//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ declarations. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/CXXFieldCollector.h" #include "clang/Sema/Scope.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CharUnits.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtVisitor.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/TypeOrdering.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace clang; //===----------------------------------------------------------------------===// // CheckDefaultArgumentVisitor //===----------------------------------------------------------------------===// namespace { /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses /// the default argument of a parameter to determine whether it /// contains any ill-formed subexpressions. For example, this will /// diagnose the use of local variables or parameters within the /// default argument expression. class CheckDefaultArgumentVisitor : public StmtVisitor { Expr *DefaultArg; Sema *S; public: CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) : DefaultArg(defarg), S(s) {} bool VisitExpr(Expr *Node); bool VisitDeclRefExpr(DeclRefExpr *DRE); bool VisitCXXThisExpr(CXXThisExpr *ThisE); }; /// VisitExpr - Visit all of the children of this expression. bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { bool IsInvalid = false; for (Stmt::child_iterator I = Node->child_begin(), E = Node->child_end(); I != E; ++I) IsInvalid |= Visit(*I); return IsInvalid; } /// VisitDeclRefExpr - Visit a reference to a declaration, to /// determine whether this declaration can be used in the default /// argument expression. bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { NamedDecl *Decl = DRE->getDecl(); if (ParmVarDecl *Param = dyn_cast(Decl)) { // C++ [dcl.fct.default]p9 // Default arguments are evaluated each time the function is // called. The order of evaluation of function arguments is // unspecified. Consequently, parameters of a function shall not // be used in default argument expressions, even if they are not // evaluated. Parameters of a function declared before a default // argument expression are in scope and can hide namespace and // class member names. return S->Diag(DRE->getSourceRange().getBegin(), diag::err_param_default_argument_references_param) << Param->getDeclName() << DefaultArg->getSourceRange(); } else if (VarDecl *VDecl = dyn_cast(Decl)) { // C++ [dcl.fct.default]p7 // Local variables shall not be used in default argument // expressions. if (VDecl->isBlockVarDecl()) return S->Diag(DRE->getSourceRange().getBegin(), diag::err_param_default_argument_references_local) << VDecl->getDeclName() << DefaultArg->getSourceRange(); } return false; } /// VisitCXXThisExpr - Visit a C++ "this" expression. bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { // C++ [dcl.fct.default]p8: // The keyword this shall not be used in a default argument of a // member function. return S->Diag(ThisE->getSourceRange().getBegin(), diag::err_param_default_argument_references_this) << ThisE->getSourceRange(); } } bool Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, SourceLocation EqualLoc) { if (RequireCompleteType(Param->getLocation(), Param->getType(), diag::err_typecheck_decl_incomplete_type)) { Param->setInvalidDecl(); return true; } // C++ [dcl.fct.default]p5 // A default argument expression is implicitly converted (clause // 4) to the parameter type. The default argument expression has // the same semantic constraints as the initializer expression in // a declaration of a variable of the parameter type, using the // copy-initialization semantics (8.5). InitializedEntity Entity = InitializedEntity::InitializeParameter(Param); InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), EqualLoc); InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1); ExprResult Result = InitSeq.Perform(*this, Entity, Kind, MultiExprArg(*this, &Arg, 1)); if (Result.isInvalid()) return true; Arg = Result.takeAs(); Arg = MaybeCreateCXXExprWithTemporaries(Arg); // Okay: add the default argument to the parameter Param->setDefaultArg(Arg); return false; } /// ActOnParamDefaultArgument - Check whether the default argument /// provided for a function parameter is well-formed. If so, attach it /// to the parameter declaration. void Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, Expr *DefaultArg) { if (!param || !DefaultArg) return; ParmVarDecl *Param = cast(param); UnparsedDefaultArgLocs.erase(Param); // Default arguments are only permitted in C++ if (!getLangOptions().CPlusPlus) { Diag(EqualLoc, diag::err_param_default_argument) << DefaultArg->getSourceRange(); Param->setInvalidDecl(); return; } // Check that the default argument is well-formed CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this); if (DefaultArgChecker.Visit(DefaultArg)) { Param->setInvalidDecl(); return; } SetParamDefaultArgument(Param, DefaultArg, EqualLoc); } /// ActOnParamUnparsedDefaultArgument - We've seen a default /// argument for a function parameter, but we can't parse it yet /// because we're inside a class definition. Note that this default /// argument will be parsed later. void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc, SourceLocation ArgLoc) { if (!param) return; ParmVarDecl *Param = cast(param); if (Param) Param->setUnparsedDefaultArg(); UnparsedDefaultArgLocs[Param] = ArgLoc; } /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of /// the default argument for the parameter param failed. void Sema::ActOnParamDefaultArgumentError(Decl *param) { if (!param) return; ParmVarDecl *Param = cast(param); Param->setInvalidDecl(); UnparsedDefaultArgLocs.erase(Param); } /// CheckExtraCXXDefaultArguments - Check for any extra default /// arguments in the declarator, which is not a function declaration /// or definition and therefore is not permitted to have default /// arguments. This routine should be invoked for every declarator /// that is not a function declaration or definition. void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { // C++ [dcl.fct.default]p3 // A default argument expression shall be specified only in the // parameter-declaration-clause of a function declaration or in a // template-parameter (14.1). It shall not be specified for a // parameter pack. If it is specified in a // parameter-declaration-clause, it shall not occur within a // declarator or abstract-declarator of a parameter-declaration. for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { DeclaratorChunk &chunk = D.getTypeObject(i); if (chunk.Kind == DeclaratorChunk::Function) { for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) { ParmVarDecl *Param = cast(chunk.Fun.ArgInfo[argIdx].Param); if (Param->hasUnparsedDefaultArg()) { CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); delete Toks; chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; } else if (Param->getDefaultArg()) { Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) << Param->getDefaultArg()->getSourceRange(); Param->setDefaultArg(0); } } } } } // MergeCXXFunctionDecl - Merge two declarations of the same C++ // function, once we already know that they have the same // type. Subroutine of MergeFunctionDecl. Returns true if there was an // error, false otherwise. bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { bool Invalid = false; // C++ [dcl.fct.default]p4: // For non-template functions, default arguments can be added in // later declarations of a function in the same // scope. Declarations in different scopes have completely // distinct sets of default arguments. That is, declarations in // inner scopes do not acquire default arguments from // declarations in outer scopes, and vice versa. In a given // function declaration, all parameters subsequent to a // parameter with a default argument shall have default // arguments supplied in this or previous declarations. A // default argument shall not be redefined by a later // declaration (not even to the same value). // // C++ [dcl.fct.default]p6: // Except for member functions of class templates, the default arguments // in a member function definition that appears outside of the class // definition are added to the set of default arguments provided by the // member function declaration in the class definition. for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { ParmVarDecl *OldParam = Old->getParamDecl(p); ParmVarDecl *NewParam = New->getParamDecl(p); if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) { // FIXME: If we knew where the '=' was, we could easily provide a fix-it // hint here. Alternatively, we could walk the type-source information // for NewParam to find the last source location in the type... but it // isn't worth the effort right now. This is the kind of test case that // is hard to get right: // int f(int); // void g(int (*fp)(int) = f); // void g(int (*fp)(int) = &f); Diag(NewParam->getLocation(), diag::err_param_default_argument_redefinition) << NewParam->getDefaultArgRange(); // Look for the function declaration where the default argument was // actually written, which may be a declaration prior to Old. for (FunctionDecl *Older = Old->getPreviousDeclaration(); Older; Older = Older->getPreviousDeclaration()) { if (!Older->getParamDecl(p)->hasDefaultArg()) break; OldParam = Older->getParamDecl(p); } Diag(OldParam->getLocation(), diag::note_previous_definition) << OldParam->getDefaultArgRange(); Invalid = true; } else if (OldParam->hasDefaultArg()) { // Merge the old default argument into the new parameter. // It's important to use getInit() here; getDefaultArg() // strips off any top-level CXXExprWithTemporaries. NewParam->setHasInheritedDefaultArg(); if (OldParam->hasUninstantiatedDefaultArg()) NewParam->setUninstantiatedDefaultArg( OldParam->getUninstantiatedDefaultArg()); else NewParam->setDefaultArg(OldParam->getInit()); } else if (NewParam->hasDefaultArg()) { if (New->getDescribedFunctionTemplate()) { // Paragraph 4, quoted above, only applies to non-template functions. Diag(NewParam->getLocation(), diag::err_param_default_argument_template_redecl) << NewParam->getDefaultArgRange(); Diag(Old->getLocation(), diag::note_template_prev_declaration) << false; } else if (New->getTemplateSpecializationKind() != TSK_ImplicitInstantiation && New->getTemplateSpecializationKind() != TSK_Undeclared) { // C++ [temp.expr.spec]p21: // Default function arguments shall not be specified in a declaration // or a definition for one of the following explicit specializations: // - the explicit specialization of a function template; // - the explicit specialization of a member function template; // - the explicit specialization of a member function of a class // template where the class template specialization to which the // member function specialization belongs is implicitly // instantiated. Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) << New->getDeclName() << NewParam->getDefaultArgRange(); } else if (New->getDeclContext()->isDependentContext()) { // C++ [dcl.fct.default]p6 (DR217): // Default arguments for a member function of a class template shall // be specified on the initial declaration of the member function // within the class template. // // Reading the tea leaves a bit in DR217 and its reference to DR205 // leads me to the conclusion that one cannot add default function // arguments for an out-of-line definition of a member function of a // dependent type. int WhichKind = 2; if (CXXRecordDecl *Record = dyn_cast(New->getDeclContext())) { if (Record->getDescribedClassTemplate()) WhichKind = 0; else if (isa(Record)) WhichKind = 1; else WhichKind = 2; } Diag(NewParam->getLocation(), diag::err_param_default_argument_member_template_redecl) << WhichKind << NewParam->getDefaultArgRange(); } } } if (CheckEquivalentExceptionSpec(Old, New)) Invalid = true; return Invalid; } /// CheckCXXDefaultArguments - Verify that the default arguments for a /// function declaration are well-formed according to C++ /// [dcl.fct.default]. void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { unsigned NumParams = FD->getNumParams(); unsigned p; // Find first parameter with a default argument for (p = 0; p < NumParams; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); if (Param->hasDefaultArg()) break; } // C++ [dcl.fct.default]p4: // In a given function declaration, all parameters // subsequent to a parameter with a default argument shall // have default arguments supplied in this or previous // declarations. A default argument shall not be redefined // by a later declaration (not even to the same value). unsigned LastMissingDefaultArg = 0; for (; p < NumParams; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); if (!Param->hasDefaultArg()) { if (Param->isInvalidDecl()) /* We already complained about this parameter. */; else if (Param->getIdentifier()) Diag(Param->getLocation(), diag::err_param_default_argument_missing_name) << Param->getIdentifier(); else Diag(Param->getLocation(), diag::err_param_default_argument_missing); LastMissingDefaultArg = p; } } if (LastMissingDefaultArg > 0) { // Some default arguments were missing. Clear out all of the // default arguments up to (and including) the last missing // default argument, so that we leave the function parameters // in a semantically valid state. for (p = 0; p <= LastMissingDefaultArg; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); if (Param->hasDefaultArg()) { Param->setDefaultArg(0); } } } } /// isCurrentClassName - Determine whether the identifier II is the /// name of the class type currently being defined. In the case of /// nested classes, this will only return true if II is the name of /// the innermost class. bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, const CXXScopeSpec *SS) { assert(getLangOptions().CPlusPlus && "No class names in C!"); CXXRecordDecl *CurDecl; if (SS && SS->isSet() && !SS->isInvalid()) { DeclContext *DC = computeDeclContext(*SS, true); CurDecl = dyn_cast_or_null(DC); } else CurDecl = dyn_cast_or_null(CurContext); if (CurDecl && CurDecl->getIdentifier()) return &II == CurDecl->getIdentifier(); else return false; } /// \brief Check the validity of a C++ base class specifier. /// /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics /// and returns NULL otherwise. CXXBaseSpecifier * Sema::CheckBaseSpecifier(CXXRecordDecl *Class, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, TypeSourceInfo *TInfo) { QualType BaseType = TInfo->getType(); // C++ [class.union]p1: // A union shall not have base classes. if (Class->isUnion()) { Diag(Class->getLocation(), diag::err_base_clause_on_union) << SpecifierRange; return 0; } if (BaseType->isDependentType()) return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, Class->getTagKind() == TTK_Class, Access, TInfo); SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); // Base specifiers must be record types. if (!BaseType->isRecordType()) { Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; return 0; } // C++ [class.union]p1: // A union shall not be used as a base class. if (BaseType->isUnionType()) { Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; return 0; } // C++ [class.derived]p2: // The class-name in a base-specifier shall not be an incompletely // defined class. if (RequireCompleteType(BaseLoc, BaseType, PDiag(diag::err_incomplete_base_class) << SpecifierRange)) { Class->setInvalidDecl(); return 0; } // If the base class is polymorphic or isn't empty, the new one is/isn't, too. RecordDecl *BaseDecl = BaseType->getAs()->getDecl(); assert(BaseDecl && "Record type has no declaration"); BaseDecl = BaseDecl->getDefinition(); assert(BaseDecl && "Base type is not incomplete, but has no definition"); CXXRecordDecl * CXXBaseDecl = cast(BaseDecl); assert(CXXBaseDecl && "Base type is not a C++ type"); // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases. if (CXXBaseDecl->hasAttr()) { Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString(); Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl) << BaseType; return 0; } SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual); if (BaseDecl->isInvalidDecl()) Class->setInvalidDecl(); // Create the base specifier. return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, Class->getTagKind() == TTK_Class, Access, TInfo); } void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class, const CXXRecordDecl *BaseClass, bool BaseIsVirtual) { // A class with a non-empty base class is not empty. // FIXME: Standard ref? if (!BaseClass->isEmpty()) Class->setEmpty(false); // C++ [class.virtual]p1: // A class that [...] inherits a virtual function is called a polymorphic // class. if (BaseClass->isPolymorphic()) Class->setPolymorphic(true); // C++ [dcl.init.aggr]p1: // An aggregate is [...] a class with [...] no base classes [...]. Class->setAggregate(false); // C++ [class]p4: // A POD-struct is an aggregate class... Class->setPOD(false); if (BaseIsVirtual) { // C++ [class.ctor]p5: // A constructor is trivial if its class has no virtual base classes. Class->setHasTrivialConstructor(false); // C++ [class.copy]p6: // A copy constructor is trivial if its class has no virtual base classes. Class->setHasTrivialCopyConstructor(false); // C++ [class.copy]p11: // A copy assignment operator is trivial if its class has no virtual // base classes. Class->setHasTrivialCopyAssignment(false); // C++0x [meta.unary.prop] is_empty: // T is a class type, but not a union type, with ... no virtual base // classes Class->setEmpty(false); } else { // C++ [class.ctor]p5: // A constructor is trivial if all the direct base classes of its // class have trivial constructors. if (!BaseClass->hasTrivialConstructor()) Class->setHasTrivialConstructor(false); // C++ [class.copy]p6: // A copy constructor is trivial if all the direct base classes of its // class have trivial copy constructors. if (!BaseClass->hasTrivialCopyConstructor()) Class->setHasTrivialCopyConstructor(false); // C++ [class.copy]p11: // A copy assignment operator is trivial if all the direct base classes // of its class have trivial copy assignment operators. if (!BaseClass->hasTrivialCopyAssignment()) Class->setHasTrivialCopyAssignment(false); } // C++ [class.ctor]p3: // A destructor is trivial if all the direct base classes of its class // have trivial destructors. if (!BaseClass->hasTrivialDestructor()) Class->setHasTrivialDestructor(false); } /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is /// one entry in the base class list of a class specifier, for /// example: /// class foo : public bar, virtual private baz { /// 'public bar' and 'virtual private baz' are each base-specifiers. BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, ParsedType basetype, SourceLocation BaseLoc) { if (!classdecl) return true; AdjustDeclIfTemplate(classdecl); CXXRecordDecl *Class = dyn_cast(classdecl); if (!Class) return true; TypeSourceInfo *TInfo = 0; GetTypeFromParser(basetype, &TInfo); if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, Virtual, Access, TInfo)) return BaseSpec; return true; } /// \brief Performs the actual work of attaching the given base class /// specifiers to a C++ class. bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, unsigned NumBases) { if (NumBases == 0) return false; // Used to keep track of which base types we have already seen, so // that we can properly diagnose redundant direct base types. Note // that the key is always the unqualified canonical type of the base // class. std::map KnownBaseTypes; // Copy non-redundant base specifiers into permanent storage. unsigned NumGoodBases = 0; bool Invalid = false; for (unsigned idx = 0; idx < NumBases; ++idx) { QualType NewBaseType = Context.getCanonicalType(Bases[idx]->getType()); NewBaseType = NewBaseType.getLocalUnqualifiedType(); if (!Class->hasObjectMember()) { if (const RecordType *FDTTy = NewBaseType.getTypePtr()->getAs()) if (FDTTy->getDecl()->hasObjectMember()) Class->setHasObjectMember(true); } if (KnownBaseTypes[NewBaseType]) { // C++ [class.mi]p3: // A class shall not be specified as a direct base class of a // derived class more than once. Diag(Bases[idx]->getSourceRange().getBegin(), diag::err_duplicate_base_class) << KnownBaseTypes[NewBaseType]->getType() << Bases[idx]->getSourceRange(); // Delete the duplicate base class specifier; we're going to // overwrite its pointer later. Context.Deallocate(Bases[idx]); Invalid = true; } else { // Okay, add this new base class. KnownBaseTypes[NewBaseType] = Bases[idx]; Bases[NumGoodBases++] = Bases[idx]; } } // Attach the remaining base class specifiers to the derived class. Class->setBases(Bases, NumGoodBases); // Delete the remaining (good) base class specifiers, since their // data has been copied into the CXXRecordDecl. for (unsigned idx = 0; idx < NumGoodBases; ++idx) Context.Deallocate(Bases[idx]); return Invalid; } /// ActOnBaseSpecifiers - Attach the given base specifiers to the /// class, after checking whether there are any duplicate base /// classes. void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases, unsigned NumBases) { if (!ClassDecl || !Bases || !NumBases) return; AdjustDeclIfTemplate(ClassDecl); AttachBaseSpecifiers(cast(ClassDecl), (CXXBaseSpecifier**)(Bases), NumBases); } static CXXRecordDecl *GetClassForType(QualType T) { if (const RecordType *RT = T->getAs()) return cast(RT->getDecl()); else if (const InjectedClassNameType *ICT = T->getAs()) return ICT->getDecl(); else return 0; } /// \brief Determine whether the type \p Derived is a C++ class that is /// derived from the type \p Base. bool Sema::IsDerivedFrom(QualType Derived, QualType Base) { if (!getLangOptions().CPlusPlus) return false; CXXRecordDecl *DerivedRD = GetClassForType(Derived); if (!DerivedRD) return false; CXXRecordDecl *BaseRD = GetClassForType(Base); if (!BaseRD) return false; // FIXME: instantiate DerivedRD if necessary. We need a PoI for this. return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD); } /// \brief Determine whether the type \p Derived is a C++ class that is /// derived from the type \p Base. bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) { if (!getLangOptions().CPlusPlus) return false; CXXRecordDecl *DerivedRD = GetClassForType(Derived); if (!DerivedRD) return false; CXXRecordDecl *BaseRD = GetClassForType(Base); if (!BaseRD) return false; return DerivedRD->isDerivedFrom(BaseRD, Paths); } void Sema::BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePathArray) { assert(BasePathArray.empty() && "Base path array must be empty!"); assert(Paths.isRecordingPaths() && "Must record paths!"); const CXXBasePath &Path = Paths.front(); // We first go backward and check if we have a virtual base. // FIXME: It would be better if CXXBasePath had the base specifier for // the nearest virtual base. unsigned Start = 0; for (unsigned I = Path.size(); I != 0; --I) { if (Path[I - 1].Base->isVirtual()) { Start = I - 1; break; } } // Now add all bases. for (unsigned I = Start, E = Path.size(); I != E; ++I) BasePathArray.push_back(const_cast(Path[I].Base)); } /// \brief Determine whether the given base path includes a virtual /// base class. bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) { for (CXXCastPath::const_iterator B = BasePath.begin(), BEnd = BasePath.end(); B != BEnd; ++B) if ((*B)->isVirtual()) return true; return false; } /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base /// conversion (where Derived and Base are class types) is /// well-formed, meaning that the conversion is unambiguous (and /// that all of the base classes are accessible). Returns true /// and emits a diagnostic if the code is ill-formed, returns false /// otherwise. Loc is the location where this routine should point to /// if there is an error, and Range is the source range to highlight /// if there is an error. bool Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, unsigned InaccessibleBaseID, unsigned AmbigiousBaseConvID, SourceLocation Loc, SourceRange Range, DeclarationName Name, CXXCastPath *BasePath) { // First, determine whether the path from Derived to Base is // ambiguous. This is slightly more expensive than checking whether // the Derived to Base conversion exists, because here we need to // explore multiple paths to determine if there is an ambiguity. CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths); assert(DerivationOkay && "Can only be used with a derived-to-base conversion"); (void)DerivationOkay; if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) { if (InaccessibleBaseID) { // Check that the base class can be accessed. switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(), InaccessibleBaseID)) { case AR_inaccessible: return true; case AR_accessible: case AR_dependent: case AR_delayed: break; } } // Build a base path if necessary. if (BasePath) BuildBasePathArray(Paths, *BasePath); return false; } // We know that the derived-to-base conversion is ambiguous, and // we're going to produce a diagnostic. Perform the derived-to-base // search just one more time to compute all of the possible paths so // that we can print them out. This is more expensive than any of // the previous derived-to-base checks we've done, but at this point // performance isn't as much of an issue. Paths.clear(); Paths.setRecordingPaths(true); bool StillOkay = IsDerivedFrom(Derived, Base, Paths); assert(StillOkay && "Can only be used with a derived-to-base conversion"); (void)StillOkay; // Build up a textual representation of the ambiguous paths, e.g., // D -> B -> A, that will be used to illustrate the ambiguous // conversions in the diagnostic. We only print one of the paths // to each base class subobject. std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); Diag(Loc, AmbigiousBaseConvID) << Derived << Base << PathDisplayStr << Range << Name; return true; } bool Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, SourceLocation Loc, SourceRange Range, CXXCastPath *BasePath, bool IgnoreAccess) { return CheckDerivedToBaseConversion(Derived, Base, IgnoreAccess ? 0 : diag::err_upcast_to_inaccessible_base, diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), BasePath); } /// @brief Builds a string representing ambiguous paths from a /// specific derived class to different subobjects of the same base /// class. /// /// This function builds a string that can be used in error messages /// to show the different paths that one can take through the /// inheritance hierarchy to go from the derived class to different /// subobjects of a base class. The result looks something like this: /// @code /// struct D -> struct B -> struct A /// struct D -> struct C -> struct A /// @endcode std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { std::string PathDisplayStr; std::set DisplayedPaths; for (CXXBasePaths::paths_iterator Path = Paths.begin(); Path != Paths.end(); ++Path) { if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { // We haven't displayed a path to this particular base // class subobject yet. PathDisplayStr += "\n "; PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); for (CXXBasePath::const_iterator Element = Path->begin(); Element != Path->end(); ++Element) PathDisplayStr += " -> " + Element->Base->getType().getAsString(); } } return PathDisplayStr; } //===----------------------------------------------------------------------===// // C++ class member Handling //===----------------------------------------------------------------------===// /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon. Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, SourceLocation ColonLoc) { assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext, ASLoc, ColonLoc); CurContext->addHiddenDecl(ASDecl); return ASDecl; } /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the /// bitfield width if there is one and 'InitExpr' specifies the initializer if /// any. Decl * Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, MultiTemplateParamsArg TemplateParameterLists, ExprTy *BW, ExprTy *InitExpr, bool IsDefinition, bool Deleted) { const DeclSpec &DS = D.getDeclSpec(); DeclarationNameInfo NameInfo = GetNameForDeclarator(D); DeclarationName Name = NameInfo.getName(); SourceLocation Loc = NameInfo.getLoc(); Expr *BitWidth = static_cast(BW); Expr *Init = static_cast(InitExpr); assert(isa(CurContext)); assert(!DS.isFriendSpecified()); bool isFunc = false; if (D.isFunctionDeclarator()) isFunc = true; else if (D.getNumTypeObjects() == 0 && D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) { QualType TDType = GetTypeFromParser(DS.getRepAsType()); isFunc = TDType->isFunctionType(); } // C++ 9.2p6: A member shall not be declared to have automatic storage // duration (auto, register) or with the extern storage-class-specifier. // C++ 7.1.1p8: The mutable specifier can be applied only to names of class // data members and cannot be applied to names declared const or static, // and cannot be applied to reference members. switch (DS.getStorageClassSpec()) { case DeclSpec::SCS_unspecified: case DeclSpec::SCS_typedef: case DeclSpec::SCS_static: // FALL THROUGH. break; case DeclSpec::SCS_mutable: if (isFunc) { if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); else Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); // FIXME: It would be nicer if the keyword was ignored only for this // declarator. Otherwise we could get follow-up errors. D.getMutableDeclSpec().ClearStorageClassSpecs(); } break; default: if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(), diag::err_storageclass_invalid_for_member); else Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); D.getMutableDeclSpec().ClearStorageClassSpecs(); } bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && !isFunc); Decl *Member; if (isInstField) { // FIXME: Check for template parameters! Member = HandleField(S, cast(CurContext), Loc, D, BitWidth, AS); assert(Member && "HandleField never returns null"); } else { Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition); if (!Member) { return 0; } // Non-instance-fields can't have a bitfield. if (BitWidth) { if (Member->isInvalidDecl()) { // don't emit another diagnostic. } else if (isa(Member)) { // C++ 9.6p3: A bit-field shall not be a static member. // "static member 'A' cannot be a bit-field" Diag(Loc, diag::err_static_not_bitfield) << Name << BitWidth->getSourceRange(); } else if (isa(Member)) { // "typedef member 'x' cannot be a bit-field" Diag(Loc, diag::err_typedef_not_bitfield) << Name << BitWidth->getSourceRange(); } else { // A function typedef ("typedef int f(); f a;"). // C++ 9.6p3: A bit-field shall have integral or enumeration type. Diag(Loc, diag::err_not_integral_type_bitfield) << Name << cast(Member)->getType() << BitWidth->getSourceRange(); } BitWidth = 0; Member->setInvalidDecl(); } Member->setAccess(AS); // If we have declared a member function template, set the access of the // templated declaration as well. if (FunctionTemplateDecl *FunTmpl = dyn_cast(Member)) FunTmpl->getTemplatedDecl()->setAccess(AS); } assert((Name || isInstField) && "No identifier for non-field ?"); if (Init) AddInitializerToDecl(Member, Init, false); if (Deleted) // FIXME: Source location is not very good. SetDeclDeleted(Member, D.getSourceRange().getBegin()); if (isInstField) { FieldCollector->Add(cast(Member)); return 0; } return Member; } /// \brief Find the direct and/or virtual base specifiers that /// correspond to the given base type, for use in base initialization /// within a constructor. static bool FindBaseInitializer(Sema &SemaRef, CXXRecordDecl *ClassDecl, QualType BaseType, const CXXBaseSpecifier *&DirectBaseSpec, const CXXBaseSpecifier *&VirtualBaseSpec) { // First, check for a direct base class. DirectBaseSpec = 0; for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) { if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) { // We found a direct base of this type. That's what we're // initializing. DirectBaseSpec = &*Base; break; } } // Check for a virtual base class. // FIXME: We might be able to short-circuit this if we know in advance that // there are no virtual bases. VirtualBaseSpec = 0; if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { // We haven't found a base yet; search the class hierarchy for a // virtual base class. CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl), BaseType, Paths)) { for (CXXBasePaths::paths_iterator Path = Paths.begin(); Path != Paths.end(); ++Path) { if (Path->back().Base->isVirtual()) { VirtualBaseSpec = Path->back().Base; break; } } } } return DirectBaseSpec || VirtualBaseSpec; } /// ActOnMemInitializer - Handle a C++ member initializer. MemInitResult Sema::ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, SourceLocation IdLoc, SourceLocation LParenLoc, ExprTy **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { if (!ConstructorD) return true; AdjustDeclIfTemplate(ConstructorD); CXXConstructorDecl *Constructor = dyn_cast(ConstructorD); if (!Constructor) { // The user wrote a constructor initializer on a function that is // not a C++ constructor. Ignore the error for now, because we may // have more member initializers coming; we'll diagnose it just // once in ActOnMemInitializers. return true; } CXXRecordDecl *ClassDecl = Constructor->getParent(); // C++ [class.base.init]p2: // Names in a mem-initializer-id are looked up in the scope of the // constructor’s class and, if not found in that scope, are looked // up in the scope containing the constructor’s // definition. [Note: if the constructor’s class contains a member // with the same name as a direct or virtual base class of the // class, a mem-initializer-id naming the member or base class and // composed of a single identifier refers to the class member. A // mem-initializer-id for the hidden base class may be specified // using a qualified name. ] if (!SS.getScopeRep() && !TemplateTypeTy) { // Look for a member, first. FieldDecl *Member = 0; DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase); if (Result.first != Result.second) Member = dyn_cast(*Result.first); // FIXME: Handle members of an anonymous union. if (Member) return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, LParenLoc, RParenLoc); } // It didn't name a member, so see if it names a class. QualType BaseType; TypeSourceInfo *TInfo = 0; if (TemplateTypeTy) { BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); } else { LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); LookupParsedName(R, S, &SS); TypeDecl *TyD = R.getAsSingle(); if (!TyD) { if (R.isAmbiguous()) return true; // We don't want access-control diagnostics here. R.suppressDiagnostics(); if (SS.isSet() && isDependentScopeSpecifier(SS)) { bool NotUnknownSpecialization = false; DeclContext *DC = computeDeclContext(SS, false); if (CXXRecordDecl *Record = dyn_cast_or_null(DC)) NotUnknownSpecialization = !Record->hasAnyDependentBases(); if (!NotUnknownSpecialization) { // When the scope specifier can refer to a member of an unknown // specialization, we take it as a type name. BaseType = CheckTypenameType(ETK_None, (NestedNameSpecifier *)SS.getScopeRep(), *MemberOrBase, SourceLocation(), SS.getRange(), IdLoc); if (BaseType.isNull()) return true; R.clear(); R.setLookupName(MemberOrBase); } } // If no results were found, try to correct typos. if (R.empty() && BaseType.isNull() && CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) && R.isSingleResult()) { if (FieldDecl *Member = R.getAsSingle()) { if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) { // We have found a non-static data member with a similar // name to what was typed; complain and initialize that // member. Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) << MemberOrBase << true << R.getLookupName() << FixItHint::CreateReplacement(R.getNameLoc(), R.getLookupName().getAsString()); Diag(Member->getLocation(), diag::note_previous_decl) << Member->getDeclName(); return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, LParenLoc, RParenLoc); } } else if (TypeDecl *Type = R.getAsSingle()) { const CXXBaseSpecifier *DirectBaseSpec; const CXXBaseSpecifier *VirtualBaseSpec; if (FindBaseInitializer(*this, ClassDecl, Context.getTypeDeclType(Type), DirectBaseSpec, VirtualBaseSpec)) { // We have found a direct or virtual base class with a // similar name to what was typed; complain and initialize // that base class. Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) << MemberOrBase << false << R.getLookupName() << FixItHint::CreateReplacement(R.getNameLoc(), R.getLookupName().getAsString()); const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec : VirtualBaseSpec; Diag(BaseSpec->getSourceRange().getBegin(), diag::note_base_class_specified_here) << BaseSpec->getType() << BaseSpec->getSourceRange(); TyD = Type; } } } if (!TyD && BaseType.isNull()) { Diag(IdLoc, diag::err_mem_init_not_member_or_class) << MemberOrBase << SourceRange(IdLoc, RParenLoc); return true; } } if (BaseType.isNull()) { BaseType = Context.getTypeDeclType(TyD); if (SS.isSet()) { NestedNameSpecifier *Qualifier = static_cast(SS.getScopeRep()); // FIXME: preserve source range information BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType); } } } if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs, LParenLoc, RParenLoc, ClassDecl); } /// Checks an initializer expression for use of uninitialized fields, such as /// containing the field that is being initialized. Returns true if there is an /// uninitialized field was used an updates the SourceLocation parameter; false /// otherwise. static bool InitExprContainsUninitializedFields(const Stmt *S, const FieldDecl *LhsField, SourceLocation *L) { if (isa(S)) { // Do not descend into function calls or constructors, as the use // of an uninitialized field may be valid. One would have to inspect // the contents of the function/ctor to determine if it is safe or not. // i.e. Pass-by-value is never safe, but pass-by-reference and pointers // may be safe, depending on what the function/ctor does. return false; } if (const MemberExpr *ME = dyn_cast(S)) { const NamedDecl *RhsField = ME->getMemberDecl(); if (RhsField == LhsField) { // Initializing a field with itself. Throw a warning. // But wait; there are exceptions! // Exception #1: The field may not belong to this record. // e.g. Foo(const Foo& rhs) : A(rhs.A) {} const Expr *base = ME->getBase(); if (base != NULL && !isa(base->IgnoreParenCasts())) { // Even though the field matches, it does not belong to this record. return false; } // None of the exceptions triggered; return true to indicate an // uninitialized field was used. *L = ME->getMemberLoc(); return true; } } for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end(); it != e; ++it) { if (!*it) { // An expression such as 'member(arg ?: "")' may trigger this. continue; } if (InitExprContainsUninitializedFields(*it, LhsField, L)) return true; } return false; } MemInitResult Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args, unsigned NumArgs, SourceLocation IdLoc, SourceLocation LParenLoc, SourceLocation RParenLoc) { // Diagnose value-uses of fields to initialize themselves, e.g. // foo(foo) // where foo is not also a parameter to the constructor. // TODO: implement -Wuninitialized and fold this into that framework. for (unsigned i = 0; i < NumArgs; ++i) { SourceLocation L; if (InitExprContainsUninitializedFields(Args[i], Member, &L)) { // FIXME: Return true in the case when other fields are used before being // uninitialized. For example, let this field be the i'th field. When // initializing the i'th field, throw a warning if any of the >= i'th // fields are used, as they are not yet initialized. // Right now we are only handling the case where the i'th field uses // itself in its initializer. Diag(L, diag::warn_field_is_uninit); } } bool HasDependentArg = false; for (unsigned i = 0; i < NumArgs; i++) HasDependentArg |= Args[i]->isTypeDependent(); if (Member->getType()->isDependentType() || HasDependentArg) { // Can't check initialization for a member of dependent type or when // any of the arguments are type-dependent expressions. Expr *Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, RParenLoc); // Erase any temporaries within this evaluation context; we're not // going to track them in the AST, since we'll be rebuilding the // ASTs during template instantiation. ExprTemporaries.erase( ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries, ExprTemporaries.end()); return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc, LParenLoc, Init, RParenLoc); } if (Member->isInvalidDecl()) return true; // Initialize the member. InitializedEntity MemberEntity = InitializedEntity::InitializeMember(Member, 0); InitializationKind Kind = InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc); InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs); ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, MultiExprArg(*this, Args, NumArgs), 0); if (MemberInit.isInvalid()) return true; // C++0x [class.base.init]p7: // The initialization of each base and member constitutes a // full-expression. MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get()); if (MemberInit.isInvalid()) return true; // If we are in a dependent context, template instantiation will // perform this type-checking again. Just save the arguments that we // received in a ParenListExpr. // FIXME: This isn't quite ideal, since our ASTs don't capture all // of the information that we have about the member // initializer. However, deconstructing the ASTs is a dicey process, // and this approach is far more likely to get the corner cases right. if (CurContext->isDependentContext()) { // Bump the reference count of all of the arguments. for (unsigned I = 0; I != NumArgs; ++I) Args[I]->Retain(); Expr *Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, RParenLoc); return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc, LParenLoc, Init, RParenLoc); } return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc, LParenLoc, MemberInit.get(), RParenLoc); } MemInitResult Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, Expr **Args, unsigned NumArgs, SourceLocation LParenLoc, SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) { bool HasDependentArg = false; for (unsigned i = 0; i < NumArgs; i++) HasDependentArg |= Args[i]->isTypeDependent(); SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin(); if (!BaseType->isDependentType() && !BaseType->isRecordType()) return Diag(BaseLoc, diag::err_base_init_does_not_name_class) << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); // C++ [class.base.init]p2: // [...] Unless the mem-initializer-id names a nonstatic data // member of the constructor’s class or a direct or virtual base // of that class, the mem-initializer is ill-formed. A // mem-initializer-list can initialize a base class using any // name that denotes that base class type. bool Dependent = BaseType->isDependentType() || HasDependentArg; // Check for direct and virtual base classes. const CXXBaseSpecifier *DirectBaseSpec = 0; const CXXBaseSpecifier *VirtualBaseSpec = 0; if (!Dependent) { FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, VirtualBaseSpec); // C++ [base.class.init]p2: // Unless the mem-initializer-id names a nonstatic data member of the // constructor's class or a direct or virtual base of that class, the // mem-initializer is ill-formed. if (!DirectBaseSpec && !VirtualBaseSpec) { // If the class has any dependent bases, then it's possible that // one of those types will resolve to the same type as // BaseType. Therefore, just treat this as a dependent base // class initialization. FIXME: Should we try to check the // initialization anyway? It seems odd. if (ClassDecl->hasAnyDependentBases()) Dependent = true; else return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) << BaseType << Context.getTypeDeclType(ClassDecl) << BaseTInfo->getTypeLoc().getLocalSourceRange(); } } if (Dependent) { // Can't check initialization for a base of dependent type or when // any of the arguments are type-dependent expressions. ExprResult BaseInit = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, RParenLoc)); // Erase any temporaries within this evaluation context; we're not // going to track them in the AST, since we'll be rebuilding the // ASTs during template instantiation. ExprTemporaries.erase( ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries, ExprTemporaries.end()); return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, /*IsVirtual=*/false, LParenLoc, BaseInit.takeAs(), RParenLoc); } // C++ [base.class.init]p2: // If a mem-initializer-id is ambiguous because it designates both // a direct non-virtual base class and an inherited virtual base // class, the mem-initializer is ill-formed. if (DirectBaseSpec && VirtualBaseSpec) return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); CXXBaseSpecifier *BaseSpec = const_cast(DirectBaseSpec); if (!BaseSpec) BaseSpec = const_cast(VirtualBaseSpec); // Initialize the base. InitializedEntity BaseEntity = InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec); InitializationKind Kind = InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc); InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs); ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, MultiExprArg(*this, Args, NumArgs), 0); if (BaseInit.isInvalid()) return true; // C++0x [class.base.init]p7: // The initialization of each base and member constitutes a // full-expression. BaseInit = MaybeCreateCXXExprWithTemporaries(BaseInit.get()); if (BaseInit.isInvalid()) return true; // If we are in a dependent context, template instantiation will // perform this type-checking again. Just save the arguments that we // received in a ParenListExpr. // FIXME: This isn't quite ideal, since our ASTs don't capture all // of the information that we have about the base // initializer. However, deconstructing the ASTs is a dicey process, // and this approach is far more likely to get the corner cases right. if (CurContext->isDependentContext()) { // Bump the reference count of all of the arguments. for (unsigned I = 0; I != NumArgs; ++I) Args[I]->Retain(); ExprResult Init = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs, RParenLoc)); return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, BaseSpec->isVirtual(), LParenLoc, Init.takeAs(), RParenLoc); } return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, BaseSpec->isVirtual(), LParenLoc, BaseInit.takeAs(), RParenLoc); } /// ImplicitInitializerKind - How an implicit base or member initializer should /// initialize its base or member. enum ImplicitInitializerKind { IIK_Default, IIK_Copy, IIK_Move }; static bool BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, ImplicitInitializerKind ImplicitInitKind, CXXBaseSpecifier *BaseSpec, bool IsInheritedVirtualBase, CXXBaseOrMemberInitializer *&CXXBaseInit) { InitializedEntity InitEntity = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec, IsInheritedVirtualBase); ExprResult BaseInit; switch (ImplicitInitKind) { case IIK_Default: { InitializationKind InitKind = InitializationKind::CreateDefault(Constructor->getLocation()); InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0); BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg(SemaRef, 0, 0)); break; } case IIK_Copy: { ParmVarDecl *Param = Constructor->getParamDecl(0); QualType ParamType = Param->getType().getNonReferenceType(); Expr *CopyCtorArg = DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param, Constructor->getLocation(), ParamType, 0); // Cast to the base class to avoid ambiguities. QualType ArgTy = SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(), ParamType.getQualifiers()); CXXCastPath BasePath; BasePath.push_back(BaseSpec); SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy, CK_UncheckedDerivedToBase, VK_LValue, &BasePath); InitializationKind InitKind = InitializationKind::CreateDirect(Constructor->getLocation(), SourceLocation(), SourceLocation()); InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, &CopyCtorArg, 1); BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg(&CopyCtorArg, 1)); break; } case IIK_Move: assert(false && "Unhandled initializer kind!"); } if (BaseInit.isInvalid()) return true; BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(BaseInit.get()); if (BaseInit.isInvalid()) return true; CXXBaseInit = new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context, SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(), SourceLocation()), BaseSpec->isVirtual(), SourceLocation(), BaseInit.takeAs(), SourceLocation()); return false; } static bool BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, ImplicitInitializerKind ImplicitInitKind, FieldDecl *Field, CXXBaseOrMemberInitializer *&CXXMemberInit) { if (Field->isInvalidDecl()) return true; SourceLocation Loc = Constructor->getLocation(); if (ImplicitInitKind == IIK_Copy) { ParmVarDecl *Param = Constructor->getParamDecl(0); QualType ParamType = Param->getType().getNonReferenceType(); Expr *MemberExprBase = DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param, Loc, ParamType, 0); // Build a reference to this field within the parameter. CXXScopeSpec SS; LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, Sema::LookupMemberName); MemberLookup.addDecl(Field, AS_public); MemberLookup.resolveKind(); ExprResult CopyCtorArg = SemaRef.BuildMemberReferenceExpr(MemberExprBase, ParamType, Loc, /*IsArrow=*/false, SS, /*FirstQualifierInScope=*/0, MemberLookup, /*TemplateArgs=*/0); if (CopyCtorArg.isInvalid()) return true; // When the field we are copying is an array, create index variables for // each dimension of the array. We use these index variables to subscript // the source array, and other clients (e.g., CodeGen) will perform the // necessary iteration with these index variables. llvm::SmallVector IndexVariables; QualType BaseType = Field->getType(); QualType SizeType = SemaRef.Context.getSizeType(); while (const ConstantArrayType *Array = SemaRef.Context.getAsConstantArrayType(BaseType)) { // Create the iteration variable for this array index. IdentifierInfo *IterationVarName = 0; { llvm::SmallString<8> Str; llvm::raw_svector_ostream OS(Str); OS << "__i" << IndexVariables.size(); IterationVarName = &SemaRef.Context.Idents.get(OS.str()); } VarDecl *IterationVar = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, IterationVarName, SizeType, SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None, SC_None); IndexVariables.push_back(IterationVar); // Create a reference to the iteration variable. ExprResult IterationVarRef = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc); assert(!IterationVarRef.isInvalid() && "Reference to invented variable cannot fail!"); // Subscript the array with this iteration variable. CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(), Loc, IterationVarRef.take(), Loc); if (CopyCtorArg.isInvalid()) return true; BaseType = Array->getElementType(); } // Construct the entity that we will be initializing. For an array, this // will be first element in the array, which may require several levels // of array-subscript entities. llvm::SmallVector Entities; Entities.reserve(1 + IndexVariables.size()); Entities.push_back(InitializedEntity::InitializeMember(Field)); for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I) Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context, 0, Entities.back())); // Direct-initialize to use the copy constructor. InitializationKind InitKind = InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation()); Expr *CopyCtorArgE = CopyCtorArg.takeAs(); InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, &CopyCtorArgE, 1); ExprResult MemberInit = InitSeq.Perform(SemaRef, Entities.back(), InitKind, MultiExprArg(&CopyCtorArgE, 1)); MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get()); if (MemberInit.isInvalid()) return true; CXXMemberInit = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc, MemberInit.takeAs(), Loc, IndexVariables.data(), IndexVariables.size()); return false; } assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!"); QualType FieldBaseElementType = SemaRef.Context.getBaseElementType(Field->getType()); if (FieldBaseElementType->isRecordType()) { InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); InitializationKind InitKind = InitializationKind::CreateDefault(Loc); InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0); ExprResult MemberInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg()); if (MemberInit.isInvalid()) return true; MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get()); if (MemberInit.isInvalid()) return true; CXXMemberInit = new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context, Field, Loc, Loc, MemberInit.get(), Loc); return false; } if (FieldBaseElementType->isReferenceType()) { SemaRef.Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor) << (int)Constructor->isImplicit() << SemaRef.Context.getTagDeclType(Constructor->getParent()) << 0 << Field->getDeclName(); SemaRef.Diag(Field->getLocation(), diag::note_declared_at); return true; } if (FieldBaseElementType.isConstQualified()) { SemaRef.Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor) << (int)Constructor->isImplicit() << SemaRef.Context.getTagDeclType(Constructor->getParent()) << 1 << Field->getDeclName(); SemaRef.Diag(Field->getLocation(), diag::note_declared_at); return true; } // Nothing to initialize. CXXMemberInit = 0; return false; } namespace { struct BaseAndFieldInfo { Sema &S; CXXConstructorDecl *Ctor; bool AnyErrorsInInits; ImplicitInitializerKind IIK; llvm::DenseMap AllBaseFields; llvm::SmallVector AllToInit; BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { // FIXME: Handle implicit move constructors. if (Ctor->isImplicit() && Ctor->isCopyConstructor()) IIK = IIK_Copy; else IIK = IIK_Default; } }; } static void RecordFieldInitializer(BaseAndFieldInfo &Info, FieldDecl *Top, FieldDecl *Field, CXXBaseOrMemberInitializer *Init) { // If the member doesn't need to be initialized, Init will still be null. if (!Init) return; Info.AllToInit.push_back(Init); if (Field != Top) { Init->setMember(Top); Init->setAnonUnionMember(Field); } } static bool CollectFieldInitializer(BaseAndFieldInfo &Info, FieldDecl *Top, FieldDecl *Field) { // Overwhelmingly common case: we have a direct initializer for this field. if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) { RecordFieldInitializer(Info, Top, Field, Init); return false; } if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) { const RecordType *FieldClassType = Field->getType()->getAs(); assert(FieldClassType && "anonymous struct/union without record type"); CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); // Even though union members never have non-trivial default // constructions in C++03, we still build member initializers for aggregate // record types which can be union members, and C++0x allows non-trivial // default constructors for union members, so we ensure that only one // member is initialized for these. if (FieldClassDecl->isUnion()) { // First check for an explicit initializer for one field. for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(), EA = FieldClassDecl->field_end(); FA != EA; FA++) { if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) { RecordFieldInitializer(Info, Top, *FA, Init); // Once we've initialized a field of an anonymous union, the union // field in the class is also initialized, so exit immediately. return false; } else if ((*FA)->isAnonymousStructOrUnion()) { if (CollectFieldInitializer(Info, Top, *FA)) return true; } } // Fallthrough and construct a default initializer for the union as // a whole, which can call its default constructor if such a thing exists // (C++0x perhaps). FIXME: It's not clear that this is the correct // behavior going forward with C++0x, when anonymous unions there are // finalized, we should revisit this. } else { // For structs, we simply descend through to initialize all members where // necessary. for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(), EA = FieldClassDecl->field_end(); FA != EA; FA++) { if (CollectFieldInitializer(Info, Top, *FA)) return true; } } } // Don't try to build an implicit initializer if there were semantic // errors in any of the initializers (and therefore we might be // missing some that the user actually wrote). if (Info.AnyErrorsInInits) return false; CXXBaseOrMemberInitializer *Init = 0; if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init)) return true; RecordFieldInitializer(Info, Top, Field, Init); return false; } bool Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor, CXXBaseOrMemberInitializer **Initializers, unsigned NumInitializers, bool AnyErrors) { if (Constructor->getDeclContext()->isDependentContext()) { // Just store the initializers as written, they will be checked during // instantiation. if (NumInitializers > 0) { Constructor->setNumBaseOrMemberInitializers(NumInitializers); CXXBaseOrMemberInitializer **baseOrMemberInitializers = new (Context) CXXBaseOrMemberInitializer*[NumInitializers]; memcpy(baseOrMemberInitializers, Initializers, NumInitializers * sizeof(CXXBaseOrMemberInitializer*)); Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers); } return false; } BaseAndFieldInfo Info(*this, Constructor, AnyErrors); // We need to build the initializer AST according to order of construction // and not what user specified in the Initializers list. CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); if (!ClassDecl) return true; bool HadError = false; for (unsigned i = 0; i < NumInitializers; i++) { CXXBaseOrMemberInitializer *Member = Initializers[i]; if (Member->isBaseInitializer()) Info.AllBaseFields[Member->getBaseClass()->getAs()] = Member; else Info.AllBaseFields[Member->getMember()] = Member; } // Keep track of the direct virtual bases. llvm::SmallPtrSet DirectVBases; for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(), E = ClassDecl->bases_end(); I != E; ++I) { if (I->isVirtual()) DirectVBases.insert(I); } // Push virtual bases before others. for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), E = ClassDecl->vbases_end(); VBase != E; ++VBase) { if (CXXBaseOrMemberInitializer *Value = Info.AllBaseFields.lookup(VBase->getType()->getAs())) { Info.AllToInit.push_back(Value); } else if (!AnyErrors) { bool IsInheritedVirtualBase = !DirectVBases.count(VBase); CXXBaseOrMemberInitializer *CXXBaseInit; if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, VBase, IsInheritedVirtualBase, CXXBaseInit)) { HadError = true; continue; } Info.AllToInit.push_back(CXXBaseInit); } } // Non-virtual bases. for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), E = ClassDecl->bases_end(); Base != E; ++Base) { // Virtuals are in the virtual base list and already constructed. if (Base->isVirtual()) continue; if (CXXBaseOrMemberInitializer *Value = Info.AllBaseFields.lookup(Base->getType()->getAs())) { Info.AllToInit.push_back(Value); } else if (!AnyErrors) { CXXBaseOrMemberInitializer *CXXBaseInit; if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, Base, /*IsInheritedVirtualBase=*/false, CXXBaseInit)) { HadError = true; continue; } Info.AllToInit.push_back(CXXBaseInit); } } // Fields. for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), E = ClassDecl->field_end(); Field != E; ++Field) { if ((*Field)->getType()->isIncompleteArrayType()) { assert(ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"); continue; } if (CollectFieldInitializer(Info, *Field, *Field)) HadError = true; } NumInitializers = Info.AllToInit.size(); if (NumInitializers > 0) { Constructor->setNumBaseOrMemberInitializers(NumInitializers); CXXBaseOrMemberInitializer **baseOrMemberInitializers = new (Context) CXXBaseOrMemberInitializer*[NumInitializers]; memcpy(baseOrMemberInitializers, Info.AllToInit.data(), NumInitializers * sizeof(CXXBaseOrMemberInitializer*)); Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers); // Constructors implicitly reference the base and member // destructors. MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(), Constructor->getParent()); } return HadError; } static void *GetKeyForTopLevelField(FieldDecl *Field) { // For anonymous unions, use the class declaration as the key. if (const RecordType *RT = Field->getType()->getAs()) { if (RT->getDecl()->isAnonymousStructOrUnion()) return static_cast(RT->getDecl()); } return static_cast(Field); } static void *GetKeyForBase(ASTContext &Context, QualType BaseType) { return Context.getCanonicalType(BaseType).getTypePtr(); } static void *GetKeyForMember(ASTContext &Context, CXXBaseOrMemberInitializer *Member, bool MemberMaybeAnon = false) { if (!Member->isMemberInitializer()) return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0)); // For fields injected into the class via declaration of an anonymous union, // use its anonymous union class declaration as the unique key. FieldDecl *Field = Member->getMember(); // After SetBaseOrMemberInitializers call, Field is the anonymous union // data member of the class. Data member used in the initializer list is // in AnonUnionMember field. if (MemberMaybeAnon && Field->isAnonymousStructOrUnion()) Field = Member->getAnonUnionMember(); // If the field is a member of an anonymous struct or union, our key // is the anonymous record decl that's a direct child of the class. RecordDecl *RD = Field->getParent(); if (RD->isAnonymousStructOrUnion()) { while (true) { RecordDecl *Parent = cast(RD->getDeclContext()); if (Parent->isAnonymousStructOrUnion()) RD = Parent; else break; } return static_cast(RD); } return static_cast(Field); } static void DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef, const CXXConstructorDecl *Constructor, CXXBaseOrMemberInitializer **Inits, unsigned NumInits) { if (Constructor->getDeclContext()->isDependentContext()) return; if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order) == Diagnostic::Ignored) return; // Build the list of bases and members in the order that they'll // actually be initialized. The explicit initializers should be in // this same order but may be missing things. llvm::SmallVector IdealInitKeys; const CXXRecordDecl *ClassDecl = Constructor->getParent(); // 1. Virtual bases. for (CXXRecordDecl::base_class_const_iterator VBase = ClassDecl->vbases_begin(), E = ClassDecl->vbases_end(); VBase != E; ++VBase) IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType())); // 2. Non-virtual bases. for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(), E = ClassDecl->bases_end(); Base != E; ++Base) { if (Base->isVirtual()) continue; IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType())); } // 3. Direct fields. for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), E = ClassDecl->field_end(); Field != E; ++Field) IdealInitKeys.push_back(GetKeyForTopLevelField(*Field)); unsigned NumIdealInits = IdealInitKeys.size(); unsigned IdealIndex = 0; CXXBaseOrMemberInitializer *PrevInit = 0; for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) { CXXBaseOrMemberInitializer *Init = Inits[InitIndex]; void *InitKey = GetKeyForMember(SemaRef.Context, Init, true); // Scan forward to try to find this initializer in the idealized // initializers list. for (; IdealIndex != NumIdealInits; ++IdealIndex) if (InitKey == IdealInitKeys[IdealIndex]) break; // If we didn't find this initializer, it must be because we // scanned past it on a previous iteration. That can only // happen if we're out of order; emit a warning. if (IdealIndex == NumIdealInits && PrevInit) { Sema::SemaDiagnosticBuilder D = SemaRef.Diag(PrevInit->getSourceLocation(), diag::warn_initializer_out_of_order); if (PrevInit->isMemberInitializer()) D << 0 << PrevInit->getMember()->getDeclName(); else D << 1 << PrevInit->getBaseClassInfo()->getType(); if (Init->isMemberInitializer()) D << 0 << Init->getMember()->getDeclName(); else D << 1 << Init->getBaseClassInfo()->getType(); // Move back to the initializer's location in the ideal list. for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) if (InitKey == IdealInitKeys[IdealIndex]) break; assert(IdealIndex != NumIdealInits && "initializer not found in initializer list"); } PrevInit = Init; } } namespace { bool CheckRedundantInit(Sema &S, CXXBaseOrMemberInitializer *Init, CXXBaseOrMemberInitializer *&PrevInit) { if (!PrevInit) { PrevInit = Init; return false; } if (FieldDecl *Field = Init->getMember()) S.Diag(Init->getSourceLocation(), diag::err_multiple_mem_initialization) << Field->getDeclName() << Init->getSourceRange(); else { Type *BaseClass = Init->getBaseClass(); assert(BaseClass && "neither field nor base"); S.Diag(Init->getSourceLocation(), diag::err_multiple_base_initialization) << QualType(BaseClass, 0) << Init->getSourceRange(); } S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) << 0 << PrevInit->getSourceRange(); return true; } typedef std::pair UnionEntry; typedef llvm::DenseMap RedundantUnionMap; bool CheckRedundantUnionInit(Sema &S, CXXBaseOrMemberInitializer *Init, RedundantUnionMap &Unions) { FieldDecl *Field = Init->getMember(); RecordDecl *Parent = Field->getParent(); if (!Parent->isAnonymousStructOrUnion()) return false; NamedDecl *Child = Field; do { if (Parent->isUnion()) { UnionEntry &En = Unions[Parent]; if (En.first && En.first != Child) { S.Diag(Init->getSourceLocation(), diag::err_multiple_mem_union_initialization) << Field->getDeclName() << Init->getSourceRange(); S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) << 0 << En.second->getSourceRange(); return true; } else if (!En.first) { En.first = Child; En.second = Init; } } Child = Parent; Parent = cast(Parent->getDeclContext()); } while (Parent->isAnonymousStructOrUnion()); return false; } } /// ActOnMemInitializers - Handle the member initializers for a constructor. void Sema::ActOnMemInitializers(Decl *ConstructorDecl, SourceLocation ColonLoc, MemInitTy **meminits, unsigned NumMemInits, bool AnyErrors) { if (!ConstructorDecl) return; AdjustDeclIfTemplate(ConstructorDecl); CXXConstructorDecl *Constructor = dyn_cast(ConstructorDecl); if (!Constructor) { Diag(ColonLoc, diag::err_only_constructors_take_base_inits); return; } CXXBaseOrMemberInitializer **MemInits = reinterpret_cast(meminits); // Mapping for the duplicate initializers check. // For member initializers, this is keyed with a FieldDecl*. // For base initializers, this is keyed with a Type*. llvm::DenseMap Members; // Mapping for the inconsistent anonymous-union initializers check. RedundantUnionMap MemberUnions; bool HadError = false; for (unsigned i = 0; i < NumMemInits; i++) { CXXBaseOrMemberInitializer *Init = MemInits[i]; // Set the source order index. Init->setSourceOrder(i); if (Init->isMemberInitializer()) { FieldDecl *Field = Init->getMember(); if (CheckRedundantInit(*this, Init, Members[Field]) || CheckRedundantUnionInit(*this, Init, MemberUnions)) HadError = true; } else { void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0)); if (CheckRedundantInit(*this, Init, Members[Key])) HadError = true; } } if (HadError) return; DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits); SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors); } void Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, CXXRecordDecl *ClassDecl) { // Ignore dependent contexts. if (ClassDecl->isDependentContext()) return; // FIXME: all the access-control diagnostics are positioned on the // field/base declaration. That's probably good; that said, the // user might reasonably want to know why the destructor is being // emitted, and we currently don't say. // Non-static data members. for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(), E = ClassDecl->field_end(); I != E; ++I) { FieldDecl *Field = *I; if (Field->isInvalidDecl()) continue; QualType FieldType = Context.getBaseElementType(Field->getType()); const RecordType* RT = FieldType->getAs(); if (!RT) continue; CXXRecordDecl *FieldClassDecl = cast(RT->getDecl()); if (FieldClassDecl->hasTrivialDestructor()) continue; CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl); CheckDestructorAccess(Field->getLocation(), Dtor, PDiag(diag::err_access_dtor_field) << Field->getDeclName() << FieldType); MarkDeclarationReferenced(Location, const_cast(Dtor)); } llvm::SmallPtrSet DirectVirtualBases; // Bases. for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), E = ClassDecl->bases_end(); Base != E; ++Base) { // Bases are always records in a well-formed non-dependent class. const RecordType *RT = Base->getType()->getAs(); // Remember direct virtual bases. if (Base->isVirtual()) DirectVirtualBases.insert(RT); // Ignore trivial destructors. CXXRecordDecl *BaseClassDecl = cast(RT->getDecl()); if (BaseClassDecl->hasTrivialDestructor()) continue; CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); // FIXME: caret should be on the start of the class name CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor, PDiag(diag::err_access_dtor_base) << Base->getType() << Base->getSourceRange()); MarkDeclarationReferenced(Location, const_cast(Dtor)); } // Virtual bases. for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), E = ClassDecl->vbases_end(); VBase != E; ++VBase) { // Bases are always records in a well-formed non-dependent class. const RecordType *RT = VBase->getType()->getAs(); // Ignore direct virtual bases. if (DirectVirtualBases.count(RT)) continue; // Ignore trivial destructors. CXXRecordDecl *BaseClassDecl = cast(RT->getDecl()); if (BaseClassDecl->hasTrivialDestructor()) continue; CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl); CheckDestructorAccess(ClassDecl->getLocation(), Dtor, PDiag(diag::err_access_dtor_vbase) << VBase->getType()); MarkDeclarationReferenced(Location, const_cast(Dtor)); } } void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { if (!CDtorDecl) return; if (CXXConstructorDecl *Constructor = dyn_cast(CDtorDecl)) SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false); } bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID, AbstractDiagSelID SelID) { if (SelID == -1) return RequireNonAbstractType(Loc, T, PDiag(DiagID)); else return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID); } bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, const PartialDiagnostic &PD) { if (!getLangOptions().CPlusPlus) return false; if (const ArrayType *AT = Context.getAsArrayType(T)) return RequireNonAbstractType(Loc, AT->getElementType(), PD); if (const PointerType *PT = T->getAs()) { // Find the innermost pointer type. while (const PointerType *T = PT->getPointeeType()->getAs()) PT = T; if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) return RequireNonAbstractType(Loc, AT->getElementType(), PD); } const RecordType *RT = T->getAs(); if (!RT) return false; const CXXRecordDecl *RD = cast(RT->getDecl()); // We can't answer whether something is abstract until it has a // definition. If it's currently being defined, we'll walk back // over all the declarations when we have a full definition. const CXXRecordDecl *Def = RD->getDefinition(); if (!Def || Def->isBeingDefined()) return false; if (!RD->isAbstract()) return false; Diag(Loc, PD) << RD->getDeclName(); DiagnoseAbstractType(RD); return true; } void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { // Check if we've already emitted the list of pure virtual functions // for this class. if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) return; CXXFinalOverriderMap FinalOverriders; RD->getFinalOverriders(FinalOverriders); // Keep a set of seen pure methods so we won't diagnose the same method // more than once. llvm::SmallPtrSet SeenPureMethods; for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), MEnd = FinalOverriders.end(); M != MEnd; ++M) { for (OverridingMethods::iterator SO = M->second.begin(), SOEnd = M->second.end(); SO != SOEnd; ++SO) { // C++ [class.abstract]p4: // A class is abstract if it contains or inherits at least one // pure virtual function for which the final overrider is pure // virtual. // if (SO->second.size() != 1) continue; if (!SO->second.front().Method->isPure()) continue; if (!SeenPureMethods.insert(SO->second.front().Method)) continue; Diag(SO->second.front().Method->getLocation(), diag::note_pure_virtual_function) << SO->second.front().Method->getDeclName(); } } if (!PureVirtualClassDiagSet) PureVirtualClassDiagSet.reset(new RecordDeclSetTy); PureVirtualClassDiagSet->insert(RD); } namespace { struct AbstractUsageInfo { Sema &S; CXXRecordDecl *Record; CanQualType AbstractType; bool Invalid; AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) : S(S), Record(Record), AbstractType(S.Context.getCanonicalType( S.Context.getTypeDeclType(Record))), Invalid(false) {} void DiagnoseAbstractType() { if (Invalid) return; S.DiagnoseAbstractType(Record); Invalid = true; } void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); }; struct CheckAbstractUsage { AbstractUsageInfo &Info; const NamedDecl *Ctx; CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) : Info(Info), Ctx(Ctx) {} void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { switch (TL.getTypeLocClass()) { #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ case TypeLoc::CLASS: Check(cast(TL), Sel); break; #include "clang/AST/TypeLocNodes.def" } } void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getResultLoc(), Sema::AbstractReturnType); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo(); if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType); } } void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getElementLoc(), Sema::AbstractArrayType); } void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { // Visit the type parameters from a permissive context. for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { TemplateArgumentLoc TAL = TL.getArgLoc(I); if (TAL.getArgument().getKind() == TemplateArgument::Type) if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) Visit(TSI->getTypeLoc(), Sema::AbstractNone); // TODO: other template argument types? } } // Visit pointee types from a permissive context. #define CheckPolymorphic(Type) \ void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ } CheckPolymorphic(PointerTypeLoc) CheckPolymorphic(ReferenceTypeLoc) CheckPolymorphic(MemberPointerTypeLoc) CheckPolymorphic(BlockPointerTypeLoc) /// Handle all the types we haven't given a more specific /// implementation for above. void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { // Every other kind of type that we haven't called out already // that has an inner type is either (1) sugar or (2) contains that // inner type in some way as a subobject. if (TypeLoc Next = TL.getNextTypeLoc()) return Visit(Next, Sel); // If there's no inner type and we're in a permissive context, // don't diagnose. if (Sel == Sema::AbstractNone) return; // Check whether the type matches the abstract type. QualType T = TL.getType(); if (T->isArrayType()) { Sel = Sema::AbstractArrayType; T = Info.S.Context.getBaseElementType(T); } CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); if (CT != Info.AbstractType) return; // It matched; do some magic. if (Sel == Sema::AbstractArrayType) { Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) << T << TL.getSourceRange(); } else { Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) << Sel << T << TL.getSourceRange(); } Info.DiagnoseAbstractType(); } }; void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel) { CheckAbstractUsage(*this, D).Visit(TL, Sel); } } /// Check for invalid uses of an abstract type in a method declaration. static void CheckAbstractClassUsage(AbstractUsageInfo &Info, CXXMethodDecl *MD) { // No need to do the check on definitions, which require that // the return/param types be complete. if (MD->isThisDeclarationADefinition()) return; // For safety's sake, just ignore it if we don't have type source // information. This should never happen for non-implicit methods, // but... if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone); } /// Check for invalid uses of an abstract type within a class definition. static void CheckAbstractClassUsage(AbstractUsageInfo &Info, CXXRecordDecl *RD) { for (CXXRecordDecl::decl_iterator I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) { Decl *D = *I; if (D->isImplicit()) continue; // Methods and method templates. if (isa(D)) { CheckAbstractClassUsage(Info, cast(D)); } else if (isa(D)) { FunctionDecl *FD = cast(D)->getTemplatedDecl(); CheckAbstractClassUsage(Info, cast(FD)); // Fields and static variables. } else if (isa(D)) { FieldDecl *FD = cast(D); if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); } else if (isa(D)) { VarDecl *VD = cast(D); if (TypeSourceInfo *TSI = VD->getTypeSourceInfo()) Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType); // Nested classes and class templates. } else if (isa(D)) { CheckAbstractClassUsage(Info, cast(D)); } else if (isa(D)) { CheckAbstractClassUsage(Info, cast(D)->getTemplatedDecl()); } } } /// \brief Perform semantic checks on a class definition that has been /// completing, introducing implicitly-declared members, checking for /// abstract types, etc. void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) { if (!Record || Record->isInvalidDecl()) return; if (!Record->isDependentType()) AddImplicitlyDeclaredMembersToClass(Record); if (Record->isInvalidDecl()) return; // Set access bits correctly on the directly-declared conversions. UnresolvedSetImpl *Convs = Record->getConversionFunctions(); for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I) Convs->setAccess(I, (*I)->getAccess()); // Determine whether we need to check for final overriders. We do // this either when there are virtual base classes (in which case we // may end up finding multiple final overriders for a given virtual // function) or any of the base classes is abstract (in which case // we might detect that this class is abstract). bool CheckFinalOverriders = false; if (Record->isPolymorphic() && !Record->isInvalidDecl() && !Record->isDependentType()) { if (Record->getNumVBases()) CheckFinalOverriders = true; else if (!Record->isAbstract()) { for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(), BEnd = Record->bases_end(); B != BEnd; ++B) { CXXRecordDecl *BaseDecl = cast(B->getType()->getAs()->getDecl()); if (BaseDecl->isAbstract()) { CheckFinalOverriders = true; break; } } } } if (CheckFinalOverriders) { CXXFinalOverriderMap FinalOverriders; Record->getFinalOverriders(FinalOverriders); for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), MEnd = FinalOverriders.end(); M != MEnd; ++M) { for (OverridingMethods::iterator SO = M->second.begin(), SOEnd = M->second.end(); SO != SOEnd; ++SO) { assert(SO->second.size() > 0 && "All virtual functions have overridding virtual functions"); if (SO->second.size() == 1) { // C++ [class.abstract]p4: // A class is abstract if it contains or inherits at least one // pure virtual function for which the final overrider is pure // virtual. if (SO->second.front().Method->isPure()) Record->setAbstract(true); continue; } // C++ [class.virtual]p2: // In a derived class, if a virtual member function of a base // class subobject has more than one final overrider the // program is ill-formed. Diag(Record->getLocation(), diag::err_multiple_final_overriders) << (NamedDecl *)M->first << Record; Diag(M->first->getLocation(), diag::note_overridden_virtual_function); for (OverridingMethods::overriding_iterator OM = SO->second.begin(), OMEnd = SO->second.end(); OM != OMEnd; ++OM) Diag(OM->Method->getLocation(), diag::note_final_overrider) << (NamedDecl *)M->first << OM->Method->getParent(); Record->setInvalidDecl(); } } } if (Record->isAbstract() && !Record->isInvalidDecl()) { AbstractUsageInfo Info(*this, Record); CheckAbstractClassUsage(Info, Record); } // If this is not an aggregate type and has no user-declared constructor, // complain about any non-static data members of reference or const scalar // type, since they will never get initializers. if (!Record->isInvalidDecl() && !Record->isDependentType() && !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) { bool Complained = false; for (RecordDecl::field_iterator F = Record->field_begin(), FEnd = Record->field_end(); F != FEnd; ++F) { if (F->getType()->isReferenceType() || (F->getType().isConstQualified() && F->getType()->isScalarType())) { if (!Complained) { Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) << Record->getTagKind() << Record; Complained = true; } Diag(F->getLocation(), diag::note_refconst_member_not_initialized) << F->getType()->isReferenceType() << F->getDeclName(); } } } if (Record->isDynamicClass()) DynamicClasses.push_back(Record); } void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, SourceLocation RBrac, AttributeList *AttrList) { if (!TagDecl) return; AdjustDeclIfTemplate(TagDecl); ActOnFields(S, RLoc, TagDecl, // strict aliasing violation! reinterpret_cast(FieldCollector->getCurFields()), FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList); CheckCompletedCXXClass( dyn_cast_or_null(TagDecl)); } namespace { /// \brief Helper class that collects exception specifications for /// implicitly-declared special member functions. class ImplicitExceptionSpecification { ASTContext &Context; bool AllowsAllExceptions; llvm::SmallPtrSet ExceptionsSeen; llvm::SmallVector Exceptions; public: explicit ImplicitExceptionSpecification(ASTContext &Context) : Context(Context), AllowsAllExceptions(false) { } /// \brief Whether the special member function should have any /// exception specification at all. bool hasExceptionSpecification() const { return !AllowsAllExceptions; } /// \brief Whether the special member function should have a /// throw(...) exception specification (a Microsoft extension). bool hasAnyExceptionSpecification() const { return false; } /// \brief The number of exceptions in the exception specification. unsigned size() const { return Exceptions.size(); } /// \brief The set of exceptions in the exception specification. const QualType *data() const { return Exceptions.data(); } /// \brief Note that void CalledDecl(CXXMethodDecl *Method) { // If we already know that we allow all exceptions, do nothing. if (AllowsAllExceptions || !Method) return; const FunctionProtoType *Proto = Method->getType()->getAs(); // If this function can throw any exceptions, make a note of that. if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) { AllowsAllExceptions = true; ExceptionsSeen.clear(); Exceptions.clear(); return; } // Record the exceptions in this function's exception specification. for (FunctionProtoType::exception_iterator E = Proto->exception_begin(), EEnd = Proto->exception_end(); E != EEnd; ++E) if (ExceptionsSeen.insert(Context.getCanonicalType(*E))) Exceptions.push_back(*E); } }; } /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared /// special functions, such as the default constructor, copy /// constructor, or destructor, to the given C++ class (C++ /// [special]p1). This routine can only be executed just before the /// definition of the class is complete. void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { if (!ClassDecl->hasUserDeclaredConstructor()) ++ASTContext::NumImplicitDefaultConstructors; if (!ClassDecl->hasUserDeclaredCopyConstructor()) ++ASTContext::NumImplicitCopyConstructors; if (!ClassDecl->hasUserDeclaredCopyAssignment()) { ++ASTContext::NumImplicitCopyAssignmentOperators; // If we have a dynamic class, then the copy assignment operator may be // virtual, so we have to declare it immediately. This ensures that, e.g., // it shows up in the right place in the vtable and that we diagnose // problems with the implicit exception specification. if (ClassDecl->isDynamicClass()) DeclareImplicitCopyAssignment(ClassDecl); } if (!ClassDecl->hasUserDeclaredDestructor()) { ++ASTContext::NumImplicitDestructors; // If we have a dynamic class, then the destructor may be virtual, so we // have to declare the destructor immediately. This ensures that, e.g., it // shows up in the right place in the vtable and that we diagnose problems // with the implicit exception specification. if (ClassDecl->isDynamicClass()) DeclareImplicitDestructor(ClassDecl); } } void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) { if (!D) return; TemplateParameterList *Params = 0; if (TemplateDecl *Template = dyn_cast(D)) Params = Template->getTemplateParameters(); else if (ClassTemplatePartialSpecializationDecl *PartialSpec = dyn_cast(D)) Params = PartialSpec->getTemplateParameters(); else return; for (TemplateParameterList::iterator Param = Params->begin(), ParamEnd = Params->end(); Param != ParamEnd; ++Param) { NamedDecl *Named = cast(*Param); if (Named->getDeclName()) { S->AddDecl(Named); IdResolver.AddDecl(Named); } } } void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { if (!RecordD) return; AdjustDeclIfTemplate(RecordD); CXXRecordDecl *Record = cast(RecordD); PushDeclContext(S, Record); } void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { if (!RecordD) return; PopDeclContext(); } /// ActOnStartDelayedCXXMethodDeclaration - We have completed /// parsing a top-level (non-nested) C++ class, and we are now /// parsing those parts of the given Method declaration that could /// not be parsed earlier (C++ [class.mem]p2), such as default /// arguments. This action should enter the scope of the given /// Method declaration as if we had just parsed the qualified method /// name. However, it should not bring the parameters into scope; /// that will be performed by ActOnDelayedCXXMethodParameter. void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { } /// ActOnDelayedCXXMethodParameter - We've already started a delayed /// C++ method declaration. We're (re-)introducing the given /// function parameter into scope for use in parsing later parts of /// the method declaration. For example, we could see an /// ActOnParamDefaultArgument event for this parameter. void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { if (!ParamD) return; ParmVarDecl *Param = cast(ParamD); // If this parameter has an unparsed default argument, clear it out // to make way for the parsed default argument. if (Param->hasUnparsedDefaultArg()) Param->setDefaultArg(0); S->AddDecl(Param); if (Param->getDeclName()) IdResolver.AddDecl(Param); } /// ActOnFinishDelayedCXXMethodDeclaration - We have finished /// processing the delayed method declaration for Method. The method /// declaration is now considered finished. There may be a separate /// ActOnStartOfFunctionDef action later (not necessarily /// immediately!) for this method, if it was also defined inside the /// class body. void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { if (!MethodD) return; AdjustDeclIfTemplate(MethodD); FunctionDecl *Method = cast(MethodD); // Now that we have our default arguments, check the constructor // again. It could produce additional diagnostics or affect whether // the class has implicitly-declared destructors, among other // things. if (CXXConstructorDecl *Constructor = dyn_cast(Method)) CheckConstructor(Constructor); // Check the default arguments, which we may have added. if (!Method->isInvalidDecl()) CheckCXXDefaultArguments(Method); } /// CheckConstructorDeclarator - Called by ActOnDeclarator to check /// the well-formedness of the constructor declarator @p D with type @p /// R. If there are any errors in the declarator, this routine will /// emit diagnostics and set the invalid bit to true. In any case, the type /// will be updated to reflect a well-formed type for the constructor and /// returned. QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, StorageClass &SC) { bool isVirtual = D.getDeclSpec().isVirtualSpecified(); // C++ [class.ctor]p3: // A constructor shall not be virtual (10.3) or static (9.4). A // constructor can be invoked for a const, volatile or const // volatile object. A constructor shall not be declared const, // volatile, or const volatile (9.3.2). if (isVirtual) { if (!D.isInvalidType()) Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) << SourceRange(D.getIdentifierLoc()); D.setInvalidType(); } if (SC == SC_Static) { if (!D.isInvalidType()) Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) << SourceRange(D.getIdentifierLoc()); D.setInvalidType(); SC = SC_None; } DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; if (FTI.TypeQuals != 0) { if (FTI.TypeQuals & Qualifiers::Const) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) << "const" << SourceRange(D.getIdentifierLoc()); if (FTI.TypeQuals & Qualifiers::Volatile) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) << "volatile" << SourceRange(D.getIdentifierLoc()); if (FTI.TypeQuals & Qualifiers::Restrict) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) << "restrict" << SourceRange(D.getIdentifierLoc()); } // Rebuild the function type "R" without any type qualifiers (in // case any of the errors above fired) and with "void" as the // return type, since constructors don't have return types. const FunctionProtoType *Proto = R->getAs(); return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), Proto->getNumArgs(), Proto->isVariadic(), 0, Proto->hasExceptionSpec(), Proto->hasAnyExceptionSpec(), Proto->getNumExceptions(), Proto->exception_begin(), Proto->getExtInfo()); } /// CheckConstructor - Checks a fully-formed constructor for /// well-formedness, issuing any diagnostics required. Returns true if /// the constructor declarator is invalid. void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { CXXRecordDecl *ClassDecl = dyn_cast(Constructor->getDeclContext()); if (!ClassDecl) return Constructor->setInvalidDecl(); // C++ [class.copy]p3: // A declaration of a constructor for a class X is ill-formed if // its first parameter is of type (optionally cv-qualified) X and // either there are no other parameters or else all other // parameters have default arguments. if (!Constructor->isInvalidDecl() && ((Constructor->getNumParams() == 1) || (Constructor->getNumParams() > 1 && Constructor->getParamDecl(1)->hasDefaultArg())) && Constructor->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { QualType ParamType = Constructor->getParamDecl(0)->getType(); QualType ClassTy = Context.getTagDeclType(ClassDecl); if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); const char *ConstRef = Constructor->getParamDecl(0)->getIdentifier() ? "const &" : " const &"; Diag(ParamLoc, diag::err_constructor_byvalue_arg) << FixItHint::CreateInsertion(ParamLoc, ConstRef); // FIXME: Rather that making the constructor invalid, we should endeavor // to fix the type. Constructor->setInvalidDecl(); } } // Notify the class that we've added a constructor. In principle we // don't need to do this for out-of-line declarations; in practice // we only instantiate the most recent declaration of a method, so // we have to call this for everything but friends. if (!Constructor->getFriendObjectKind()) ClassDecl->addedConstructor(Context, Constructor); } /// CheckDestructor - Checks a fully-formed destructor definition for /// well-formedness, issuing any diagnostics required. Returns true /// on error. bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { CXXRecordDecl *RD = Destructor->getParent(); if (Destructor->isVirtual()) { SourceLocation Loc; if (!Destructor->isImplicit()) Loc = Destructor->getLocation(); else Loc = RD->getLocation(); // If we have a virtual destructor, look up the deallocation function FunctionDecl *OperatorDelete = 0; DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) return true; MarkDeclarationReferenced(Loc, OperatorDelete); Destructor->setOperatorDelete(OperatorDelete); } return false; } static inline bool FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) { return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && FTI.ArgInfo[0].Param && cast(FTI.ArgInfo[0].Param)->getType()->isVoidType()); } /// CheckDestructorDeclarator - Called by ActOnDeclarator to check /// the well-formednes of the destructor declarator @p D with type @p /// R. If there are any errors in the declarator, this routine will /// emit diagnostics and set the declarator to invalid. Even if this happens, /// will be updated to reflect a well-formed type for the destructor and /// returned. QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, StorageClass& SC) { // C++ [class.dtor]p1: // [...] A typedef-name that names a class is a class-name // (7.1.3); however, a typedef-name that names a class shall not // be used as the identifier in the declarator for a destructor // declaration. QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); if (isa(DeclaratorType)) Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) << DeclaratorType; // C++ [class.dtor]p2: // A destructor is used to destroy objects of its class type. A // destructor takes no parameters, and no return type can be // specified for it (not even void). The address of a destructor // shall not be taken. A destructor shall not be static. A // destructor can be invoked for a const, volatile or const // volatile object. A destructor shall not be declared const, // volatile or const volatile (9.3.2). if (SC == SC_Static) { if (!D.isInvalidType()) Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) << SourceRange(D.getIdentifierLoc()) << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); SC = SC_None; } if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { // Destructors don't have return types, but the parser will // happily parse something like: // // class X { // float ~X(); // }; // // The return type will be eliminated later. Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) << SourceRange(D.getIdentifierLoc()); } DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; if (FTI.TypeQuals != 0 && !D.isInvalidType()) { if (FTI.TypeQuals & Qualifiers::Const) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) << "const" << SourceRange(D.getIdentifierLoc()); if (FTI.TypeQuals & Qualifiers::Volatile) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) << "volatile" << SourceRange(D.getIdentifierLoc()); if (FTI.TypeQuals & Qualifiers::Restrict) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) << "restrict" << SourceRange(D.getIdentifierLoc()); D.setInvalidType(); } // Make sure we don't have any parameters. if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) { Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); // Delete the parameters. FTI.freeArgs(); D.setInvalidType(); } // Make sure the destructor isn't variadic. if (FTI.isVariadic) { Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); D.setInvalidType(); } // Rebuild the function type "R" without any type qualifiers or // parameters (in case any of the errors above fired) and with // "void" as the return type, since destructors don't have return // types. const FunctionProtoType *Proto = R->getAs(); if (!Proto) return QualType(); return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0, Proto->hasExceptionSpec(), Proto->hasAnyExceptionSpec(), Proto->getNumExceptions(), Proto->exception_begin(), Proto->getExtInfo()); } /// CheckConversionDeclarator - Called by ActOnDeclarator to check the /// well-formednes of the conversion function declarator @p D with /// type @p R. If there are any errors in the declarator, this routine /// will emit diagnostics and return true. Otherwise, it will return /// false. Either way, the type @p R will be updated to reflect a /// well-formed type for the conversion operator. void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, StorageClass& SC) { // C++ [class.conv.fct]p1: // Neither parameter types nor return type can be specified. The // type of a conversion function (8.3.5) is "function taking no // parameter returning conversion-type-id." if (SC == SC_Static) { if (!D.isInvalidType()) Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) << SourceRange(D.getIdentifierLoc()); D.setInvalidType(); SC = SC_None; } QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId); if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { // Conversion functions don't have return types, but the parser will // happily parse something like: // // class X { // float operator bool(); // }; // // The return type will be changed later anyway. Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) << SourceRange(D.getIdentifierLoc()); D.setInvalidType(); } const FunctionProtoType *Proto = R->getAs(); // Make sure we don't have any parameters. if (Proto->getNumArgs() > 0) { Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); // Delete the parameters. D.getTypeObject(0).Fun.freeArgs(); D.setInvalidType(); } else if (Proto->isVariadic()) { Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); D.setInvalidType(); } // Diagnose "&operator bool()" and other such nonsense. This // is actually a gcc extension which we don't support. if (Proto->getResultType() != ConvType) { Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) << Proto->getResultType(); D.setInvalidType(); ConvType = Proto->getResultType(); } // C++ [class.conv.fct]p4: // The conversion-type-id shall not represent a function type nor // an array type. if (ConvType->isArrayType()) { Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); ConvType = Context.getPointerType(ConvType); D.setInvalidType(); } else if (ConvType->isFunctionType()) { Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); ConvType = Context.getPointerType(ConvType); D.setInvalidType(); } // Rebuild the function type "R" without any parameters (in case any // of the errors above fired) and with the conversion type as the // return type. if (D.isInvalidType()) { R = Context.getFunctionType(ConvType, 0, 0, false, Proto->getTypeQuals(), Proto->hasExceptionSpec(), Proto->hasAnyExceptionSpec(), Proto->getNumExceptions(), Proto->exception_begin(), Proto->getExtInfo()); } // C++0x explicit conversion operators. if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x) Diag(D.getDeclSpec().getExplicitSpecLoc(), diag::warn_explicit_conversion_functions) << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); } /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete /// the declaration of the given C++ conversion function. This routine /// is responsible for recording the conversion function in the C++ /// class, if possible. Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { assert(Conversion && "Expected to receive a conversion function declaration"); CXXRecordDecl *ClassDecl = cast(Conversion->getDeclContext()); // Make sure we aren't redeclaring the conversion function. QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); // C++ [class.conv.fct]p1: // [...] A conversion function is never used to convert a // (possibly cv-qualified) object to the (possibly cv-qualified) // same object type (or a reference to it), to a (possibly // cv-qualified) base class of that type (or a reference to it), // or to (possibly cv-qualified) void. // FIXME: Suppress this warning if the conversion function ends up being a // virtual function that overrides a virtual function in a base class. QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); if (const ReferenceType *ConvTypeRef = ConvType->getAs()) ConvType = ConvTypeRef->getPointeeType(); if (ConvType->isRecordType()) { ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); if (ConvType == ClassType) Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) << ClassType; else if (IsDerivedFrom(ClassType, ConvType)) Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) << ClassType << ConvType; } else if (ConvType->isVoidType()) { Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) << ClassType << ConvType; } if (Conversion->getPrimaryTemplate()) { // ignore specializations } else if (Conversion->getPreviousDeclaration()) { if (FunctionTemplateDecl *ConversionTemplate = Conversion->getDescribedFunctionTemplate()) { if (ClassDecl->replaceConversion( ConversionTemplate->getPreviousDeclaration(), ConversionTemplate)) return ConversionTemplate; } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(), Conversion)) return Conversion; assert(Conversion->isInvalidDecl() && "Conversion should not get here."); } else if (FunctionTemplateDecl *ConversionTemplate = Conversion->getDescribedFunctionTemplate()) ClassDecl->addConversionFunction(ConversionTemplate); else ClassDecl->addConversionFunction(Conversion); return Conversion; } //===----------------------------------------------------------------------===// // Namespace Handling //===----------------------------------------------------------------------===// /// ActOnStartNamespaceDef - This is called at the start of a namespace /// definition. Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace, AttributeList *AttrList) { // anonymous namespace starts at its left brace NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, (II ? IdentLoc : LBrace) , II); Namespc->setLBracLoc(LBrace); Namespc->setInline(InlineLoc.isValid()); Scope *DeclRegionScope = NamespcScope->getParent(); ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); if (const VisibilityAttr *attr = Namespc->getAttr()) PushVisibilityAttr(attr); if (II) { // C++ [namespace.def]p2: // The identifier in an original-namespace-definition shall not have been // previously defined in the declarative region in which the // original-namespace-definition appears. The identifier in an // original-namespace-definition is the name of the namespace. Subsequently // in that declarative region, it is treated as an original-namespace-name. NamedDecl *PrevDecl = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName, ForRedeclaration); if (NamespaceDecl *OrigNS = dyn_cast_or_null(PrevDecl)) { // This is an extended namespace definition. if (Namespc->isInline() != OrigNS->isInline()) { // inline-ness must match Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch) << Namespc->isInline(); Diag(OrigNS->getLocation(), diag::note_previous_definition); Namespc->setInvalidDecl(); // Recover by ignoring the new namespace's inline status. Namespc->setInline(OrigNS->isInline()); } // Attach this namespace decl to the chain of extended namespace // definitions. OrigNS->setNextNamespace(Namespc); Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace()); // Remove the previous declaration from the scope. if (DeclRegionScope->isDeclScope(OrigNS)) { IdResolver.RemoveDecl(OrigNS); DeclRegionScope->RemoveDecl(OrigNS); } } else if (PrevDecl) { // This is an invalid name redefinition. Diag(Namespc->getLocation(), diag::err_redefinition_different_kind) << Namespc->getDeclName(); Diag(PrevDecl->getLocation(), diag::note_previous_definition); Namespc->setInvalidDecl(); // Continue on to push Namespc as current DeclContext and return it. } else if (II->isStr("std") && CurContext->getRedeclContext()->isTranslationUnit()) { // This is the first "real" definition of the namespace "std", so update // our cache of the "std" namespace to point at this definition. if (NamespaceDecl *StdNS = getStdNamespace()) { // We had already defined a dummy namespace "std". Link this new // namespace definition to the dummy namespace "std". StdNS->setNextNamespace(Namespc); StdNS->setLocation(IdentLoc); Namespc->setOriginalNamespace(StdNS->getOriginalNamespace()); } // Make our StdNamespace cache point at the first real definition of the // "std" namespace. StdNamespace = Namespc; } PushOnScopeChains(Namespc, DeclRegionScope); } else { // Anonymous namespaces. assert(Namespc->isAnonymousNamespace()); // Link the anonymous namespace into its parent. NamespaceDecl *PrevDecl; DeclContext *Parent = CurContext->getRedeclContext(); if (TranslationUnitDecl *TU = dyn_cast(Parent)) { PrevDecl = TU->getAnonymousNamespace(); TU->setAnonymousNamespace(Namespc); } else { NamespaceDecl *ND = cast(Parent); PrevDecl = ND->getAnonymousNamespace(); ND->setAnonymousNamespace(Namespc); } // Link the anonymous namespace with its previous declaration. if (PrevDecl) { assert(PrevDecl->isAnonymousNamespace()); assert(!PrevDecl->getNextNamespace()); Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace()); PrevDecl->setNextNamespace(Namespc); if (Namespc->isInline() != PrevDecl->isInline()) { // inline-ness must match Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch) << Namespc->isInline(); Diag(PrevDecl->getLocation(), diag::note_previous_definition); Namespc->setInvalidDecl(); // Recover by ignoring the new namespace's inline status. Namespc->setInline(PrevDecl->isInline()); } } CurContext->addDecl(Namespc); // C++ [namespace.unnamed]p1. An unnamed-namespace-definition // behaves as if it were replaced by // namespace unique { /* empty body */ } // using namespace unique; // namespace unique { namespace-body } // where all occurrences of 'unique' in a translation unit are // replaced by the same identifier and this identifier differs // from all other identifiers in the entire program. // We just create the namespace with an empty name and then add an // implicit using declaration, just like the standard suggests. // // CodeGen enforces the "universally unique" aspect by giving all // declarations semantically contained within an anonymous // namespace internal linkage. if (!PrevDecl) { UsingDirectiveDecl* UD = UsingDirectiveDecl::Create(Context, CurContext, /* 'using' */ LBrace, /* 'namespace' */ SourceLocation(), /* qualifier */ SourceRange(), /* NNS */ NULL, /* identifier */ SourceLocation(), Namespc, /* Ancestor */ CurContext); UD->setImplicit(); CurContext->addDecl(UD); } } // Although we could have an invalid decl (i.e. the namespace name is a // redefinition), push it as current DeclContext and try to continue parsing. // FIXME: We should be able to push Namespc here, so that the each DeclContext // for the namespace has the declarations that showed up in that particular // namespace definition. PushDeclContext(NamespcScope, Namespc); return Namespc; } /// getNamespaceDecl - Returns the namespace a decl represents. If the decl /// is a namespace alias, returns the namespace it points to. static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { if (NamespaceAliasDecl *AD = dyn_cast_or_null(D)) return AD->getNamespace(); return dyn_cast_or_null(D); } /// ActOnFinishNamespaceDef - This callback is called after a namespace is /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { NamespaceDecl *Namespc = dyn_cast_or_null(Dcl); assert(Namespc && "Invalid parameter, expected NamespaceDecl"); Namespc->setRBracLoc(RBrace); PopDeclContext(); if (Namespc->hasAttr()) PopPragmaVisibility(); } CXXRecordDecl *Sema::getStdBadAlloc() const { return cast_or_null( StdBadAlloc.get(Context.getExternalSource())); } NamespaceDecl *Sema::getStdNamespace() const { return cast_or_null( StdNamespace.get(Context.getExternalSource())); } /// \brief Retrieve the special "std" namespace, which may require us to /// implicitly define the namespace. NamespaceDecl *Sema::getOrCreateStdNamespace() { if (!StdNamespace) { // The "std" namespace has not yet been defined, so build one implicitly. StdNamespace = NamespaceDecl::Create(Context, Context.getTranslationUnitDecl(), SourceLocation(), &PP.getIdentifierTable().get("std")); getStdNamespace()->setImplicit(true); } return getStdNamespace(); } Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, SourceLocation NamespcLoc, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *NamespcName, AttributeList *AttrList) { assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); assert(NamespcName && "Invalid NamespcName."); assert(IdentLoc.isValid() && "Invalid NamespceName location."); assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); UsingDirectiveDecl *UDir = 0; NestedNameSpecifier *Qualifier = 0; if (SS.isSet()) Qualifier = static_cast(SS.getScopeRep()); // Lookup namespace name. LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); LookupParsedName(R, S, &SS); if (R.isAmbiguous()) return 0; if (R.empty()) { // Allow "using namespace std;" or "using namespace ::std;" even if // "std" hasn't been defined yet, for GCC compatibility. if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && NamespcName->isStr("std")) { Diag(IdentLoc, diag::ext_using_undefined_std); R.addDecl(getOrCreateStdNamespace()); R.resolveKind(); } // Otherwise, attempt typo correction. else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false, CTC_NoKeywords, 0)) { if (R.getAsSingle() || R.getAsSingle()) { if (DeclContext *DC = computeDeclContext(SS, false)) Diag(IdentLoc, diag::err_using_directive_member_suggest) << NamespcName << DC << Corrected << SS.getRange() << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString()); else Diag(IdentLoc, diag::err_using_directive_suggest) << NamespcName << Corrected << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString()); Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here) << Corrected; NamespcName = Corrected.getAsIdentifierInfo(); } else { R.clear(); R.setLookupName(NamespcName); } } } if (!R.empty()) { NamedDecl *Named = R.getFoundDecl(); assert((isa(Named) || isa(Named)) && "expected namespace decl"); // C++ [namespace.udir]p1: // A using-directive specifies that the names in the nominated // namespace can be used in the scope in which the // using-directive appears after the using-directive. During // unqualified name lookup (3.4.1), the names appear as if they // were declared in the nearest enclosing namespace which // contains both the using-directive and the nominated // namespace. [Note: in this context, "contains" means "contains // directly or indirectly". ] // Find enclosing context containing both using-directive and // nominated namespace. NamespaceDecl *NS = getNamespaceDecl(Named); DeclContext *CommonAncestor = cast(NS); while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) CommonAncestor = CommonAncestor->getParent(); UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, SS.getRange(), (NestedNameSpecifier *)SS.getScopeRep(), IdentLoc, Named, CommonAncestor); PushUsingDirective(S, UDir); } else { Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); } // FIXME: We ignore attributes for now. delete AttrList; return UDir; } void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { // If scope has associated entity, then using directive is at namespace // or translation unit scope. We add UsingDirectiveDecls, into // it's lookup structure. if (DeclContext *Ctx = static_cast(S->getEntity())) Ctx->addDecl(UDir); else // Otherwise it is block-sope. using-directives will affect lookup // only to the end of scope. S->PushUsingDirective(UDir); } Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, bool HasUsingKeyword, SourceLocation UsingLoc, CXXScopeSpec &SS, UnqualifiedId &Name, AttributeList *AttrList, bool IsTypeName, SourceLocation TypenameLoc) { assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); switch (Name.getKind()) { case UnqualifiedId::IK_Identifier: case UnqualifiedId::IK_OperatorFunctionId: case UnqualifiedId::IK_LiteralOperatorId: case UnqualifiedId::IK_ConversionFunctionId: break; case UnqualifiedId::IK_ConstructorName: case UnqualifiedId::IK_ConstructorTemplateId: // C++0x inherited constructors. if (getLangOptions().CPlusPlus0x) break; Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor) << SS.getRange(); return 0; case UnqualifiedId::IK_DestructorName: Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor) << SS.getRange(); return 0; case UnqualifiedId::IK_TemplateId: Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id) << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); return 0; } DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); DeclarationName TargetName = TargetNameInfo.getName(); if (!TargetName) return 0; // Warn about using declarations. // TODO: store that the declaration was written without 'using' and // talk about access decls instead of using decls in the // diagnostics. if (!HasUsingKeyword) { UsingLoc = Name.getSourceRange().getBegin(); Diag(UsingLoc, diag::warn_access_decl_deprecated) << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); } NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS, TargetNameInfo, AttrList, /* IsInstantiation */ false, IsTypeName, TypenameLoc); if (UD) PushOnScopeChains(UD, S, /*AddToContext*/ false); return UD; } /// \brief Determine whether a using declaration considers the given /// declarations as "equivalent", e.g., if they are redeclarations of /// the same entity or are both typedefs of the same type. static bool IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2, bool &SuppressRedeclaration) { if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) { SuppressRedeclaration = false; return true; } if (TypedefDecl *TD1 = dyn_cast(D1)) if (TypedefDecl *TD2 = dyn_cast(D2)) { SuppressRedeclaration = true; return Context.hasSameType(TD1->getUnderlyingType(), TD2->getUnderlyingType()); } return false; } /// Determines whether to create a using shadow decl for a particular /// decl, given the set of decls existing prior to this using lookup. bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, const LookupResult &Previous) { // Diagnose finding a decl which is not from a base class of the // current class. We do this now because there are cases where this // function will silently decide not to build a shadow decl, which // will pre-empt further diagnostics. // // We don't need to do this in C++0x because we do the check once on // the qualifier. // // FIXME: diagnose the following if we care enough: // struct A { int foo; }; // struct B : A { using A::foo; }; // template struct C : A {}; // template struct D : C { using B::foo; } // <--- // This is invalid (during instantiation) in C++03 because B::foo // resolves to the using decl in B, which is not a base class of D. // We can't diagnose it immediately because C is an unknown // specialization. The UsingShadowDecl in D then points directly // to A::foo, which will look well-formed when we instantiate. // The right solution is to not collapse the shadow-decl chain. if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) { DeclContext *OrigDC = Orig->getDeclContext(); // Handle enums and anonymous structs. if (isa(OrigDC)) OrigDC = OrigDC->getParent(); CXXRecordDecl *OrigRec = cast(OrigDC); while (OrigRec->isAnonymousStructOrUnion()) OrigRec = cast(OrigRec->getDeclContext()); if (cast(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { if (OrigDC == CurContext) { Diag(Using->getLocation(), diag::err_using_decl_nested_name_specifier_is_current_class) << Using->getNestedNameRange(); Diag(Orig->getLocation(), diag::note_using_decl_target); return true; } Diag(Using->getNestedNameRange().getBegin(), diag::err_using_decl_nested_name_specifier_is_not_base_class) << Using->getTargetNestedNameDecl() << cast(CurContext) << Using->getNestedNameRange(); Diag(Orig->getLocation(), diag::note_using_decl_target); return true; } } if (Previous.empty()) return false; NamedDecl *Target = Orig; if (isa(Target)) Target = cast(Target)->getTargetDecl(); // If the target happens to be one of the previous declarations, we // don't have a conflict. // // FIXME: but we might be increasing its access, in which case we // should redeclare it. NamedDecl *NonTag = 0, *Tag = 0; for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); I != E; ++I) { NamedDecl *D = (*I)->getUnderlyingDecl(); bool Result; if (IsEquivalentForUsingDecl(Context, D, Target, Result)) return Result; (isa(D) ? Tag : NonTag) = D; } if (Target->isFunctionOrFunctionTemplate()) { FunctionDecl *FD; if (isa(Target)) FD = cast(Target)->getTemplatedDecl(); else FD = cast(Target); NamedDecl *OldDecl = 0; switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) { case Ovl_Overload: return false; case Ovl_NonFunction: Diag(Using->getLocation(), diag::err_using_decl_conflict); break; // We found a decl with the exact signature. case Ovl_Match: // If we're in a record, we want to hide the target, so we // return true (without a diagnostic) to tell the caller not to // build a shadow decl. if (CurContext->isRecord()) return true; // If we're not in a record, this is an error. Diag(Using->getLocation(), diag::err_using_decl_conflict); break; } Diag(Target->getLocation(), diag::note_using_decl_target); Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); return true; } // Target is not a function. if (isa(Target)) { // No conflict between a tag and a non-tag. if (!Tag) return false; Diag(Using->getLocation(), diag::err_using_decl_conflict); Diag(Target->getLocation(), diag::note_using_decl_target); Diag(Tag->getLocation(), diag::note_using_decl_conflict); return true; } // No conflict between a tag and a non-tag. if (!NonTag) return false; Diag(Using->getLocation(), diag::err_using_decl_conflict); Diag(Target->getLocation(), diag::note_using_decl_target); Diag(NonTag->getLocation(), diag::note_using_decl_conflict); return true; } /// Builds a shadow declaration corresponding to a 'using' declaration. UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, UsingDecl *UD, NamedDecl *Orig) { // If we resolved to another shadow declaration, just coalesce them. NamedDecl *Target = Orig; if (isa(Target)) { Target = cast(Target)->getTargetDecl(); assert(!isa(Target) && "nested shadow declaration"); } UsingShadowDecl *Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD, Target); UD->addShadowDecl(Shadow); if (S) PushOnScopeChains(Shadow, S); else CurContext->addDecl(Shadow); Shadow->setAccess(UD->getAccess()); // Register it as a conversion if appropriate. if (Shadow->getDeclName().getNameKind() == DeclarationName::CXXConversionFunctionName) cast(CurContext)->addConversionFunction(Shadow); if (Orig->isInvalidDecl() || UD->isInvalidDecl()) Shadow->setInvalidDecl(); return Shadow; } /// Hides a using shadow declaration. This is required by the current /// using-decl implementation when a resolvable using declaration in a /// class is followed by a declaration which would hide or override /// one or more of the using decl's targets; for example: /// /// struct Base { void foo(int); }; /// struct Derived : Base { /// using Base::foo; /// void foo(int); /// }; /// /// The governing language is C++03 [namespace.udecl]p12: /// /// When a using-declaration brings names from a base class into a /// derived class scope, member functions in the derived class /// override and/or hide member functions with the same name and /// parameter types in a base class (rather than conflicting). /// /// There are two ways to implement this: /// (1) optimistically create shadow decls when they're not hidden /// by existing declarations, or /// (2) don't create any shadow decls (or at least don't make them /// visible) until we've fully parsed/instantiated the class. /// The problem with (1) is that we might have to retroactively remove /// a shadow decl, which requires several O(n) operations because the /// decl structures are (very reasonably) not designed for removal. /// (2) avoids this but is very fiddly and phase-dependent. void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { if (Shadow->getDeclName().getNameKind() == DeclarationName::CXXConversionFunctionName) cast(Shadow->getDeclContext())->removeConversion(Shadow); // Remove it from the DeclContext... Shadow->getDeclContext()->removeDecl(Shadow); // ...and the scope, if applicable... if (S) { S->RemoveDecl(Shadow); IdResolver.RemoveDecl(Shadow); } // ...and the using decl. Shadow->getUsingDecl()->removeShadowDecl(Shadow); // TODO: complain somehow if Shadow was used. It shouldn't // be possible for this to happen, because...? } /// Builds a using declaration. /// /// \param IsInstantiation - Whether this call arises from an /// instantiation of an unresolved using declaration. We treat /// the lookup differently for these declarations. NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, AttributeList *AttrList, bool IsInstantiation, bool IsTypeName, SourceLocation TypenameLoc) { assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); SourceLocation IdentLoc = NameInfo.getLoc(); assert(IdentLoc.isValid() && "Invalid TargetName location."); // FIXME: We ignore attributes for now. delete AttrList; if (SS.isEmpty()) { Diag(IdentLoc, diag::err_using_requires_qualname); return 0; } // Do the redeclaration lookup in the current scope. LookupResult Previous(*this, NameInfo, LookupUsingDeclName, ForRedeclaration); Previous.setHideTags(false); if (S) { LookupName(Previous, S); // It is really dumb that we have to do this. LookupResult::Filter F = Previous.makeFilter(); while (F.hasNext()) { NamedDecl *D = F.next(); if (!isDeclInScope(D, CurContext, S)) F.erase(); } F.done(); } else { assert(IsInstantiation && "no scope in non-instantiation"); assert(CurContext->isRecord() && "scope not record in instantiation"); LookupQualifiedName(Previous, CurContext); } NestedNameSpecifier *NNS = static_cast(SS.getScopeRep()); // Check for invalid redeclarations. if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous)) return 0; // Check for bad qualifiers. if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc)) return 0; DeclContext *LookupContext = computeDeclContext(SS); NamedDecl *D; if (!LookupContext) { if (IsTypeName) { // FIXME: not all declaration name kinds are legal here D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, UsingLoc, TypenameLoc, SS.getRange(), NNS, IdentLoc, NameInfo.getName()); } else { D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, SS.getRange(), NNS, NameInfo); } } else { D = UsingDecl::Create(Context, CurContext, SS.getRange(), UsingLoc, NNS, NameInfo, IsTypeName); } D->setAccess(AS); CurContext->addDecl(D); if (!LookupContext) return D; UsingDecl *UD = cast(D); if (RequireCompleteDeclContext(SS, LookupContext)) { UD->setInvalidDecl(); return UD; } // Look up the target name. LookupResult R(*this, NameInfo, LookupOrdinaryName); // Unlike most lookups, we don't always want to hide tag // declarations: tag names are visible through the using declaration // even if hidden by ordinary names, *except* in a dependent context // where it's important for the sanity of two-phase lookup. if (!IsInstantiation) R.setHideTags(false); LookupQualifiedName(R, LookupContext); if (R.empty()) { Diag(IdentLoc, diag::err_no_member) << NameInfo.getName() << LookupContext << SS.getRange(); UD->setInvalidDecl(); return UD; } if (R.isAmbiguous()) { UD->setInvalidDecl(); return UD; } if (IsTypeName) { // If we asked for a typename and got a non-type decl, error out. if (!R.getAsSingle()) { Diag(IdentLoc, diag::err_using_typename_non_type); for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) Diag((*I)->getUnderlyingDecl()->getLocation(), diag::note_using_decl_target); UD->setInvalidDecl(); return UD; } } else { // If we asked for a non-typename and we got a type, error out, // but only if this is an instantiation of an unresolved using // decl. Otherwise just silently find the type name. if (IsInstantiation && R.getAsSingle()) { Diag(IdentLoc, diag::err_using_dependent_value_is_type); Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); UD->setInvalidDecl(); return UD; } } // C++0x N2914 [namespace.udecl]p6: // A using-declaration shall not name a namespace. if (R.getAsSingle()) { Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) << SS.getRange(); UD->setInvalidDecl(); return UD; } for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { if (!CheckUsingShadowDecl(UD, *I, Previous)) BuildUsingShadowDecl(S, UD, *I); } return UD; } /// Checks that the given using declaration is not an invalid /// redeclaration. Note that this is checking only for the using decl /// itself, not for any ill-formedness among the UsingShadowDecls. bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, bool isTypeName, const CXXScopeSpec &SS, SourceLocation NameLoc, const LookupResult &Prev) { // C++03 [namespace.udecl]p8: // C++0x [namespace.udecl]p10: // A using-declaration is a declaration and can therefore be used // repeatedly where (and only where) multiple declarations are // allowed. // // That's in non-member contexts. if (!CurContext->getRedeclContext()->isRecord()) return false; NestedNameSpecifier *Qual = static_cast(SS.getScopeRep()); for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { NamedDecl *D = *I; bool DTypename; NestedNameSpecifier *DQual; if (UsingDecl *UD = dyn_cast(D)) { DTypename = UD->isTypeName(); DQual = UD->getTargetNestedNameDecl(); } else if (UnresolvedUsingValueDecl *UD = dyn_cast(D)) { DTypename = false; DQual = UD->getTargetNestedNameSpecifier(); } else if (UnresolvedUsingTypenameDecl *UD = dyn_cast(D)) { DTypename = true; DQual = UD->getTargetNestedNameSpecifier(); } else continue; // using decls differ if one says 'typename' and the other doesn't. // FIXME: non-dependent using decls? if (isTypeName != DTypename) continue; // using decls differ if they name different scopes (but note that // template instantiation can cause this check to trigger when it // didn't before instantiation). if (Context.getCanonicalNestedNameSpecifier(Qual) != Context.getCanonicalNestedNameSpecifier(DQual)) continue; Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); Diag(D->getLocation(), diag::note_using_decl) << 1; return true; } return false; } /// Checks that the given nested-name qualifier used in a using decl /// in the current context is appropriately related to the current /// scope. If an error is found, diagnoses it and returns true. bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, const CXXScopeSpec &SS, SourceLocation NameLoc) { DeclContext *NamedContext = computeDeclContext(SS); if (!CurContext->isRecord()) { // C++03 [namespace.udecl]p3: // C++0x [namespace.udecl]p8: // A using-declaration for a class member shall be a member-declaration. // If we weren't able to compute a valid scope, it must be a // dependent class scope. if (!NamedContext || NamedContext->isRecord()) { Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) << SS.getRange(); return true; } // Otherwise, everything is known to be fine. return false; } // The current scope is a record. // If the named context is dependent, we can't decide much. if (!NamedContext) { // FIXME: in C++0x, we can diagnose if we can prove that the // nested-name-specifier does not refer to a base class, which is // still possible in some cases. // Otherwise we have to conservatively report that things might be // okay. return false; } if (!NamedContext->isRecord()) { // Ideally this would point at the last name in the specifier, // but we don't have that level of source info. Diag(SS.getRange().getBegin(), diag::err_using_decl_nested_name_specifier_is_not_class) << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange(); return true; } if (getLangOptions().CPlusPlus0x) { // C++0x [namespace.udecl]p3: // In a using-declaration used as a member-declaration, the // nested-name-specifier shall name a base class of the class // being defined. if (cast(CurContext)->isProvablyNotDerivedFrom( cast(NamedContext))) { if (CurContext == NamedContext) { Diag(NameLoc, diag::err_using_decl_nested_name_specifier_is_current_class) << SS.getRange(); return true; } Diag(SS.getRange().getBegin(), diag::err_using_decl_nested_name_specifier_is_not_base_class) << (NestedNameSpecifier*) SS.getScopeRep() << cast(CurContext) << SS.getRange(); return true; } return false; } // C++03 [namespace.udecl]p4: // A using-declaration used as a member-declaration shall refer // to a member of a base class of the class being defined [etc.]. // Salient point: SS doesn't have to name a base class as long as // lookup only finds members from base classes. Therefore we can // diagnose here only if we can prove that that can't happen, // i.e. if the class hierarchies provably don't intersect. // TODO: it would be nice if "definitely valid" results were cached // in the UsingDecl and UsingShadowDecl so that these checks didn't // need to be repeated. struct UserData { llvm::DenseSet Bases; static bool collect(const CXXRecordDecl *Base, void *OpaqueData) { UserData *Data = reinterpret_cast(OpaqueData); Data->Bases.insert(Base); return true; } bool hasDependentBases(const CXXRecordDecl *Class) { return !Class->forallBases(collect, this); } /// Returns true if the base is dependent or is one of the /// accumulated base classes. static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) { UserData *Data = reinterpret_cast(OpaqueData); return !Data->Bases.count(Base); } bool mightShareBases(const CXXRecordDecl *Class) { return Bases.count(Class) || !Class->forallBases(doesNotContain, this); } }; UserData Data; // Returns false if we find a dependent base. if (Data.hasDependentBases(cast(CurContext))) return false; // Returns false if the class has a dependent base or if it or one // of its bases is present in the base set of the current context. if (Data.mightShareBases(cast(NamedContext))) return false; Diag(SS.getRange().getBegin(), diag::err_using_decl_nested_name_specifier_is_not_base_class) << (NestedNameSpecifier*) SS.getScopeRep() << cast(CurContext) << SS.getRange(); return true; } Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *Ident) { // Lookup the namespace name. LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); LookupParsedName(R, S, &SS); // Check if we have a previous declaration with the same name. NamedDecl *PrevDecl = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName, ForRedeclaration); if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S)) PrevDecl = 0; if (PrevDecl) { if (NamespaceAliasDecl *AD = dyn_cast(PrevDecl)) { // We already have an alias with the same name that points to the same // namespace, so don't create a new one. // FIXME: At some point, we'll want to create the (redundant) // declaration to maintain better source information. if (!R.isAmbiguous() && !R.empty() && AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl()))) return 0; } unsigned DiagID = isa(PrevDecl) ? diag::err_redefinition : diag::err_redefinition_different_kind; Diag(AliasLoc, DiagID) << Alias; Diag(PrevDecl->getLocation(), diag::note_previous_definition); return 0; } if (R.isAmbiguous()) return 0; if (R.empty()) { if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false, CTC_NoKeywords, 0)) { if (R.getAsSingle() || R.getAsSingle()) { if (DeclContext *DC = computeDeclContext(SS, false)) Diag(IdentLoc, diag::err_using_directive_member_suggest) << Ident << DC << Corrected << SS.getRange() << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString()); else Diag(IdentLoc, diag::err_using_directive_suggest) << Ident << Corrected << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString()); Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here) << Corrected; Ident = Corrected.getAsIdentifierInfo(); } else { R.clear(); R.setLookupName(Ident); } } if (R.empty()) { Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange(); return 0; } } NamespaceAliasDecl *AliasDecl = NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, Alias, SS.getRange(), (NestedNameSpecifier *)SS.getScopeRep(), IdentLoc, R.getFoundDecl()); PushOnScopeChains(AliasDecl, S); return AliasDecl; } namespace { /// \brief Scoped object used to handle the state changes required in Sema /// to implicitly define the body of a C++ member function; class ImplicitlyDefinedFunctionScope { Sema &S; DeclContext *PreviousContext; public: ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method) : S(S), PreviousContext(S.CurContext) { S.CurContext = Method; S.PushFunctionScope(); S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated); } ~ImplicitlyDefinedFunctionScope() { S.PopExpressionEvaluationContext(); S.PopFunctionOrBlockScope(); S.CurContext = PreviousContext; } }; } CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( CXXRecordDecl *ClassDecl) { // C++ [class.ctor]p5: // A default constructor for a class X is a constructor of class X // that can be called without an argument. If there is no // user-declared constructor for class X, a default constructor is // implicitly declared. An implicitly-declared default constructor // is an inline public member of its class. assert(!ClassDecl->hasUserDeclaredConstructor() && "Should not build implicit default constructor!"); // C++ [except.spec]p14: // An implicitly declared special member function (Clause 12) shall have an // exception-specification. [...] ImplicitExceptionSpecification ExceptSpec(Context); // Direct base-class destructors. for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(), BEnd = ClassDecl->bases_end(); B != BEnd; ++B) { if (B->isVirtual()) // Handled below. continue; if (const RecordType *BaseType = B->getType()->getAs()) { CXXRecordDecl *BaseClassDecl = cast(BaseType->getDecl()); if (!BaseClassDecl->hasDeclaredDefaultConstructor()) ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl)); else if (CXXConstructorDecl *Constructor = BaseClassDecl->getDefaultConstructor()) ExceptSpec.CalledDecl(Constructor); } } // Virtual base-class destructors. for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(), BEnd = ClassDecl->vbases_end(); B != BEnd; ++B) { if (const RecordType *BaseType = B->getType()->getAs()) { CXXRecordDecl *BaseClassDecl = cast(BaseType->getDecl()); if (!BaseClassDecl->hasDeclaredDefaultConstructor()) ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl)); else if (CXXConstructorDecl *Constructor = BaseClassDecl->getDefaultConstructor()) ExceptSpec.CalledDecl(Constructor); } } // Field destructors. for (RecordDecl::field_iterator F = ClassDecl->field_begin(), FEnd = ClassDecl->field_end(); F != FEnd; ++F) { if (const RecordType *RecordTy = Context.getBaseElementType(F->getType())->getAs()) { CXXRecordDecl *FieldClassDecl = cast(RecordTy->getDecl()); if (!FieldClassDecl->hasDeclaredDefaultConstructor()) ExceptSpec.CalledDecl( DeclareImplicitDefaultConstructor(FieldClassDecl)); else if (CXXConstructorDecl *Constructor = FieldClassDecl->getDefaultConstructor()) ExceptSpec.CalledDecl(Constructor); } } // Create the actual constructor declaration. CanQualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(ClassType); DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation()); CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo, Context.getFunctionType(Context.VoidTy, 0, 0, false, 0, ExceptSpec.hasExceptionSpecification(), ExceptSpec.hasAnyExceptionSpecification(), ExceptSpec.size(), ExceptSpec.data(), FunctionType::ExtInfo()), /*TInfo=*/0, /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true); DefaultCon->setAccess(AS_public); DefaultCon->setImplicit(); DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor()); // Note that we have declared this constructor. ClassDecl->setDeclaredDefaultConstructor(true); ++ASTContext::NumImplicitDefaultConstructorsDeclared; if (Scope *S = getScopeForContext(ClassDecl)) PushOnScopeChains(DefaultCon, S, false); ClassDecl->addDecl(DefaultCon); return DefaultCon; } void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor) { assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() && !Constructor->isUsed(false)) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"); CXXRecordDecl *ClassDecl = Constructor->getParent(); assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); ImplicitlyDefinedFunctionScope Scope(*this, Constructor); ErrorTrap Trap(*this); if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) || Trap.hasErrorOccurred()) { Diag(CurrentLocation, diag::note_member_synthesized_at) << CXXConstructor << Context.getTagDeclType(ClassDecl); Constructor->setInvalidDecl(); } else { Constructor->setUsed(); MarkVTableUsed(CurrentLocation, ClassDecl); } } CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { // C++ [class.dtor]p2: // If a class has no user-declared destructor, a destructor is // declared implicitly. An implicitly-declared destructor is an // inline public member of its class. // C++ [except.spec]p14: // An implicitly declared special member function (Clause 12) shall have // an exception-specification. ImplicitExceptionSpecification ExceptSpec(Context); // Direct base-class destructors. for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(), BEnd = ClassDecl->bases_end(); B != BEnd; ++B) { if (B->isVirtual()) // Handled below. continue; if (const RecordType *BaseType = B->getType()->getAs()) ExceptSpec.CalledDecl( LookupDestructor(cast(BaseType->getDecl()))); } // Virtual base-class destructors. for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(), BEnd = ClassDecl->vbases_end(); B != BEnd; ++B) { if (const RecordType *BaseType = B->getType()->getAs()) ExceptSpec.CalledDecl( LookupDestructor(cast(BaseType->getDecl()))); } // Field destructors. for (RecordDecl::field_iterator F = ClassDecl->field_begin(), FEnd = ClassDecl->field_end(); F != FEnd; ++F) { if (const RecordType *RecordTy = Context.getBaseElementType(F->getType())->getAs()) ExceptSpec.CalledDecl( LookupDestructor(cast(RecordTy->getDecl()))); } // Create the actual destructor declaration. QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0, ExceptSpec.hasExceptionSpecification(), ExceptSpec.hasAnyExceptionSpecification(), ExceptSpec.size(), ExceptSpec.data(), FunctionType::ExtInfo()); CanQualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); DeclarationName Name = Context.DeclarationNames.getCXXDestructorName(ClassType); DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation()); CXXDestructorDecl *Destructor = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, /*isInline=*/true, /*isImplicitlyDeclared=*/true); Destructor->setAccess(AS_public); Destructor->setImplicit(); Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); // Note that we have declared this destructor. ClassDecl->setDeclaredDestructor(true); ++ASTContext::NumImplicitDestructorsDeclared; // Introduce this destructor into its scope. if (Scope *S = getScopeForContext(ClassDecl)) PushOnScopeChains(Destructor, S, false); ClassDecl->addDecl(Destructor); // This could be uniqued if it ever proves significant. Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty)); AddOverriddenMethods(ClassDecl, Destructor); return Destructor; } void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, CXXDestructorDecl *Destructor) { assert((Destructor->isImplicit() && !Destructor->isUsed(false)) && "DefineImplicitDestructor - call it for implicit default dtor"); CXXRecordDecl *ClassDecl = Destructor->getParent(); assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); if (Destructor->isInvalidDecl()) return; ImplicitlyDefinedFunctionScope Scope(*this, Destructor); ErrorTrap Trap(*this); MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), Destructor->getParent()); if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) { Diag(CurrentLocation, diag::note_member_synthesized_at) << CXXDestructor << Context.getTagDeclType(ClassDecl); Destructor->setInvalidDecl(); return; } Destructor->setUsed(); MarkVTableUsed(CurrentLocation, ClassDecl); } /// \brief Builds a statement that copies the given entity from \p From to /// \c To. /// /// This routine is used to copy the members of a class with an /// implicitly-declared copy assignment operator. When the entities being /// copied are arrays, this routine builds for loops to copy them. /// /// \param S The Sema object used for type-checking. /// /// \param Loc The location where the implicit copy is being generated. /// /// \param T The type of the expressions being copied. Both expressions must /// have this type. /// /// \param To The expression we are copying to. /// /// \param From The expression we are copying from. /// /// \param CopyingBaseSubobject Whether we're copying a base subobject. /// Otherwise, it's a non-static member subobject. /// /// \param Depth Internal parameter recording the depth of the recursion. /// /// \returns A statement or a loop that copies the expressions. static StmtResult BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, Expr *To, Expr *From, bool CopyingBaseSubobject, unsigned Depth = 0) { // C++0x [class.copy]p30: // Each subobject is assigned in the manner appropriate to its type: // // - if the subobject is of class type, the copy assignment operator // for the class is used (as if by explicit qualification; that is, // ignoring any possible virtual overriding functions in more derived // classes); if (const RecordType *RecordTy = T->getAs()) { CXXRecordDecl *ClassDecl = cast(RecordTy->getDecl()); // Look for operator=. DeclarationName Name = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); S.LookupQualifiedName(OpLookup, ClassDecl, false); // Filter out any result that isn't a copy-assignment operator. LookupResult::Filter F = OpLookup.makeFilter(); while (F.hasNext()) { NamedDecl *D = F.next(); if (CXXMethodDecl *Method = dyn_cast(D)) if (Method->isCopyAssignmentOperator()) continue; F.erase(); } F.done(); // Suppress the protected check (C++ [class.protected]) for each of the // assignment operators we found. This strange dance is required when // we're assigning via a base classes's copy-assignment operator. To // ensure that we're getting the right base class subobject (without // ambiguities), we need to cast "this" to that subobject type; to // ensure that we don't go through the virtual call mechanism, we need // to qualify the operator= name with the base class (see below). However, // this means that if the base class has a protected copy assignment // operator, the protected member access check will fail. So, we // rewrite "protected" access to "public" access in this case, since we // know by construction that we're calling from a derived class. if (CopyingBaseSubobject) { for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); L != LEnd; ++L) { if (L.getAccess() == AS_protected) L.setAccess(AS_public); } } // Create the nested-name-specifier that will be used to qualify the // reference to operator=; this is required to suppress the virtual // call mechanism. CXXScopeSpec SS; SS.setRange(Loc); SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false, T.getTypePtr())); // Create the reference to operator=. ExprResult OpEqualRef = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS, /*FirstQualifierInScope=*/0, OpLookup, /*TemplateArgs=*/0, /*SuppressQualifierCheck=*/true); if (OpEqualRef.isInvalid()) return StmtError(); // Build the call to the assignment operator. ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0, OpEqualRef.takeAs(), Loc, &From, 1, 0, Loc); if (Call.isInvalid()) return StmtError(); return S.Owned(Call.takeAs()); } // - if the subobject is of scalar type, the built-in assignment // operator is used. const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); if (!ArrayTy) { ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From); if (Assignment.isInvalid()) return StmtError(); return S.Owned(Assignment.takeAs()); } // - if the subobject is an array, each element is assigned, in the // manner appropriate to the element type; // Construct a loop over the array bounds, e.g., // // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) // // that will copy each of the array elements. QualType SizeType = S.Context.getSizeType(); // Create the iteration variable. IdentifierInfo *IterationVarName = 0; { llvm::SmallString<8> Str; llvm::raw_svector_ostream OS(Str); OS << "__i" << Depth; IterationVarName = &S.Context.Idents.get(OS.str()); } VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, IterationVarName, SizeType, S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None, SC_None); // Initialize the iteration variable to zero. llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0); IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc)); // Create a reference to the iteration variable; we'll use this several // times throughout. Expr *IterationVarRef = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs(); assert(IterationVarRef && "Reference to invented variable cannot fail!"); // Create the DeclStmt that holds the iteration variable. Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); // Create the comparison against the array bound. llvm::APInt Upper = ArrayTy->getSize(); Upper.zextOrTrunc(S.Context.getTypeSize(SizeType)); Expr *Comparison = new (S.Context) BinaryOperator(IterationVarRef->Retain(), IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE, S.Context.BoolTy, Loc); // Create the pre-increment of the iteration variable. Expr *Increment = new (S.Context) UnaryOperator(IterationVarRef->Retain(), UO_PreInc, SizeType, Loc); // Subscript the "from" and "to" expressions with the iteration variable. From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc, IterationVarRef, Loc)); To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc, IterationVarRef, Loc)); // Build the copy for an individual element of the array. StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(), To, From, CopyingBaseSubobject, Depth+1); if (Copy.isInvalid()) return StmtError(); // Construct the loop that copies all elements of this array. return S.ActOnForStmt(Loc, Loc, InitStmt, S.MakeFullExpr(Comparison), 0, S.MakeFullExpr(Increment), Loc, Copy.take()); } /// \brief Determine whether the given class has a copy assignment operator /// that accepts a const-qualified argument. static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) { CXXRecordDecl *Class = const_cast(CClass); if (!Class->hasDeclaredCopyAssignment()) S.DeclareImplicitCopyAssignment(Class); QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class)); DeclarationName OpName = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal); DeclContext::lookup_const_iterator Op, OpEnd; for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) { // C++ [class.copy]p9: // A user-declared copy assignment operator is a non-static non-template // member function of class X with exactly one parameter of type X, X&, // const X&, volatile X& or const volatile X&. const CXXMethodDecl* Method = dyn_cast(*Op); if (!Method) continue; if (Method->isStatic()) continue; if (Method->getPrimaryTemplate()) continue; const FunctionProtoType *FnType = Method->getType()->getAs(); assert(FnType && "Overloaded operator has no prototype."); // Don't assert on this; an invalid decl might have been left in the AST. if (FnType->getNumArgs() != 1 || FnType->isVariadic()) continue; bool AcceptsConst = true; QualType ArgType = FnType->getArgType(0); if (const LValueReferenceType *Ref = ArgType->getAs()){ ArgType = Ref->getPointeeType(); // Is it a non-const lvalue reference? if (!ArgType.isConstQualified()) AcceptsConst = false; } if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType)) continue; // We have a single argument of type cv X or cv X&, i.e. we've found the // copy assignment operator. Return whether it accepts const arguments. return AcceptsConst; } assert(Class->isInvalidDecl() && "No copy assignment operator declared in valid code."); return false; } CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { // Note: The following rules are largely analoguous to the copy // constructor rules. Note that virtual bases are not taken into account // for determining the argument type of the operator. Note also that // operators taking an object instead of a reference are allowed. // C++ [class.copy]p10: // If the class definition does not explicitly declare a copy // assignment operator, one is declared implicitly. // The implicitly-defined copy assignment operator for a class X // will have the form // // X& X::operator=(const X&) // // if bool HasConstCopyAssignment = true; // -- each direct base class B of X has a copy assignment operator // whose parameter is of type const B&, const volatile B& or B, // and for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), BaseEnd = ClassDecl->bases_end(); HasConstCopyAssignment && Base != BaseEnd; ++Base) { assert(!Base->getType()->isDependentType() && "Cannot generate implicit members for class with dependent bases."); const CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl); } // -- for all the nonstatic data members of X that are of a class // type M (or array thereof), each such class type has a copy // assignment operator whose parameter is of type const M&, // const volatile M& or M. for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), FieldEnd = ClassDecl->field_end(); HasConstCopyAssignment && Field != FieldEnd; ++Field) { QualType FieldType = Context.getBaseElementType((*Field)->getType()); if (const RecordType *FieldClassType = FieldType->getAs()) { const CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl); } } // Otherwise, the implicitly declared copy assignment operator will // have the form // // X& X::operator=(X&) QualType ArgType = Context.getTypeDeclType(ClassDecl); QualType RetType = Context.getLValueReferenceType(ArgType); if (HasConstCopyAssignment) ArgType = ArgType.withConst(); ArgType = Context.getLValueReferenceType(ArgType); // C++ [except.spec]p14: // An implicitly declared special member function (Clause 12) shall have an // exception-specification. [...] ImplicitExceptionSpecification ExceptSpec(Context); for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), BaseEnd = ClassDecl->bases_end(); Base != BaseEnd; ++Base) { CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); if (!BaseClassDecl->hasDeclaredCopyAssignment()) DeclareImplicitCopyAssignment(BaseClassDecl); if (CXXMethodDecl *CopyAssign = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment)) ExceptSpec.CalledDecl(CopyAssign); } for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), FieldEnd = ClassDecl->field_end(); Field != FieldEnd; ++Field) { QualType FieldType = Context.getBaseElementType((*Field)->getType()); if (const RecordType *FieldClassType = FieldType->getAs()) { CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); if (!FieldClassDecl->hasDeclaredCopyAssignment()) DeclareImplicitCopyAssignment(FieldClassDecl); if (CXXMethodDecl *CopyAssign = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment)) ExceptSpec.CalledDecl(CopyAssign); } } // An implicitly-declared copy assignment operator is an inline public // member of its class. DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation()); CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(Context, ClassDecl, NameInfo, Context.getFunctionType(RetType, &ArgType, 1, false, 0, ExceptSpec.hasExceptionSpecification(), ExceptSpec.hasAnyExceptionSpecification(), ExceptSpec.size(), ExceptSpec.data(), FunctionType::ExtInfo()), /*TInfo=*/0, /*isStatic=*/false, /*StorageClassAsWritten=*/SC_None, /*isInline=*/true); CopyAssignment->setAccess(AS_public); CopyAssignment->setImplicit(); CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment()); CopyAssignment->setCopyAssignment(true); // Add the parameter to the operator. ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, ClassDecl->getLocation(), /*Id=*/0, ArgType, /*TInfo=*/0, SC_None, SC_None, 0); CopyAssignment->setParams(&FromParam, 1); // Note that we have added this copy-assignment operator. ClassDecl->setDeclaredCopyAssignment(true); ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; if (Scope *S = getScopeForContext(ClassDecl)) PushOnScopeChains(CopyAssignment, S, false); ClassDecl->addDecl(CopyAssignment); AddOverriddenMethods(ClassDecl, CopyAssignment); return CopyAssignment; } void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, CXXMethodDecl *CopyAssignOperator) { assert((CopyAssignOperator->isImplicit() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->isUsed(false)) && "DefineImplicitCopyAssignment called for wrong function"); CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) { CopyAssignOperator->setInvalidDecl(); return; } CopyAssignOperator->setUsed(); ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator); ErrorTrap Trap(*this); // C++0x [class.copy]p30: // The implicitly-defined or explicitly-defaulted copy assignment operator // for a non-union class X performs memberwise copy assignment of its // subobjects. The direct base classes of X are assigned first, in the // order of their declaration in the base-specifier-list, and then the // immediate non-static data members of X are assigned, in the order in // which they were declared in the class definition. // The statements that form the synthesized function body. ASTOwningVector Statements(*this); // The parameter for the "other" object, which we are copying from. ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0); Qualifiers OtherQuals = Other->getType().getQualifiers(); QualType OtherRefType = Other->getType(); if (const LValueReferenceType *OtherRef = OtherRefType->getAs()) { OtherRefType = OtherRef->getPointeeType(); OtherQuals = OtherRefType.getQualifiers(); } // Our location for everything implicitly-generated. SourceLocation Loc = CopyAssignOperator->getLocation(); // Construct a reference to the "other" object. We'll be using this // throughout the generated ASTs. Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs(); assert(OtherRef && "Reference to parameter cannot fail!"); // Construct the "this" pointer. We'll be using this throughout the generated // ASTs. Expr *This = ActOnCXXThis(Loc).takeAs(); assert(This && "Reference to this cannot fail!"); // Assign base classes. bool Invalid = false; for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), E = ClassDecl->bases_end(); Base != E; ++Base) { // Form the assignment: // static_cast(this)->Base::operator=(static_cast(other)); QualType BaseType = Base->getType().getUnqualifiedType(); CXXRecordDecl *BaseClassDecl = 0; if (const RecordType *BaseRecordT = BaseType->getAs()) BaseClassDecl = cast(BaseRecordT->getDecl()); else { Invalid = true; continue; } CXXCastPath BasePath; BasePath.push_back(Base); // Construct the "from" expression, which is an implicit cast to the // appropriately-qualified base type. Expr *From = OtherRef->Retain(); ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals), CK_UncheckedDerivedToBase, VK_LValue, &BasePath); // Dereference "this". ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This); // Implicitly cast "this" to the appropriately-qualified base type. Expr *ToE = To.takeAs(); ImpCastExprToType(ToE, Context.getCVRQualifiedType(BaseType, CopyAssignOperator->getTypeQualifiers()), CK_UncheckedDerivedToBase, VK_LValue, &BasePath); To = Owned(ToE); // Build the copy. StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType, To.get(), From, /*CopyingBaseSubobject=*/true); if (Copy.isInvalid()) { Diag(CurrentLocation, diag::note_member_synthesized_at) << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); CopyAssignOperator->setInvalidDecl(); return; } // Success! Record the copy. Statements.push_back(Copy.takeAs()); } // \brief Reference to the __builtin_memcpy function. Expr *BuiltinMemCpyRef = 0; // \brief Reference to the __builtin_objc_memmove_collectable function. Expr *CollectableMemCpyRef = 0; // Assign non-static members. for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), FieldEnd = ClassDecl->field_end(); Field != FieldEnd; ++Field) { // Check for members of reference type; we can't copy those. if (Field->getType()->isReferenceType()) { Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); Diag(Field->getLocation(), diag::note_declared_at); Diag(CurrentLocation, diag::note_member_synthesized_at) << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); Invalid = true; continue; } // Check for members of const-qualified, non-class type. QualType BaseType = Context.getBaseElementType(Field->getType()); if (!BaseType->getAs() && BaseType.isConstQualified()) { Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); Diag(Field->getLocation(), diag::note_declared_at); Diag(CurrentLocation, diag::note_member_synthesized_at) << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); Invalid = true; continue; } QualType FieldType = Field->getType().getNonReferenceType(); if (FieldType->isIncompleteArrayType()) { assert(ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"); continue; } // Build references to the field in the object we're copying from and to. CXXScopeSpec SS; // Intentionally empty LookupResult MemberLookup(*this, Field->getDeclName(), Loc, LookupMemberName); MemberLookup.addDecl(*Field); MemberLookup.resolveKind(); ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType, Loc, /*IsArrow=*/false, SS, 0, MemberLookup, 0); ExprResult To = BuildMemberReferenceExpr(This, This->getType(), Loc, /*IsArrow=*/true, SS, 0, MemberLookup, 0); assert(!From.isInvalid() && "Implicit field reference cannot fail"); assert(!To.isInvalid() && "Implicit field reference cannot fail"); // If the field should be copied with __builtin_memcpy rather than via // explicit assignments, do so. This optimization only applies for arrays // of scalars and arrays of class type with trivial copy-assignment // operators. if (FieldType->isArrayType() && (!BaseType->isRecordType() || cast(BaseType->getAs()->getDecl()) ->hasTrivialCopyAssignment())) { // Compute the size of the memory buffer to be copied. QualType SizeType = Context.getSizeType(); llvm::APInt Size(Context.getTypeSize(SizeType), Context.getTypeSizeInChars(BaseType).getQuantity()); for (const ConstantArrayType *Array = Context.getAsConstantArrayType(FieldType); Array; Array = Context.getAsConstantArrayType(Array->getElementType())) { llvm::APInt ArraySize = Array->getSize(); ArraySize.zextOrTrunc(Size.getBitWidth()); Size *= ArraySize; } // Take the address of the field references for "from" and "to". From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get()); To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get()); bool NeedsCollectableMemCpy = (BaseType->isRecordType() && BaseType->getAs()->getDecl()->hasObjectMember()); if (NeedsCollectableMemCpy) { if (!CollectableMemCpyRef) { // Create a reference to the __builtin_objc_memmove_collectable function. LookupResult R(*this, &Context.Idents.get("__builtin_objc_memmove_collectable"), Loc, LookupOrdinaryName); LookupName(R, TUScope, true); FunctionDecl *CollectableMemCpy = R.getAsSingle(); if (!CollectableMemCpy) { // Something went horribly wrong earlier, and we will have // complained about it. Invalid = true; continue; } CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy, CollectableMemCpy->getType(), Loc, 0).takeAs(); assert(CollectableMemCpyRef && "Builtin reference cannot fail"); } } // Create a reference to the __builtin_memcpy builtin function. else if (!BuiltinMemCpyRef) { LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc, LookupOrdinaryName); LookupName(R, TUScope, true); FunctionDecl *BuiltinMemCpy = R.getAsSingle(); if (!BuiltinMemCpy) { // Something went horribly wrong earlier, and we will have complained // about it. Invalid = true; continue; } BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy, BuiltinMemCpy->getType(), Loc, 0).takeAs(); assert(BuiltinMemCpyRef && "Builtin reference cannot fail"); } ASTOwningVector CallArgs(*this); CallArgs.push_back(To.takeAs()); CallArgs.push_back(From.takeAs()); CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc)); llvm::SmallVector Commas; // FIXME: Silly Commas.push_back(Loc); Commas.push_back(Loc); ExprResult Call = ExprError(); if (NeedsCollectableMemCpy) Call = ActOnCallExpr(/*Scope=*/0, CollectableMemCpyRef, Loc, move_arg(CallArgs), Commas.data(), Loc); else Call = ActOnCallExpr(/*Scope=*/0, BuiltinMemCpyRef, Loc, move_arg(CallArgs), Commas.data(), Loc); assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); Statements.push_back(Call.takeAs()); continue; } // Build the copy of this field. StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType, To.get(), From.get(), /*CopyingBaseSubobject=*/false); if (Copy.isInvalid()) { Diag(CurrentLocation, diag::note_member_synthesized_at) << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); CopyAssignOperator->setInvalidDecl(); return; } // Success! Record the copy. Statements.push_back(Copy.takeAs()); } if (!Invalid) { // Add a "return *this;" ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This); StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get()); if (Return.isInvalid()) Invalid = true; else { Statements.push_back(Return.takeAs()); if (Trap.hasErrorOccurred()) { Diag(CurrentLocation, diag::note_member_synthesized_at) << CXXCopyAssignment << Context.getTagDeclType(ClassDecl); Invalid = true; } } } if (Invalid) { CopyAssignOperator->setInvalidDecl(); return; } StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements), /*isStmtExpr=*/false); assert(!Body.isInvalid() && "Compound statement creation cannot fail"); CopyAssignOperator->setBody(Body.takeAs()); } CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( CXXRecordDecl *ClassDecl) { // C++ [class.copy]p4: // If the class definition does not explicitly declare a copy // constructor, one is declared implicitly. // C++ [class.copy]p5: // The implicitly-declared copy constructor for a class X will // have the form // // X::X(const X&) // // if bool HasConstCopyConstructor = true; // -- each direct or virtual base class B of X has a copy // constructor whose first parameter is of type const B& or // const volatile B&, and for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), BaseEnd = ClassDecl->bases_end(); HasConstCopyConstructor && Base != BaseEnd; ++Base) { // Virtual bases are handled below. if (Base->isVirtual()) continue; CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); if (!BaseClassDecl->hasDeclaredCopyConstructor()) DeclareImplicitCopyConstructor(BaseClassDecl); HasConstCopyConstructor = BaseClassDecl->hasConstCopyConstructor(Context); } for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), BaseEnd = ClassDecl->vbases_end(); HasConstCopyConstructor && Base != BaseEnd; ++Base) { CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); if (!BaseClassDecl->hasDeclaredCopyConstructor()) DeclareImplicitCopyConstructor(BaseClassDecl); HasConstCopyConstructor = BaseClassDecl->hasConstCopyConstructor(Context); } // -- for all the nonstatic data members of X that are of a // class type M (or array thereof), each such class type // has a copy constructor whose first parameter is of type // const M& or const volatile M&. for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), FieldEnd = ClassDecl->field_end(); HasConstCopyConstructor && Field != FieldEnd; ++Field) { QualType FieldType = Context.getBaseElementType((*Field)->getType()); if (const RecordType *FieldClassType = FieldType->getAs()) { CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); if (!FieldClassDecl->hasDeclaredCopyConstructor()) DeclareImplicitCopyConstructor(FieldClassDecl); HasConstCopyConstructor = FieldClassDecl->hasConstCopyConstructor(Context); } } // Otherwise, the implicitly declared copy constructor will have // the form // // X::X(X&) QualType ClassType = Context.getTypeDeclType(ClassDecl); QualType ArgType = ClassType; if (HasConstCopyConstructor) ArgType = ArgType.withConst(); ArgType = Context.getLValueReferenceType(ArgType); // C++ [except.spec]p14: // An implicitly declared special member function (Clause 12) shall have an // exception-specification. [...] ImplicitExceptionSpecification ExceptSpec(Context); unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0; for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), BaseEnd = ClassDecl->bases_end(); Base != BaseEnd; ++Base) { // Virtual bases are handled below. if (Base->isVirtual()) continue; CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); if (!BaseClassDecl->hasDeclaredCopyConstructor()) DeclareImplicitCopyConstructor(BaseClassDecl); if (CXXConstructorDecl *CopyConstructor = BaseClassDecl->getCopyConstructor(Context, Quals)) ExceptSpec.CalledDecl(CopyConstructor); } for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(), BaseEnd = ClassDecl->vbases_end(); Base != BaseEnd; ++Base) { CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); if (!BaseClassDecl->hasDeclaredCopyConstructor()) DeclareImplicitCopyConstructor(BaseClassDecl); if (CXXConstructorDecl *CopyConstructor = BaseClassDecl->getCopyConstructor(Context, Quals)) ExceptSpec.CalledDecl(CopyConstructor); } for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), FieldEnd = ClassDecl->field_end(); Field != FieldEnd; ++Field) { QualType FieldType = Context.getBaseElementType((*Field)->getType()); if (const RecordType *FieldClassType = FieldType->getAs()) { CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); if (!FieldClassDecl->hasDeclaredCopyConstructor()) DeclareImplicitCopyConstructor(FieldClassDecl); if (CXXConstructorDecl *CopyConstructor = FieldClassDecl->getCopyConstructor(Context, Quals)) ExceptSpec.CalledDecl(CopyConstructor); } } // An implicitly-declared copy constructor is an inline public // member of its class. DeclarationName Name = Context.DeclarationNames.getCXXConstructorName( Context.getCanonicalType(ClassType)); DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation()); CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo, Context.getFunctionType(Context.VoidTy, &ArgType, 1, false, 0, ExceptSpec.hasExceptionSpecification(), ExceptSpec.hasAnyExceptionSpecification(), ExceptSpec.size(), ExceptSpec.data(), FunctionType::ExtInfo()), /*TInfo=*/0, /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true); CopyConstructor->setAccess(AS_public); CopyConstructor->setImplicit(); CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor()); // Note that we have declared this constructor. ClassDecl->setDeclaredCopyConstructor(true); ++ASTContext::NumImplicitCopyConstructorsDeclared; // Add the parameter to the constructor. ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, ClassDecl->getLocation(), /*IdentifierInfo=*/0, ArgType, /*TInfo=*/0, SC_None, SC_None, 0); CopyConstructor->setParams(&FromParam, 1); if (Scope *S = getScopeForContext(ClassDecl)) PushOnScopeChains(CopyConstructor, S, false); ClassDecl->addDecl(CopyConstructor); return CopyConstructor; } void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *CopyConstructor, unsigned TypeQuals) { assert((CopyConstructor->isImplicit() && CopyConstructor->isCopyConstructor(TypeQuals) && !CopyConstructor->isUsed(false)) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"); CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor); ErrorTrap Trap(*this); if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) || Trap.hasErrorOccurred()) { Diag(CurrentLocation, diag::note_member_synthesized_at) << CXXCopyConstructor << Context.getTagDeclType(ClassDecl); CopyConstructor->setInvalidDecl(); } else { CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(), CopyConstructor->getLocation(), MultiStmtArg(*this, 0, 0), /*isStmtExpr=*/false) .takeAs()); } CopyConstructor->setUsed(); } ExprResult Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, CXXConstructorDecl *Constructor, MultiExprArg ExprArgs, bool RequiresZeroInit, unsigned ConstructKind) { bool Elidable = false; // C++0x [class.copy]p34: // When certain criteria are met, an implementation is allowed to // omit the copy/move construction of a class object, even if the // copy/move constructor and/or destructor for the object have // side effects. [...] // - when a temporary class object that has not been bound to a // reference (12.2) would be copied/moved to a class object // with the same cv-unqualified type, the copy/move operation // can be omitted by constructing the temporary object // directly into the target of the omitted copy/move if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) { Expr *SubExpr = ((Expr **)ExprArgs.get())[0]; Elidable = SubExpr->isTemporaryObject() && ConstructKind == CXXConstructExpr::CK_Complete && Context.hasSameUnqualifiedType(SubExpr->getType(), Context.getTypeDeclType(Constructor->getParent())); } return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor, Elidable, move(ExprArgs), RequiresZeroInit, ConstructKind); } /// BuildCXXConstructExpr - Creates a complete call to a constructor, /// including handling of its default argument expressions. ExprResult Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs, bool RequiresZeroInit, unsigned ConstructKind) { unsigned NumExprs = ExprArgs.size(); Expr **Exprs = (Expr **)ExprArgs.release(); MarkDeclarationReferenced(ConstructLoc, Constructor); return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc, Constructor, Elidable, Exprs, NumExprs, RequiresZeroInit, static_cast(ConstructKind))); } bool Sema::InitializeVarWithConstructor(VarDecl *VD, CXXConstructorDecl *Constructor, MultiExprArg Exprs) { ExprResult TempResult = BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor, move(Exprs), false, CXXConstructExpr::CK_Complete); if (TempResult.isInvalid()) return true; Expr *Temp = TempResult.takeAs(); MarkDeclarationReferenced(VD->getLocation(), Constructor); Temp = MaybeCreateCXXExprWithTemporaries(Temp); VD->setInit(Temp); return false; } void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { CXXRecordDecl *ClassDecl = cast(Record->getDecl()); if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() && !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) { CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); MarkDeclarationReferenced(VD->getLocation(), Destructor); CheckDestructorAccess(VD->getLocation(), Destructor, PDiag(diag::err_access_dtor_var) << VD->getDeclName() << VD->getType()); if (!VD->isInvalidDecl() && VD->hasGlobalStorage()) Diag(VD->getLocation(), diag::warn_global_destructor); } } /// AddCXXDirectInitializerToDecl - This action is called immediately after /// ActOnDeclarator, when a C++ direct initializer is present. /// e.g: "int x(1);" void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl, SourceLocation LParenLoc, MultiExprArg Exprs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { assert(Exprs.size() != 0 && Exprs.get() && "missing expressions"); // If there is no declaration, there was an error parsing it. Just ignore // the initializer. if (RealDecl == 0) return; VarDecl *VDecl = dyn_cast(RealDecl); if (!VDecl) { Diag(RealDecl->getLocation(), diag::err_illegal_initializer); RealDecl->setInvalidDecl(); return; } // We will represent direct-initialization similarly to copy-initialization: // int x(1); -as-> int x = 1; // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); // // Clients that want to distinguish between the two forms, can check for // direct initializer using VarDecl::hasCXXDirectInitializer(). // A major benefit is that clients that don't particularly care about which // exactly form was it (like the CodeGen) can handle both cases without // special case code. // C++ 8.5p11: // The form of initialization (using parentheses or '=') is generally // insignificant, but does matter when the entity being initialized has a // class type. if (!VDecl->getType()->isDependentType() && RequireCompleteType(VDecl->getLocation(), VDecl->getType(), diag::err_typecheck_decl_incomplete_type)) { VDecl->setInvalidDecl(); return; } // The variable can not have an abstract class type. if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), diag::err_abstract_type_in_decl, AbstractVariableType)) VDecl->setInvalidDecl(); const VarDecl *Def; if ((Def = VDecl->getDefinition()) && Def != VDecl) { Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName(); Diag(Def->getLocation(), diag::note_previous_definition); VDecl->setInvalidDecl(); return; } // C++ [class.static.data]p4 // If a static data member is of const integral or const // enumeration type, its declaration in the class definition can // specify a constant-initializer which shall be an integral // constant expression (5.19). In that case, the member can appear // in integral constant expressions. The member shall still be // defined in a namespace scope if it is used in the program and the // namespace scope definition shall not contain an initializer. // // We already performed a redefinition check above, but for static // data members we also need to check whether there was an in-class // declaration with an initializer. const VarDecl* PrevInit = 0; if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) { Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName(); Diag(PrevInit->getLocation(), diag::note_previous_definition); return; } // If either the declaration has a dependent type or if any of the // expressions is type-dependent, we represent the initialization // via a ParenListExpr for later use during template instantiation. if (VDecl->getType()->isDependentType() || Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) { // Let clients know that initialization was done with a direct initializer. VDecl->setCXXDirectInitializer(true); // Store the initialization expressions as a ParenListExpr. unsigned NumExprs = Exprs.size(); VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc)); return; } // Capture the variable that is being initialized and the style of // initialization. InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); // FIXME: Poor source location information. InitializationKind Kind = InitializationKind::CreateDirect(VDecl->getLocation(), LParenLoc, RParenLoc); InitializationSequence InitSeq(*this, Entity, Kind, Exprs.get(), Exprs.size()); ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs)); if (Result.isInvalid()) { VDecl->setInvalidDecl(); return; } Result = MaybeCreateCXXExprWithTemporaries(Result.get()); VDecl->setInit(Result.takeAs()); VDecl->setCXXDirectInitializer(true); if (!VDecl->isInvalidDecl() && !VDecl->getDeclContext()->isDependentContext() && VDecl->hasGlobalStorage() && !VDecl->getInit()->isConstantInitializer(Context, VDecl->getType()->isReferenceType())) Diag(VDecl->getLocation(), diag::warn_global_constructor) << VDecl->getInit()->getSourceRange(); if (const RecordType *Record = VDecl->getType()->getAs()) FinalizeVarWithDestructor(VDecl, Record); } /// \brief Given a constructor and the set of arguments provided for the /// constructor, convert the arguments and add any required default arguments /// to form a proper call to this constructor. /// /// \returns true if an error occurred, false otherwise. bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, MultiExprArg ArgsPtr, SourceLocation Loc, ASTOwningVector &ConvertedArgs) { // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. unsigned NumArgs = ArgsPtr.size(); Expr **Args = (Expr **)ArgsPtr.get(); const FunctionProtoType *Proto = Constructor->getType()->getAs(); assert(Proto && "Constructor without a prototype?"); unsigned NumArgsInProto = Proto->getNumArgs(); // If too few arguments are available, we'll fill in the rest with defaults. if (NumArgs < NumArgsInProto) ConvertedArgs.reserve(NumArgsInProto); else ConvertedArgs.reserve(NumArgs); VariadicCallType CallType = Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; llvm::SmallVector AllArgs; bool Invalid = GatherArgumentsForCall(Loc, Constructor, Proto, 0, Args, NumArgs, AllArgs, CallType); for (unsigned i =0, size = AllArgs.size(); i < size; i++) ConvertedArgs.push_back(AllArgs[i]); return Invalid; } static inline bool CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, const FunctionDecl *FnDecl) { const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); if (isa(DC)) { return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_declared_in_namespace) << FnDecl->getDeclName(); } if (isa(DC) && FnDecl->getStorageClass() == SC_Static) { return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_declared_static) << FnDecl->getDeclName(); } return false; } static inline bool CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, CanQualType ExpectedResultType, CanQualType ExpectedFirstParamType, unsigned DependentParamTypeDiag, unsigned InvalidParamTypeDiag) { QualType ResultType = FnDecl->getType()->getAs()->getResultType(); // Check that the result type is not dependent. if (ResultType->isDependentType()) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_dependent_result_type) << FnDecl->getDeclName() << ExpectedResultType; // Check that the result type is what we expect. if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_invalid_result_type) << FnDecl->getDeclName() << ExpectedResultType; // A function template must have at least 2 parameters. if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_template_too_few_parameters) << FnDecl->getDeclName(); // The function decl must have at least 1 parameter. if (FnDecl->getNumParams() == 0) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_too_few_parameters) << FnDecl->getDeclName(); // Check the the first parameter type is not dependent. QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); if (FirstParamType->isDependentType()) return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) << FnDecl->getDeclName() << ExpectedFirstParamType; // Check that the first parameter type is what we expect. if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != ExpectedFirstParamType) return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) << FnDecl->getDeclName() << ExpectedFirstParamType; return false; } static bool CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { // C++ [basic.stc.dynamic.allocation]p1: // A program is ill-formed if an allocation function is declared in a // namespace scope other than global scope or declared static in global // scope. if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) return true; CanQualType SizeTy = SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); // C++ [basic.stc.dynamic.allocation]p1: // The return type shall be void*. The first parameter shall have type // std::size_t. if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, SizeTy, diag::err_operator_new_dependent_param_type, diag::err_operator_new_param_type)) return true; // C++ [basic.stc.dynamic.allocation]p1: // The first parameter shall not have an associated default argument. if (FnDecl->getParamDecl(0)->hasDefaultArg()) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_default_arg) << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); return false; } static bool CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { // C++ [basic.stc.dynamic.deallocation]p1: // A program is ill-formed if deallocation functions are declared in a // namespace scope other than global scope or declared static in global // scope. if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) return true; // C++ [basic.stc.dynamic.deallocation]p2: // Each deallocation function shall return void and its first parameter // shall be void*. if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy, SemaRef.Context.VoidPtrTy, diag::err_operator_delete_dependent_param_type, diag::err_operator_delete_param_type)) return true; return false; } /// CheckOverloadedOperatorDeclaration - Check whether the declaration /// of this overloaded operator is well-formed. If so, returns false; /// otherwise, emits appropriate diagnostics and returns true. bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { assert(FnDecl && FnDecl->isOverloadedOperator() && "Expected an overloaded operator declaration"); OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); // C++ [over.oper]p5: // The allocation and deallocation functions, operator new, // operator new[], operator delete and operator delete[], are // described completely in 3.7.3. The attributes and restrictions // found in the rest of this subclause do not apply to them unless // explicitly stated in 3.7.3. if (Op == OO_Delete || Op == OO_Array_Delete) return CheckOperatorDeleteDeclaration(*this, FnDecl); if (Op == OO_New || Op == OO_Array_New) return CheckOperatorNewDeclaration(*this, FnDecl); // C++ [over.oper]p6: // An operator function shall either be a non-static member // function or be a non-member function and have at least one // parameter whose type is a class, a reference to a class, an // enumeration, or a reference to an enumeration. if (CXXMethodDecl *MethodDecl = dyn_cast(FnDecl)) { if (MethodDecl->isStatic()) return Diag(FnDecl->getLocation(), diag::err_operator_overload_static) << FnDecl->getDeclName(); } else { bool ClassOrEnumParam = false; for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), ParamEnd = FnDecl->param_end(); Param != ParamEnd; ++Param) { QualType ParamType = (*Param)->getType().getNonReferenceType(); if (ParamType->isDependentType() || ParamType->isRecordType() || ParamType->isEnumeralType()) { ClassOrEnumParam = true; break; } } if (!ClassOrEnumParam) return Diag(FnDecl->getLocation(), diag::err_operator_overload_needs_class_or_enum) << FnDecl->getDeclName(); } // C++ [over.oper]p8: // An operator function cannot have default arguments (8.3.6), // except where explicitly stated below. // // Only the function-call operator allows default arguments // (C++ [over.call]p1). if (Op != OO_Call) { for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); Param != FnDecl->param_end(); ++Param) { if ((*Param)->hasDefaultArg()) return Diag((*Param)->getLocation(), diag::err_operator_overload_default_arg) << FnDecl->getDeclName() << (*Param)->getDefaultArgRange(); } } static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { { false, false, false } #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ , { Unary, Binary, MemberOnly } #include "clang/Basic/OperatorKinds.def" }; bool CanBeUnaryOperator = OperatorUses[Op][0]; bool CanBeBinaryOperator = OperatorUses[Op][1]; bool MustBeMemberOperator = OperatorUses[Op][2]; // C++ [over.oper]p8: // [...] Operator functions cannot have more or fewer parameters // than the number required for the corresponding operator, as // described in the rest of this subclause. unsigned NumParams = FnDecl->getNumParams() + (isa(FnDecl)? 1 : 0); if (Op != OO_Call && ((NumParams == 1 && !CanBeUnaryOperator) || (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) || (NumParams > 2))) { // We have the wrong number of parameters. unsigned ErrorKind; if (CanBeUnaryOperator && CanBeBinaryOperator) { ErrorKind = 2; // 2 -> unary or binary. } else if (CanBeUnaryOperator) { ErrorKind = 0; // 0 -> unary } else { assert(CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"); ErrorKind = 1; // 1 -> binary } return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) << FnDecl->getDeclName() << NumParams << ErrorKind; } // Overloaded operators other than operator() cannot be variadic. if (Op != OO_Call && FnDecl->getType()->getAs()->isVariadic()) { return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) << FnDecl->getDeclName(); } // Some operators must be non-static member functions. if (MustBeMemberOperator && !isa(FnDecl)) { return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be_member) << FnDecl->getDeclName(); } // C++ [over.inc]p1: // The user-defined function called operator++ implements the // prefix and postfix ++ operator. If this function is a member // function with no parameters, or a non-member function with one // parameter of class or enumeration type, it defines the prefix // increment operator ++ for objects of that type. If the function // is a member function with one parameter (which shall be of type // int) or a non-member function with two parameters (the second // of which shall be of type int), it defines the postfix // increment operator ++ for objects of that type. if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); bool ParamIsInt = false; if (const BuiltinType *BT = LastParam->getType()->getAs()) ParamIsInt = BT->getKind() == BuiltinType::Int; if (!ParamIsInt) return Diag(LastParam->getLocation(), diag::err_operator_overload_post_incdec_must_be_int) << LastParam->getType() << (Op == OO_MinusMinus); } // Notify the class if it got an assignment operator. if (Op == OO_Equal) { // Would have returned earlier otherwise. assert(isa(FnDecl) && "Overloaded = not member, but not filtered."); CXXMethodDecl *Method = cast(FnDecl); Method->getParent()->addedAssignmentOperator(Context, Method); } return false; } /// CheckLiteralOperatorDeclaration - Check whether the declaration /// of this literal operator function is well-formed. If so, returns /// false; otherwise, emits appropriate diagnostics and returns true. bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { DeclContext *DC = FnDecl->getDeclContext(); Decl::Kind Kind = DC->getDeclKind(); if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace && Kind != Decl::LinkageSpec) { Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) << FnDecl->getDeclName(); return true; } bool Valid = false; // template type operator "" name() is the only valid template // signature, and the only valid signature with no parameters. if (FnDecl->param_size() == 0) { if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) { // Must have only one template parameter TemplateParameterList *Params = TpDecl->getTemplateParameters(); if (Params->size() == 1) { NonTypeTemplateParmDecl *PmDecl = cast(Params->getParam(0)); // The template parameter must be a char parameter pack. // FIXME: This test will always fail because non-type parameter packs // have not been implemented. if (PmDecl && PmDecl->isTemplateParameterPack() && Context.hasSameType(PmDecl->getType(), Context.CharTy)) Valid = true; } } } else { // Check the first parameter FunctionDecl::param_iterator Param = FnDecl->param_begin(); QualType T = (*Param)->getType(); // unsigned long long int, long double, and any character type are allowed // as the only parameters. if (Context.hasSameType(T, Context.UnsignedLongLongTy) || Context.hasSameType(T, Context.LongDoubleTy) || Context.hasSameType(T, Context.CharTy) || Context.hasSameType(T, Context.WCharTy) || Context.hasSameType(T, Context.Char16Ty) || Context.hasSameType(T, Context.Char32Ty)) { if (++Param == FnDecl->param_end()) Valid = true; goto FinishedParams; } // Otherwise it must be a pointer to const; let's strip those qualifiers. const PointerType *PT = T->getAs(); if (!PT) goto FinishedParams; T = PT->getPointeeType(); if (!T.isConstQualified()) goto FinishedParams; T = T.getUnqualifiedType(); // Move on to the second parameter; ++Param; // If there is no second parameter, the first must be a const char * if (Param == FnDecl->param_end()) { if (Context.hasSameType(T, Context.CharTy)) Valid = true; goto FinishedParams; } // const char *, const wchar_t*, const char16_t*, and const char32_t* // are allowed as the first parameter to a two-parameter function if (!(Context.hasSameType(T, Context.CharTy) || Context.hasSameType(T, Context.WCharTy) || Context.hasSameType(T, Context.Char16Ty) || Context.hasSameType(T, Context.Char32Ty))) goto FinishedParams; // The second and final parameter must be an std::size_t T = (*Param)->getType().getUnqualifiedType(); if (Context.hasSameType(T, Context.getSizeType()) && ++Param == FnDecl->param_end()) Valid = true; } // FIXME: This diagnostic is absolutely terrible. FinishedParams: if (!Valid) { Diag(FnDecl->getLocation(), diag::err_literal_operator_params) << FnDecl->getDeclName(); return true; } return false; } /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ /// linkage specification, including the language and (if present) /// the '{'. ExternLoc is the location of the 'extern', LangLoc is /// the location of the language string literal, which is provided /// by Lang/StrSize. LBraceLoc, if valid, provides the location of /// the '{' brace. Otherwise, this linkage specification does not /// have any braces. Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, SourceLocation LangLoc, llvm::StringRef Lang, SourceLocation LBraceLoc) { LinkageSpecDecl::LanguageIDs Language; if (Lang == "\"C\"") Language = LinkageSpecDecl::lang_c; else if (Lang == "\"C++\"") Language = LinkageSpecDecl::lang_cxx; else { Diag(LangLoc, diag::err_bad_language); return 0; } // FIXME: Add all the various semantics of linkage specifications LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, LangLoc, Language, LBraceLoc.isValid()); CurContext->addDecl(D); PushDeclContext(S, D); return D; } /// ActOnFinishLinkageSpecification - Complete the definition of /// the C++ linkage specification LinkageSpec. If RBraceLoc is /// valid, it's the position of the closing '}' brace in a linkage /// specification that uses braces. Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, Decl *LinkageSpec, SourceLocation RBraceLoc) { if (LinkageSpec) PopDeclContext(); return LinkageSpec; } /// \brief Perform semantic analysis for the variable declaration that /// occurs within a C++ catch clause, returning the newly-created /// variable. VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType, TypeSourceInfo *TInfo, IdentifierInfo *Name, SourceLocation Loc, SourceRange Range) { bool Invalid = false; // Arrays and functions decay. if (ExDeclType->isArrayType()) ExDeclType = Context.getArrayDecayedType(ExDeclType); else if (ExDeclType->isFunctionType()) ExDeclType = Context.getPointerType(ExDeclType); // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. // The exception-declaration shall not denote a pointer or reference to an // incomplete type, other than [cv] void*. // N2844 forbids rvalue references. if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { Diag(Loc, diag::err_catch_rvalue_ref) << Range; Invalid = true; } // GCC allows catching pointers and references to incomplete types // as an extension; so do we, but we warn by default. QualType BaseType = ExDeclType; int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference unsigned DK = diag::err_catch_incomplete; bool IncompleteCatchIsInvalid = true; if (const PointerType *Ptr = BaseType->getAs()) { BaseType = Ptr->getPointeeType(); Mode = 1; DK = diag::ext_catch_incomplete_ptr; IncompleteCatchIsInvalid = false; } else if (const ReferenceType *Ref = BaseType->getAs()) { // For the purpose of error recovery, we treat rvalue refs like lvalue refs. BaseType = Ref->getPointeeType(); Mode = 2; DK = diag::ext_catch_incomplete_ref; IncompleteCatchIsInvalid = false; } if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) && IncompleteCatchIsInvalid) Invalid = true; if (!Invalid && !ExDeclType->isDependentType() && RequireNonAbstractType(Loc, ExDeclType, diag::err_abstract_type_in_decl, AbstractVariableType)) Invalid = true; // Only the non-fragile NeXT runtime currently supports C++ catches // of ObjC types, and no runtime supports catching ObjC types by value. if (!Invalid && getLangOptions().ObjC1) { QualType T = ExDeclType; if (const ReferenceType *RT = T->getAs()) T = RT->getPointeeType(); if (T->isObjCObjectType()) { Diag(Loc, diag::err_objc_object_catch); Invalid = true; } else if (T->isObjCObjectPointerType()) { if (!getLangOptions().NeXTRuntime) { Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu); Invalid = true; } else if (!getLangOptions().ObjCNonFragileABI) { Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile); Invalid = true; } } } VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc, Name, ExDeclType, TInfo, SC_None, SC_None); ExDecl->setExceptionVariable(true); if (!Invalid) { if (const RecordType *RecordTy = ExDeclType->getAs()) { // C++ [except.handle]p16: // The object declared in an exception-declaration or, if the // exception-declaration does not specify a name, a temporary (12.2) is // copy-initialized (8.5) from the exception object. [...] // The object is destroyed when the handler exits, after the destruction // of any automatic objects initialized within the handler. // // We just pretend to initialize the object with itself, then make sure // it can be destroyed later. InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl); Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl, Loc, ExDeclType, 0); InitializationKind Kind = InitializationKind::CreateCopy(Loc, SourceLocation()); InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1); ExprResult Result = InitSeq.Perform(*this, Entity, Kind, MultiExprArg(*this, &ExDeclRef, 1)); if (Result.isInvalid()) Invalid = true; else FinalizeVarWithDestructor(ExDecl, RecordTy); } } if (Invalid) ExDecl->setInvalidDecl(); return ExDecl; } /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch /// handler. Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); QualType ExDeclType = TInfo->getType(); bool Invalid = D.isInvalidType(); IdentifierInfo *II = D.getIdentifier(); if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(), LookupOrdinaryName, ForRedeclaration)) { // The scope should be freshly made just for us. There is just no way // it contains any previous declaration. assert(!S->isDeclScope(PrevDecl)); if (PrevDecl->isTemplateParameter()) { // Maybe we will complain about the shadowed template parameter. DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); } } if (D.getCXXScopeSpec().isSet() && !Invalid) { Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) << D.getCXXScopeSpec().getRange(); Invalid = true; } VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo, D.getIdentifier(), D.getIdentifierLoc(), D.getDeclSpec().getSourceRange()); if (Invalid) ExDecl->setInvalidDecl(); // Add the exception declaration into this scope. if (II) PushOnScopeChains(ExDecl, S); else CurContext->addDecl(ExDecl); ProcessDeclAttributes(S, ExDecl, D); return ExDecl; } Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc, Expr *AssertExpr, Expr *AssertMessageExpr_) { StringLiteral *AssertMessage = cast(AssertMessageExpr_); if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) { llvm::APSInt Value(32); if (!AssertExpr->isIntegerConstantExpr(Value, Context)) { Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) << AssertExpr->getSourceRange(); return 0; } if (Value == 0) { Diag(AssertLoc, diag::err_static_assert_failed) << AssertMessage->getString() << AssertExpr->getSourceRange(); } } Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc, AssertExpr, AssertMessage); CurContext->addDecl(Decl); return Decl; } /// \brief Perform semantic analysis of the given friend type declaration. /// /// \returns A friend declaration that. FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc, TypeSourceInfo *TSInfo) { assert(TSInfo && "NULL TypeSourceInfo for friend type declaration"); QualType T = TSInfo->getType(); SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange(); if (!getLangOptions().CPlusPlus0x) { // C++03 [class.friend]p2: // An elaborated-type-specifier shall be used in a friend declaration // for a class.* // // * The class-key of the elaborated-type-specifier is required. if (!ActiveTemplateInstantiations.empty()) { // Do not complain about the form of friend template types during // template instantiation; we will already have complained when the // template was declared. } else if (!T->isElaboratedTypeSpecifier()) { // If we evaluated the type to a record type, suggest putting // a tag in front. if (const RecordType *RT = T->getAs()) { RecordDecl *RD = RT->getDecl(); std::string InsertionText = std::string(" ") + RD->getKindName(); Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type) << (unsigned) RD->getTagKind() << T << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc), InsertionText); } else { Diag(FriendLoc, diag::ext_nonclass_type_friend) << T << SourceRange(FriendLoc, TypeRange.getEnd()); } } else if (T->getAs()) { Diag(FriendLoc, diag::ext_enum_friend) << T << SourceRange(FriendLoc, TypeRange.getEnd()); } } // C++0x [class.friend]p3: // If the type specifier in a friend declaration designates a (possibly // cv-qualified) class type, that class is declared as a friend; otherwise, // the friend declaration is ignored. // FIXME: C++0x has some syntactic restrictions on friend type declarations // in [class.friend]p3 that we do not implement. return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc); } /// Handle a friend type declaration. This works in tandem with /// ActOnTag. /// /// Notes on friend class templates: /// /// We generally treat friend class declarations as if they were /// declaring a class. So, for example, the elaborated type specifier /// in a friend declaration is required to obey the restrictions of a /// class-head (i.e. no typedefs in the scope chain), template /// parameters are required to match up with simple template-ids, &c. /// However, unlike when declaring a template specialization, it's /// okay to refer to a template specialization without an empty /// template parameter declaration, e.g. /// friend class A::B; /// We permit this as a special case; if there are any template /// parameters present at all, require proper matching, i.e. /// template <> template friend class A::B; Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, MultiTemplateParamsArg TempParams) { SourceLocation Loc = DS.getSourceRange().getBegin(); assert(DS.isFriendSpecified()); assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); // Try to convert the decl specifier to a type. This works for // friend templates because ActOnTag never produces a ClassTemplateDecl // for a TUK_Friend. Declarator TheDeclarator(DS, Declarator::MemberContext); TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S); QualType T = TSI->getType(); if (TheDeclarator.isInvalidType()) return 0; // This is definitely an error in C++98. It's probably meant to // be forbidden in C++0x, too, but the specification is just // poorly written. // // The problem is with declarations like the following: // template friend A::foo; // where deciding whether a class C is a friend or not now hinges // on whether there exists an instantiation of A that causes // 'foo' to equal C. There are restrictions on class-heads // (which we declare (by fiat) elaborated friend declarations to // be) that makes this tractable. // // FIXME: handle "template <> friend class A;", which // is possibly well-formed? Who even knows? if (TempParams.size() && !T->isElaboratedTypeSpecifier()) { Diag(Loc, diag::err_tagless_friend_type_template) << DS.getSourceRange(); return 0; } // C++98 [class.friend]p1: A friend of a class is a function // or class that is not a member of the class . . . // This is fixed in DR77, which just barely didn't make the C++03 // deadline. It's also a very silly restriction that seriously // affects inner classes and which nobody else seems to implement; // thus we never diagnose it, not even in -pedantic. // // But note that we could warn about it: it's always useless to // friend one of your own members (it's not, however, worthless to // friend a member of an arbitrary specialization of your template). Decl *D; if (unsigned NumTempParamLists = TempParams.size()) D = FriendTemplateDecl::Create(Context, CurContext, Loc, NumTempParamLists, (TemplateParameterList**) TempParams.release(), TSI, DS.getFriendSpecLoc()); else D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI); if (!D) return 0; D->setAccess(AS_public); CurContext->addDecl(D); return D; } Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition, MultiTemplateParamsArg TemplateParams) { const DeclSpec &DS = D.getDeclSpec(); assert(DS.isFriendSpecified()); assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); SourceLocation Loc = D.getIdentifierLoc(); TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); QualType T = TInfo->getType(); // C++ [class.friend]p1 // A friend of a class is a function or class.... // Note that this sees through typedefs, which is intended. // It *doesn't* see through dependent types, which is correct // according to [temp.arg.type]p3: // If a declaration acquires a function type through a // type dependent on a template-parameter and this causes // a declaration that does not use the syntactic form of a // function declarator to have a function type, the program // is ill-formed. if (!T->isFunctionType()) { Diag(Loc, diag::err_unexpected_friend); // It might be worthwhile to try to recover by creating an // appropriate declaration. return 0; } // C++ [namespace.memdef]p3 // - If a friend declaration in a non-local class first declares a // class or function, the friend class or function is a member // of the innermost enclosing namespace. // - The name of the friend is not found by simple name lookup // until a matching declaration is provided in that namespace // scope (either before or after the class declaration granting // friendship). // - If a friend function is called, its name may be found by the // name lookup that considers functions from namespaces and // classes associated with the types of the function arguments. // - When looking for a prior declaration of a class or a function // declared as a friend, scopes outside the innermost enclosing // namespace scope are not considered. CXXScopeSpec &ScopeQual = D.getCXXScopeSpec(); DeclarationNameInfo NameInfo = GetNameForDeclarator(D); DeclarationName Name = NameInfo.getName(); assert(Name); // The context we found the declaration in, or in which we should // create the declaration. DeclContext *DC; // FIXME: handle local classes // Recover from invalid scope qualifiers as if they just weren't there. LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration); if (!ScopeQual.isInvalid() && ScopeQual.isSet()) { DC = computeDeclContext(ScopeQual); // FIXME: handle dependent contexts if (!DC) return 0; if (RequireCompleteDeclContext(ScopeQual, DC)) return 0; LookupQualifiedName(Previous, DC); // Ignore things found implicitly in the wrong scope. // TODO: better diagnostics for this case. Suggesting the right // qualified scope would be nice... LookupResult::Filter F = Previous.makeFilter(); while (F.hasNext()) { NamedDecl *D = F.next(); if (!DC->InEnclosingNamespaceSetOf( D->getDeclContext()->getRedeclContext())) F.erase(); } F.done(); if (Previous.empty()) { D.setInvalidType(); Diag(Loc, diag::err_qualified_friend_not_found) << Name << T; return 0; } // C++ [class.friend]p1: A friend of a class is a function or // class that is not a member of the class . . . if (DC->Equals(CurContext)) Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); // Otherwise walk out to the nearest namespace scope looking for matches. } else { // TODO: handle local class contexts. DC = CurContext; while (true) { // Skip class contexts. If someone can cite chapter and verse // for this behavior, that would be nice --- it's what GCC and // EDG do, and it seems like a reasonable intent, but the spec // really only says that checks for unqualified existing // declarations should stop at the nearest enclosing namespace, // not that they should only consider the nearest enclosing // namespace. while (DC->isRecord()) DC = DC->getParent(); LookupQualifiedName(Previous, DC); // TODO: decide what we think about using declarations. if (!Previous.empty()) break; if (DC->isFileContext()) break; DC = DC->getParent(); } // C++ [class.friend]p1: A friend of a class is a function or // class that is not a member of the class . . . // C++0x changes this for both friend types and functions. // Most C++ 98 compilers do seem to give an error here, so // we do, too. if (!Previous.empty() && DC->Equals(CurContext) && !getLangOptions().CPlusPlus0x) Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); } if (DC->isFileContext()) { // This implies that it has to be an operator or function. if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName || D.getName().getKind() == UnqualifiedId::IK_DestructorName || D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) { Diag(Loc, diag::err_introducing_special_friend) << (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 : D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2); return 0; } } bool Redeclaration = false; NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous, move(TemplateParams), IsDefinition, Redeclaration); if (!ND) return 0; assert(ND->getDeclContext() == DC); assert(ND->getLexicalDeclContext() == CurContext); // Add the function declaration to the appropriate lookup tables, // adjusting the redeclarations list as necessary. We don't // want to do this yet if the friending class is dependent. // // Also update the scope-based lookup if the target context's // lookup context is in lexical scope. if (!CurContext->isDependentContext()) { DC = DC->getRedeclContext(); DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false); if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); } FriendDecl *FrD = FriendDecl::Create(Context, CurContext, D.getIdentifierLoc(), ND, DS.getFriendSpecLoc()); FrD->setAccess(AS_public); CurContext->addDecl(FrD); return ND; } void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) { AdjustDeclIfTemplate(Dcl); FunctionDecl *Fn = dyn_cast(Dcl); if (!Fn) { Diag(DelLoc, diag::err_deleted_non_function); return; } if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) { Diag(DelLoc, diag::err_deleted_decl_not_first); Diag(Prev->getLocation(), diag::note_previous_declaration); // If the declaration wasn't the first, we delete the function anyway for // recovery. } Fn->setDeleted(); } static void SearchForReturnInStmt(Sema &Self, Stmt *S) { for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; ++CI) { Stmt *SubStmt = *CI; if (!SubStmt) continue; if (isa(SubStmt)) Self.Diag(SubStmt->getSourceRange().getBegin(), diag::err_return_in_constructor_handler); if (!isa(SubStmt)) SearchForReturnInStmt(Self, SubStmt); } } void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { CXXCatchStmt *Handler = TryBlock->getHandler(I); SearchForReturnInStmt(*this, Handler); } } bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, const CXXMethodDecl *Old) { QualType NewTy = New->getType()->getAs()->getResultType(); QualType OldTy = Old->getType()->getAs()->getResultType(); if (Context.hasSameType(NewTy, OldTy) || NewTy->isDependentType() || OldTy->isDependentType()) return false; // Check if the return types are covariant QualType NewClassTy, OldClassTy; /// Both types must be pointers or references to classes. if (const PointerType *NewPT = NewTy->getAs()) { if (const PointerType *OldPT = OldTy->getAs()) { NewClassTy = NewPT->getPointeeType(); OldClassTy = OldPT->getPointeeType(); } } else if (const ReferenceType *NewRT = NewTy->getAs()) { if (const ReferenceType *OldRT = OldTy->getAs()) { if (NewRT->getTypeClass() == OldRT->getTypeClass()) { NewClassTy = NewRT->getPointeeType(); OldClassTy = OldRT->getPointeeType(); } } } // The return types aren't either both pointers or references to a class type. if (NewClassTy.isNull()) { Diag(New->getLocation(), diag::err_different_return_type_for_overriding_virtual_function) << New->getDeclName() << NewTy << OldTy; Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; } // C++ [class.virtual]p6: // If the return type of D::f differs from the return type of B::f, the // class type in the return type of D::f shall be complete at the point of // declaration of D::f or shall be the class type D. if (const RecordType *RT = NewClassTy->getAs()) { if (!RT->isBeingDefined() && RequireCompleteType(New->getLocation(), NewClassTy, PDiag(diag::err_covariant_return_incomplete) << New->getDeclName())) return true; } if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { // Check if the new class derives from the old class. if (!IsDerivedFrom(NewClassTy, OldClassTy)) { Diag(New->getLocation(), diag::err_covariant_return_not_derived) << New->getDeclName() << NewTy << OldTy; Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; } // Check if we the conversion from derived to base is valid. if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy, diag::err_covariant_return_inaccessible_base, diag::err_covariant_return_ambiguous_derived_to_base_conv, // FIXME: Should this point to the return type? New->getLocation(), SourceRange(), New->getDeclName(), 0)) { Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; } } // The qualifiers of the return types must be the same. if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { Diag(New->getLocation(), diag::err_covariant_return_type_different_qualifications) << New->getDeclName() << NewTy << OldTy; Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; }; // The new class type must have the same or less qualifiers as the old type. if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { Diag(New->getLocation(), diag::err_covariant_return_type_class_type_more_qualified) << New->getDeclName() << NewTy << OldTy; Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; }; return false; } bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, const CXXMethodDecl *Old) { if (Old->hasAttr()) { Diag(New->getLocation(), diag::err_final_function_overridden) << New->getDeclName(); Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; } return false; } /// \brief Mark the given method pure. /// /// \param Method the method to be marked pure. /// /// \param InitRange the source range that covers the "0" initializer. bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { if (Method->isVirtual() || Method->getParent()->isDependentContext()) { Method->setPure(); // A class is abstract if at least one function is pure virtual. Method->getParent()->setAbstract(true); return false; } if (!Method->isInvalidDecl()) Diag(Method->getLocation(), diag::err_non_virtual_pure) << Method->getDeclName() << InitRange; return true; } /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse /// an initializer for the out-of-line declaration 'Dcl'. The scope /// is a fresh scope pushed for just this purpose. /// /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a /// static data member of class X, names should be looked up in the scope of /// class X. void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { // If there is no declaration, there was an error parsing it. if (D == 0) return; // We should only get called for declarations with scope specifiers, like: // int foo::bar; assert(D->isOutOfLine()); EnterDeclaratorContext(S, D->getDeclContext()); } /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an /// initializer for the out-of-line declaration 'D'. void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { // If there is no declaration, there was an error parsing it. if (D == 0) return; assert(D->isOutOfLine()); ExitDeclaratorContext(S); } /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a /// C++ if/switch/while/for statement. /// e.g: "if (int x = f()) {...}" DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { // C++ 6.4p2: // The declarator shall not specify a function or an array. // The type-specifier-seq shall not contain typedef and shall not declare a // new class or enumeration. assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."); TagDecl *OwnedTag = 0; TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag); QualType Ty = TInfo->getType(); if (Ty->isFunctionType()) { // The declarator shall not specify a function... // We exit without creating a CXXConditionDeclExpr because a FunctionDecl // would be created and CXXConditionDeclExpr wants a VarDecl. Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type) << D.getSourceRange(); return DeclResult(); } else if (OwnedTag && OwnedTag->isDefinition()) { // The type-specifier-seq shall not declare a new class or enumeration. Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition); } Decl *Dcl = ActOnDeclarator(S, D); if (!Dcl) return DeclResult(); return Dcl; } void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, bool DefinitionRequired) { // Ignore any vtable uses in unevaluated operands or for classes that do // not have a vtable. if (!Class->isDynamicClass() || Class->isDependentContext() || CurContext->isDependentContext() || ExprEvalContexts.back().Context == Unevaluated) return; // Try to insert this class into the map. Class = cast(Class->getCanonicalDecl()); std::pair::iterator, bool> Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired)); if (!Pos.second) { // If we already had an entry, check to see if we are promoting this vtable // to required a definition. If so, we need to reappend to the VTableUses // list, since we may have already processed the first entry. if (DefinitionRequired && !Pos.first->second) { Pos.first->second = true; } else { // Otherwise, we can early exit. return; } } // Local classes need to have their virtual members marked // immediately. For all other classes, we mark their virtual members // at the end of the translation unit. if (Class->isLocalClass()) MarkVirtualMembersReferenced(Loc, Class); else VTableUses.push_back(std::make_pair(Class, Loc)); } bool Sema::DefineUsedVTables() { // If any dynamic classes have their key function defined within // this translation unit, then those vtables are considered "used" and must // be emitted. for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) { if (const CXXMethodDecl *KeyFunction = Context.getKeyFunction(DynamicClasses[I])) { const FunctionDecl *Definition = 0; if (KeyFunction->hasBody(Definition)) MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true); } } if (VTableUses.empty()) return false; // Note: The VTableUses vector could grow as a result of marking // the members of a class as "used", so we check the size each // time through the loop and prefer indices (with are stable) to // iterators (which are not). for (unsigned I = 0; I != VTableUses.size(); ++I) { CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); if (!Class) continue; SourceLocation Loc = VTableUses[I].second; // If this class has a key function, but that key function is // defined in another translation unit, we don't need to emit the // vtable even though we're using it. const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class); if (KeyFunction && !KeyFunction->hasBody()) { switch (KeyFunction->getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: case TSK_ExplicitInstantiationDeclaration: // The key function is in another translation unit. continue; case TSK_ExplicitInstantiationDefinition: case TSK_ImplicitInstantiation: // We will be instantiating the key function. break; } } else if (!KeyFunction) { // If we have a class with no key function that is the subject // of an explicit instantiation declaration, suppress the // vtable; it will live with the explicit instantiation // definition. bool IsExplicitInstantiationDeclaration = Class->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDeclaration; for (TagDecl::redecl_iterator R = Class->redecls_begin(), REnd = Class->redecls_end(); R != REnd; ++R) { TemplateSpecializationKind TSK = cast(*R)->getTemplateSpecializationKind(); if (TSK == TSK_ExplicitInstantiationDeclaration) IsExplicitInstantiationDeclaration = true; else if (TSK == TSK_ExplicitInstantiationDefinition) { IsExplicitInstantiationDeclaration = false; break; } } if (IsExplicitInstantiationDeclaration) continue; } // Mark all of the virtual members of this class as referenced, so // that we can build a vtable. Then, tell the AST consumer that a // vtable for this class is required. MarkVirtualMembersReferenced(Loc, Class); CXXRecordDecl *Canonical = cast(Class->getCanonicalDecl()); Consumer.HandleVTable(Class, VTablesUsed[Canonical]); // Optionally warn if we're emitting a weak vtable. if (Class->getLinkage() == ExternalLinkage && Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined())) Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; } } VTableUses.clear(); return true; } void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD) { for (CXXRecordDecl::method_iterator i = RD->method_begin(), e = RD->method_end(); i != e; ++i) { CXXMethodDecl *MD = *i; // C++ [basic.def.odr]p2: // [...] A virtual member function is used if it is not pure. [...] if (MD->isVirtual() && !MD->isPure()) MarkDeclarationReferenced(Loc, MD); } // Only classes that have virtual bases need a VTT. if (RD->getNumVBases() == 0) return; for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), e = RD->bases_end(); i != e; ++i) { const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); if (Base->getNumVBases() == 0) continue; MarkVirtualMembersReferenced(Loc, Base); } } /// SetIvarInitializers - This routine builds initialization ASTs for the /// Objective-C implementation whose ivars need be initialized. void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { if (!getLangOptions().CPlusPlus) return; if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { llvm::SmallVector ivars; CollectIvarsToConstructOrDestruct(OID, ivars); if (ivars.empty()) return; llvm::SmallVector AllToInit; for (unsigned i = 0; i < ivars.size(); i++) { FieldDecl *Field = ivars[i]; if (Field->isInvalidDecl()) continue; CXXBaseOrMemberInitializer *Member; InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field); InitializationKind InitKind = InitializationKind::CreateDefault(ObjCImplementation->getLocation()); InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0); ExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg()); MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get()); // Note, MemberInit could actually come back empty if no initialization // is required (e.g., because it would call a trivial default constructor) if (!MemberInit.get() || MemberInit.isInvalid()) continue; Member = new (Context) CXXBaseOrMemberInitializer(Context, Field, SourceLocation(), SourceLocation(), MemberInit.takeAs(), SourceLocation()); AllToInit.push_back(Member); // Be sure that the destructor is accessible and is marked as referenced. if (const RecordType *RecordTy = Context.getBaseElementType(Field->getType()) ->getAs()) { CXXRecordDecl *RD = cast(RecordTy->getDecl()); if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { MarkDeclarationReferenced(Field->getLocation(), Destructor); CheckDestructorAccess(Field->getLocation(), Destructor, PDiag(diag::err_access_dtor_ivar) << Context.getBaseElementType(Field->getType())); } } } ObjCImplementation->setIvarInitializers(Context, AllToInit.data(), AllToInit.size()); } }