/*- * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD: projects/bhyve_svm/sys/amd64/vmm/amd/svm.c 271152 2014-09-05 03:33:16Z neel $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vmm_lapic.h" #include "vmm_msr.h" #include "vmm_stat.h" #include "vmm_ktr.h" #include "vmm_ioport.h" #include "vatpic.h" #include "vlapic.h" #include "vlapic_priv.h" #include "x86.h" #include "vmcb.h" #include "svm.h" #include "svm_softc.h" #include "npt.h" /* * SVM CPUID function 0x8000_000A, edx bit decoding. */ #define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */ #define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */ #define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */ #define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */ #define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */ #define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */ #define AMD_CPUID_SVM_ASID_FLUSH BIT(6) /* Flush by ASID */ #define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */ #define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */ #define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */ MALLOC_DEFINE(M_SVM, "svm", "svm"); MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic"); /* Per-CPU context area. */ extern struct pcpu __pcpu[]; static bool svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit); static int svm_msr_rw_ok(uint8_t *btmap, uint64_t msr); static int svm_msr_rd_ok(uint8_t *btmap, uint64_t msr); static int svm_msr_index(uint64_t msr, int *index, int *bit); static int svm_getdesc(void *arg, int vcpu, int type, struct seg_desc *desc); static uint32_t svm_feature; /* AMD SVM features. */ /* * Starting guest ASID, 0 is reserved for host. * Each guest will have its own unique ASID. */ static uint32_t guest_asid = 1; /* * Max ASID processor can support. * This limit the maximum number of virtual machines that can be created. */ static int max_asid; /* * SVM host state saved area of size 4KB for each core. */ static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); /* * S/w saved host context. */ static struct svm_regctx host_ctx[MAXCPU]; static VMM_STAT_AMD(VCPU_EXITINTINFO, "Valid VMCB EXITINTINFO"); static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "VMM pending exception injected"); /* * Common function to enable or disabled SVM for a CPU. */ static int cpu_svm_enable_disable(boolean_t enable) { uint64_t efer_msr; efer_msr = rdmsr(MSR_EFER); if (enable) efer_msr |= EFER_SVM; else efer_msr &= ~EFER_SVM; wrmsr(MSR_EFER, efer_msr); return(0); } /* * Disable SVM on a CPU. */ static void svm_disable(void *arg __unused) { (void)cpu_svm_enable_disable(FALSE); } /* * Disable SVM for all CPUs. */ static int svm_cleanup(void) { smp_rendezvous(NULL, svm_disable, NULL, NULL); return (0); } /* * Check for required BHyVe SVM features in a CPU. */ static int svm_cpuid_features(void) { u_int regs[4]; /* CPUID Fn8000_000A is for SVM */ do_cpuid(0x8000000A, regs); svm_feature = regs[3]; printf("SVM rev: 0x%x NASID:0x%x\n", regs[0] & 0xFF, regs[1]); max_asid = regs[1]; printf("SVM Features:0x%b\n", svm_feature, "\020" "\001NP" /* Nested paging */ "\002LbrVirt" /* LBR virtualization */ "\003SVML" /* SVM lock */ "\004NRIPS" /* NRIP save */ "\005TscRateMsr" /* MSR based TSC rate control */ "\006VmcbClean" /* VMCB clean bits */ "\007FlushByAsid" /* Flush by ASID */ "\010DecodeAssist" /* Decode assist */ "\011" "\012" "\013PauseFilter" "\014" "\015PauseFilterThreshold" "\016AVIC" ); /* SVM Lock */ if (!(svm_feature & AMD_CPUID_SVM_SVML)) { printf("SVM is disabled by BIOS, please enable in BIOS.\n"); return (ENXIO); } /* * bhyve need RVI to work. */ if (!(svm_feature & AMD_CPUID_SVM_NP)) { printf("Missing Nested paging or RVI SVM support in processor.\n"); return (EIO); } if (svm_feature & AMD_CPUID_SVM_NRIP_SAVE) return (0); return (EIO); } /* * Enable SVM for a CPU. */ static void svm_enable(void *arg __unused) { uint64_t hsave_pa; (void)cpu_svm_enable_disable(TRUE); hsave_pa = vtophys(hsave[curcpu]); wrmsr(MSR_VM_HSAVE_PA, hsave_pa); if (rdmsr(MSR_VM_HSAVE_PA) != hsave_pa) { panic("VM_HSAVE_PA is wrong on CPU%d\n", curcpu); } } /* * Check if a processor support SVM. */ static int is_svm_enabled(void) { uint64_t msr; /* Section 15.4 Enabling SVM from APM2. */ if ((amd_feature2 & AMDID2_SVM) == 0) { printf("SVM is not supported on this processor.\n"); return (ENXIO); } msr = rdmsr(MSR_VM_CR); /* Make sure SVM is not disabled by BIOS. */ if ((msr & VM_CR_SVMDIS) == 0) { return svm_cpuid_features(); } printf("SVM disabled by Key, consult TPM/BIOS manual.\n"); return (ENXIO); } /* * Enable SVM on CPU and initialize nested page table h/w. */ static int svm_init(int ipinum) { int err; err = is_svm_enabled(); if (err) return (err); svm_npt_init(ipinum); /* Start SVM on all CPUs */ smp_rendezvous(NULL, svm_enable, NULL, NULL); return (0); } static void svm_restore(void) { svm_enable(NULL); } /* * Get index and bit position for a MSR in MSR permission * bitmap. Two bits are used for each MSR, lower bit is * for read and higher bit is for write. */ static int svm_msr_index(uint64_t msr, int *index, int *bit) { uint32_t base, off; /* Pentium compatible MSRs */ #define MSR_PENTIUM_START 0 #define MSR_PENTIUM_END 0x1FFF /* AMD 6th generation and Intel compatible MSRs */ #define MSR_AMD6TH_START 0xC0000000UL #define MSR_AMD6TH_END 0xC0001FFFUL /* AMD 7th and 8th generation compatible MSRs */ #define MSR_AMD7TH_START 0xC0010000UL #define MSR_AMD7TH_END 0xC0011FFFUL *index = -1; *bit = (msr % 4) * 2; base = 0; if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) { *index = msr / 4; return (0); } base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1); if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) { off = (msr - MSR_AMD6TH_START); *index = (off + base) / 4; return (0); } base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1); if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) { off = (msr - MSR_AMD7TH_START); *index = (off + base) / 4; return (0); } return (EIO); } /* * Give virtual cpu the complete access to MSR(read & write). */ static int svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write) { int index, bit, err; err = svm_msr_index(msr, &index, &bit); if (err) { ERR("MSR 0x%lx is not writeable by guest.\n", msr); return (err); } if (index < 0 || index > (SVM_MSR_BITMAP_SIZE)) { ERR("MSR 0x%lx index out of range(%d).\n", msr, index); return (EINVAL); } if (bit < 0 || bit > 8) { ERR("MSR 0x%lx bit out of range(%d).\n", msr, bit); return (EINVAL); } /* Disable intercept for read and write. */ if (read) perm_bitmap[index] &= ~(1UL << bit); if (write) perm_bitmap[index] &= ~(2UL << bit); CTR2(KTR_VMM, "Guest has control:0x%x on SVM:MSR(0x%lx).\n", (perm_bitmap[index] >> bit) & 0x3, msr); return (0); } static int svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr) { return svm_msr_perm(perm_bitmap, msr, true, true); } static int svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr) { return svm_msr_perm(perm_bitmap, msr, true, false); } /* * Initialise a virtual machine. */ static void * svm_vminit(struct vm *vm, pmap_t pmap) { struct svm_softc *svm_sc; struct svm_vcpu *vcpu; vm_paddr_t msrpm_pa, iopm_pa, pml4_pa; int i, error; if (guest_asid >= max_asid) { ERR("Host support max ASID:%d, can't create more guests.\n", max_asid); return (NULL); } svm_sc = (struct svm_softc *)malloc(sizeof (struct svm_softc), M_SVM, M_WAITOK | M_ZERO); svm_sc->vm = vm; svm_sc->svm_feature = svm_feature; svm_sc->vcpu_cnt = VM_MAXCPU; svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pml4); /* * Each guest has its own unique ASID. * ASID(Address Space Identifier) is used by TLB entry. */ svm_sc->asid = guest_asid++; /* * Intercept MSR access to all MSRs except GSBASE, FSBASE,... etc. */ memset(svm_sc->msr_bitmap, 0xFF, sizeof(svm_sc->msr_bitmap)); /* * Following MSR can be completely controlled by virtual machines * since access to following are translated to access to VMCB. */ svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR); svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR); /* For Nested Paging/RVI only. */ svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT); svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC); /* Intercept access to all I/O ports. */ memset(svm_sc->iopm_bitmap, 0xFF, sizeof(svm_sc->iopm_bitmap)); /* Cache physical address for multiple vcpus. */ iopm_pa = vtophys(svm_sc->iopm_bitmap); msrpm_pa = vtophys(svm_sc->msr_bitmap); pml4_pa = svm_sc->nptp; for (i = 0; i < svm_sc->vcpu_cnt; i++) { vcpu = svm_get_vcpu(svm_sc, i); vcpu->lastcpu = NOCPU; vcpu->vmcb_pa = vtophys(&vcpu->vmcb); error = svm_init_vmcb(&vcpu->vmcb, iopm_pa, msrpm_pa, pml4_pa, svm_sc->asid); if (error) goto cleanup; } return (svm_sc); cleanup: free(svm_sc, M_SVM); return (NULL); } static int svm_cpl(struct vmcb_state *state) { /* * From APMv2: * "Retrieve the CPL from the CPL field in the VMCB, not * from any segment DPL" */ return (state->cpl); } static enum vm_cpu_mode svm_vcpu_mode(struct vmcb *vmcb) { struct vmcb_segment *seg; struct vmcb_state *state; state = &vmcb->state; if (state->efer & EFER_LMA) { seg = vmcb_seg(vmcb, VM_REG_GUEST_CS); /* * Section 4.8.1 for APM2, check if Code Segment has * Long attribute set in descriptor. */ if (seg->attrib & VMCB_CS_ATTRIB_L) return (CPU_MODE_64BIT); else return (CPU_MODE_COMPATIBILITY); } else if (state->cr0 & CR0_PE) { return (CPU_MODE_PROTECTED); } else { return (CPU_MODE_REAL); } } static enum vm_paging_mode svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer) { if ((cr0 & CR0_PG) == 0) return (PAGING_MODE_FLAT); if ((cr4 & CR4_PAE) == 0) return (PAGING_MODE_32); if (efer & EFER_LME) return (PAGING_MODE_64); else return (PAGING_MODE_PAE); } /* * ins/outs utility routines */ static uint64_t svm_inout_str_index(struct svm_regctx *regs, int in) { uint64_t val; val = in ? regs->e.g.sctx_rdi : regs->e.g.sctx_rsi; return (val); } static uint64_t svm_inout_str_count(struct svm_regctx *regs, int rep) { uint64_t val; val = rep ? regs->sctx_rcx : 1; return (val); } static void svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1, int in, struct vm_inout_str *vis) { int error, s; if (in) { vis->seg_name = VM_REG_GUEST_ES; } else { /* The segment field has standard encoding */ s = (info1 >> 10) & 0x7; vis->seg_name = vm_segment_name(s); } error = svm_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc); KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error)); } static int svm_inout_str_addrsize(uint64_t info1) { uint32_t size; size = (info1 >> 7) & 0x7; switch (size) { case 1: return (2); /* 16 bit */ case 2: return (4); /* 32 bit */ case 4: return (8); /* 64 bit */ default: panic("%s: invalid size encoding %d", __func__, size); } } static void svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging) { struct vmcb_state *state; state = &vmcb->state; paging->cr3 = state->cr3; paging->cpl = svm_cpl(state); paging->cpu_mode = svm_vcpu_mode(vmcb); paging->paging_mode = svm_paging_mode(state->cr0, state->cr4, state->efer); } /* * Handle guest I/O intercept. */ static bool svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) { struct vmcb_ctrl *ctrl; struct vmcb_state *state; struct svm_regctx *regs; struct vm_inout_str *vis; uint64_t info1; state = svm_get_vmcb_state(svm_sc, vcpu); ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); regs = svm_get_guest_regctx(svm_sc, vcpu); info1 = ctrl->exitinfo1; vmexit->exitcode = VM_EXITCODE_INOUT; vmexit->u.inout.in = (info1 & BIT(0)) ? 1 : 0; vmexit->u.inout.string = (info1 & BIT(2)) ? 1 : 0; vmexit->u.inout.rep = (info1 & BIT(3)) ? 1 : 0; vmexit->u.inout.bytes = (info1 >> 4) & 0x7; vmexit->u.inout.port = (uint16_t)(info1 >> 16); vmexit->u.inout.eax = (uint32_t)(state->rax); if (vmexit->u.inout.string) { vmexit->exitcode = VM_EXITCODE_INOUT_STR; vis = &vmexit->u.inout_str; svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging); vis->rflags = state->rflags; vis->cr0 = state->cr0; vis->index = svm_inout_str_index(regs, vmexit->u.inout.in); vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep); vis->addrsize = svm_inout_str_addrsize(info1); svm_inout_str_seginfo(svm_sc, vcpu, info1, vmexit->u.inout.in, vis); } return (false); } static int svm_npf_paging(uint64_t exitinfo1) { if (exitinfo1 & VMCB_NPF_INFO1_W) return (VM_PROT_WRITE); return (VM_PROT_READ); } static bool svm_npf_emul_fault(uint64_t exitinfo1) { if (exitinfo1 & VMCB_NPF_INFO1_ID) { return (false); } if (exitinfo1 & VMCB_NPF_INFO1_GPT) { return (false); } if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) { return (false); } return (true); } static void svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit) { struct vm_guest_paging *paging; struct vmcb_segment *seg; paging = &vmexit->u.inst_emul.paging; vmexit->exitcode = VM_EXITCODE_INST_EMUL; vmexit->u.inst_emul.gpa = gpa; vmexit->u.inst_emul.gla = VIE_INVALID_GLA; svm_paging_info(vmcb, paging); /* * If DecodeAssist SVM feature doesn't exist, we don't have NPF * instuction length. RIP will be calculated based on the length * determined by instruction emulation. */ vmexit->inst_length = VIE_INST_SIZE; seg = vmcb_seg(vmcb, VM_REG_GUEST_CS); switch(paging->cpu_mode) { case CPU_MODE_PROTECTED: case CPU_MODE_COMPATIBILITY: /* * Section 4.8.1 of APM2, Default Operand Size or D bit. */ vmexit->u.inst_emul.cs_d = (seg->attrib & VMCB_CS_ATTRIB_D) ? 1 : 0; break; default: vmexit->u.inst_emul.cs_d = 0; break; } } /* * Special handling of EFER MSR. * SVM guest must have SVM EFER bit set, prohibit guest from cleareing SVM * enable bit in EFER. */ static void svm_efer(struct svm_softc *svm_sc, int vcpu, boolean_t write) { struct svm_regctx *swctx; struct vmcb_state *state; state = svm_get_vmcb_state(svm_sc, vcpu); swctx = svm_get_guest_regctx(svm_sc, vcpu); if (write) { state->efer = ((swctx->e.g.sctx_rdx & (uint32_t)~0) << 32) | ((uint32_t)state->rax) | EFER_SVM; } else { state->rax = (uint32_t)state->efer; swctx->e.g.sctx_rdx = (uint32_t)(state->efer >> 32); } } static void svm_save_intinfo(struct svm_softc *svm_sc, int vcpu) { struct vmcb_ctrl *ctrl; uint64_t intinfo; ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); intinfo = ctrl->exitintinfo; if (!VMCB_EXITINTINFO_VALID(intinfo)) return; /* * From APMv2, Section "Intercepts during IDT interrupt delivery" * * If a #VMEXIT happened during event delivery then record the event * that was being delivered. */ VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n", intinfo, VMCB_EXITINTINFO_VECTOR(intinfo)); vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1); vm_exit_intinfo(svm_sc->vm, vcpu, intinfo); } /* * Determine the cause of virtual cpu exit and handle VMEXIT. * Return: false - Break vcpu execution loop and handle vmexit * in kernel or user space. * true - Continue vcpu run. */ static bool svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) { struct vmcb_state *state; struct vmcb_ctrl *ctrl; struct svm_regctx *ctx; uint64_t code, info1, info2, val; uint32_t eax, ecx, edx; bool update_rip, loop, retu; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); state = svm_get_vmcb_state(svm_sc, vcpu); ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); ctx = svm_get_guest_regctx(svm_sc, vcpu); code = ctrl->exitcode; info1 = ctrl->exitinfo1; info2 = ctrl->exitinfo2; update_rip = true; loop = true; vmexit->exitcode = VM_EXITCODE_VMX; vmexit->u.vmx.status = 0; KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event " "injection valid bit is set %#lx", __func__, ctrl->eventinj)); svm_save_intinfo(svm_sc, vcpu); switch (code) { case VMCB_EXIT_MC: /* Machine Check. */ vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_MTRAP, 1); vmexit->exitcode = VM_EXITCODE_MTRAP; loop = false; break; case VMCB_EXIT_MSR: /* MSR access. */ eax = state->rax; ecx = ctx->sctx_rcx; edx = ctx->e.g.sctx_rdx; if (ecx == MSR_EFER) { VCPU_CTR0(svm_sc->vm, vcpu,"VMEXIT EFER\n"); svm_efer(svm_sc, vcpu, info1); break; } retu = false; if (info1) { /* VM exited because of write MSR */ vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1); vmexit->exitcode = VM_EXITCODE_WRMSR; vmexit->u.msr.code = ecx; val = (uint64_t)edx << 32 | eax; if (emulate_wrmsr(svm_sc->vm, vcpu, ecx, val, &retu)) { vmexit->u.msr.wval = val; loop = false; } else loop = retu ? false : true; VCPU_CTR3(svm_sc->vm, vcpu, "VMEXIT WRMSR(%s handling) 0x%lx @0x%x", loop ? "kernel" : "user", val, ecx); } else { vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1); vmexit->exitcode = VM_EXITCODE_RDMSR; vmexit->u.msr.code = ecx; if (emulate_rdmsr(svm_sc->vm, vcpu, ecx, &retu)) { loop = false; } else loop = retu ? false : true; VCPU_CTR3(svm_sc->vm, vcpu, "SVM:VMEXIT RDMSR" " MSB=0x%08x, LSB=%08x @0x%x", ctx->e.g.sctx_rdx, state->rax, ecx); } #define MSR_AMDK8_IPM 0xc0010055 /* * We can't hide AMD C1E idle capability since its * based on CPU generation, for now ignore access to * this MSR by vcpus * XXX: special handling of AMD C1E - Ignore. */ if (ecx == MSR_AMDK8_IPM) loop = true; break; case VMCB_EXIT_INTR: /* * Exit on External Interrupt. * Give host interrupt handler to run and if its guest * interrupt, local APIC will inject event in guest. */ update_rip = false; VCPU_CTR1(svm_sc->vm, vcpu, "SVM:VMEXIT ExtInt" " RIP:0x%lx.\n", state->rip); vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1); break; case VMCB_EXIT_IO: loop = svm_handle_io(svm_sc, vcpu, vmexit); vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1); break; case VMCB_EXIT_CPUID: vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1); (void)x86_emulate_cpuid(svm_sc->vm, vcpu, (uint32_t *)&state->rax, (uint32_t *)&ctx->sctx_rbx, (uint32_t *)&ctx->sctx_rcx, (uint32_t *)&ctx->e.g.sctx_rdx); VCPU_CTR0(svm_sc->vm, vcpu, "SVM:VMEXIT CPUID\n"); break; case VMCB_EXIT_HLT: vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1); if (ctrl->v_irq) { /* Interrupt is pending, can't halt guest. */ vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT_IGNORED, 1); VCPU_CTR0(svm_sc->vm, vcpu, "VMEXIT halt ignored."); } else { VCPU_CTR0(svm_sc->vm, vcpu, "VMEXIT halted CPU."); vmexit->exitcode = VM_EXITCODE_HLT; vmexit->u.hlt.rflags = state->rflags; loop = false; } break; case VMCB_EXIT_PAUSE: VCPU_CTR0(svm_sc->vm, vcpu, "SVM:VMEXIT pause"); vmexit->exitcode = VM_EXITCODE_PAUSE; vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1); break; case VMCB_EXIT_NPF: loop = false; update_rip = false; if (info1 & VMCB_NPF_INFO1_RSV) { VCPU_CTR2(svm_sc->vm, vcpu, "SVM_ERR:NPT" " reserved bit is set," "INFO1:0x%lx INFO2:0x%lx .\n", info1, info2); break; } /* EXITINFO2 has the physical fault address (GPA). */ if(vm_mem_allocated(svm_sc->vm, info2)) { VCPU_CTR3(svm_sc->vm, vcpu, "SVM:NPF-paging," "RIP:0x%lx INFO1:0x%lx INFO2:0x%lx .\n", state->rip, info1, info2); vmexit->exitcode = VM_EXITCODE_PAGING; vmexit->u.paging.gpa = info2; vmexit->u.paging.fault_type = svm_npf_paging(info1); vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1); } else if (svm_npf_emul_fault(info1)) { VCPU_CTR3(svm_sc->vm, vcpu, "SVM:NPF inst_emul," "RIP:0x%lx INFO1:0x%lx INFO2:0x%lx .\n", state->rip, info1, info2); svm_handle_inst_emul(svm_get_vmcb(svm_sc, vcpu), info2, vmexit); vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1); } break; case VMCB_EXIT_SHUTDOWN: VCPU_CTR0(svm_sc->vm, vcpu, "SVM:VMEXIT shutdown."); loop = false; break; case VMCB_EXIT_INVALID: VCPU_CTR0(svm_sc->vm, vcpu, "SVM:VMEXIT INVALID."); loop = false; break; default: /* Return to user space. */ loop = false; update_rip = false; VCPU_CTR3(svm_sc->vm, vcpu, "VMEXIT=0x%lx" " EXITINFO1: 0x%lx EXITINFO2:0x%lx\n", ctrl->exitcode, info1, info2); VCPU_CTR3(svm_sc->vm, vcpu, "SVM:RIP: 0x%lx nRIP:0x%lx" " Inst decoder len:%d\n", state->rip, ctrl->nrip, ctrl->inst_decode_size); vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1); break; } vmexit->rip = state->rip; if (update_rip) { if (ctrl->nrip == 0) { VCPU_CTR1(svm_sc->vm, vcpu, "SVM_ERR:nRIP is not set " "for RIP0x%lx.\n", state->rip); vmexit->exitcode = VM_EXITCODE_VMX; } else vmexit->rip = ctrl->nrip; } /* If vcpu execution is continued, update RIP. */ if (loop) { state->rip = vmexit->rip; } if (state->rip == 0) { VCPU_CTR0(svm_sc->vm, vcpu, "SVM_ERR:RIP is NULL\n"); vmexit->exitcode = VM_EXITCODE_VMX; } return (loop); } /* * Inject NMI to virtual cpu. */ static int svm_inject_nmi(struct svm_softc *svm_sc, int vcpu) { struct vmcb_ctrl *ctrl; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); /* Can't inject another NMI if last one is pending.*/ if (!vm_nmi_pending(svm_sc->vm, vcpu)) return (0); /* Inject NMI, vector number is not used.*/ vmcb_eventinject(ctrl, VMCB_EVENTINJ_TYPE_NMI, IDT_NMI, 0, false); /* Acknowledge the request is accepted.*/ vm_nmi_clear(svm_sc->vm, vcpu); VCPU_CTR0(svm_sc->vm, vcpu, "SVM:Injected NMI.\n"); return (1); } static void svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu) { struct vmcb_ctrl *ctrl; uint64_t intinfo; ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo)) return; KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not " "valid: %#lx", __func__, intinfo)); vmcb_eventinject(ctrl, VMCB_EXITINTINFO_TYPE(intinfo), VMCB_EXITINTINFO_VECTOR(intinfo), VMCB_EXITINTINFO_EC(intinfo), VMCB_EXITINTINFO_EC_VALID(intinfo)); vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1); VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo); } /* * Inject event to virtual cpu. */ static void svm_inj_interrupts(struct svm_softc *svm_sc, int vcpu, struct vlapic *vlapic) { struct vmcb_ctrl *ctrl; struct vmcb_state *state; int extint_pending; int vector; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); state = svm_get_vmcb_state(svm_sc, vcpu); ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); svm_inj_intinfo(svm_sc, vcpu); /* Can't inject multiple events at once. */ if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { VCPU_CTR1(svm_sc->vm, vcpu, "SVM:Last event(0x%lx) is pending.\n", ctrl->eventinj); return ; } /* Wait for guest to come out of interrupt shadow. */ if (ctrl->intr_shadow) { VCPU_CTR0(svm_sc->vm, vcpu, "SVM:Guest in interrupt shadow.\n"); return; } /* NMI event has priority over interrupts.*/ if (svm_inject_nmi(svm_sc, vcpu)) { return; } extint_pending = vm_extint_pending(svm_sc->vm, vcpu); if (!extint_pending) { /* Ask the local apic for a vector to inject */ if (!vlapic_pending_intr(vlapic, &vector)) return; } else { /* Ask the legacy pic for a vector to inject */ vatpic_pending_intr(svm_sc->vm, &vector); } if (vector < 32 || vector > 255) { VCPU_CTR1(svm_sc->vm, vcpu, "SVM_ERR:Event injection" "invalid vector=%d.\n", vector); ERR("SVM_ERR:Event injection invalid vector=%d.\n", vector); return; } if ((state->rflags & PSL_I) == 0) { VCPU_CTR0(svm_sc->vm, vcpu, "SVM:Interrupt is disabled\n"); return; } vmcb_eventinject(ctrl, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false); if (!extint_pending) { /* Update the Local APIC ISR */ vlapic_intr_accepted(vlapic, vector); } else { vm_extint_clear(svm_sc->vm, vcpu); vatpic_intr_accepted(svm_sc->vm, vector); /* * XXX need to recheck exting_pending ala VT-x */ } VCPU_CTR1(svm_sc->vm, vcpu, "SVM:event injected,vector=%d.\n", vector); } static void restore_host_tss(void) { struct system_segment_descriptor *tss_sd; /* * The TSS descriptor was in use prior to launching the guest so it * has been marked busy. * * 'ltr' requires the descriptor to be marked available so change the * type to "64-bit available TSS". */ tss_sd = PCPU_GET(tss); tss_sd->sd_type = SDT_SYSTSS; ltr(GSEL(GPROC0_SEL, SEL_KPL)); } /* * Start vcpu with specified RIP. */ static int svm_vmrun(void *arg, int vcpu, register_t rip, pmap_t pmap, void *rend_cookie, void *suspended_cookie) { struct svm_regctx *hctx, *gctx; struct svm_softc *svm_sc; struct svm_vcpu *vcpustate; struct vmcb_state *state; struct vmcb_ctrl *ctrl; struct vm_exit *vmexit; struct vlapic *vlapic; struct vm *vm; uint64_t vmcb_pa; bool loop; /* Continue vcpu execution loop. */ loop = true; svm_sc = arg; vm = svm_sc->vm; vcpustate = svm_get_vcpu(svm_sc, vcpu); state = svm_get_vmcb_state(svm_sc, vcpu); ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); vmexit = vm_exitinfo(vm, vcpu); vlapic = vm_lapic(vm, vcpu); gctx = svm_get_guest_regctx(svm_sc, vcpu); hctx = &host_ctx[curcpu]; vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa; if (vcpustate->lastcpu != curcpu) { /* Virtual CPU is running on a diiferent CPU now.*/ vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1); /* * Flush all TLB mappings for this guest on this CPU, * it might have stale entries since vcpu has migrated * or vmm is restarted. */ ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* Can't use any cached VMCB state by cpu.*/ ctrl->vmcb_clean = VMCB_CACHE_NONE; } else { /* * XXX: Using same ASID for all vcpus of a VM will cause TLB * corruption. This can easily be produced by muxing two vcpus * on same core. * For now, flush guest TLB for every vmrun. */ ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST; /* * This is the same cpu on which vcpu last ran so don't * need to reload all VMCB state. * ASID is unique for a guest. * IOPM is unchanged. * RVI/EPT is unchanged. * */ ctrl->vmcb_clean = VMCB_CACHE_ASID | VMCB_CACHE_IOPM | VMCB_CACHE_NP; } vcpustate->lastcpu = curcpu; VCPU_CTR3(vm, vcpu, "SVM:Enter vmrun RIP:0x%lx" " inst len=%d/%d\n", rip, vmexit->inst_length, vmexit->u.inst_emul.vie.num_valid); /* Update Guest RIP */ state->rip = rip; do { vmexit->inst_length = 0; /* * Disable global interrupts to guarantee atomicity during * loading of guest state. This includes not only the state * loaded by the "vmrun" instruction but also software state * maintained by the hypervisor: suspended and rendezvous * state, NPT generation number, vlapic interrupts etc. */ disable_gintr(); if (vcpu_suspended(suspended_cookie)) { enable_gintr(); vm_exit_suspended(vm, vcpu, state->rip); break; } if (vcpu_rendezvous_pending(rend_cookie)) { enable_gintr(); vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; vmm_stat_incr(vm, vcpu, VMEXIT_RENDEZVOUS, 1); VCPU_CTR1(vm, vcpu, "SVM: VCPU rendezvous, RIP:0x%lx\n", state->rip); vmexit->rip = state->rip; break; } /* We are asked to give the cpu by scheduler. */ if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) { enable_gintr(); vmexit->exitcode = VM_EXITCODE_BOGUS; vmm_stat_incr(vm, vcpu, VMEXIT_ASTPENDING, 1); VCPU_CTR1(vm, vcpu, "SVM: ASTPENDING, RIP:0x%lx\n", state->rip); vmexit->rip = state->rip; break; } svm_inj_interrupts(svm_sc, vcpu, vlapic); /* Launch Virtual Machine. */ svm_launch(vmcb_pa, gctx, hctx); /* * Restore MSR_GSBASE to point to the pcpu data area. * * Note that accesses done via PCPU_GET/PCPU_SET will work * only after MSR_GSBASE is restored. * * Also note that we don't bother restoring MSR_KGSBASE * since it is not used in the kernel and will be restored * when the VMRUN ioctl returns to userspace. */ wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[vcpustate->lastcpu]); /* * The host GDTR and IDTR is saved by VMRUN and restored * automatically on #VMEXIT. However, the host TSS needs * to be restored explicitly. */ restore_host_tss(); /* #VMEXIT disables interrupts so re-enable them here. */ enable_gintr(); /* Handle #VMEXIT and if required return to user space. */ loop = svm_vmexit(svm_sc, vcpu, vmexit); vcpustate->loop++; vmm_stat_incr(vm, vcpu, VMEXIT_COUNT, 1); } while (loop); return (0); } /* * Cleanup for virtual machine. */ static void svm_vmcleanup(void *arg) { struct svm_softc *svm_sc; svm_sc = arg; VCPU_CTR0(svm_sc->vm, 0, "SVM:cleanup\n"); free(svm_sc, M_SVM); } /* * Return pointer to hypervisor saved register state. */ static register_t * swctx_regptr(struct svm_regctx *regctx, int reg) { switch (reg) { case VM_REG_GUEST_RBX: return (®ctx->sctx_rbx); case VM_REG_GUEST_RCX: return (®ctx->sctx_rcx); case VM_REG_GUEST_RDX: return (®ctx->e.g.sctx_rdx); case VM_REG_GUEST_RDI: return (®ctx->e.g.sctx_rdi); case VM_REG_GUEST_RSI: return (®ctx->e.g.sctx_rsi); case VM_REG_GUEST_RBP: return (®ctx->sctx_rbp); case VM_REG_GUEST_R8: return (®ctx->sctx_r8); case VM_REG_GUEST_R9: return (®ctx->sctx_r9); case VM_REG_GUEST_R10: return (®ctx->sctx_r10); case VM_REG_GUEST_R11: return (®ctx->sctx_r11); case VM_REG_GUEST_R12: return (®ctx->sctx_r12); case VM_REG_GUEST_R13: return (®ctx->sctx_r13); case VM_REG_GUEST_R14: return (®ctx->sctx_r14); case VM_REG_GUEST_R15: return (®ctx->sctx_r15); default: ERR("Unknown register requested, reg=%d.\n", reg); break; } return (NULL); } /* * Interface to read guest registers. * This can be SVM h/w saved or hypervisor saved register. */ static int svm_getreg(void *arg, int vcpu, int ident, uint64_t *val) { struct svm_softc *svm_sc; struct vmcb *vmcb; register_t *reg; svm_sc = arg; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); vmcb = svm_get_vmcb(svm_sc, vcpu); if (vmcb_read(vmcb, ident, val) == 0) { return (0); } reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); if (reg != NULL) { *val = *reg; return (0); } ERR("SVM_ERR:reg type %x is not saved in VMCB.\n", ident); return (EINVAL); } /* * Interface to write to guest registers. * This can be SVM h/w saved or hypervisor saved register. */ static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val) { struct svm_softc *svm_sc; struct vmcb *vmcb; register_t *reg; svm_sc = arg; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); vmcb = svm_get_vmcb(svm_sc, vcpu); if (vmcb_write(vmcb, ident, val) == 0) { return (0); } reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident); if (reg != NULL) { *reg = val; return (0); } ERR("SVM_ERR:reg type %x is not saved in VMCB.\n", ident); return (EINVAL); } /* * Inteface to set various descriptors. */ static int svm_setdesc(void *arg, int vcpu, int type, struct seg_desc *desc) { struct svm_softc *svm_sc; struct vmcb *vmcb; struct vmcb_segment *seg; uint16_t attrib; svm_sc = arg; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); vmcb = svm_get_vmcb(svm_sc, vcpu); VCPU_CTR1(svm_sc->vm, vcpu, "SVM:set_desc: Type%d\n", type); seg = vmcb_seg(vmcb, type); if (seg == NULL) { ERR("SVM_ERR:Unsupported segment type%d\n", type); return (EINVAL); } /* Map seg_desc access to VMCB attribute format.*/ attrib = ((desc->access & 0xF000) >> 4) | (desc->access & 0xFF); VCPU_CTR3(svm_sc->vm, vcpu, "SVM:[sel %d attribute 0x%x limit:0x%x]\n", type, desc->access, desc->limit); seg->attrib = attrib; seg->base = desc->base; seg->limit = desc->limit; return (0); } /* * Interface to get guest descriptor. */ static int svm_getdesc(void *arg, int vcpu, int type, struct seg_desc *desc) { struct svm_softc *svm_sc; struct vmcb_segment *seg; svm_sc = arg; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); VCPU_CTR1(svm_sc->vm, vcpu, "SVM:get_desc: Type%d\n", type); seg = vmcb_seg(svm_get_vmcb(svm_sc, vcpu), type); if (!seg) { ERR("SVM_ERR:Unsupported segment type%d\n", type); return (EINVAL); } /* Map seg_desc access to VMCB attribute format.*/ desc->access = ((seg->attrib & 0xF00) << 4) | (seg->attrib & 0xFF); desc->base = seg->base; desc->limit = seg->limit; /* * VT-x uses bit 16 (Unusable) to indicate a segment that has been * loaded with a NULL segment selector. The 'desc->access' field is * interpreted in the VT-x format by the processor-independent code. * * SVM uses the 'P' bit to convey the same information so convert it * into the VT-x format. For more details refer to section * "Segment State in the VMCB" in APMv2. */ if (type == VM_REG_GUEST_CS && type == VM_REG_GUEST_TR) desc->access |= 0x80; /* CS and TS always present */ if (!(desc->access & 0x80)) desc->access |= 0x10000; /* Unusable segment */ return (0); } static int svm_setcap(void *arg, int vcpu, int type, int val) { struct svm_softc *svm_sc; struct vmcb_ctrl *ctrl; int ret = ENOENT; svm_sc = arg; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); switch (type) { case VM_CAP_HALT_EXIT: if (val) ctrl->ctrl1 |= VMCB_INTCPT_HLT; else ctrl->ctrl1 &= ~VMCB_INTCPT_HLT; ret = 0; VCPU_CTR1(svm_sc->vm, vcpu, "SVM:Set_gap:Halt exit %s.\n", val ? "enabled": "disabled"); break; case VM_CAP_PAUSE_EXIT: if (val) ctrl->ctrl1 |= VMCB_INTCPT_PAUSE; else ctrl->ctrl1 &= ~VMCB_INTCPT_PAUSE; ret = 0; VCPU_CTR1(svm_sc->vm, vcpu, "SVM:Set_gap:Pause exit %s.\n", val ? "enabled": "disabled"); break; case VM_CAP_MTRAP_EXIT: if (val) ctrl->exception |= BIT(IDT_MC); else ctrl->exception &= ~BIT(IDT_MC); ret = 0; VCPU_CTR1(svm_sc->vm, vcpu, "SVM:Set_gap:MC exit %s.\n", val ? "enabled": "disabled"); break; case VM_CAP_UNRESTRICTED_GUEST: /* SVM doesn't need special capability for SMP.*/ VCPU_CTR0(svm_sc->vm, vcpu, "SVM:Set_gap:Unrestricted " "always enabled.\n"); ret = 0; break; default: break; } return (ret); } static int svm_getcap(void *arg, int vcpu, int type, int *retval) { struct svm_softc *svm_sc; struct vmcb_ctrl *ctrl; svm_sc = arg; KASSERT(vcpu < svm_sc->vcpu_cnt, ("Guest doesn't have VCPU%d", vcpu)); ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); switch (type) { case VM_CAP_HALT_EXIT: *retval = (ctrl->ctrl1 & VMCB_INTCPT_HLT) ? 1 : 0; VCPU_CTR1(svm_sc->vm, vcpu, "SVM:get_cap:Halt exit %s.\n", *retval ? "enabled": "disabled"); break; case VM_CAP_PAUSE_EXIT: *retval = (ctrl->ctrl1 & VMCB_INTCPT_PAUSE) ? 1 : 0; VCPU_CTR1(svm_sc->vm, vcpu, "SVM:get_cap:Pause exit %s.\n", *retval ? "enabled": "disabled"); break; case VM_CAP_MTRAP_EXIT: *retval = (ctrl->exception & BIT(IDT_MC)) ? 1 : 0; VCPU_CTR1(svm_sc->vm, vcpu, "SVM:get_cap:MC exit %s.\n", *retval ? "enabled": "disabled"); break; case VM_CAP_UNRESTRICTED_GUEST: VCPU_CTR0(svm_sc->vm, vcpu, "SVM:get_cap:Unrestricted.\n"); *retval = 1; break; default: break; } return (0); } static struct vlapic * svm_vlapic_init(void *arg, int vcpuid) { struct svm_softc *svm_sc; struct vlapic *vlapic; svm_sc = arg; vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO); vlapic->vm = svm_sc->vm; vlapic->vcpuid = vcpuid; vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid]; vlapic_init(vlapic); return (vlapic); } static void svm_vlapic_cleanup(void *arg, struct vlapic *vlapic) { vlapic_cleanup(vlapic); free(vlapic, M_SVM_VLAPIC); } struct vmm_ops vmm_ops_amd = { svm_init, svm_cleanup, svm_restore, svm_vminit, svm_vmrun, svm_vmcleanup, svm_getreg, svm_setreg, svm_getdesc, svm_setdesc, svm_getcap, svm_setcap, svm_npt_alloc, svm_npt_free, svm_vlapic_init, svm_vlapic_cleanup };