()); return; } // Here we iterate over the fields; this makes it simpler to both // default-initialize fields and skip over unnamed fields. for (RecordDecl::field_iterator Field = SD->field_begin(), FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { // We're done once we hit the flexible array member if (Field->getType()->isIncompleteArrayType()) break; if (Field->isUnnamedBitfield()) continue; // FIXME: volatility LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, *Field, 0); // We never generate write-barries for initialized fields. LValue::SetObjCNonGC(FieldLoc, true); if (CurInitVal < NumInitElements) { // Store the initializer into the field. EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc, Field->getType()); } else { // We're out of initalizers; default-initialize to null EmitNullInitializationToLValue(FieldLoc, Field->getType()); } } } //===----------------------------------------------------------------------===// // Entry Points into this File //===----------------------------------------------------------------------===// /// EmitAggExpr - Emit the computation of the specified expression of aggregate /// type. The result is computed into DestPtr. Note that if DestPtr is null, /// the value of the aggregate expression is not needed. If VolatileDest is /// true, DestPtr cannot be 0. // // FIXME: Take Qualifiers object. void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr, bool VolatileDest, bool IgnoreResult, bool IsInitializer, bool RequiresGCollection) { assert(E && hasAggregateLLVMType(E->getType()) && "Invalid aggregate expression to emit"); assert ((DestPtr != 0 || VolatileDest == false) && "volatile aggregate can't be 0"); AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult, IsInitializer, RequiresGCollection) .Visit(const_cast(E)); } LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!"); Qualifiers Q = MakeQualifiers(E->getType()); llvm::Value *Temp = CreateMemTemp(E->getType()); EmitAggExpr(E, Temp, Q.hasVolatile()); return LValue::MakeAddr(Temp, Q); } void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, QualType Ty, bool isVolatile) { assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); if (getContext().getLangOptions().CPlusPlus) { if (const RecordType *RT = Ty->getAs()) { CXXRecordDecl *Record = cast(RT->getDecl()); assert((Record->hasTrivialCopyConstructor() || Record->hasTrivialCopyAssignment()) && "Trying to aggregate-copy a type without a trivial copy " "constructor or assignment operator"); // Ignore empty classes in C++. if (Record->isEmpty()) return; } } // Aggregate assignment turns into llvm.memcpy. This is almost valid per // C99 6.5.16.1p3, which states "If the value being stored in an object is // read from another object that overlaps in anyway the storage of the first // object, then the overlap shall be exact and the two objects shall have // qualified or unqualified versions of a compatible type." // // memcpy is not defined if the source and destination pointers are exactly // equal, but other compilers do this optimization, and almost every memcpy // implementation handles this case safely. If there is a libc that does not // safely handle this, we can add a target hook. const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext); if (DestPtr->getType() != BP) DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); if (SrcPtr->getType() != BP) SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); // Get size and alignment info for this aggregate. std::pair TypeInfo = getContext().getTypeInfo(Ty); // FIXME: Handle variable sized types. const llvm::Type *IntPtr = llvm::IntegerType::get(VMContext, LLVMPointerWidth); // FIXME: If we have a volatile struct, the optimizer can remove what might // appear to be `extra' memory ops: // // volatile struct { int i; } a, b; // // int main() { // a = b; // a = b; // } // // we need to use a different call here. We use isVolatile to indicate when // either the source or the destination is volatile. const llvm::Type *I1Ty = llvm::Type::getInt1Ty(VMContext); const llvm::Type *I8Ty = llvm::Type::getInt8Ty(VMContext); const llvm::Type *I32Ty = llvm::Type::getInt32Ty(VMContext); const llvm::PointerType *DPT = cast(DestPtr->getType()); const llvm::Type *DBP = llvm::PointerType::get(I8Ty, DPT->getAddressSpace()); if (DestPtr->getType() != DBP) DestPtr = Builder.CreateBitCast(DestPtr, DBP, "tmp"); const llvm::PointerType *SPT = cast(SrcPtr->getType()); const llvm::Type *SBP = llvm::PointerType::get(I8Ty, SPT->getAddressSpace()); if (SrcPtr->getType() != SBP) SrcPtr = Builder.CreateBitCast(SrcPtr, SBP, "tmp"); Builder.CreateCall5(CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), IntPtr), DestPtr, SrcPtr, // TypeInfo.first describes size in bits. llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), llvm::ConstantInt::get(I32Ty, TypeInfo.second/8), llvm::ConstantInt::get(I1Ty, isVolatile)); }