//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ declarations. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "SemaInit.h" #include "Lookup.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/TypeOrdering.h" #include "clang/AST/StmtVisitor.h" #include "clang/Parse/DeclSpec.h" #include "clang/Parse/Template.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace clang; //===----------------------------------------------------------------------===// // CheckDefaultArgumentVisitor //===----------------------------------------------------------------------===// namespace { /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses /// the default argument of a parameter to determine whether it /// contains any ill-formed subexpressions. For example, this will /// diagnose the use of local variables or parameters within the /// default argument expression. class CheckDefaultArgumentVisitor : public StmtVisitor { Expr *DefaultArg; Sema *S; public: CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) : DefaultArg(defarg), S(s) {} bool VisitExpr(Expr *Node); bool VisitDeclRefExpr(DeclRefExpr *DRE); bool VisitCXXThisExpr(CXXThisExpr *ThisE); }; /// VisitExpr - Visit all of the children of this expression. bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { bool IsInvalid = false; for (Stmt::child_iterator I = Node->child_begin(), E = Node->child_end(); I != E; ++I) IsInvalid |= Visit(*I); return IsInvalid; } /// VisitDeclRefExpr - Visit a reference to a declaration, to /// determine whether this declaration can be used in the default /// argument expression. bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { NamedDecl *Decl = DRE->getDecl(); if (ParmVarDecl *Param = dyn_cast(Decl)) { // C++ [dcl.fct.default]p9 // Default arguments are evaluated each time the function is // called. The order of evaluation of function arguments is // unspecified. Consequently, parameters of a function shall not // be used in default argument expressions, even if they are not // evaluated. Parameters of a function declared before a default // argument expression are in scope and can hide namespace and // class member names. return S->Diag(DRE->getSourceRange().getBegin(), diag::err_param_default_argument_references_param) << Param->getDeclName() << DefaultArg->getSourceRange(); } else if (VarDecl *VDecl = dyn_cast(Decl)) { // C++ [dcl.fct.default]p7 // Local variables shall not be used in default argument // expressions. if (VDecl->isBlockVarDecl()) return S->Diag(DRE->getSourceRange().getBegin(), diag::err_param_default_argument_references_local) << VDecl->getDeclName() << DefaultArg->getSourceRange(); } return false; } /// VisitCXXThisExpr - Visit a C++ "this" expression. bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { // C++ [dcl.fct.default]p8: // The keyword this shall not be used in a default argument of a // member function. return S->Diag(ThisE->getSourceRange().getBegin(), diag::err_param_default_argument_references_this) << ThisE->getSourceRange(); } } bool Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg, SourceLocation EqualLoc) { if (RequireCompleteType(Param->getLocation(), Param->getType(), diag::err_typecheck_decl_incomplete_type)) { Param->setInvalidDecl(); return true; } Expr *Arg = (Expr *)DefaultArg.get(); // C++ [dcl.fct.default]p5 // A default argument expression is implicitly converted (clause // 4) to the parameter type. The default argument expression has // the same semantic constraints as the initializer expression in // a declaration of a variable of the parameter type, using the // copy-initialization semantics (8.5). InitializedEntity Entity = InitializedEntity::InitializeParameter(Param); InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(), EqualLoc); InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1); OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, MultiExprArg(*this, (void**)&Arg, 1)); if (Result.isInvalid()) return true; Arg = Result.takeAs(); Arg = MaybeCreateCXXExprWithTemporaries(Arg); // Okay: add the default argument to the parameter Param->setDefaultArg(Arg); DefaultArg.release(); return false; } /// ActOnParamDefaultArgument - Check whether the default argument /// provided for a function parameter is well-formed. If so, attach it /// to the parameter declaration. void Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc, ExprArg defarg) { if (!param || !defarg.get()) return; ParmVarDecl *Param = cast(param.getAs()); UnparsedDefaultArgLocs.erase(Param); ExprOwningPtr DefaultArg(this, defarg.takeAs()); // Default arguments are only permitted in C++ if (!getLangOptions().CPlusPlus) { Diag(EqualLoc, diag::err_param_default_argument) << DefaultArg->getSourceRange(); Param->setInvalidDecl(); return; } // Check that the default argument is well-formed CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this); if (DefaultArgChecker.Visit(DefaultArg.get())) { Param->setInvalidDecl(); return; } SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc); } /// ActOnParamUnparsedDefaultArgument - We've seen a default /// argument for a function parameter, but we can't parse it yet /// because we're inside a class definition. Note that this default /// argument will be parsed later. void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc, SourceLocation ArgLoc) { if (!param) return; ParmVarDecl *Param = cast(param.getAs()); if (Param) Param->setUnparsedDefaultArg(); UnparsedDefaultArgLocs[Param] = ArgLoc; } /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of /// the default argument for the parameter param failed. void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) { if (!param) return; ParmVarDecl *Param = cast(param.getAs()); Param->setInvalidDecl(); UnparsedDefaultArgLocs.erase(Param); } /// CheckExtraCXXDefaultArguments - Check for any extra default /// arguments in the declarator, which is not a function declaration /// or definition and therefore is not permitted to have default /// arguments. This routine should be invoked for every declarator /// that is not a function declaration or definition. void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { // C++ [dcl.fct.default]p3 // A default argument expression shall be specified only in the // parameter-declaration-clause of a function declaration or in a // template-parameter (14.1). It shall not be specified for a // parameter pack. If it is specified in a // parameter-declaration-clause, it shall not occur within a // declarator or abstract-declarator of a parameter-declaration. for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { DeclaratorChunk &chunk = D.getTypeObject(i); if (chunk.Kind == DeclaratorChunk::Function) { for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) { ParmVarDecl *Param = cast(chunk.Fun.ArgInfo[argIdx].Param.getAs()); if (Param->hasUnparsedDefaultArg()) { CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); delete Toks; chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; } else if (Param->getDefaultArg()) { Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) << Param->getDefaultArg()->getSourceRange(); Param->setDefaultArg(0); } } } } } // MergeCXXFunctionDecl - Merge two declarations of the same C++ // function, once we already know that they have the same // type. Subroutine of MergeFunctionDecl. Returns true if there was an // error, false otherwise. bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { bool Invalid = false; // C++ [dcl.fct.default]p4: // For non-template functions, default arguments can be added in // later declarations of a function in the same // scope. Declarations in different scopes have completely // distinct sets of default arguments. That is, declarations in // inner scopes do not acquire default arguments from // declarations in outer scopes, and vice versa. In a given // function declaration, all parameters subsequent to a // parameter with a default argument shall have default // arguments supplied in this or previous declarations. A // default argument shall not be redefined by a later // declaration (not even to the same value). // // C++ [dcl.fct.default]p6: // Except for member functions of class templates, the default arguments // in a member function definition that appears outside of the class // definition are added to the set of default arguments provided by the // member function declaration in the class definition. for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { ParmVarDecl *OldParam = Old->getParamDecl(p); ParmVarDecl *NewParam = New->getParamDecl(p); if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) { // FIXME: If the parameter doesn't have an identifier then the location // points to the '=' which means that the fixit hint won't remove any // extra spaces between the type and the '='. SourceLocation Begin = NewParam->getLocation(); if (NewParam->getIdentifier()) Begin = PP.getLocForEndOfToken(Begin); Diag(NewParam->getLocation(), diag::err_param_default_argument_redefinition) << NewParam->getDefaultArgRange() << CodeModificationHint::CreateRemoval(SourceRange(Begin, NewParam->getLocEnd())); // Look for the function declaration where the default argument was // actually written, which may be a declaration prior to Old. for (FunctionDecl *Older = Old->getPreviousDeclaration(); Older; Older = Older->getPreviousDeclaration()) { if (!Older->getParamDecl(p)->hasDefaultArg()) break; OldParam = Older->getParamDecl(p); } Diag(OldParam->getLocation(), diag::note_previous_definition) << OldParam->getDefaultArgRange(); Invalid = true; } else if (OldParam->hasDefaultArg()) { // Merge the old default argument into the new parameter if (OldParam->hasUninstantiatedDefaultArg()) NewParam->setUninstantiatedDefaultArg( OldParam->getUninstantiatedDefaultArg()); else NewParam->setDefaultArg(OldParam->getDefaultArg()); } else if (NewParam->hasDefaultArg()) { if (New->getDescribedFunctionTemplate()) { // Paragraph 4, quoted above, only applies to non-template functions. Diag(NewParam->getLocation(), diag::err_param_default_argument_template_redecl) << NewParam->getDefaultArgRange(); Diag(Old->getLocation(), diag::note_template_prev_declaration) << false; } else if (New->getTemplateSpecializationKind() != TSK_ImplicitInstantiation && New->getTemplateSpecializationKind() != TSK_Undeclared) { // C++ [temp.expr.spec]p21: // Default function arguments shall not be specified in a declaration // or a definition for one of the following explicit specializations: // - the explicit specialization of a function template; // - the explicit specialization of a member function template; // - the explicit specialization of a member function of a class // template where the class template specialization to which the // member function specialization belongs is implicitly // instantiated. Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) << New->getDeclName() << NewParam->getDefaultArgRange(); } else if (New->getDeclContext()->isDependentContext()) { // C++ [dcl.fct.default]p6 (DR217): // Default arguments for a member function of a class template shall // be specified on the initial declaration of the member function // within the class template. // // Reading the tea leaves a bit in DR217 and its reference to DR205 // leads me to the conclusion that one cannot add default function // arguments for an out-of-line definition of a member function of a // dependent type. int WhichKind = 2; if (CXXRecordDecl *Record = dyn_cast(New->getDeclContext())) { if (Record->getDescribedClassTemplate()) WhichKind = 0; else if (isa(Record)) WhichKind = 1; else WhichKind = 2; } Diag(NewParam->getLocation(), diag::err_param_default_argument_member_template_redecl) << WhichKind << NewParam->getDefaultArgRange(); } } } if (CheckEquivalentExceptionSpec( Old->getType()->getAs(), Old->getLocation(), New->getType()->getAs(), New->getLocation())) Invalid = true; return Invalid; } /// CheckCXXDefaultArguments - Verify that the default arguments for a /// function declaration are well-formed according to C++ /// [dcl.fct.default]. void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { unsigned NumParams = FD->getNumParams(); unsigned p; // Find first parameter with a default argument for (p = 0; p < NumParams; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); if (Param->hasDefaultArg()) break; } // C++ [dcl.fct.default]p4: // In a given function declaration, all parameters // subsequent to a parameter with a default argument shall // have default arguments supplied in this or previous // declarations. A default argument shall not be redefined // by a later declaration (not even to the same value). unsigned LastMissingDefaultArg = 0; for (; p < NumParams; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); if (!Param->hasDefaultArg()) { if (Param->isInvalidDecl()) /* We already complained about this parameter. */; else if (Param->getIdentifier()) Diag(Param->getLocation(), diag::err_param_default_argument_missing_name) << Param->getIdentifier(); else Diag(Param->getLocation(), diag::err_param_default_argument_missing); LastMissingDefaultArg = p; } } if (LastMissingDefaultArg > 0) { // Some default arguments were missing. Clear out all of the // default arguments up to (and including) the last missing // default argument, so that we leave the function parameters // in a semantically valid state. for (p = 0; p <= LastMissingDefaultArg; ++p) { ParmVarDecl *Param = FD->getParamDecl(p); if (Param->hasDefaultArg()) { if (!Param->hasUnparsedDefaultArg()) Param->getDefaultArg()->Destroy(Context); Param->setDefaultArg(0); } } } } /// isCurrentClassName - Determine whether the identifier II is the /// name of the class type currently being defined. In the case of /// nested classes, this will only return true if II is the name of /// the innermost class. bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, const CXXScopeSpec *SS) { CXXRecordDecl *CurDecl; if (SS && SS->isSet() && !SS->isInvalid()) { DeclContext *DC = computeDeclContext(*SS, true); CurDecl = dyn_cast_or_null(DC); } else CurDecl = dyn_cast_or_null(CurContext); if (CurDecl) return &II == CurDecl->getIdentifier(); else return false; } /// \brief Check the validity of a C++ base class specifier. /// /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics /// and returns NULL otherwise. CXXBaseSpecifier * Sema::CheckBaseSpecifier(CXXRecordDecl *Class, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, QualType BaseType, SourceLocation BaseLoc) { // C++ [class.union]p1: // A union shall not have base classes. if (Class->isUnion()) { Diag(Class->getLocation(), diag::err_base_clause_on_union) << SpecifierRange; return 0; } if (BaseType->isDependentType()) return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, Class->getTagKind() == RecordDecl::TK_class, Access, BaseType); // Base specifiers must be record types. if (!BaseType->isRecordType()) { Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; return 0; } // C++ [class.union]p1: // A union shall not be used as a base class. if (BaseType->isUnionType()) { Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; return 0; } // C++ [class.derived]p2: // The class-name in a base-specifier shall not be an incompletely // defined class. if (RequireCompleteType(BaseLoc, BaseType, PDiag(diag::err_incomplete_base_class) << SpecifierRange)) return 0; // If the base class is polymorphic or isn't empty, the new one is/isn't, too. RecordDecl *BaseDecl = BaseType->getAs()->getDecl(); assert(BaseDecl && "Record type has no declaration"); BaseDecl = BaseDecl->getDefinition(Context); assert(BaseDecl && "Base type is not incomplete, but has no definition"); CXXRecordDecl * CXXBaseDecl = cast(BaseDecl); assert(CXXBaseDecl && "Base type is not a C++ type"); // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases. if (CXXBaseDecl->hasAttr()) { Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString(); Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl) << BaseType; return 0; } SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual); // Create the base specifier. // FIXME: Allocate via ASTContext? return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual, Class->getTagKind() == RecordDecl::TK_class, Access, BaseType); } void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class, const CXXRecordDecl *BaseClass, bool BaseIsVirtual) { // A class with a non-empty base class is not empty. // FIXME: Standard ref? if (!BaseClass->isEmpty()) Class->setEmpty(false); // C++ [class.virtual]p1: // A class that [...] inherits a virtual function is called a polymorphic // class. if (BaseClass->isPolymorphic()) Class->setPolymorphic(true); // C++ [dcl.init.aggr]p1: // An aggregate is [...] a class with [...] no base classes [...]. Class->setAggregate(false); // C++ [class]p4: // A POD-struct is an aggregate class... Class->setPOD(false); if (BaseIsVirtual) { // C++ [class.ctor]p5: // A constructor is trivial if its class has no virtual base classes. Class->setHasTrivialConstructor(false); // C++ [class.copy]p6: // A copy constructor is trivial if its class has no virtual base classes. Class->setHasTrivialCopyConstructor(false); // C++ [class.copy]p11: // A copy assignment operator is trivial if its class has no virtual // base classes. Class->setHasTrivialCopyAssignment(false); // C++0x [meta.unary.prop] is_empty: // T is a class type, but not a union type, with ... no virtual base // classes Class->setEmpty(false); } else { // C++ [class.ctor]p5: // A constructor is trivial if all the direct base classes of its // class have trivial constructors. if (!BaseClass->hasTrivialConstructor()) Class->setHasTrivialConstructor(false); // C++ [class.copy]p6: // A copy constructor is trivial if all the direct base classes of its // class have trivial copy constructors. if (!BaseClass->hasTrivialCopyConstructor()) Class->setHasTrivialCopyConstructor(false); // C++ [class.copy]p11: // A copy assignment operator is trivial if all the direct base classes // of its class have trivial copy assignment operators. if (!BaseClass->hasTrivialCopyAssignment()) Class->setHasTrivialCopyAssignment(false); } // C++ [class.ctor]p3: // A destructor is trivial if all the direct base classes of its class // have trivial destructors. if (!BaseClass->hasTrivialDestructor()) Class->setHasTrivialDestructor(false); } /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is /// one entry in the base class list of a class specifier, for /// example: /// class foo : public bar, virtual private baz { /// 'public bar' and 'virtual private baz' are each base-specifiers. Sema::BaseResult Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, TypeTy *basetype, SourceLocation BaseLoc) { if (!classdecl) return true; AdjustDeclIfTemplate(classdecl); CXXRecordDecl *Class = cast(classdecl.getAs()); QualType BaseType = GetTypeFromParser(basetype); if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, Virtual, Access, BaseType, BaseLoc)) return BaseSpec; return true; } /// \brief Performs the actual work of attaching the given base class /// specifiers to a C++ class. bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, unsigned NumBases) { if (NumBases == 0) return false; // Used to keep track of which base types we have already seen, so // that we can properly diagnose redundant direct base types. Note // that the key is always the unqualified canonical type of the base // class. std::map KnownBaseTypes; // Copy non-redundant base specifiers into permanent storage. unsigned NumGoodBases = 0; bool Invalid = false; for (unsigned idx = 0; idx < NumBases; ++idx) { QualType NewBaseType = Context.getCanonicalType(Bases[idx]->getType()); NewBaseType = NewBaseType.getLocalUnqualifiedType(); if (KnownBaseTypes[NewBaseType]) { // C++ [class.mi]p3: // A class shall not be specified as a direct base class of a // derived class more than once. Diag(Bases[idx]->getSourceRange().getBegin(), diag::err_duplicate_base_class) << KnownBaseTypes[NewBaseType]->getType() << Bases[idx]->getSourceRange(); // Delete the duplicate base class specifier; we're going to // overwrite its pointer later. Context.Deallocate(Bases[idx]); Invalid = true; } else { // Okay, add this new base class. KnownBaseTypes[NewBaseType] = Bases[idx]; Bases[NumGoodBases++] = Bases[idx]; } } // Attach the remaining base class specifiers to the derived class. Class->setBases(Context, Bases, NumGoodBases); // Delete the remaining (good) base class specifiers, since their // data has been copied into the CXXRecordDecl. for (unsigned idx = 0; idx < NumGoodBases; ++idx) Context.Deallocate(Bases[idx]); return Invalid; } /// ActOnBaseSpecifiers - Attach the given base specifiers to the /// class, after checking whether there are any duplicate base /// classes. void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases, unsigned NumBases) { if (!ClassDecl || !Bases || !NumBases) return; AdjustDeclIfTemplate(ClassDecl); AttachBaseSpecifiers(cast(ClassDecl.getAs()), (CXXBaseSpecifier**)(Bases), NumBases); } /// \brief Determine whether the type \p Derived is a C++ class that is /// derived from the type \p Base. bool Sema::IsDerivedFrom(QualType Derived, QualType Base) { if (!getLangOptions().CPlusPlus) return false; const RecordType *DerivedRT = Derived->getAs(); if (!DerivedRT) return false; const RecordType *BaseRT = Base->getAs(); if (!BaseRT) return false; CXXRecordDecl *DerivedRD = cast(DerivedRT->getDecl()); CXXRecordDecl *BaseRD = cast(BaseRT->getDecl()); return DerivedRD->isDerivedFrom(BaseRD); } /// \brief Determine whether the type \p Derived is a C++ class that is /// derived from the type \p Base. bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) { if (!getLangOptions().CPlusPlus) return false; const RecordType *DerivedRT = Derived->getAs(); if (!DerivedRT) return false; const RecordType *BaseRT = Base->getAs(); if (!BaseRT) return false; CXXRecordDecl *DerivedRD = cast(DerivedRT->getDecl()); CXXRecordDecl *BaseRD = cast(BaseRT->getDecl()); return DerivedRD->isDerivedFrom(BaseRD, Paths); } /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base /// conversion (where Derived and Base are class types) is /// well-formed, meaning that the conversion is unambiguous (and /// that all of the base classes are accessible). Returns true /// and emits a diagnostic if the code is ill-formed, returns false /// otherwise. Loc is the location where this routine should point to /// if there is an error, and Range is the source range to highlight /// if there is an error. bool Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, unsigned InaccessibleBaseID, unsigned AmbigiousBaseConvID, SourceLocation Loc, SourceRange Range, DeclarationName Name) { // First, determine whether the path from Derived to Base is // ambiguous. This is slightly more expensive than checking whether // the Derived to Base conversion exists, because here we need to // explore multiple paths to determine if there is an ambiguity. CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths); assert(DerivationOkay && "Can only be used with a derived-to-base conversion"); (void)DerivationOkay; if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) { if (InaccessibleBaseID == 0) return false; // Check that the base class can be accessed. return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc, Name); } // We know that the derived-to-base conversion is ambiguous, and // we're going to produce a diagnostic. Perform the derived-to-base // search just one more time to compute all of the possible paths so // that we can print them out. This is more expensive than any of // the previous derived-to-base checks we've done, but at this point // performance isn't as much of an issue. Paths.clear(); Paths.setRecordingPaths(true); bool StillOkay = IsDerivedFrom(Derived, Base, Paths); assert(StillOkay && "Can only be used with a derived-to-base conversion"); (void)StillOkay; // Build up a textual representation of the ambiguous paths, e.g., // D -> B -> A, that will be used to illustrate the ambiguous // conversions in the diagnostic. We only print one of the paths // to each base class subobject. std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); Diag(Loc, AmbigiousBaseConvID) << Derived << Base << PathDisplayStr << Range << Name; return true; } bool Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, SourceLocation Loc, SourceRange Range, bool IgnoreAccess) { return CheckDerivedToBaseConversion(Derived, Base, IgnoreAccess ? 0 : diag::err_conv_to_inaccessible_base, diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName()); } /// @brief Builds a string representing ambiguous paths from a /// specific derived class to different subobjects of the same base /// class. /// /// This function builds a string that can be used in error messages /// to show the different paths that one can take through the /// inheritance hierarchy to go from the derived class to different /// subobjects of a base class. The result looks something like this: /// @code /// struct D -> struct B -> struct A /// struct D -> struct C -> struct A /// @endcode std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { std::string PathDisplayStr; std::set DisplayedPaths; for (CXXBasePaths::paths_iterator Path = Paths.begin(); Path != Paths.end(); ++Path) { if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { // We haven't displayed a path to this particular base // class subobject yet. PathDisplayStr += "\n "; PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); for (CXXBasePath::const_iterator Element = Path->begin(); Element != Path->end(); ++Element) PathDisplayStr += " -> " + Element->Base->getType().getAsString(); } } return PathDisplayStr; } //===----------------------------------------------------------------------===// // C++ class member Handling //===----------------------------------------------------------------------===// /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the /// bitfield width if there is one and 'InitExpr' specifies the initializer if /// any. Sema::DeclPtrTy Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, MultiTemplateParamsArg TemplateParameterLists, ExprTy *BW, ExprTy *InitExpr, bool IsDefinition, bool Deleted) { const DeclSpec &DS = D.getDeclSpec(); DeclarationName Name = GetNameForDeclarator(D); Expr *BitWidth = static_cast(BW); Expr *Init = static_cast(InitExpr); SourceLocation Loc = D.getIdentifierLoc(); bool isFunc = D.isFunctionDeclarator(); assert(!DS.isFriendSpecified()); // C++ 9.2p6: A member shall not be declared to have automatic storage // duration (auto, register) or with the extern storage-class-specifier. // C++ 7.1.1p8: The mutable specifier can be applied only to names of class // data members and cannot be applied to names declared const or static, // and cannot be applied to reference members. switch (DS.getStorageClassSpec()) { case DeclSpec::SCS_unspecified: case DeclSpec::SCS_typedef: case DeclSpec::SCS_static: // FALL THROUGH. break; case DeclSpec::SCS_mutable: if (isFunc) { if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); else Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); // FIXME: It would be nicer if the keyword was ignored only for this // declarator. Otherwise we could get follow-up errors. D.getMutableDeclSpec().ClearStorageClassSpecs(); } else { QualType T = GetTypeForDeclarator(D, S); diag::kind err = static_cast(0); if (T->isReferenceType()) err = diag::err_mutable_reference; else if (T.isConstQualified()) err = diag::err_mutable_const; if (err != 0) { if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(), err); else Diag(DS.getThreadSpecLoc(), err); // FIXME: It would be nicer if the keyword was ignored only for this // declarator. Otherwise we could get follow-up errors. D.getMutableDeclSpec().ClearStorageClassSpecs(); } } break; default: if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(), diag::err_storageclass_invalid_for_member); else Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); D.getMutableDeclSpec().ClearStorageClassSpecs(); } if (!isFunc && D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename && D.getNumTypeObjects() == 0) { // Check also for this case: // // typedef int f(); // f a; // QualType TDType = GetTypeFromParser(DS.getTypeRep()); isFunc = TDType->isFunctionType(); } bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && !isFunc); Decl *Member; if (isInstField) { // FIXME: Check for template parameters! Member = HandleField(S, cast(CurContext), Loc, D, BitWidth, AS); assert(Member && "HandleField never returns null"); } else { Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition) .getAs(); if (!Member) { if (BitWidth) DeleteExpr(BitWidth); return DeclPtrTy(); } // Non-instance-fields can't have a bitfield. if (BitWidth) { if (Member->isInvalidDecl()) { // don't emit another diagnostic. } else if (isa(Member)) { // C++ 9.6p3: A bit-field shall not be a static member. // "static member 'A' cannot be a bit-field" Diag(Loc, diag::err_static_not_bitfield) << Name << BitWidth->getSourceRange(); } else if (isa(Member)) { // "typedef member 'x' cannot be a bit-field" Diag(Loc, diag::err_typedef_not_bitfield) << Name << BitWidth->getSourceRange(); } else { // A function typedef ("typedef int f(); f a;"). // C++ 9.6p3: A bit-field shall have integral or enumeration type. Diag(Loc, diag::err_not_integral_type_bitfield) << Name << cast(Member)->getType() << BitWidth->getSourceRange(); } DeleteExpr(BitWidth); BitWidth = 0; Member->setInvalidDecl(); } Member->setAccess(AS); // If we have declared a member function template, set the access of the // templated declaration as well. if (FunctionTemplateDecl *FunTmpl = dyn_cast(Member)) FunTmpl->getTemplatedDecl()->setAccess(AS); } assert((Name || isInstField) && "No identifier for non-field ?"); if (Init) AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false); if (Deleted) // FIXME: Source location is not very good. SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin()); if (isInstField) { FieldCollector->Add(cast(Member)); return DeclPtrTy(); } return DeclPtrTy::make(Member); } /// \brief Find the direct and/or virtual base specifiers that /// correspond to the given base type, for use in base initialization /// within a constructor. static bool FindBaseInitializer(Sema &SemaRef, CXXRecordDecl *ClassDecl, QualType BaseType, const CXXBaseSpecifier *&DirectBaseSpec, const CXXBaseSpecifier *&VirtualBaseSpec) { // First, check for a direct base class. DirectBaseSpec = 0; for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) { if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) { // We found a direct base of this type. That's what we're // initializing. DirectBaseSpec = &*Base; break; } } // Check for a virtual base class. // FIXME: We might be able to short-circuit this if we know in advance that // there are no virtual bases. VirtualBaseSpec = 0; if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { // We haven't found a base yet; search the class hierarchy for a // virtual base class. CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl), BaseType, Paths)) { for (CXXBasePaths::paths_iterator Path = Paths.begin(); Path != Paths.end(); ++Path) { if (Path->back().Base->isVirtual()) { VirtualBaseSpec = Path->back().Base; break; } } } } return DirectBaseSpec || VirtualBaseSpec; } /// ActOnMemInitializer - Handle a C++ member initializer. Sema::MemInitResult Sema::ActOnMemInitializer(DeclPtrTy ConstructorD, Scope *S, const CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, TypeTy *TemplateTypeTy, SourceLocation IdLoc, SourceLocation LParenLoc, ExprTy **Args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { if (!ConstructorD) return true; AdjustDeclIfTemplate(ConstructorD); CXXConstructorDecl *Constructor = dyn_cast(ConstructorD.getAs()); if (!Constructor) { // The user wrote a constructor initializer on a function that is // not a C++ constructor. Ignore the error for now, because we may // have more member initializers coming; we'll diagnose it just // once in ActOnMemInitializers. return true; } CXXRecordDecl *ClassDecl = Constructor->getParent(); // C++ [class.base.init]p2: // Names in a mem-initializer-id are looked up in the scope of the // constructor’s class and, if not found in that scope, are looked // up in the scope containing the constructor’s // definition. [Note: if the constructor’s class contains a member // with the same name as a direct or virtual base class of the // class, a mem-initializer-id naming the member or base class and // composed of a single identifier refers to the class member. A // mem-initializer-id for the hidden base class may be specified // using a qualified name. ] if (!SS.getScopeRep() && !TemplateTypeTy) { // Look for a member, first. FieldDecl *Member = 0; DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase); if (Result.first != Result.second) Member = dyn_cast(*Result.first); // FIXME: Handle members of an anonymous union. if (Member) return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, LParenLoc, RParenLoc); } // It didn't name a member, so see if it names a class. QualType BaseType; TypeSourceInfo *TInfo = 0; if (TemplateTypeTy) { BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo); } else { LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); LookupParsedName(R, S, &SS); TypeDecl *TyD = R.getAsSingle(); if (!TyD) { if (R.isAmbiguous()) return true; // If no results were found, try to correct typos. if (R.empty() && CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) { if (FieldDecl *Member = R.getAsSingle()) { if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) { // We have found a non-static data member with a similar // name to what was typed; complain and initialize that // member. Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) << MemberOrBase << true << R.getLookupName() << CodeModificationHint::CreateReplacement(R.getNameLoc(), R.getLookupName().getAsString()); return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc, LParenLoc, RParenLoc); } } else if (TypeDecl *Type = R.getAsSingle()) { const CXXBaseSpecifier *DirectBaseSpec; const CXXBaseSpecifier *VirtualBaseSpec; if (FindBaseInitializer(*this, ClassDecl, Context.getTypeDeclType(Type), DirectBaseSpec, VirtualBaseSpec)) { // We have found a direct or virtual base class with a // similar name to what was typed; complain and initialize // that base class. Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest) << MemberOrBase << false << R.getLookupName() << CodeModificationHint::CreateReplacement(R.getNameLoc(), R.getLookupName().getAsString()); TyD = Type; } } } if (!TyD) { Diag(IdLoc, diag::err_mem_init_not_member_or_class) << MemberOrBase << SourceRange(IdLoc, RParenLoc); return true; } } BaseType = Context.getTypeDeclType(TyD); if (SS.isSet()) { NestedNameSpecifier *Qualifier = static_cast(SS.getScopeRep()); // FIXME: preserve source range information BaseType = Context.getQualifiedNameType(Qualifier, BaseType); } } if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc); return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs, LParenLoc, RParenLoc, ClassDecl); } /// Checks an initializer expression for use of uninitialized fields, such as /// containing the field that is being initialized. Returns true if there is an /// uninitialized field was used an updates the SourceLocation parameter; false /// otherwise. static bool InitExprContainsUninitializedFields(const Stmt* S, const FieldDecl* LhsField, SourceLocation* L) { const MemberExpr* ME = dyn_cast(S); if (ME) { const NamedDecl* RhsField = ME->getMemberDecl(); if (RhsField == LhsField) { // Initializing a field with itself. Throw a warning. // But wait; there are exceptions! // Exception #1: The field may not belong to this record. // e.g. Foo(const Foo& rhs) : A(rhs.A) {} const Expr* base = ME->getBase(); if (base != NULL && !isa(base->IgnoreParenCasts())) { // Even though the field matches, it does not belong to this record. return false; } // None of the exceptions triggered; return true to indicate an // uninitialized field was used. *L = ME->getMemberLoc(); return true; } } bool found = false; for (Stmt::const_child_iterator it = S->child_begin(); it != S->child_end() && found == false; ++it) { if (isa(S)) { // Do not descend into function calls or constructors, as the use // of an uninitialized field may be valid. One would have to inspect // the contents of the function/ctor to determine if it is safe or not. // i.e. Pass-by-value is never safe, but pass-by-reference and pointers // may be safe, depending on what the function/ctor does. continue; } found = InitExprContainsUninitializedFields(*it, LhsField, L); } return found; } Sema::MemInitResult Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args, unsigned NumArgs, SourceLocation IdLoc, SourceLocation LParenLoc, SourceLocation RParenLoc) { // FIXME: CXXBaseOrMemberInitializer should only contain a single // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary. ExprTemporaries.clear(); // Diagnose value-uses of fields to initialize themselves, e.g. // foo(foo) // where foo is not also a parameter to the constructor. // TODO: implement -Wuninitialized and fold this into that framework. for (unsigned i = 0; i < NumArgs; ++i) { SourceLocation L; if (InitExprContainsUninitializedFields(Args[i], Member, &L)) { // FIXME: Return true in the case when other fields are used before being // uninitialized. For example, let this field be the i'th field. When // initializing the i'th field, throw a warning if any of the >= i'th // fields are used, as they are not yet initialized. // Right now we are only handling the case where the i'th field uses // itself in its initializer. Diag(L, diag::warn_field_is_uninit); } } bool HasDependentArg = false; for (unsigned i = 0; i < NumArgs; i++) HasDependentArg |= Args[i]->isTypeDependent(); CXXConstructorDecl *C = 0; QualType FieldType = Member->getType(); if (const ArrayType *Array = Context.getAsArrayType(FieldType)) FieldType = Array->getElementType(); ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); if (FieldType->isDependentType()) { // Can't check init for dependent type. } else if (FieldType->isRecordType()) { // Member is a record (struct/union/class), so pass the initializer // arguments down to the record's constructor. if (!HasDependentArg) { C = PerformInitializationByConstructor(FieldType, MultiExprArg(*this, (void**)Args, NumArgs), IdLoc, SourceRange(IdLoc, RParenLoc), Member->getDeclName(), InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc), ConstructorArgs); if (C) { // Take over the constructor arguments as our own. NumArgs = ConstructorArgs.size(); Args = (Expr **)ConstructorArgs.take(); } } } else if (NumArgs != 1 && NumArgs != 0) { // The member type is not a record type (or an array of record // types), so it can be only be default- or copy-initialized. return Diag(IdLoc, diag::err_mem_initializer_mismatch) << Member->getDeclName() << SourceRange(IdLoc, RParenLoc); } else if (!HasDependentArg) { Expr *NewExp; if (NumArgs == 0) { if (FieldType->isReferenceType()) { Diag(IdLoc, diag::err_null_intialized_reference_member) << Member->getDeclName(); return Diag(Member->getLocation(), diag::note_declared_at); } NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc); NumArgs = 1; } else NewExp = (Expr*)Args[0]; if (!Member->isInvalidDecl() && PerformCopyInitialization(NewExp, FieldType, AA_Passing)) return true; Args[0] = NewExp; } // FIXME: CXXBaseOrMemberInitializer should only contain a single // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary. ExprTemporaries.clear(); // FIXME: Perform direct initialization of the member. return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc, C, LParenLoc, (Expr **)Args, NumArgs, RParenLoc); } Sema::MemInitResult Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, Expr **Args, unsigned NumArgs, SourceLocation LParenLoc, SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) { bool HasDependentArg = false; for (unsigned i = 0; i < NumArgs; i++) HasDependentArg |= Args[i]->isTypeDependent(); SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin(); if (!BaseType->isDependentType()) { if (!BaseType->isRecordType()) return Diag(BaseLoc, diag::err_base_init_does_not_name_class) << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); // C++ [class.base.init]p2: // [...] Unless the mem-initializer-id names a nonstatic data // member of the constructor’s class or a direct or virtual base // of that class, the mem-initializer is ill-formed. A // mem-initializer-list can initialize a base class using any // name that denotes that base class type. // Check for direct and virtual base classes. const CXXBaseSpecifier *DirectBaseSpec = 0; const CXXBaseSpecifier *VirtualBaseSpec = 0; FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec, VirtualBaseSpec); // C++ [base.class.init]p2: // If a mem-initializer-id is ambiguous because it designates both // a direct non-virtual base class and an inherited virtual base // class, the mem-initializer is ill-formed. if (DirectBaseSpec && VirtualBaseSpec) return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); // C++ [base.class.init]p2: // Unless the mem-initializer-id names a nonstatic data membeer of the // constructor's class ot a direst or virtual base of that class, the // mem-initializer is ill-formed. if (!DirectBaseSpec && !VirtualBaseSpec) return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) << BaseType << ClassDecl->getNameAsCString() << BaseTInfo->getTypeLoc().getSourceRange(); } CXXConstructorDecl *C = 0; ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this); if (!BaseType->isDependentType() && !HasDependentArg) { DeclarationName Name = Context.DeclarationNames.getCXXConstructorName( Context.getCanonicalType(BaseType).getUnqualifiedType()); C = PerformInitializationByConstructor(BaseType, MultiExprArg(*this, (void**)Args, NumArgs), BaseLoc, SourceRange(BaseLoc, RParenLoc), Name, InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc), ConstructorArgs); if (C) { // Take over the constructor arguments as our own. NumArgs = ConstructorArgs.size(); Args = (Expr **)ConstructorArgs.take(); } } // FIXME: CXXBaseOrMemberInitializer should only contain a single // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary. ExprTemporaries.clear(); return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, C, LParenLoc, (Expr **)Args, NumArgs, RParenLoc); } bool Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor, CXXBaseOrMemberInitializer **Initializers, unsigned NumInitializers, bool IsImplicitConstructor) { // We need to build the initializer AST according to order of construction // and not what user specified in the Initializers list. CXXRecordDecl *ClassDecl = cast(Constructor->getDeclContext()); llvm::SmallVector AllToInit; llvm::DenseMap AllBaseFields; bool HasDependentBaseInit = false; bool HadError = false; for (unsigned i = 0; i < NumInitializers; i++) { CXXBaseOrMemberInitializer *Member = Initializers[i]; if (Member->isBaseInitializer()) { if (Member->getBaseClass()->isDependentType()) HasDependentBaseInit = true; AllBaseFields[Member->getBaseClass()->getAs()] = Member; } else { AllBaseFields[Member->getMember()] = Member; } } if (HasDependentBaseInit) { // FIXME. This does not preserve the ordering of the initializers. // Try (with -Wreorder) // template struct A {}; // template struct B : A { // B() : x1(10), A() {} // int x1; // }; // B x; // On seeing one dependent type, we should essentially exit this routine // while preserving user-declared initializer list. When this routine is // called during instantiatiation process, this routine will rebuild the // ordered initializer list correctly. // If we have a dependent base initialization, we can't determine the // association between initializers and bases; just dump the known // initializers into the list, and don't try to deal with other bases. for (unsigned i = 0; i < NumInitializers; i++) { CXXBaseOrMemberInitializer *Member = Initializers[i]; if (Member->isBaseInitializer()) AllToInit.push_back(Member); } } else { // Push virtual bases before others. for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), E = ClassDecl->vbases_end(); VBase != E; ++VBase) { if (VBase->getType()->isDependentType()) continue; if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(VBase->getType()->getAs())) { AllToInit.push_back(Value); } else { CXXRecordDecl *VBaseDecl = cast(VBase->getType()->getAs()->getDecl()); assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null"); CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context); if (!Ctor) { Diag(Constructor->getLocation(), diag::err_missing_default_ctor) << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) << 0 << VBase->getType(); Diag(VBaseDecl->getLocation(), diag::note_previous_decl) << Context.getTagDeclType(VBaseDecl); HadError = true; continue; } ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this); if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0), Constructor->getLocation(), CtorArgs)) continue; MarkDeclarationReferenced(Constructor->getLocation(), Ctor); // FIXME: CXXBaseOrMemberInitializer should only contain a single // subexpression so we can wrap it in a CXXExprWithTemporaries if // necessary. // FIXME: Is there any better source-location information we can give? ExprTemporaries.clear(); CXXBaseOrMemberInitializer *Member = new (Context) CXXBaseOrMemberInitializer(Context, Context.getTrivialTypeSourceInfo(VBase->getType(), SourceLocation()), Ctor, SourceLocation(), CtorArgs.takeAs(), CtorArgs.size(), SourceLocation()); AllToInit.push_back(Member); } } for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), E = ClassDecl->bases_end(); Base != E; ++Base) { // Virtuals are in the virtual base list and already constructed. if (Base->isVirtual()) continue; // Skip dependent types. if (Base->getType()->isDependentType()) continue; if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(Base->getType()->getAs())) { AllToInit.push_back(Value); } else { CXXRecordDecl *BaseDecl = cast(Base->getType()->getAs()->getDecl()); assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null"); CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context); if (!Ctor) { Diag(Constructor->getLocation(), diag::err_missing_default_ctor) << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) << 0 << Base->getType(); Diag(BaseDecl->getLocation(), diag::note_previous_decl) << Context.getTagDeclType(BaseDecl); HadError = true; continue; } ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this); if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0), Constructor->getLocation(), CtorArgs)) continue; MarkDeclarationReferenced(Constructor->getLocation(), Ctor); // FIXME: CXXBaseOrMemberInitializer should only contain a single // subexpression so we can wrap it in a CXXExprWithTemporaries if // necessary. // FIXME: Is there any better source-location information we can give? ExprTemporaries.clear(); CXXBaseOrMemberInitializer *Member = new (Context) CXXBaseOrMemberInitializer(Context, Context.getTrivialTypeSourceInfo(Base->getType(), SourceLocation()), Ctor, SourceLocation(), CtorArgs.takeAs(), CtorArgs.size(), SourceLocation()); AllToInit.push_back(Member); } } } // non-static data members. for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), E = ClassDecl->field_end(); Field != E; ++Field) { if ((*Field)->isAnonymousStructOrUnion()) { if (const RecordType *FieldClassType = Field->getType()->getAs()) { CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(), EA = FieldClassDecl->field_end(); FA != EA; FA++) { if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) { // 'Member' is the anonymous union field and 'AnonUnionMember' is // set to the anonymous union data member used in the initializer // list. Value->setMember(*Field); Value->setAnonUnionMember(*FA); AllToInit.push_back(Value); break; } } } continue; } if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) { AllToInit.push_back(Value); continue; } if ((*Field)->getType()->isDependentType()) continue; QualType FT = Context.getBaseElementType((*Field)->getType()); if (const RecordType* RT = FT->getAs()) { CXXConstructorDecl *Ctor = cast(RT->getDecl())->getDefaultConstructor(Context); if (!Ctor) { Diag(Constructor->getLocation(), diag::err_missing_default_ctor) << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName(); Diag(Field->getLocation(), diag::note_field_decl); Diag(RT->getDecl()->getLocation(), diag::note_previous_decl) << Context.getTagDeclType(RT->getDecl()); HadError = true; continue; } if (FT.isConstQualified() && Ctor->isTrivial()) { Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor) << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName(); Diag((*Field)->getLocation(), diag::note_declared_at); HadError = true; } // Don't create initializers for trivial constructors, since they don't // actually need to be run. if (Ctor->isTrivial()) continue; ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this); if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0), Constructor->getLocation(), CtorArgs)) continue; // FIXME: CXXBaseOrMemberInitializer should only contain a single // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary. ExprTemporaries.clear(); CXXBaseOrMemberInitializer *Member = new (Context) CXXBaseOrMemberInitializer(Context, *Field, SourceLocation(), Ctor, SourceLocation(), CtorArgs.takeAs(), CtorArgs.size(), SourceLocation()); AllToInit.push_back(Member); MarkDeclarationReferenced(Constructor->getLocation(), Ctor); } else if (FT->isReferenceType()) { Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor) << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getDeclName(); Diag((*Field)->getLocation(), diag::note_declared_at); HadError = true; } else if (FT.isConstQualified()) { Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor) << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName(); Diag((*Field)->getLocation(), diag::note_declared_at); HadError = true; } } NumInitializers = AllToInit.size(); if (NumInitializers > 0) { Constructor->setNumBaseOrMemberInitializers(NumInitializers); CXXBaseOrMemberInitializer **baseOrMemberInitializers = new (Context) CXXBaseOrMemberInitializer*[NumInitializers]; Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers); for (unsigned Idx = 0; Idx < NumInitializers; ++Idx) baseOrMemberInitializers[Idx] = AllToInit[Idx]; } return HadError; } static void *GetKeyForTopLevelField(FieldDecl *Field) { // For anonymous unions, use the class declaration as the key. if (const RecordType *RT = Field->getType()->getAs()) { if (RT->getDecl()->isAnonymousStructOrUnion()) return static_cast(RT->getDecl()); } return static_cast(Field); } static void *GetKeyForBase(QualType BaseType) { if (const RecordType *RT = BaseType->getAs()) return (void *)RT; assert(0 && "Unexpected base type!"); return 0; } static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member, bool MemberMaybeAnon = false) { // For fields injected into the class via declaration of an anonymous union, // use its anonymous union class declaration as the unique key. if (Member->isMemberInitializer()) { FieldDecl *Field = Member->getMember(); // After SetBaseOrMemberInitializers call, Field is the anonymous union // data member of the class. Data member used in the initializer list is // in AnonUnionMember field. if (MemberMaybeAnon && Field->isAnonymousStructOrUnion()) Field = Member->getAnonUnionMember(); if (Field->getDeclContext()->isRecord()) { RecordDecl *RD = cast(Field->getDeclContext()); if (RD->isAnonymousStructOrUnion()) return static_cast(RD); } return static_cast(Field); } return GetKeyForBase(QualType(Member->getBaseClass(), 0)); } /// ActOnMemInitializers - Handle the member initializers for a constructor. void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl, SourceLocation ColonLoc, MemInitTy **MemInits, unsigned NumMemInits) { if (!ConstructorDecl) return; AdjustDeclIfTemplate(ConstructorDecl); CXXConstructorDecl *Constructor = dyn_cast(ConstructorDecl.getAs()); if (!Constructor) { Diag(ColonLoc, diag::err_only_constructors_take_base_inits); return; } if (!Constructor->isDependentContext()) { llvm::DenseMapMembers; bool err = false; for (unsigned i = 0; i < NumMemInits; i++) { CXXBaseOrMemberInitializer *Member = static_cast(MemInits[i]); void *KeyToMember = GetKeyForMember(Member); CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember]; if (!PrevMember) { PrevMember = Member; continue; } if (FieldDecl *Field = Member->getMember()) Diag(Member->getSourceLocation(), diag::error_multiple_mem_initialization) << Field->getNameAsString() << Member->getSourceRange(); else { Type *BaseClass = Member->getBaseClass(); assert(BaseClass && "ActOnMemInitializers - neither field or base"); Diag(Member->getSourceLocation(), diag::error_multiple_base_initialization) << QualType(BaseClass, 0) << Member->getSourceRange(); } Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer) << 0; err = true; } if (err) return; } SetBaseOrMemberInitializers(Constructor, reinterpret_cast(MemInits), NumMemInits, false); if (Constructor->isDependentContext()) return; if (Diags.getDiagnosticLevel(diag::warn_base_initialized) == Diagnostic::Ignored && Diags.getDiagnosticLevel(diag::warn_field_initialized) == Diagnostic::Ignored) return; // Also issue warning if order of ctor-initializer list does not match order // of 1) base class declarations and 2) order of non-static data members. llvm::SmallVector AllBaseOrMembers; CXXRecordDecl *ClassDecl = cast(Constructor->getDeclContext()); // Push virtual bases before others. for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), E = ClassDecl->vbases_end(); VBase != E; ++VBase) AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType())); for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), E = ClassDecl->bases_end(); Base != E; ++Base) { // Virtuals are alread in the virtual base list and are constructed // first. if (Base->isVirtual()) continue; AllBaseOrMembers.push_back(GetKeyForBase(Base->getType())); } for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), E = ClassDecl->field_end(); Field != E; ++Field) AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field)); int Last = AllBaseOrMembers.size(); int curIndex = 0; CXXBaseOrMemberInitializer *PrevMember = 0; for (unsigned i = 0; i < NumMemInits; i++) { CXXBaseOrMemberInitializer *Member = static_cast(MemInits[i]); void *MemberInCtorList = GetKeyForMember(Member, true); for (; curIndex < Last; curIndex++) if (MemberInCtorList == AllBaseOrMembers[curIndex]) break; if (curIndex == Last) { assert(PrevMember && "Member not in member list?!"); // Initializer as specified in ctor-initializer list is out of order. // Issue a warning diagnostic. if (PrevMember->isBaseInitializer()) { // Diagnostics is for an initialized base class. Type *BaseClass = PrevMember->getBaseClass(); Diag(PrevMember->getSourceLocation(), diag::warn_base_initialized) << QualType(BaseClass, 0); } else { FieldDecl *Field = PrevMember->getMember(); Diag(PrevMember->getSourceLocation(), diag::warn_field_initialized) << Field->getNameAsString(); } // Also the note! if (FieldDecl *Field = Member->getMember()) Diag(Member->getSourceLocation(), diag::note_fieldorbase_initialized_here) << 0 << Field->getNameAsString(); else { Type *BaseClass = Member->getBaseClass(); Diag(Member->getSourceLocation(), diag::note_fieldorbase_initialized_here) << 1 << QualType(BaseClass, 0); } for (curIndex = 0; curIndex < Last; curIndex++) if (MemberInCtorList == AllBaseOrMembers[curIndex]) break; } PrevMember = Member; } } void Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) { // Ignore dependent destructors. if (Destructor->isDependentContext()) return; CXXRecordDecl *ClassDecl = Destructor->getParent(); // Non-static data members. for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(), E = ClassDecl->field_end(); I != E; ++I) { FieldDecl *Field = *I; QualType FieldType = Context.getBaseElementType(Field->getType()); const RecordType* RT = FieldType->getAs(); if (!RT) continue; CXXRecordDecl *FieldClassDecl = cast(RT->getDecl()); if (FieldClassDecl->hasTrivialDestructor()) continue; const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context); MarkDeclarationReferenced(Destructor->getLocation(), const_cast(Dtor)); } // Bases. for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), E = ClassDecl->bases_end(); Base != E; ++Base) { // Ignore virtual bases. if (Base->isVirtual()) continue; // Ignore trivial destructors. CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); if (BaseClassDecl->hasTrivialDestructor()) continue; const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context); MarkDeclarationReferenced(Destructor->getLocation(), const_cast(Dtor)); } // Virtual bases. for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(), E = ClassDecl->vbases_end(); VBase != E; ++VBase) { // Ignore trivial destructors. CXXRecordDecl *BaseClassDecl = cast(VBase->getType()->getAs()->getDecl()); if (BaseClassDecl->hasTrivialDestructor()) continue; const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context); MarkDeclarationReferenced(Destructor->getLocation(), const_cast(Dtor)); } } void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) { if (!CDtorDecl) return; AdjustDeclIfTemplate(CDtorDecl); if (CXXConstructorDecl *Constructor = dyn_cast(CDtorDecl.getAs())) SetBaseOrMemberInitializers(Constructor, 0, 0, false); } namespace { /// PureVirtualMethodCollector - traverses a class and its superclasses /// and determines if it has any pure virtual methods. class PureVirtualMethodCollector { ASTContext &Context; public: typedef llvm::SmallVector MethodList; private: MethodList Methods; void Collect(const CXXRecordDecl* RD, MethodList& Methods); public: PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD) : Context(Ctx) { MethodList List; Collect(RD, List); // Copy the temporary list to methods, and make sure to ignore any // null entries. for (size_t i = 0, e = List.size(); i != e; ++i) { if (List[i]) Methods.push_back(List[i]); } } bool empty() const { return Methods.empty(); } MethodList::const_iterator methods_begin() { return Methods.begin(); } MethodList::const_iterator methods_end() { return Methods.end(); } }; void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD, MethodList& Methods) { // First, collect the pure virtual methods for the base classes. for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(), BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) { if (const RecordType *RT = Base->getType()->getAs()) { const CXXRecordDecl *BaseDecl = cast(RT->getDecl()); if (BaseDecl && BaseDecl->isAbstract()) Collect(BaseDecl, Methods); } } // Next, zero out any pure virtual methods that this class overrides. typedef llvm::SmallPtrSet MethodSetTy; MethodSetTy OverriddenMethods; size_t MethodsSize = Methods.size(); for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end(); i != e; ++i) { // Traverse the record, looking for methods. if (CXXMethodDecl *MD = dyn_cast(*i)) { // If the method is pure virtual, add it to the methods vector. if (MD->isPure()) Methods.push_back(MD); // Record all the overridden methods in our set. for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), E = MD->end_overridden_methods(); I != E; ++I) { // Keep track of the overridden methods. OverriddenMethods.insert(*I); } } } // Now go through the methods and zero out all the ones we know are // overridden. for (size_t i = 0, e = MethodsSize; i != e; ++i) { if (OverriddenMethods.count(Methods[i])) Methods[i] = 0; } } } bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID, AbstractDiagSelID SelID, const CXXRecordDecl *CurrentRD) { if (SelID == -1) return RequireNonAbstractType(Loc, T, PDiag(DiagID), CurrentRD); else return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID, CurrentRD); } bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, const PartialDiagnostic &PD, const CXXRecordDecl *CurrentRD) { if (!getLangOptions().CPlusPlus) return false; if (const ArrayType *AT = Context.getAsArrayType(T)) return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD); if (const PointerType *PT = T->getAs()) { // Find the innermost pointer type. while (const PointerType *T = PT->getPointeeType()->getAs()) PT = T; if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD); } const RecordType *RT = T->getAs(); if (!RT) return false; const CXXRecordDecl *RD = dyn_cast(RT->getDecl()); if (!RD) return false; if (CurrentRD && CurrentRD != RD) return false; if (!RD->isAbstract()) return false; Diag(Loc, PD) << RD->getDeclName(); // Check if we've already emitted the list of pure virtual functions for this // class. if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) return true; PureVirtualMethodCollector Collector(Context, RD); for (PureVirtualMethodCollector::MethodList::const_iterator I = Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) { const CXXMethodDecl *MD = *I; Diag(MD->getLocation(), diag::note_pure_virtual_function) << MD->getDeclName(); } if (!PureVirtualClassDiagSet) PureVirtualClassDiagSet.reset(new RecordDeclSetTy); PureVirtualClassDiagSet->insert(RD); return true; } namespace { class AbstractClassUsageDiagnoser : public DeclVisitor { Sema &SemaRef; CXXRecordDecl *AbstractClass; bool VisitDeclContext(const DeclContext *DC) { bool Invalid = false; for (CXXRecordDecl::decl_iterator I = DC->decls_begin(), E = DC->decls_end(); I != E; ++I) Invalid |= Visit(*I); return Invalid; } public: AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac) : SemaRef(SemaRef), AbstractClass(ac) { Visit(SemaRef.Context.getTranslationUnitDecl()); } bool VisitFunctionDecl(const FunctionDecl *FD) { if (FD->isThisDeclarationADefinition()) { // No need to do the check if we're in a definition, because it requires // that the return/param types are complete. // because that requires return VisitDeclContext(FD); } // Check the return type. QualType RTy = FD->getType()->getAs()->getResultType(); bool Invalid = SemaRef.RequireNonAbstractType(FD->getLocation(), RTy, diag::err_abstract_type_in_decl, Sema::AbstractReturnType, AbstractClass); for (FunctionDecl::param_const_iterator I = FD->param_begin(), E = FD->param_end(); I != E; ++I) { const ParmVarDecl *VD = *I; Invalid |= SemaRef.RequireNonAbstractType(VD->getLocation(), VD->getOriginalType(), diag::err_abstract_type_in_decl, Sema::AbstractParamType, AbstractClass); } return Invalid; } bool VisitDecl(const Decl* D) { if (const DeclContext *DC = dyn_cast(D)) return VisitDeclContext(DC); return false; } }; } /// \brief Perform semantic checks on a class definition that has been /// completing, introducing implicitly-declared members, checking for /// abstract types, etc. void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) { if (!Record || Record->isInvalidDecl()) return; if (!Record->isDependentType()) AddImplicitlyDeclaredMembersToClass(Record); if (Record->isInvalidDecl()) return; if (!Record->isAbstract()) { // Collect all the pure virtual methods and see if this is an abstract // class after all. PureVirtualMethodCollector Collector(Context, Record); if (!Collector.empty()) Record->setAbstract(true); } if (Record->isAbstract()) (void)AbstractClassUsageDiagnoser(*this, Record); } void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, DeclPtrTy TagDecl, SourceLocation LBrac, SourceLocation RBrac) { if (!TagDecl) return; AdjustDeclIfTemplate(TagDecl); ActOnFields(S, RLoc, TagDecl, (DeclPtrTy*)FieldCollector->getCurFields(), FieldCollector->getCurNumFields(), LBrac, RBrac, 0); CheckCompletedCXXClass( dyn_cast_or_null(TagDecl.getAs())); } /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared /// special functions, such as the default constructor, copy /// constructor, or destructor, to the given C++ class (C++ /// [special]p1). This routine can only be executed just before the /// definition of the class is complete. void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { CanQualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); // FIXME: Implicit declarations have exception specifications, which are // the union of the specifications of the implicitly called functions. if (!ClassDecl->hasUserDeclaredConstructor()) { // C++ [class.ctor]p5: // A default constructor for a class X is a constructor of class X // that can be called without an argument. If there is no // user-declared constructor for class X, a default constructor is // implicitly declared. An implicitly-declared default constructor // is an inline public member of its class. DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(ClassType); CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, Context.getFunctionType(Context.VoidTy, 0, 0, false, 0), /*TInfo=*/0, /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true); DefaultCon->setAccess(AS_public); DefaultCon->setImplicit(); DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor()); ClassDecl->addDecl(DefaultCon); } if (!ClassDecl->hasUserDeclaredCopyConstructor()) { // C++ [class.copy]p4: // If the class definition does not explicitly declare a copy // constructor, one is declared implicitly. // C++ [class.copy]p5: // The implicitly-declared copy constructor for a class X will // have the form // // X::X(const X&) // // if bool HasConstCopyConstructor = true; // -- each direct or virtual base class B of X has a copy // constructor whose first parameter is of type const B& or // const volatile B&, and for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) { const CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); HasConstCopyConstructor = BaseClassDecl->hasConstCopyConstructor(Context); } // -- for all the nonstatic data members of X that are of a // class type M (or array thereof), each such class type // has a copy constructor whose first parameter is of type // const M& or const volatile M&. for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) { QualType FieldType = (*Field)->getType(); if (const ArrayType *Array = Context.getAsArrayType(FieldType)) FieldType = Array->getElementType(); if (const RecordType *FieldClassType = FieldType->getAs()) { const CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); HasConstCopyConstructor = FieldClassDecl->hasConstCopyConstructor(Context); } } // Otherwise, the implicitly declared copy constructor will have // the form // // X::X(X&) QualType ArgType = ClassType; if (HasConstCopyConstructor) ArgType = ArgType.withConst(); ArgType = Context.getLValueReferenceType(ArgType); // An implicitly-declared copy constructor is an inline public // member of its class. DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(ClassType); CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, Context.getFunctionType(Context.VoidTy, &ArgType, 1, false, 0), /*TInfo=*/0, /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true); CopyConstructor->setAccess(AS_public); CopyConstructor->setImplicit(); CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor()); // Add the parameter to the constructor. ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, ClassDecl->getLocation(), /*IdentifierInfo=*/0, ArgType, /*TInfo=*/0, VarDecl::None, 0); CopyConstructor->setParams(Context, &FromParam, 1); ClassDecl->addDecl(CopyConstructor); } if (!ClassDecl->hasUserDeclaredCopyAssignment()) { // Note: The following rules are largely analoguous to the copy // constructor rules. Note that virtual bases are not taken into account // for determining the argument type of the operator. Note also that // operators taking an object instead of a reference are allowed. // // C++ [class.copy]p10: // If the class definition does not explicitly declare a copy // assignment operator, one is declared implicitly. // The implicitly-defined copy assignment operator for a class X // will have the form // // X& X::operator=(const X&) // // if bool HasConstCopyAssignment = true; // -- each direct base class B of X has a copy assignment operator // whose parameter is of type const B&, const volatile B& or B, // and for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) { assert(!Base->getType()->isDependentType() && "Cannot generate implicit members for class with dependent bases."); const CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); const CXXMethodDecl *MD = 0; HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context, MD); } // -- for all the nonstatic data members of X that are of a class // type M (or array thereof), each such class type has a copy // assignment operator whose parameter is of type const M&, // const volatile M& or M. for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) { QualType FieldType = (*Field)->getType(); if (const ArrayType *Array = Context.getAsArrayType(FieldType)) FieldType = Array->getElementType(); if (const RecordType *FieldClassType = FieldType->getAs()) { const CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); const CXXMethodDecl *MD = 0; HasConstCopyAssignment = FieldClassDecl->hasConstCopyAssignment(Context, MD); } } // Otherwise, the implicitly declared copy assignment operator will // have the form // // X& X::operator=(X&) QualType ArgType = ClassType; QualType RetType = Context.getLValueReferenceType(ArgType); if (HasConstCopyAssignment) ArgType = ArgType.withConst(); ArgType = Context.getLValueReferenceType(ArgType); // An implicitly-declared copy assignment operator is an inline public // member of its class. DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, Context.getFunctionType(RetType, &ArgType, 1, false, 0), /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true); CopyAssignment->setAccess(AS_public); CopyAssignment->setImplicit(); CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment()); CopyAssignment->setCopyAssignment(true); // Add the parameter to the operator. ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, ClassDecl->getLocation(), /*IdentifierInfo=*/0, ArgType, /*TInfo=*/0, VarDecl::None, 0); CopyAssignment->setParams(Context, &FromParam, 1); // Don't call addedAssignmentOperator. There is no way to distinguish an // implicit from an explicit assignment operator. ClassDecl->addDecl(CopyAssignment); AddOverriddenMethods(ClassDecl, CopyAssignment); } if (!ClassDecl->hasUserDeclaredDestructor()) { // C++ [class.dtor]p2: // If a class has no user-declared destructor, a destructor is // declared implicitly. An implicitly-declared destructor is an // inline public member of its class. DeclarationName Name = Context.DeclarationNames.getCXXDestructorName(ClassType); CXXDestructorDecl *Destructor = CXXDestructorDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, Context.getFunctionType(Context.VoidTy, 0, 0, false, 0), /*isInline=*/true, /*isImplicitlyDeclared=*/true); Destructor->setAccess(AS_public); Destructor->setImplicit(); Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); ClassDecl->addDecl(Destructor); AddOverriddenMethods(ClassDecl, Destructor); } } void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) { Decl *D = TemplateD.getAs(); if (!D) return; TemplateParameterList *Params = 0; if (TemplateDecl *Template = dyn_cast(D)) Params = Template->getTemplateParameters(); else if (ClassTemplatePartialSpecializationDecl *PartialSpec = dyn_cast(D)) Params = PartialSpec->getTemplateParameters(); else return; for (TemplateParameterList::iterator Param = Params->begin(), ParamEnd = Params->end(); Param != ParamEnd; ++Param) { NamedDecl *Named = cast(*Param); if (Named->getDeclName()) { S->AddDecl(DeclPtrTy::make(Named)); IdResolver.AddDecl(Named); } } } void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) { if (!RecordD) return; AdjustDeclIfTemplate(RecordD); CXXRecordDecl *Record = cast(RecordD.getAs()); PushDeclContext(S, Record); } void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) { if (!RecordD) return; PopDeclContext(); } /// ActOnStartDelayedCXXMethodDeclaration - We have completed /// parsing a top-level (non-nested) C++ class, and we are now /// parsing those parts of the given Method declaration that could /// not be parsed earlier (C++ [class.mem]p2), such as default /// arguments. This action should enter the scope of the given /// Method declaration as if we had just parsed the qualified method /// name. However, it should not bring the parameters into scope; /// that will be performed by ActOnDelayedCXXMethodParameter. void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) { } /// ActOnDelayedCXXMethodParameter - We've already started a delayed /// C++ method declaration. We're (re-)introducing the given /// function parameter into scope for use in parsing later parts of /// the method declaration. For example, we could see an /// ActOnParamDefaultArgument event for this parameter. void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) { if (!ParamD) return; ParmVarDecl *Param = cast(ParamD.getAs()); // If this parameter has an unparsed default argument, clear it out // to make way for the parsed default argument. if (Param->hasUnparsedDefaultArg()) Param->setDefaultArg(0); S->AddDecl(DeclPtrTy::make(Param)); if (Param->getDeclName()) IdResolver.AddDecl(Param); } /// ActOnFinishDelayedCXXMethodDeclaration - We have finished /// processing the delayed method declaration for Method. The method /// declaration is now considered finished. There may be a separate /// ActOnStartOfFunctionDef action later (not necessarily /// immediately!) for this method, if it was also defined inside the /// class body. void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) { if (!MethodD) return; AdjustDeclIfTemplate(MethodD); FunctionDecl *Method = cast(MethodD.getAs()); // Now that we have our default arguments, check the constructor // again. It could produce additional diagnostics or affect whether // the class has implicitly-declared destructors, among other // things. if (CXXConstructorDecl *Constructor = dyn_cast(Method)) CheckConstructor(Constructor); // Check the default arguments, which we may have added. if (!Method->isInvalidDecl()) CheckCXXDefaultArguments(Method); } /// CheckConstructorDeclarator - Called by ActOnDeclarator to check /// the well-formedness of the constructor declarator @p D with type @p /// R. If there are any errors in the declarator, this routine will /// emit diagnostics and set the invalid bit to true. In any case, the type /// will be updated to reflect a well-formed type for the constructor and /// returned. QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, FunctionDecl::StorageClass &SC) { bool isVirtual = D.getDeclSpec().isVirtualSpecified(); // C++ [class.ctor]p3: // A constructor shall not be virtual (10.3) or static (9.4). A // constructor can be invoked for a const, volatile or const // volatile object. A constructor shall not be declared const, // volatile, or const volatile (9.3.2). if (isVirtual) { if (!D.isInvalidType()) Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) << SourceRange(D.getIdentifierLoc()); D.setInvalidType(); } if (SC == FunctionDecl::Static) { if (!D.isInvalidType()) Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) << SourceRange(D.getIdentifierLoc()); D.setInvalidType(); SC = FunctionDecl::None; } DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; if (FTI.TypeQuals != 0) { if (FTI.TypeQuals & Qualifiers::Const) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) << "const" << SourceRange(D.getIdentifierLoc()); if (FTI.TypeQuals & Qualifiers::Volatile) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) << "volatile" << SourceRange(D.getIdentifierLoc()); if (FTI.TypeQuals & Qualifiers::Restrict) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) << "restrict" << SourceRange(D.getIdentifierLoc()); } // Rebuild the function type "R" without any type qualifiers (in // case any of the errors above fired) and with "void" as the // return type, since constructors don't have return types. We // *always* have to do this, because GetTypeForDeclarator will // put in a result type of "int" when none was specified. const FunctionProtoType *Proto = R->getAs(); return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), Proto->getNumArgs(), Proto->isVariadic(), 0); } /// CheckConstructor - Checks a fully-formed constructor for /// well-formedness, issuing any diagnostics required. Returns true if /// the constructor declarator is invalid. void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { CXXRecordDecl *ClassDecl = dyn_cast(Constructor->getDeclContext()); if (!ClassDecl) return Constructor->setInvalidDecl(); // C++ [class.copy]p3: // A declaration of a constructor for a class X is ill-formed if // its first parameter is of type (optionally cv-qualified) X and // either there are no other parameters or else all other // parameters have default arguments. if (!Constructor->isInvalidDecl() && ((Constructor->getNumParams() == 1) || (Constructor->getNumParams() > 1 && Constructor->getParamDecl(1)->hasDefaultArg())) && Constructor->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) { QualType ParamType = Constructor->getParamDecl(0)->getType(); QualType ClassTy = Context.getTagDeclType(ClassDecl); if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); Diag(ParamLoc, diag::err_constructor_byvalue_arg) << CodeModificationHint::CreateInsertion(ParamLoc, " const &"); // FIXME: Rather that making the constructor invalid, we should endeavor // to fix the type. Constructor->setInvalidDecl(); } } // Notify the class that we've added a constructor. ClassDecl->addedConstructor(Context, Constructor); } /// CheckDestructor - Checks a fully-formed destructor for well-formedness, /// issuing any diagnostics required. Returns true on error. bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { CXXRecordDecl *RD = Destructor->getParent(); if (Destructor->isVirtual()) { SourceLocation Loc; if (!Destructor->isImplicit()) Loc = Destructor->getLocation(); else Loc = RD->getLocation(); // If we have a virtual destructor, look up the deallocation function FunctionDecl *OperatorDelete = 0; DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) return true; Destructor->setOperatorDelete(OperatorDelete); } return false; } static inline bool FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) { return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && FTI.ArgInfo[0].Param && FTI.ArgInfo[0].Param.getAs()->getType()->isVoidType()); } /// CheckDestructorDeclarator - Called by ActOnDeclarator to check /// the well-formednes of the destructor declarator @p D with type @p /// R. If there are any errors in the declarator, this routine will /// emit diagnostics and set the declarator to invalid. Even if this happens, /// will be updated to reflect a well-formed type for the destructor and /// returned. QualType Sema::CheckDestructorDeclarator(Declarator &D, FunctionDecl::StorageClass& SC) { // C++ [class.dtor]p1: // [...] A typedef-name that names a class is a class-name // (7.1.3); however, a typedef-name that names a class shall not // be used as the identifier in the declarator for a destructor // declaration. QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName); if (isa(DeclaratorType)) { Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) << DeclaratorType; D.setInvalidType(); } // C++ [class.dtor]p2: // A destructor is used to destroy objects of its class type. A // destructor takes no parameters, and no return type can be // specified for it (not even void). The address of a destructor // shall not be taken. A destructor shall not be static. A // destructor can be invoked for a const, volatile or const // volatile object. A destructor shall not be declared const, // volatile or const volatile (9.3.2). if (SC == FunctionDecl::Static) { if (!D.isInvalidType()) Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) << SourceRange(D.getIdentifierLoc()); SC = FunctionDecl::None; D.setInvalidType(); } if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { // Destructors don't have return types, but the parser will // happily parse something like: // // class X { // float ~X(); // }; // // The return type will be eliminated later. Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) << SourceRange(D.getIdentifierLoc()); } DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; if (FTI.TypeQuals != 0 && !D.isInvalidType()) { if (FTI.TypeQuals & Qualifiers::Const) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) << "const" << SourceRange(D.getIdentifierLoc()); if (FTI.TypeQuals & Qualifiers::Volatile) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) << "volatile" << SourceRange(D.getIdentifierLoc()); if (FTI.TypeQuals & Qualifiers::Restrict) Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) << "restrict" << SourceRange(D.getIdentifierLoc()); D.setInvalidType(); } // Make sure we don't have any parameters. if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) { Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); // Delete the parameters. FTI.freeArgs(); D.setInvalidType(); } // Make sure the destructor isn't variadic. if (FTI.isVariadic) { Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); D.setInvalidType(); } // Rebuild the function type "R" without any type qualifiers or // parameters (in case any of the errors above fired) and with // "void" as the return type, since destructors don't have return // types. We *always* have to do this, because GetTypeForDeclarator // will put in a result type of "int" when none was specified. return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0); } /// CheckConversionDeclarator - Called by ActOnDeclarator to check the /// well-formednes of the conversion function declarator @p D with /// type @p R. If there are any errors in the declarator, this routine /// will emit diagnostics and return true. Otherwise, it will return /// false. Either way, the type @p R will be updated to reflect a /// well-formed type for the conversion operator. void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, FunctionDecl::StorageClass& SC) { // C++ [class.conv.fct]p1: // Neither parameter types nor return type can be specified. The // type of a conversion function (8.3.5) is "function taking no // parameter returning conversion-type-id." if (SC == FunctionDecl::Static) { if (!D.isInvalidType()) Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) << SourceRange(D.getIdentifierLoc()); D.setInvalidType(); SC = FunctionDecl::None; } if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { // Conversion functions don't have return types, but the parser will // happily parse something like: // // class X { // float operator bool(); // }; // // The return type will be changed later anyway. Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) << SourceRange(D.getIdentifierLoc()); } // Make sure we don't have any parameters. if (R->getAs()->getNumArgs() > 0) { Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); // Delete the parameters. D.getTypeObject(0).Fun.freeArgs(); D.setInvalidType(); } // Make sure the conversion function isn't variadic. if (R->getAs()->isVariadic() && !D.isInvalidType()) { Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); D.setInvalidType(); } // C++ [class.conv.fct]p4: // The conversion-type-id shall not represent a function type nor // an array type. QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId); if (ConvType->isArrayType()) { Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); ConvType = Context.getPointerType(ConvType); D.setInvalidType(); } else if (ConvType->isFunctionType()) { Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); ConvType = Context.getPointerType(ConvType); D.setInvalidType(); } // Rebuild the function type "R" without any parameters (in case any // of the errors above fired) and with the conversion type as the // return type. R = Context.getFunctionType(ConvType, 0, 0, false, R->getAs()->getTypeQuals()); // C++0x explicit conversion operators. if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x) Diag(D.getDeclSpec().getExplicitSpecLoc(), diag::warn_explicit_conversion_functions) << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); } /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete /// the declaration of the given C++ conversion function. This routine /// is responsible for recording the conversion function in the C++ /// class, if possible. Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { assert(Conversion && "Expected to receive a conversion function declaration"); CXXRecordDecl *ClassDecl = cast(Conversion->getDeclContext()); // Make sure we aren't redeclaring the conversion function. QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); // C++ [class.conv.fct]p1: // [...] A conversion function is never used to convert a // (possibly cv-qualified) object to the (possibly cv-qualified) // same object type (or a reference to it), to a (possibly // cv-qualified) base class of that type (or a reference to it), // or to (possibly cv-qualified) void. // FIXME: Suppress this warning if the conversion function ends up being a // virtual function that overrides a virtual function in a base class. QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); if (const ReferenceType *ConvTypeRef = ConvType->getAs()) ConvType = ConvTypeRef->getPointeeType(); if (ConvType->isRecordType()) { ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); if (ConvType == ClassType) Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) << ClassType; else if (IsDerivedFrom(ClassType, ConvType)) Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) << ClassType << ConvType; } else if (ConvType->isVoidType()) { Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) << ClassType << ConvType; } if (Conversion->getPreviousDeclaration()) { const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration(); if (FunctionTemplateDecl *ConversionTemplate = Conversion->getDescribedFunctionTemplate()) ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration(); if (ClassDecl->replaceConversion(ExpectedPrevDecl, Conversion)) return DeclPtrTy::make(Conversion); assert(Conversion->isInvalidDecl() && "Conversion should not get here."); } else if (FunctionTemplateDecl *ConversionTemplate = Conversion->getDescribedFunctionTemplate()) ClassDecl->addConversionFunction(ConversionTemplate); else if (!Conversion->getPrimaryTemplate()) // ignore specializations ClassDecl->addConversionFunction(Conversion); return DeclPtrTy::make(Conversion); } //===----------------------------------------------------------------------===// // Namespace Handling //===----------------------------------------------------------------------===// /// ActOnStartNamespaceDef - This is called at the start of a namespace /// definition. Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope, SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace) { NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IdentLoc, II); Namespc->setLBracLoc(LBrace); Scope *DeclRegionScope = NamespcScope->getParent(); if (II) { // C++ [namespace.def]p2: // The identifier in an original-namespace-definition shall not have been // previously defined in the declarative region in which the // original-namespace-definition appears. The identifier in an // original-namespace-definition is the name of the namespace. Subsequently // in that declarative region, it is treated as an original-namespace-name. NamedDecl *PrevDecl = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName, ForRedeclaration); if (NamespaceDecl *OrigNS = dyn_cast_or_null(PrevDecl)) { // This is an extended namespace definition. // Attach this namespace decl to the chain of extended namespace // definitions. OrigNS->setNextNamespace(Namespc); Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace()); // Remove the previous declaration from the scope. if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) { IdResolver.RemoveDecl(OrigNS); DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS)); } } else if (PrevDecl) { // This is an invalid name redefinition. Diag(Namespc->getLocation(), diag::err_redefinition_different_kind) << Namespc->getDeclName(); Diag(PrevDecl->getLocation(), diag::note_previous_definition); Namespc->setInvalidDecl(); // Continue on to push Namespc as current DeclContext and return it. } else if (II->isStr("std") && CurContext->getLookupContext()->isTranslationUnit()) { // This is the first "real" definition of the namespace "std", so update // our cache of the "std" namespace to point at this definition. if (StdNamespace) { // We had already defined a dummy namespace "std". Link this new // namespace definition to the dummy namespace "std". StdNamespace->setNextNamespace(Namespc); StdNamespace->setLocation(IdentLoc); Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace()); } // Make our StdNamespace cache point at the first real definition of the // "std" namespace. StdNamespace = Namespc; } PushOnScopeChains(Namespc, DeclRegionScope); } else { // Anonymous namespaces. assert(Namespc->isAnonymousNamespace()); CurContext->addDecl(Namespc); // Link the anonymous namespace into its parent. NamespaceDecl *PrevDecl; DeclContext *Parent = CurContext->getLookupContext(); if (TranslationUnitDecl *TU = dyn_cast(Parent)) { PrevDecl = TU->getAnonymousNamespace(); TU->setAnonymousNamespace(Namespc); } else { NamespaceDecl *ND = cast(Parent); PrevDecl = ND->getAnonymousNamespace(); ND->setAnonymousNamespace(Namespc); } // Link the anonymous namespace with its previous declaration. if (PrevDecl) { assert(PrevDecl->isAnonymousNamespace()); assert(!PrevDecl->getNextNamespace()); Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace()); PrevDecl->setNextNamespace(Namespc); } // C++ [namespace.unnamed]p1. An unnamed-namespace-definition // behaves as if it were replaced by // namespace unique { /* empty body */ } // using namespace unique; // namespace unique { namespace-body } // where all occurrences of 'unique' in a translation unit are // replaced by the same identifier and this identifier differs // from all other identifiers in the entire program. // We just create the namespace with an empty name and then add an // implicit using declaration, just like the standard suggests. // // CodeGen enforces the "universally unique" aspect by giving all // declarations semantically contained within an anonymous // namespace internal linkage. if (!PrevDecl) { UsingDirectiveDecl* UD = UsingDirectiveDecl::Create(Context, CurContext, /* 'using' */ LBrace, /* 'namespace' */ SourceLocation(), /* qualifier */ SourceRange(), /* NNS */ NULL, /* identifier */ SourceLocation(), Namespc, /* Ancestor */ CurContext); UD->setImplicit(); CurContext->addDecl(UD); } } // Although we could have an invalid decl (i.e. the namespace name is a // redefinition), push it as current DeclContext and try to continue parsing. // FIXME: We should be able to push Namespc here, so that the each DeclContext // for the namespace has the declarations that showed up in that particular // namespace definition. PushDeclContext(NamespcScope, Namespc); return DeclPtrTy::make(Namespc); } /// getNamespaceDecl - Returns the namespace a decl represents. If the decl /// is a namespace alias, returns the namespace it points to. static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { if (NamespaceAliasDecl *AD = dyn_cast_or_null(D)) return AD->getNamespace(); return dyn_cast_or_null(D); } /// ActOnFinishNamespaceDef - This callback is called after a namespace is /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) { Decl *Dcl = D.getAs(); NamespaceDecl *Namespc = dyn_cast_or_null(Dcl); assert(Namespc && "Invalid parameter, expected NamespaceDecl"); Namespc->setRBracLoc(RBrace); PopDeclContext(); } Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, SourceLocation NamespcLoc, const CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *NamespcName, AttributeList *AttrList) { assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); assert(NamespcName && "Invalid NamespcName."); assert(IdentLoc.isValid() && "Invalid NamespceName location."); assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); UsingDirectiveDecl *UDir = 0; // Lookup namespace name. LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); LookupParsedName(R, S, &SS); if (R.isAmbiguous()) return DeclPtrTy(); if (!R.empty()) { NamedDecl *Named = R.getFoundDecl(); assert((isa(Named) || isa(Named)) && "expected namespace decl"); // C++ [namespace.udir]p1: // A using-directive specifies that the names in the nominated // namespace can be used in the scope in which the // using-directive appears after the using-directive. During // unqualified name lookup (3.4.1), the names appear as if they // were declared in the nearest enclosing namespace which // contains both the using-directive and the nominated // namespace. [Note: in this context, "contains" means "contains // directly or indirectly". ] // Find enclosing context containing both using-directive and // nominated namespace. NamespaceDecl *NS = getNamespaceDecl(Named); DeclContext *CommonAncestor = cast(NS); while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) CommonAncestor = CommonAncestor->getParent(); UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc, SS.getRange(), (NestedNameSpecifier *)SS.getScopeRep(), IdentLoc, Named, CommonAncestor); PushUsingDirective(S, UDir); } else { Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); } // FIXME: We ignore attributes for now. delete AttrList; return DeclPtrTy::make(UDir); } void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { // If scope has associated entity, then using directive is at namespace // or translation unit scope. We add UsingDirectiveDecls, into // it's lookup structure. if (DeclContext *Ctx = static_cast(S->getEntity())) Ctx->addDecl(UDir); else // Otherwise it is block-sope. using-directives will affect lookup // only to the end of scope. S->PushUsingDirective(DeclPtrTy::make(UDir)); } Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, bool HasUsingKeyword, SourceLocation UsingLoc, const CXXScopeSpec &SS, UnqualifiedId &Name, AttributeList *AttrList, bool IsTypeName, SourceLocation TypenameLoc) { assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); switch (Name.getKind()) { case UnqualifiedId::IK_Identifier: case UnqualifiedId::IK_OperatorFunctionId: case UnqualifiedId::IK_LiteralOperatorId: case UnqualifiedId::IK_ConversionFunctionId: break; case UnqualifiedId::IK_ConstructorName: // C++0x inherited constructors. if (getLangOptions().CPlusPlus0x) break; Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor) << SS.getRange(); return DeclPtrTy(); case UnqualifiedId::IK_DestructorName: Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor) << SS.getRange(); return DeclPtrTy(); case UnqualifiedId::IK_TemplateId: Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id) << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); return DeclPtrTy(); } DeclarationName TargetName = GetNameFromUnqualifiedId(Name); if (!TargetName) return DeclPtrTy(); // Warn about using declarations. // TODO: store that the declaration was written without 'using' and // talk about access decls instead of using decls in the // diagnostics. if (!HasUsingKeyword) { UsingLoc = Name.getSourceRange().getBegin(); Diag(UsingLoc, diag::warn_access_decl_deprecated) << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(), "using "); } NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS, Name.getSourceRange().getBegin(), TargetName, AttrList, /* IsInstantiation */ false, IsTypeName, TypenameLoc); if (UD) PushOnScopeChains(UD, S, /*AddToContext*/ false); return DeclPtrTy::make(UD); } /// Determines whether to create a using shadow decl for a particular /// decl, given the set of decls existing prior to this using lookup. bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, const LookupResult &Previous) { // Diagnose finding a decl which is not from a base class of the // current class. We do this now because there are cases where this // function will silently decide not to build a shadow decl, which // will pre-empt further diagnostics. // // We don't need to do this in C++0x because we do the check once on // the qualifier. // // FIXME: diagnose the following if we care enough: // struct A { int foo; }; // struct B : A { using A::foo; }; // template struct C : A {}; // template struct D : C { using B::foo; } // <--- // This is invalid (during instantiation) in C++03 because B::foo // resolves to the using decl in B, which is not a base class of D. // We can't diagnose it immediately because C is an unknown // specialization. The UsingShadowDecl in D then points directly // to A::foo, which will look well-formed when we instantiate. // The right solution is to not collapse the shadow-decl chain. if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) { DeclContext *OrigDC = Orig->getDeclContext(); // Handle enums and anonymous structs. if (isa(OrigDC)) OrigDC = OrigDC->getParent(); CXXRecordDecl *OrigRec = cast(OrigDC); while (OrigRec->isAnonymousStructOrUnion()) OrigRec = cast(OrigRec->getDeclContext()); if (cast(CurContext)->isProvablyNotDerivedFrom(OrigRec)) { if (OrigDC == CurContext) { Diag(Using->getLocation(), diag::err_using_decl_nested_name_specifier_is_current_class) << Using->getNestedNameRange(); Diag(Orig->getLocation(), diag::note_using_decl_target); return true; } Diag(Using->getNestedNameRange().getBegin(), diag::err_using_decl_nested_name_specifier_is_not_base_class) << Using->getTargetNestedNameDecl() << cast(CurContext) << Using->getNestedNameRange(); Diag(Orig->getLocation(), diag::note_using_decl_target); return true; } } if (Previous.empty()) return false; NamedDecl *Target = Orig; if (isa(Target)) Target = cast(Target)->getTargetDecl(); // If the target happens to be one of the previous declarations, we // don't have a conflict. // // FIXME: but we might be increasing its access, in which case we // should redeclare it. NamedDecl *NonTag = 0, *Tag = 0; for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); I != E; ++I) { NamedDecl *D = (*I)->getUnderlyingDecl(); if (D->getCanonicalDecl() == Target->getCanonicalDecl()) return false; (isa(D) ? Tag : NonTag) = D; } if (Target->isFunctionOrFunctionTemplate()) { FunctionDecl *FD; if (isa(Target)) FD = cast(Target)->getTemplatedDecl(); else FD = cast(Target); NamedDecl *OldDecl = 0; switch (CheckOverload(FD, Previous, OldDecl)) { case Ovl_Overload: return false; case Ovl_NonFunction: Diag(Using->getLocation(), diag::err_using_decl_conflict); break; // We found a decl with the exact signature. case Ovl_Match: if (isa(OldDecl)) { // Silently ignore the possible conflict. return false; } // If we're in a record, we want to hide the target, so we // return true (without a diagnostic) to tell the caller not to // build a shadow decl. if (CurContext->isRecord()) return true; // If we're not in a record, this is an error. Diag(Using->getLocation(), diag::err_using_decl_conflict); break; } Diag(Target->getLocation(), diag::note_using_decl_target); Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); return true; } // Target is not a function. if (isa(Target)) { // No conflict between a tag and a non-tag. if (!Tag) return false; Diag(Using->getLocation(), diag::err_using_decl_conflict); Diag(Target->getLocation(), diag::note_using_decl_target); Diag(Tag->getLocation(), diag::note_using_decl_conflict); return true; } // No conflict between a tag and a non-tag. if (!NonTag) return false; Diag(Using->getLocation(), diag::err_using_decl_conflict); Diag(Target->getLocation(), diag::note_using_decl_target); Diag(NonTag->getLocation(), diag::note_using_decl_conflict); return true; } /// Builds a shadow declaration corresponding to a 'using' declaration. UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, UsingDecl *UD, NamedDecl *Orig) { // If we resolved to another shadow declaration, just coalesce them. NamedDecl *Target = Orig; if (isa(Target)) { Target = cast(Target)->getTargetDecl(); assert(!isa(Target) && "nested shadow declaration"); } UsingShadowDecl *Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD, Target); UD->addShadowDecl(Shadow); if (S) PushOnScopeChains(Shadow, S); else CurContext->addDecl(Shadow); Shadow->setAccess(UD->getAccess()); if (Orig->isInvalidDecl() || UD->isInvalidDecl()) Shadow->setInvalidDecl(); return Shadow; } /// Hides a using shadow declaration. This is required by the current /// using-decl implementation when a resolvable using declaration in a /// class is followed by a declaration which would hide or override /// one or more of the using decl's targets; for example: /// /// struct Base { void foo(int); }; /// struct Derived : Base { /// using Base::foo; /// void foo(int); /// }; /// /// The governing language is C++03 [namespace.udecl]p12: /// /// When a using-declaration brings names from a base class into a /// derived class scope, member functions in the derived class /// override and/or hide member functions with the same name and /// parameter types in a base class (rather than conflicting). /// /// There are two ways to implement this: /// (1) optimistically create shadow decls when they're not hidden /// by existing declarations, or /// (2) don't create any shadow decls (or at least don't make them /// visible) until we've fully parsed/instantiated the class. /// The problem with (1) is that we might have to retroactively remove /// a shadow decl, which requires several O(n) operations because the /// decl structures are (very reasonably) not designed for removal. /// (2) avoids this but is very fiddly and phase-dependent. void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { // Remove it from the DeclContext... Shadow->getDeclContext()->removeDecl(Shadow); // ...and the scope, if applicable... if (S) { S->RemoveDecl(DeclPtrTy::make(static_cast(Shadow))); IdResolver.RemoveDecl(Shadow); } // ...and the using decl. Shadow->getUsingDecl()->removeShadowDecl(Shadow); // TODO: complain somehow if Shadow was used. It shouldn't // be possible for this to happen, because } /// Builds a using declaration. /// /// \param IsInstantiation - Whether this call arises from an /// instantiation of an unresolved using declaration. We treat /// the lookup differently for these declarations. NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, const CXXScopeSpec &SS, SourceLocation IdentLoc, DeclarationName Name, AttributeList *AttrList, bool IsInstantiation, bool IsTypeName, SourceLocation TypenameLoc) { assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); assert(IdentLoc.isValid() && "Invalid TargetName location."); // FIXME: We ignore attributes for now. delete AttrList; if (SS.isEmpty()) { Diag(IdentLoc, diag::err_using_requires_qualname); return 0; } // Do the redeclaration lookup in the current scope. LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName, ForRedeclaration); Previous.setHideTags(false); if (S) { LookupName(Previous, S); // It is really dumb that we have to do this. LookupResult::Filter F = Previous.makeFilter(); while (F.hasNext()) { NamedDecl *D = F.next(); if (!isDeclInScope(D, CurContext, S)) F.erase(); } F.done(); } else { assert(IsInstantiation && "no scope in non-instantiation"); assert(CurContext->isRecord() && "scope not record in instantiation"); LookupQualifiedName(Previous, CurContext); } NestedNameSpecifier *NNS = static_cast(SS.getScopeRep()); // Check for invalid redeclarations. if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous)) return 0; // Check for bad qualifiers. if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc)) return 0; DeclContext *LookupContext = computeDeclContext(SS); NamedDecl *D; if (!LookupContext) { if (IsTypeName) { // FIXME: not all declaration name kinds are legal here D = UnresolvedUsingTypenameDecl::Create(Context, CurContext, UsingLoc, TypenameLoc, SS.getRange(), NNS, IdentLoc, Name); } else { D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc, SS.getRange(), NNS, IdentLoc, Name); } } else { D = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(), UsingLoc, NNS, Name, IsTypeName); } D->setAccess(AS); CurContext->addDecl(D); if (!LookupContext) return D; UsingDecl *UD = cast(D); if (RequireCompleteDeclContext(SS)) { UD->setInvalidDecl(); return UD; } // Look up the target name. LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName); // Unlike most lookups, we don't always want to hide tag // declarations: tag names are visible through the using declaration // even if hidden by ordinary names, *except* in a dependent context // where it's important for the sanity of two-phase lookup. if (!IsInstantiation) R.setHideTags(false); LookupQualifiedName(R, LookupContext); if (R.empty()) { Diag(IdentLoc, diag::err_no_member) << Name << LookupContext << SS.getRange(); UD->setInvalidDecl(); return UD; } if (R.isAmbiguous()) { UD->setInvalidDecl(); return UD; } if (IsTypeName) { // If we asked for a typename and got a non-type decl, error out. if (!R.getAsSingle()) { Diag(IdentLoc, diag::err_using_typename_non_type); for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) Diag((*I)->getUnderlyingDecl()->getLocation(), diag::note_using_decl_target); UD->setInvalidDecl(); return UD; } } else { // If we asked for a non-typename and we got a type, error out, // but only if this is an instantiation of an unresolved using // decl. Otherwise just silently find the type name. if (IsInstantiation && R.getAsSingle()) { Diag(IdentLoc, diag::err_using_dependent_value_is_type); Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); UD->setInvalidDecl(); return UD; } } // C++0x N2914 [namespace.udecl]p6: // A using-declaration shall not name a namespace. if (R.getAsSingle()) { Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) << SS.getRange(); UD->setInvalidDecl(); return UD; } for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { if (!CheckUsingShadowDecl(UD, *I, Previous)) BuildUsingShadowDecl(S, UD, *I); } return UD; } /// Checks that the given using declaration is not an invalid /// redeclaration. Note that this is checking only for the using decl /// itself, not for any ill-formedness among the UsingShadowDecls. bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, bool isTypeName, const CXXScopeSpec &SS, SourceLocation NameLoc, const LookupResult &Prev) { // C++03 [namespace.udecl]p8: // C++0x [namespace.udecl]p10: // A using-declaration is a declaration and can therefore be used // repeatedly where (and only where) multiple declarations are // allowed. // That's only in file contexts. if (CurContext->getLookupContext()->isFileContext()) return false; NestedNameSpecifier *Qual = static_cast(SS.getScopeRep()); for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { NamedDecl *D = *I; bool DTypename; NestedNameSpecifier *DQual; if (UsingDecl *UD = dyn_cast(D)) { DTypename = UD->isTypeName(); DQual = UD->getTargetNestedNameDecl(); } else if (UnresolvedUsingValueDecl *UD = dyn_cast(D)) { DTypename = false; DQual = UD->getTargetNestedNameSpecifier(); } else if (UnresolvedUsingTypenameDecl *UD = dyn_cast(D)) { DTypename = true; DQual = UD->getTargetNestedNameSpecifier(); } else continue; // using decls differ if one says 'typename' and the other doesn't. // FIXME: non-dependent using decls? if (isTypeName != DTypename) continue; // using decls differ if they name different scopes (but note that // template instantiation can cause this check to trigger when it // didn't before instantiation). if (Context.getCanonicalNestedNameSpecifier(Qual) != Context.getCanonicalNestedNameSpecifier(DQual)) continue; Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); Diag(D->getLocation(), diag::note_using_decl) << 1; return true; } return false; } /// Checks that the given nested-name qualifier used in a using decl /// in the current context is appropriately related to the current /// scope. If an error is found, diagnoses it and returns true. bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, const CXXScopeSpec &SS, SourceLocation NameLoc) { DeclContext *NamedContext = computeDeclContext(SS); if (!CurContext->isRecord()) { // C++03 [namespace.udecl]p3: // C++0x [namespace.udecl]p8: // A using-declaration for a class member shall be a member-declaration. // If we weren't able to compute a valid scope, it must be a // dependent class scope. if (!NamedContext || NamedContext->isRecord()) { Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member) << SS.getRange(); return true; } // Otherwise, everything is known to be fine. return false; } // The current scope is a record. // If the named context is dependent, we can't decide much. if (!NamedContext) { // FIXME: in C++0x, we can diagnose if we can prove that the // nested-name-specifier does not refer to a base class, which is // still possible in some cases. // Otherwise we have to conservatively report that things might be // okay. return false; } if (!NamedContext->isRecord()) { // Ideally this would point at the last name in the specifier, // but we don't have that level of source info. Diag(SS.getRange().getBegin(), diag::err_using_decl_nested_name_specifier_is_not_class) << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange(); return true; } if (getLangOptions().CPlusPlus0x) { // C++0x [namespace.udecl]p3: // In a using-declaration used as a member-declaration, the // nested-name-specifier shall name a base class of the class // being defined. if (cast(CurContext)->isProvablyNotDerivedFrom( cast(NamedContext))) { if (CurContext == NamedContext) { Diag(NameLoc, diag::err_using_decl_nested_name_specifier_is_current_class) << SS.getRange(); return true; } Diag(SS.getRange().getBegin(), diag::err_using_decl_nested_name_specifier_is_not_base_class) << (NestedNameSpecifier*) SS.getScopeRep() << cast(CurContext) << SS.getRange(); return true; } return false; } // C++03 [namespace.udecl]p4: // A using-declaration used as a member-declaration shall refer // to a member of a base class of the class being defined [etc.]. // Salient point: SS doesn't have to name a base class as long as // lookup only finds members from base classes. Therefore we can // diagnose here only if we can prove that that can't happen, // i.e. if the class hierarchies provably don't intersect. // TODO: it would be nice if "definitely valid" results were cached // in the UsingDecl and UsingShadowDecl so that these checks didn't // need to be repeated. struct UserData { llvm::DenseSet Bases; static bool collect(const CXXRecordDecl *Base, void *OpaqueData) { UserData *Data = reinterpret_cast(OpaqueData); Data->Bases.insert(Base); return true; } bool hasDependentBases(const CXXRecordDecl *Class) { return !Class->forallBases(collect, this); } /// Returns true if the base is dependent or is one of the /// accumulated base classes. static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) { UserData *Data = reinterpret_cast(OpaqueData); return !Data->Bases.count(Base); } bool mightShareBases(const CXXRecordDecl *Class) { return Bases.count(Class) || !Class->forallBases(doesNotContain, this); } }; UserData Data; // Returns false if we find a dependent base. if (Data.hasDependentBases(cast(CurContext))) return false; // Returns false if the class has a dependent base or if it or one // of its bases is present in the base set of the current context. if (Data.mightShareBases(cast(NamedContext))) return false; Diag(SS.getRange().getBegin(), diag::err_using_decl_nested_name_specifier_is_not_base_class) << (NestedNameSpecifier*) SS.getScopeRep() << cast(CurContext) << SS.getRange(); return true; } Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, const CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *Ident) { // Lookup the namespace name. LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); LookupParsedName(R, S, &SS); // Check if we have a previous declaration with the same name. if (NamedDecl *PrevDecl = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) { if (NamespaceAliasDecl *AD = dyn_cast(PrevDecl)) { // We already have an alias with the same name that points to the same // namespace, so don't create a new one. if (!R.isAmbiguous() && !R.empty() && AD->getNamespace() == getNamespaceDecl(R.getFoundDecl())) return DeclPtrTy(); } unsigned DiagID = isa(PrevDecl) ? diag::err_redefinition : diag::err_redefinition_different_kind; Diag(AliasLoc, DiagID) << Alias; Diag(PrevDecl->getLocation(), diag::note_previous_definition); return DeclPtrTy(); } if (R.isAmbiguous()) return DeclPtrTy(); if (R.empty()) { Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange(); return DeclPtrTy(); } NamespaceAliasDecl *AliasDecl = NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, Alias, SS.getRange(), (NestedNameSpecifier *)SS.getScopeRep(), IdentLoc, R.getFoundDecl()); CurContext->addDecl(AliasDecl); return DeclPtrTy::make(AliasDecl); } void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor) { assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() && !Constructor->isUsed()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"); CXXRecordDecl *ClassDecl = cast(Constructor->getDeclContext()); assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) { Diag(CurrentLocation, diag::note_member_synthesized_at) << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl); Constructor->setInvalidDecl(); } else { Constructor->setUsed(); } } void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, CXXDestructorDecl *Destructor) { assert((Destructor->isImplicit() && !Destructor->isUsed()) && "DefineImplicitDestructor - call it for implicit default dtor"); CXXRecordDecl *ClassDecl = Destructor->getParent(); assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); // C++ [class.dtor] p5 // Before the implicitly-declared default destructor for a class is // implicitly defined, all the implicitly-declared default destructors // for its base class and its non-static data members shall have been // implicitly defined. for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), E = ClassDecl->bases_end(); Base != E; ++Base) { CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); if (!BaseClassDecl->hasTrivialDestructor()) { if (CXXDestructorDecl *BaseDtor = const_cast(BaseClassDecl->getDestructor(Context))) MarkDeclarationReferenced(CurrentLocation, BaseDtor); else assert(false && "DefineImplicitDestructor - missing dtor in a base class"); } } for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), E = ClassDecl->field_end(); Field != E; ++Field) { QualType FieldType = Context.getCanonicalType((*Field)->getType()); if (const ArrayType *Array = Context.getAsArrayType(FieldType)) FieldType = Array->getElementType(); if (const RecordType *FieldClassType = FieldType->getAs()) { CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); if (!FieldClassDecl->hasTrivialDestructor()) { if (CXXDestructorDecl *FieldDtor = const_cast( FieldClassDecl->getDestructor(Context))) MarkDeclarationReferenced(CurrentLocation, FieldDtor); else assert(false && "DefineImplicitDestructor - missing dtor in class of a data member"); } } } // FIXME: If CheckDestructor fails, we should emit a note about where the // implicit destructor was needed. if (CheckDestructor(Destructor)) { Diag(CurrentLocation, diag::note_member_synthesized_at) << CXXDestructor << Context.getTagDeclType(ClassDecl); Destructor->setInvalidDecl(); return; } Destructor->setUsed(); } void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation, CXXMethodDecl *MethodDecl) { assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() && MethodDecl->getOverloadedOperator() == OO_Equal && !MethodDecl->isUsed()) && "DefineImplicitOverloadedAssign - call it for implicit assignment op"); CXXRecordDecl *ClassDecl = cast(MethodDecl->getDeclContext()); // C++[class.copy] p12 // Before the implicitly-declared copy assignment operator for a class is // implicitly defined, all implicitly-declared copy assignment operators // for its direct base classes and its nonstatic data members shall have // been implicitly defined. bool err = false; for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), E = ClassDecl->bases_end(); Base != E; ++Base) { CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); if (CXXMethodDecl *BaseAssignOpMethod = getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0), BaseClassDecl)) MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod); } for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), E = ClassDecl->field_end(); Field != E; ++Field) { QualType FieldType = Context.getCanonicalType((*Field)->getType()); if (const ArrayType *Array = Context.getAsArrayType(FieldType)) FieldType = Array->getElementType(); if (const RecordType *FieldClassType = FieldType->getAs()) { CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); if (CXXMethodDecl *FieldAssignOpMethod = getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0), FieldClassDecl)) MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod); } else if (FieldType->isReferenceType()) { Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); Diag(Field->getLocation(), diag::note_declared_at); Diag(CurrentLocation, diag::note_first_required_here); err = true; } else if (FieldType.isConstQualified()) { Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); Diag(Field->getLocation(), diag::note_declared_at); Diag(CurrentLocation, diag::note_first_required_here); err = true; } } if (!err) MethodDecl->setUsed(); } CXXMethodDecl * Sema::getAssignOperatorMethod(SourceLocation CurrentLocation, ParmVarDecl *ParmDecl, CXXRecordDecl *ClassDecl) { QualType LHSType = Context.getTypeDeclType(ClassDecl); QualType RHSType(LHSType); // If class's assignment operator argument is const/volatile qualified, // look for operator = (const/volatile B&). Otherwise, look for // operator = (B&). RHSType = Context.getCVRQualifiedType(RHSType, ParmDecl->getType().getCVRQualifiers()); ExprOwningPtr LHS(this, new (Context) DeclRefExpr(ParmDecl, LHSType, SourceLocation())); ExprOwningPtr RHS(this, new (Context) DeclRefExpr(ParmDecl, RHSType, CurrentLocation)); Expr *Args[2] = { &*LHS, &*RHS }; OverloadCandidateSet CandidateSet; AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2, CandidateSet); OverloadCandidateSet::iterator Best; if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success) return cast(Best->Function); assert(false && "getAssignOperatorMethod - copy assignment operator method not found"); return 0; } void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *CopyConstructor, unsigned TypeQuals) { assert((CopyConstructor->isImplicit() && CopyConstructor->isCopyConstructor(TypeQuals) && !CopyConstructor->isUsed()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"); CXXRecordDecl *ClassDecl = cast(CopyConstructor->getDeclContext()); assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); // C++ [class.copy] p209 // Before the implicitly-declared copy constructor for a class is // implicitly defined, all the implicitly-declared copy constructors // for its base class and its non-static data members shall have been // implicitly defined. for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) { CXXRecordDecl *BaseClassDecl = cast(Base->getType()->getAs()->getDecl()); if (CXXConstructorDecl *BaseCopyCtor = BaseClassDecl->getCopyConstructor(Context, TypeQuals)) MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor); } for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), FieldEnd = ClassDecl->field_end(); Field != FieldEnd; ++Field) { QualType FieldType = Context.getCanonicalType((*Field)->getType()); if (const ArrayType *Array = Context.getAsArrayType(FieldType)) FieldType = Array->getElementType(); if (const RecordType *FieldClassType = FieldType->getAs()) { CXXRecordDecl *FieldClassDecl = cast(FieldClassType->getDecl()); if (CXXConstructorDecl *FieldCopyCtor = FieldClassDecl->getCopyConstructor(Context, TypeQuals)) MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor); } } CopyConstructor->setUsed(); } Sema::OwningExprResult Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, CXXConstructorDecl *Constructor, MultiExprArg ExprArgs, bool RequiresZeroInit) { bool Elidable = false; // C++ [class.copy]p15: // Whenever a temporary class object is copied using a copy constructor, and // this object and the copy have the same cv-unqualified type, an // implementation is permitted to treat the original and the copy as two // different ways of referring to the same object and not perform a copy at // all, even if the class copy constructor or destructor have side effects. // FIXME: Is this enough? if (Constructor->isCopyConstructor()) { Expr *E = ((Expr **)ExprArgs.get())[0]; if (ImplicitCastExpr *ICE = dyn_cast(E)) if (ICE->getCastKind() == CastExpr::CK_NoOp) E = ICE->getSubExpr(); if (CXXFunctionalCastExpr *FCE = dyn_cast(E)) E = FCE->getSubExpr(); while (CXXBindTemporaryExpr *BE = dyn_cast(E)) E = BE->getSubExpr(); if (ImplicitCastExpr *ICE = dyn_cast(E)) if (ICE->getCastKind() == CastExpr::CK_NoOp) E = ICE->getSubExpr(); if (CallExpr *CE = dyn_cast(E)) Elidable = !CE->getCallReturnType()->isReferenceType(); else if (isa(E)) Elidable = true; else if (isa(E)) Elidable = true; } return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor, Elidable, move(ExprArgs), RequiresZeroInit); } /// BuildCXXConstructExpr - Creates a complete call to a constructor, /// including handling of its default argument expressions. Sema::OwningExprResult Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs, bool RequiresZeroInit) { unsigned NumExprs = ExprArgs.size(); Expr **Exprs = (Expr **)ExprArgs.release(); MarkDeclarationReferenced(ConstructLoc, Constructor); return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc, Constructor, Elidable, Exprs, NumExprs, RequiresZeroInit)); } Sema::OwningExprResult Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor, QualType Ty, SourceLocation TyBeginLoc, MultiExprArg Args, SourceLocation RParenLoc) { unsigned NumExprs = Args.size(); Expr **Exprs = (Expr **)Args.release(); MarkDeclarationReferenced(TyBeginLoc, Constructor); return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty, TyBeginLoc, Exprs, NumExprs, RParenLoc)); } bool Sema::InitializeVarWithConstructor(VarDecl *VD, CXXConstructorDecl *Constructor, MultiExprArg Exprs) { OwningExprResult TempResult = BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor, move(Exprs)); if (TempResult.isInvalid()) return true; Expr *Temp = TempResult.takeAs(); MarkDeclarationReferenced(VD->getLocation(), Constructor); Temp = MaybeCreateCXXExprWithTemporaries(Temp); VD->setInit(Context, Temp); return false; } void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) { CXXRecordDecl *ClassDecl = cast( DeclInitType->getAs()->getDecl()); if (!ClassDecl->hasTrivialDestructor()) if (CXXDestructorDecl *Destructor = const_cast(ClassDecl->getDestructor(Context))) MarkDeclarationReferenced(VD->getLocation(), Destructor); } /// AddCXXDirectInitializerToDecl - This action is called immediately after /// ActOnDeclarator, when a C++ direct initializer is present. /// e.g: "int x(1);" void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl, SourceLocation LParenLoc, MultiExprArg Exprs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { assert(Exprs.size() != 0 && Exprs.get() && "missing expressions"); Decl *RealDecl = Dcl.getAs(); // If there is no declaration, there was an error parsing it. Just ignore // the initializer. if (RealDecl == 0) return; VarDecl *VDecl = dyn_cast(RealDecl); if (!VDecl) { Diag(RealDecl->getLocation(), diag::err_illegal_initializer); RealDecl->setInvalidDecl(); return; } // We will represent direct-initialization similarly to copy-initialization: // int x(1); -as-> int x = 1; // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); // // Clients that want to distinguish between the two forms, can check for // direct initializer using VarDecl::hasCXXDirectInitializer(). // A major benefit is that clients that don't particularly care about which // exactly form was it (like the CodeGen) can handle both cases without // special case code. // If either the declaration has a dependent type or if any of the expressions // is type-dependent, we represent the initialization via a ParenListExpr for // later use during template instantiation. if (VDecl->getType()->isDependentType() || Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) { // Let clients know that initialization was done with a direct initializer. VDecl->setCXXDirectInitializer(true); // Store the initialization expressions as a ParenListExpr. unsigned NumExprs = Exprs.size(); VDecl->setInit(Context, new (Context) ParenListExpr(Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc)); return; } // C++ 8.5p11: // The form of initialization (using parentheses or '=') is generally // insignificant, but does matter when the entity being initialized has a // class type. QualType DeclInitType = VDecl->getType(); if (const ArrayType *Array = Context.getAsArrayType(DeclInitType)) DeclInitType = Context.getBaseElementType(Array); if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(), diag::err_typecheck_decl_incomplete_type)) { VDecl->setInvalidDecl(); return; } // The variable can not have an abstract class type. if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), diag::err_abstract_type_in_decl, AbstractVariableType)) VDecl->setInvalidDecl(); const VarDecl *Def = 0; if (VDecl->getDefinition(Def)) { Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName(); Diag(Def->getLocation(), diag::note_previous_definition); VDecl->setInvalidDecl(); return; } // Capture the variable that is being initialized and the style of // initialization. InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); // FIXME: Poor source location information. InitializationKind Kind = InitializationKind::CreateDirect(VDecl->getLocation(), LParenLoc, RParenLoc); InitializationSequence InitSeq(*this, Entity, Kind, (Expr**)Exprs.get(), Exprs.size()); OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs)); if (Result.isInvalid()) { VDecl->setInvalidDecl(); return; } Result = MaybeCreateCXXExprWithTemporaries(move(Result)); VDecl->setInit(Context, Result.takeAs()); VDecl->setCXXDirectInitializer(true); if (VDecl->getType()->getAs()) FinalizeVarWithDestructor(VDecl, DeclInitType); } /// \brief Add the applicable constructor candidates for an initialization /// by constructor. static void AddConstructorInitializationCandidates(Sema &SemaRef, QualType ClassType, Expr **Args, unsigned NumArgs, InitializationKind Kind, OverloadCandidateSet &CandidateSet) { // C++ [dcl.init]p14: // If the initialization is direct-initialization, or if it is // copy-initialization where the cv-unqualified version of the // source type is the same class as, or a derived class of, the // class of the destination, constructors are considered. The // applicable constructors are enumerated (13.3.1.3), and the // best one is chosen through overload resolution (13.3). The // constructor so selected is called to initialize the object, // with the initializer expression(s) as its argument(s). If no // constructor applies, or the overload resolution is ambiguous, // the initialization is ill-formed. const RecordType *ClassRec = ClassType->getAs(); assert(ClassRec && "Can only initialize a class type here"); // FIXME: When we decide not to synthesize the implicitly-declared // constructors, we'll need to make them appear here. const CXXRecordDecl *ClassDecl = cast(ClassRec->getDecl()); DeclarationName ConstructorName = SemaRef.Context.DeclarationNames.getCXXConstructorName( SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType()); DeclContext::lookup_const_iterator Con, ConEnd; for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName); Con != ConEnd; ++Con) { // Find the constructor (which may be a template). CXXConstructorDecl *Constructor = 0; FunctionTemplateDecl *ConstructorTmpl= dyn_cast(*Con); if (ConstructorTmpl) Constructor = cast(ConstructorTmpl->getTemplatedDecl()); else Constructor = cast(*Con); if ((Kind.getKind() == InitializationKind::IK_Direct) || (Kind.getKind() == InitializationKind::IK_Value) || (Kind.getKind() == InitializationKind::IK_Copy && Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) || ((Kind.getKind() == InitializationKind::IK_Default) && Constructor->isDefaultConstructor())) { if (ConstructorTmpl) SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0, Args, NumArgs, CandidateSet); else SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet); } } } /// \brief Attempt to perform initialization by constructor /// (C++ [dcl.init]p14), which may occur as part of direct-initialization or /// copy-initialization. /// /// This routine determines whether initialization by constructor is possible, /// but it does not emit any diagnostics in the case where the initialization /// is ill-formed. /// /// \param ClassType the type of the object being initialized, which must have /// class type. /// /// \param Args the arguments provided to initialize the object /// /// \param NumArgs the number of arguments provided to initialize the object /// /// \param Kind the type of initialization being performed /// /// \returns the constructor used to initialize the object, if successful. /// Otherwise, emits a diagnostic and returns NULL. CXXConstructorDecl * Sema::TryInitializationByConstructor(QualType ClassType, Expr **Args, unsigned NumArgs, SourceLocation Loc, InitializationKind Kind) { // Build the overload candidate set OverloadCandidateSet CandidateSet; AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind, CandidateSet); // Determine whether we found a constructor we can use. OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, Loc, Best)) { case OR_Success: case OR_Deleted: // We found a constructor. Return it. return cast(Best->Function); case OR_No_Viable_Function: case OR_Ambiguous: // Overload resolution failed. Return nothing. return 0; } // Silence GCC warning return 0; } /// \brief Perform initialization by constructor (C++ [dcl.init]p14), which /// may occur as part of direct-initialization or copy-initialization. /// /// \param ClassType the type of the object being initialized, which must have /// class type. /// /// \param ArgsPtr the arguments provided to initialize the object /// /// \param Loc the source location where the initialization occurs /// /// \param Range the source range that covers the entire initialization /// /// \param InitEntity the name of the entity being initialized, if known /// /// \param Kind the type of initialization being performed /// /// \param ConvertedArgs a vector that will be filled in with the /// appropriately-converted arguments to the constructor (if initialization /// succeeded). /// /// \returns the constructor used to initialize the object, if successful. /// Otherwise, emits a diagnostic and returns NULL. CXXConstructorDecl * Sema::PerformInitializationByConstructor(QualType ClassType, MultiExprArg ArgsPtr, SourceLocation Loc, SourceRange Range, DeclarationName InitEntity, InitializationKind Kind, ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) { // Build the overload candidate set Expr **Args = (Expr **)ArgsPtr.get(); unsigned NumArgs = ArgsPtr.size(); OverloadCandidateSet CandidateSet; AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind, CandidateSet); OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, Loc, Best)) { case OR_Success: // We found a constructor. Break out so that we can convert the arguments // appropriately. break; case OR_No_Viable_Function: if (InitEntity) Diag(Loc, diag::err_ovl_no_viable_function_in_init) << InitEntity << Range; else Diag(Loc, diag::err_ovl_no_viable_function_in_init) << ClassType << Range; PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); return 0; case OR_Ambiguous: if (InitEntity) Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range; else Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range; PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return 0; case OR_Deleted: if (InitEntity) Diag(Loc, diag::err_ovl_deleted_init) << Best->Function->isDeleted() << InitEntity << Range; else { const CXXRecordDecl *RD = cast(ClassType->getAs()->getDecl()); Diag(Loc, diag::err_ovl_deleted_init) << Best->Function->isDeleted() << RD->getDeclName() << Range; } PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return 0; } // Convert the arguments, fill in default arguments, etc. CXXConstructorDecl *Constructor = cast(Best->Function); if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs)) return 0; return Constructor; } /// \brief Given a constructor and the set of arguments provided for the /// constructor, convert the arguments and add any required default arguments /// to form a proper call to this constructor. /// /// \returns true if an error occurred, false otherwise. bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, MultiExprArg ArgsPtr, SourceLocation Loc, ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) { // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. unsigned NumArgs = ArgsPtr.size(); Expr **Args = (Expr **)ArgsPtr.get(); const FunctionProtoType *Proto = Constructor->getType()->getAs(); assert(Proto && "Constructor without a prototype?"); unsigned NumArgsInProto = Proto->getNumArgs(); // If too few arguments are available, we'll fill in the rest with defaults. if (NumArgs < NumArgsInProto) ConvertedArgs.reserve(NumArgsInProto); else ConvertedArgs.reserve(NumArgs); VariadicCallType CallType = Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; llvm::SmallVector AllArgs; bool Invalid = GatherArgumentsForCall(Loc, Constructor, Proto, 0, Args, NumArgs, AllArgs, CallType); for (unsigned i =0, size = AllArgs.size(); i < size; i++) ConvertedArgs.push_back(AllArgs[i]); return Invalid; } /// CompareReferenceRelationship - Compare the two types T1 and T2 to /// determine whether they are reference-related, /// reference-compatible, reference-compatible with added /// qualification, or incompatible, for use in C++ initialization by /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference /// type, and the first type (T1) is the pointee type of the reference /// type being initialized. Sema::ReferenceCompareResult Sema::CompareReferenceRelationship(SourceLocation Loc, QualType OrigT1, QualType OrigT2, bool& DerivedToBase) { assert(!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"); assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); QualType T1 = Context.getCanonicalType(OrigT1); QualType T2 = Context.getCanonicalType(OrigT2); Qualifiers T1Quals, T2Quals; QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); // C++ [dcl.init.ref]p4: // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is // reference-related to "cv2 T2" if T1 is the same type as T2, or // T1 is a base class of T2. if (UnqualT1 == UnqualT2) DerivedToBase = false; else if (!RequireCompleteType(Loc, OrigT1, PDiag()) && !RequireCompleteType(Loc, OrigT2, PDiag()) && IsDerivedFrom(UnqualT2, UnqualT1)) DerivedToBase = true; else return Ref_Incompatible; // At this point, we know that T1 and T2 are reference-related (at // least). // If the type is an array type, promote the element qualifiers to the type // for comparison. if (isa(T1) && T1Quals) T1 = Context.getQualifiedType(UnqualT1, T1Quals); if (isa(T2) && T2Quals) T2 = Context.getQualifiedType(UnqualT2, T2Quals); // C++ [dcl.init.ref]p4: // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is // reference-related to T2 and cv1 is the same cv-qualification // as, or greater cv-qualification than, cv2. For purposes of // overload resolution, cases for which cv1 is greater // cv-qualification than cv2 are identified as // reference-compatible with added qualification (see 13.3.3.2). if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) return Ref_Compatible; else if (T1.isMoreQualifiedThan(T2)) return Ref_Compatible_With_Added_Qualification; else return Ref_Related; } /// CheckReferenceInit - Check the initialization of a reference /// variable with the given initializer (C++ [dcl.init.ref]). Init is /// the initializer (either a simple initializer or an initializer /// list), and DeclType is the type of the declaration. When ICS is /// non-null, this routine will compute the implicit conversion /// sequence according to C++ [over.ics.ref] and will not produce any /// diagnostics; when ICS is null, it will emit diagnostics when any /// errors are found. Either way, a return value of true indicates /// that there was a failure, a return value of false indicates that /// the reference initialization succeeded. /// /// When @p SuppressUserConversions, user-defined conversions are /// suppressed. /// When @p AllowExplicit, we also permit explicit user-defined /// conversion functions. /// When @p ForceRValue, we unconditionally treat the initializer as an rvalue. /// When @p IgnoreBaseAccess, we don't do access control on to-base conversion. /// This is used when this is called from a C-style cast. bool Sema::CheckReferenceInit(Expr *&Init, QualType DeclType, SourceLocation DeclLoc, bool SuppressUserConversions, bool AllowExplicit, bool ForceRValue, ImplicitConversionSequence *ICS, bool IgnoreBaseAccess) { assert(DeclType->isReferenceType() && "Reference init needs a reference"); QualType T1 = DeclType->getAs()->getPointeeType(); QualType T2 = Init->getType(); // If the initializer is the address of an overloaded function, try // to resolve the overloaded function. If all goes well, T2 is the // type of the resulting function. if (Context.getCanonicalType(T2) == Context.OverloadTy) { FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType, ICS != 0); if (Fn) { // Since we're performing this reference-initialization for // real, update the initializer with the resulting function. if (!ICS) { if (DiagnoseUseOfDecl(Fn, DeclLoc)) return true; Init = FixOverloadedFunctionReference(Init, Fn); } T2 = Fn->getType(); } } // Compute some basic properties of the types and the initializer. bool isRValRef = DeclType->isRValueReferenceType(); bool DerivedToBase = false; Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression : Init->isLvalue(Context); ReferenceCompareResult RefRelationship = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase); // Most paths end in a failed conversion. if (ICS) ICS->ConversionKind = ImplicitConversionSequence::BadConversion; // C++ [dcl.init.ref]p5: // A reference to type "cv1 T1" is initialized by an expression // of type "cv2 T2" as follows: // -- If the initializer expression // Rvalue references cannot bind to lvalues (N2812). // There is absolutely no situation where they can. In particular, note that // this is ill-formed, even if B has a user-defined conversion to A&&: // B b; // A&& r = b; if (isRValRef && InitLvalue == Expr::LV_Valid) { if (!ICS) Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref) << Init->getSourceRange(); return true; } bool BindsDirectly = false; // -- is an lvalue (but is not a bit-field), and "cv1 T1" is // reference-compatible with "cv2 T2," or // // Note that the bit-field check is skipped if we are just computing // the implicit conversion sequence (C++ [over.best.ics]p2). if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) && RefRelationship >= Ref_Compatible_With_Added_Qualification) { BindsDirectly = true; if (ICS) { // C++ [over.ics.ref]p1: // When a parameter of reference type binds directly (8.5.3) // to an argument expression, the implicit conversion sequence // is the identity conversion, unless the argument expression // has a type that is a derived class of the parameter type, // in which case the implicit conversion sequence is a // derived-to-base Conversion (13.3.3.1). ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; ICS->Standard.First = ICK_Identity; ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; ICS->Standard.Third = ICK_Identity; ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); ICS->Standard.ReferenceBinding = true; ICS->Standard.DirectBinding = true; ICS->Standard.RRefBinding = false; ICS->Standard.CopyConstructor = 0; // Nothing more to do: the inaccessibility/ambiguity check for // derived-to-base conversions is suppressed when we're // computing the implicit conversion sequence (C++ // [over.best.ics]p2). return false; } else { // Perform the conversion. CastExpr::CastKind CK = CastExpr::CK_NoOp; if (DerivedToBase) CK = CastExpr::CK_DerivedToBase; else if(CheckExceptionSpecCompatibility(Init, T1)) return true; ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true); } } // -- has a class type (i.e., T2 is a class type) and can be // implicitly converted to an lvalue of type "cv3 T3," // where "cv1 T1" is reference-compatible with "cv3 T3" // 92) (this conversion is selected by enumerating the // applicable conversion functions (13.3.1.6) and choosing // the best one through overload resolution (13.3)), if (!isRValRef && !SuppressUserConversions && T2->isRecordType() && !RequireCompleteType(DeclLoc, T2, 0)) { CXXRecordDecl *T2RecordDecl = dyn_cast(T2->getAs()->getDecl()); OverloadCandidateSet CandidateSet; const UnresolvedSet *Conversions = T2RecordDecl->getVisibleConversionFunctions(); for (UnresolvedSet::iterator I = Conversions->begin(), E = Conversions->end(); I != E; ++I) { NamedDecl *D = *I; CXXRecordDecl *ActingDC = cast(D->getDeclContext()); if (isa(D)) D = cast(D)->getTargetDecl(); FunctionTemplateDecl *ConvTemplate = dyn_cast(D); CXXConversionDecl *Conv; if (ConvTemplate) Conv = cast(ConvTemplate->getTemplatedDecl()); else Conv = cast(D); // If the conversion function doesn't return a reference type, // it can't be considered for this conversion. if (Conv->getConversionType()->isLValueReferenceType() && (AllowExplicit || !Conv->isExplicit())) { if (ConvTemplate) AddTemplateConversionCandidate(ConvTemplate, ActingDC, Init, DeclType, CandidateSet); else AddConversionCandidate(Conv, ActingDC, Init, DeclType, CandidateSet); } } OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, DeclLoc, Best)) { case OR_Success: // This is a direct binding. BindsDirectly = true; if (ICS) { // C++ [over.ics.ref]p1: // // [...] If the parameter binds directly to the result of // applying a conversion function to the argument // expression, the implicit conversion sequence is a // user-defined conversion sequence (13.3.3.1.2), with the // second standard conversion sequence either an identity // conversion or, if the conversion function returns an // entity of a type that is a derived class of the parameter // type, a derived-to-base Conversion. ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion; ICS->UserDefined.Before = Best->Conversions[0].Standard; ICS->UserDefined.After = Best->FinalConversion; ICS->UserDefined.ConversionFunction = Best->Function; ICS->UserDefined.EllipsisConversion = false; assert(ICS->UserDefined.After.ReferenceBinding && ICS->UserDefined.After.DirectBinding && "Expected a direct reference binding!"); return false; } else { OwningExprResult InitConversion = BuildCXXCastArgument(DeclLoc, QualType(), CastExpr::CK_UserDefinedConversion, cast(Best->Function), Owned(Init)); Init = InitConversion.takeAs(); if (CheckExceptionSpecCompatibility(Init, T1)) return true; ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion, /*isLvalue=*/true); } break; case OR_Ambiguous: if (ICS) { for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); Cand != CandidateSet.end(); ++Cand) if (Cand->Viable) ICS->ConversionFunctionSet.push_back(Cand->Function); break; } Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType() << Init->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return true; case OR_No_Viable_Function: case OR_Deleted: // There was no suitable conversion, or we found a deleted // conversion; continue with other checks. break; } } if (BindsDirectly) { // C++ [dcl.init.ref]p4: // [...] In all cases where the reference-related or // reference-compatible relationship of two types is used to // establish the validity of a reference binding, and T1 is a // base class of T2, a program that necessitates such a binding // is ill-formed if T1 is an inaccessible (clause 11) or // ambiguous (10.2) base class of T2. // // Note that we only check this condition when we're allowed to // complain about errors, because we should not be checking for // ambiguity (or inaccessibility) unless the reference binding // actually happens. if (DerivedToBase) return CheckDerivedToBaseConversion(T2, T1, DeclLoc, Init->getSourceRange(), IgnoreBaseAccess); else return false; } // -- Otherwise, the reference shall be to a non-volatile const // type (i.e., cv1 shall be const), or the reference shall be an // rvalue reference and the initializer expression shall be an rvalue. if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) { if (!ICS) Diag(DeclLoc, diag::err_not_reference_to_const_init) << T1 << int(InitLvalue != Expr::LV_Valid) << T2 << Init->getSourceRange(); return true; } // -- If the initializer expression is an rvalue, with T2 a // class type, and "cv1 T1" is reference-compatible with // "cv2 T2," the reference is bound in one of the // following ways (the choice is implementation-defined): // // -- The reference is bound to the object represented by // the rvalue (see 3.10) or to a sub-object within that // object. // // -- A temporary of type "cv1 T2" [sic] is created, and // a constructor is called to copy the entire rvalue // object into the temporary. The reference is bound to // the temporary or to a sub-object within the // temporary. // // The constructor that would be used to make the copy // shall be callable whether or not the copy is actually // done. // // Note that C++0x [dcl.init.ref]p5 takes away this implementation // freedom, so we will always take the first option and never build // a temporary in this case. FIXME: We will, however, have to check // for the presence of a copy constructor in C++98/03 mode. if (InitLvalue != Expr::LV_Valid && T2->isRecordType() && RefRelationship >= Ref_Compatible_With_Added_Qualification) { if (ICS) { ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; ICS->Standard.First = ICK_Identity; ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; ICS->Standard.Third = ICK_Identity; ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); ICS->Standard.ReferenceBinding = true; ICS->Standard.DirectBinding = false; ICS->Standard.RRefBinding = isRValRef; ICS->Standard.CopyConstructor = 0; } else { CastExpr::CastKind CK = CastExpr::CK_NoOp; if (DerivedToBase) CK = CastExpr::CK_DerivedToBase; else if(CheckExceptionSpecCompatibility(Init, T1)) return true; ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false); } return false; } // -- Otherwise, a temporary of type "cv1 T1" is created and // initialized from the initializer expression using the // rules for a non-reference copy initialization (8.5). The // reference is then bound to the temporary. If T1 is // reference-related to T2, cv1 must be the same // cv-qualification as, or greater cv-qualification than, // cv2; otherwise, the program is ill-formed. if (RefRelationship == Ref_Related) { // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then // we would be reference-compatible or reference-compatible with // added qualification. But that wasn't the case, so the reference // initialization fails. if (!ICS) Diag(DeclLoc, diag::err_reference_init_drops_quals) << T1 << int(InitLvalue != Expr::LV_Valid) << T2 << Init->getSourceRange(); return true; } // If at least one of the types is a class type, the types are not // related, and we aren't allowed any user conversions, the // reference binding fails. This case is important for breaking // recursion, since TryImplicitConversion below will attempt to // create a temporary through the use of a copy constructor. if (SuppressUserConversions && RefRelationship == Ref_Incompatible && (T1->isRecordType() || T2->isRecordType())) { if (!ICS) Diag(DeclLoc, diag::err_typecheck_convert_incompatible) << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange(); return true; } // Actually try to convert the initializer to T1. if (ICS) { // C++ [over.ics.ref]p2: // // When a parameter of reference type is not bound directly to // an argument expression, the conversion sequence is the one // required to convert the argument expression to the // underlying type of the reference according to // 13.3.3.1. Conceptually, this conversion sequence corresponds // to copy-initializing a temporary of the underlying type with // the argument expression. Any difference in top-level // cv-qualification is subsumed by the initialization itself // and does not constitute a conversion. *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions, /*AllowExplicit=*/false, /*ForceRValue=*/false, /*InOverloadResolution=*/false); // Of course, that's still a reference binding. if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) { ICS->Standard.ReferenceBinding = true; ICS->Standard.RRefBinding = isRValRef; } else if (ICS->ConversionKind == ImplicitConversionSequence::UserDefinedConversion) { ICS->UserDefined.After.ReferenceBinding = true; ICS->UserDefined.After.RRefBinding = isRValRef; } return ICS->ConversionKind == ImplicitConversionSequence::BadConversion; } else { ImplicitConversionSequence Conversions; bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing, false, false, Conversions); if (badConversion) { if ((Conversions.ConversionKind == ImplicitConversionSequence::BadConversion) && !Conversions.ConversionFunctionSet.empty()) { Diag(DeclLoc, diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange(); for (int j = Conversions.ConversionFunctionSet.size()-1; j >= 0; j--) { FunctionDecl *Func = Conversions.ConversionFunctionSet[j]; Diag(Func->getLocation(), diag::err_ovl_candidate); } } else { if (isRValRef) Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref) << Init->getSourceRange(); else Diag(DeclLoc, diag::err_invalid_initialization) << DeclType << Init->getType() << Init->getSourceRange(); } } return badConversion; } } static inline bool CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, const FunctionDecl *FnDecl) { const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext(); if (isa(DC)) { return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_declared_in_namespace) << FnDecl->getDeclName(); } if (isa(DC) && FnDecl->getStorageClass() == FunctionDecl::Static) { return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_declared_static) << FnDecl->getDeclName(); } return false; } static inline bool CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl, CanQualType ExpectedResultType, CanQualType ExpectedFirstParamType, unsigned DependentParamTypeDiag, unsigned InvalidParamTypeDiag) { QualType ResultType = FnDecl->getType()->getAs()->getResultType(); // Check that the result type is not dependent. if (ResultType->isDependentType()) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_dependent_result_type) << FnDecl->getDeclName() << ExpectedResultType; // Check that the result type is what we expect. if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_invalid_result_type) << FnDecl->getDeclName() << ExpectedResultType; // A function template must have at least 2 parameters. if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_template_too_few_parameters) << FnDecl->getDeclName(); // The function decl must have at least 1 parameter. if (FnDecl->getNumParams() == 0) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_delete_too_few_parameters) << FnDecl->getDeclName(); // Check the the first parameter type is not dependent. QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); if (FirstParamType->isDependentType()) return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag) << FnDecl->getDeclName() << ExpectedFirstParamType; // Check that the first parameter type is what we expect. if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() != ExpectedFirstParamType) return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) << FnDecl->getDeclName() << ExpectedFirstParamType; return false; } static bool CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { // C++ [basic.stc.dynamic.allocation]p1: // A program is ill-formed if an allocation function is declared in a // namespace scope other than global scope or declared static in global // scope. if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) return true; CanQualType SizeTy = SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType()); // C++ [basic.stc.dynamic.allocation]p1: // The return type shall be void*. The first parameter shall have type // std::size_t. if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy, SizeTy, diag::err_operator_new_dependent_param_type, diag::err_operator_new_param_type)) return true; // C++ [basic.stc.dynamic.allocation]p1: // The first parameter shall not have an associated default argument. if (FnDecl->getParamDecl(0)->hasDefaultArg()) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_new_default_arg) << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange(); return false; } static bool CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) { // C++ [basic.stc.dynamic.deallocation]p1: // A program is ill-formed if deallocation functions are declared in a // namespace scope other than global scope or declared static in global // scope. if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) return true; // C++ [basic.stc.dynamic.deallocation]p2: // Each deallocation function shall return void and its first parameter // shall be void*. if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy, SemaRef.Context.VoidPtrTy, diag::err_operator_delete_dependent_param_type, diag::err_operator_delete_param_type)) return true; QualType FirstParamType = FnDecl->getParamDecl(0)->getType(); if (FirstParamType->isDependentType()) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_delete_dependent_param_type) << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy; if (SemaRef.Context.getCanonicalType(FirstParamType) != SemaRef.Context.VoidPtrTy) return SemaRef.Diag(FnDecl->getLocation(), diag::err_operator_delete_param_type) << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy; return false; } /// CheckOverloadedOperatorDeclaration - Check whether the declaration /// of this overloaded operator is well-formed. If so, returns false; /// otherwise, emits appropriate diagnostics and returns true. bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { assert(FnDecl && FnDecl->isOverloadedOperator() && "Expected an overloaded operator declaration"); OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); // C++ [over.oper]p5: // The allocation and deallocation functions, operator new, // operator new[], operator delete and operator delete[], are // described completely in 3.7.3. The attributes and restrictions // found in the rest of this subclause do not apply to them unless // explicitly stated in 3.7.3. if (Op == OO_Delete || Op == OO_Array_Delete) return CheckOperatorDeleteDeclaration(*this, FnDecl); if (Op == OO_New || Op == OO_Array_New) return CheckOperatorNewDeclaration(*this, FnDecl); // C++ [over.oper]p6: // An operator function shall either be a non-static member // function or be a non-member function and have at least one // parameter whose type is a class, a reference to a class, an // enumeration, or a reference to an enumeration. if (CXXMethodDecl *MethodDecl = dyn_cast(FnDecl)) { if (MethodDecl->isStatic()) return Diag(FnDecl->getLocation(), diag::err_operator_overload_static) << FnDecl->getDeclName(); } else { bool ClassOrEnumParam = false; for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), ParamEnd = FnDecl->param_end(); Param != ParamEnd; ++Param) { QualType ParamType = (*Param)->getType().getNonReferenceType(); if (ParamType->isDependentType() || ParamType->isRecordType() || ParamType->isEnumeralType()) { ClassOrEnumParam = true; break; } } if (!ClassOrEnumParam) return Diag(FnDecl->getLocation(), diag::err_operator_overload_needs_class_or_enum) << FnDecl->getDeclName(); } // C++ [over.oper]p8: // An operator function cannot have default arguments (8.3.6), // except where explicitly stated below. // // Only the function-call operator allows default arguments // (C++ [over.call]p1). if (Op != OO_Call) { for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); Param != FnDecl->param_end(); ++Param) { if ((*Param)->hasDefaultArg()) return Diag((*Param)->getLocation(), diag::err_operator_overload_default_arg) << FnDecl->getDeclName() << (*Param)->getDefaultArgRange(); } } static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { { false, false, false } #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ , { Unary, Binary, MemberOnly } #include "clang/Basic/OperatorKinds.def" }; bool CanBeUnaryOperator = OperatorUses[Op][0]; bool CanBeBinaryOperator = OperatorUses[Op][1]; bool MustBeMemberOperator = OperatorUses[Op][2]; // C++ [over.oper]p8: // [...] Operator functions cannot have more or fewer parameters // than the number required for the corresponding operator, as // described in the rest of this subclause. unsigned NumParams = FnDecl->getNumParams() + (isa(FnDecl)? 1 : 0); if (Op != OO_Call && ((NumParams == 1 && !CanBeUnaryOperator) || (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) || (NumParams > 2))) { // We have the wrong number of parameters. unsigned ErrorKind; if (CanBeUnaryOperator && CanBeBinaryOperator) { ErrorKind = 2; // 2 -> unary or binary. } else if (CanBeUnaryOperator) { ErrorKind = 0; // 0 -> unary } else { assert(CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"); ErrorKind = 1; // 1 -> binary } return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) << FnDecl->getDeclName() << NumParams << ErrorKind; } // Overloaded operators other than operator() cannot be variadic. if (Op != OO_Call && FnDecl->getType()->getAs()->isVariadic()) { return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) << FnDecl->getDeclName(); } // Some operators must be non-static member functions. if (MustBeMemberOperator && !isa(FnDecl)) { return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be_member) << FnDecl->getDeclName(); } // C++ [over.inc]p1: // The user-defined function called operator++ implements the // prefix and postfix ++ operator. If this function is a member // function with no parameters, or a non-member function with one // parameter of class or enumeration type, it defines the prefix // increment operator ++ for objects of that type. If the function // is a member function with one parameter (which shall be of type // int) or a non-member function with two parameters (the second // of which shall be of type int), it defines the postfix // increment operator ++ for objects of that type. if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); bool ParamIsInt = false; if (const BuiltinType *BT = LastParam->getType()->getAs()) ParamIsInt = BT->getKind() == BuiltinType::Int; if (!ParamIsInt) return Diag(LastParam->getLocation(), diag::err_operator_overload_post_incdec_must_be_int) << LastParam->getType() << (Op == OO_MinusMinus); } // Notify the class if it got an assignment operator. if (Op == OO_Equal) { // Would have returned earlier otherwise. assert(isa(FnDecl) && "Overloaded = not member, but not filtered."); CXXMethodDecl *Method = cast(FnDecl); Method->getParent()->addedAssignmentOperator(Context, Method); } return false; } /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ /// linkage specification, including the language and (if present) /// the '{'. ExternLoc is the location of the 'extern', LangLoc is /// the location of the language string literal, which is provided /// by Lang/StrSize. LBraceLoc, if valid, provides the location of /// the '{' brace. Otherwise, this linkage specification does not /// have any braces. Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, SourceLocation LangLoc, const char *Lang, unsigned StrSize, SourceLocation LBraceLoc) { LinkageSpecDecl::LanguageIDs Language; if (strncmp(Lang, "\"C\"", StrSize) == 0) Language = LinkageSpecDecl::lang_c; else if (strncmp(Lang, "\"C++\"", StrSize) == 0) Language = LinkageSpecDecl::lang_cxx; else { Diag(LangLoc, diag::err_bad_language); return DeclPtrTy(); } // FIXME: Add all the various semantics of linkage specifications LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, LangLoc, Language, LBraceLoc.isValid()); CurContext->addDecl(D); PushDeclContext(S, D); return DeclPtrTy::make(D); } /// ActOnFinishLinkageSpecification - Completely the definition of /// the C++ linkage specification LinkageSpec. If RBraceLoc is /// valid, it's the position of the closing '}' brace in a linkage /// specification that uses braces. Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S, DeclPtrTy LinkageSpec, SourceLocation RBraceLoc) { if (LinkageSpec) PopDeclContext(); return LinkageSpec; } /// \brief Perform semantic analysis for the variable declaration that /// occurs within a C++ catch clause, returning the newly-created /// variable. VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType, TypeSourceInfo *TInfo, IdentifierInfo *Name, SourceLocation Loc, SourceRange Range) { bool Invalid = false; // Arrays and functions decay. if (ExDeclType->isArrayType()) ExDeclType = Context.getArrayDecayedType(ExDeclType); else if (ExDeclType->isFunctionType()) ExDeclType = Context.getPointerType(ExDeclType); // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. // The exception-declaration shall not denote a pointer or reference to an // incomplete type, other than [cv] void*. // N2844 forbids rvalue references. if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { Diag(Loc, diag::err_catch_rvalue_ref) << Range; Invalid = true; } QualType BaseType = ExDeclType; int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference unsigned DK = diag::err_catch_incomplete; if (const PointerType *Ptr = BaseType->getAs()) { BaseType = Ptr->getPointeeType(); Mode = 1; DK = diag::err_catch_incomplete_ptr; } else if (const ReferenceType *Ref = BaseType->getAs()) { // For the purpose of error recovery, we treat rvalue refs like lvalue refs. BaseType = Ref->getPointeeType(); Mode = 2; DK = diag::err_catch_incomplete_ref; } if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) Invalid = true; if (!Invalid && !ExDeclType->isDependentType() && RequireNonAbstractType(Loc, ExDeclType, diag::err_abstract_type_in_decl, AbstractVariableType)) Invalid = true; // FIXME: Need to test for ability to copy-construct and destroy the // exception variable. // FIXME: Need to check for abstract classes. VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc, Name, ExDeclType, TInfo, VarDecl::None); if (Invalid) ExDecl->setInvalidDecl(); return ExDecl; } /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch /// handler. Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { TypeSourceInfo *TInfo = 0; QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo); bool Invalid = D.isInvalidType(); IdentifierInfo *II = D.getIdentifier(); if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) { // The scope should be freshly made just for us. There is just no way // it contains any previous declaration. assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl))); if (PrevDecl->isTemplateParameter()) { // Maybe we will complain about the shadowed template parameter. DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); } } if (D.getCXXScopeSpec().isSet() && !Invalid) { Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) << D.getCXXScopeSpec().getRange(); Invalid = true; } VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo, D.getIdentifier(), D.getIdentifierLoc(), D.getDeclSpec().getSourceRange()); if (Invalid) ExDecl->setInvalidDecl(); // Add the exception declaration into this scope. if (II) PushOnScopeChains(ExDecl, S); else CurContext->addDecl(ExDecl); ProcessDeclAttributes(S, ExDecl, D); return DeclPtrTy::make(ExDecl); } Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc, ExprArg assertexpr, ExprArg assertmessageexpr) { Expr *AssertExpr = (Expr *)assertexpr.get(); StringLiteral *AssertMessage = cast((Expr *)assertmessageexpr.get()); if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) { llvm::APSInt Value(32); if (!AssertExpr->isIntegerConstantExpr(Value, Context)) { Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) << AssertExpr->getSourceRange(); return DeclPtrTy(); } if (Value == 0) { Diag(AssertLoc, diag::err_static_assert_failed) << AssertMessage->getString() << AssertExpr->getSourceRange(); } } assertexpr.release(); assertmessageexpr.release(); Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc, AssertExpr, AssertMessage); CurContext->addDecl(Decl); return DeclPtrTy::make(Decl); } /// Handle a friend type declaration. This works in tandem with /// ActOnTag. /// /// Notes on friend class templates: /// /// We generally treat friend class declarations as if they were /// declaring a class. So, for example, the elaborated type specifier /// in a friend declaration is required to obey the restrictions of a /// class-head (i.e. no typedefs in the scope chain), template /// parameters are required to match up with simple template-ids, &c. /// However, unlike when declaring a template specialization, it's /// okay to refer to a template specialization without an empty /// template parameter declaration, e.g. /// friend class A::B; /// We permit this as a special case; if there are any template /// parameters present at all, require proper matching, i.e. /// template <> template friend class A::B; Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, MultiTemplateParamsArg TempParams) { SourceLocation Loc = DS.getSourceRange().getBegin(); assert(DS.isFriendSpecified()); assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); // Try to convert the decl specifier to a type. This works for // friend templates because ActOnTag never produces a ClassTemplateDecl // for a TUK_Friend. Declarator TheDeclarator(DS, Declarator::MemberContext); QualType T = GetTypeForDeclarator(TheDeclarator, S); if (TheDeclarator.isInvalidType()) return DeclPtrTy(); // This is definitely an error in C++98. It's probably meant to // be forbidden in C++0x, too, but the specification is just // poorly written. // // The problem is with declarations like the following: // template friend A::foo; // where deciding whether a class C is a friend or not now hinges // on whether there exists an instantiation of A that causes // 'foo' to equal C. There are restrictions on class-heads // (which we declare (by fiat) elaborated friend declarations to // be) that makes this tractable. // // FIXME: handle "template <> friend class A;", which // is possibly well-formed? Who even knows? if (TempParams.size() && !isa(T)) { Diag(Loc, diag::err_tagless_friend_type_template) << DS.getSourceRange(); return DeclPtrTy(); } // C++ [class.friend]p2: // An elaborated-type-specifier shall be used in a friend declaration // for a class.* // * The class-key of the elaborated-type-specifier is required. // This is one of the rare places in Clang where it's legitimate to // ask about the "spelling" of the type. if (!getLangOptions().CPlusPlus0x && !isa(T)) { // If we evaluated the type to a record type, suggest putting // a tag in front. if (const RecordType *RT = T->getAs()) { RecordDecl *RD = RT->getDecl(); std::string InsertionText = std::string(" ") + RD->getKindName(); Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type) << (unsigned) RD->getTagKind() << T << SourceRange(DS.getFriendSpecLoc()) << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(), InsertionText); return DeclPtrTy(); }else { Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend) << DS.getSourceRange(); return DeclPtrTy(); } } // Enum types cannot be friends. if (T->getAs()) { Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend) << SourceRange(DS.getFriendSpecLoc()); return DeclPtrTy(); } // C++98 [class.friend]p1: A friend of a class is a function // or class that is not a member of the class . . . // This is fixed in DR77, which just barely didn't make the C++03 // deadline. It's also a very silly restriction that seriously // affects inner classes and which nobody else seems to implement; // thus we never diagnose it, not even in -pedantic. Decl *D; if (TempParams.size()) D = FriendTemplateDecl::Create(Context, CurContext, Loc, TempParams.size(), (TemplateParameterList**) TempParams.release(), T.getTypePtr(), DS.getFriendSpecLoc()); else D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(), DS.getFriendSpecLoc()); D->setAccess(AS_public); CurContext->addDecl(D); return DeclPtrTy::make(D); } Sema::DeclPtrTy Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition, MultiTemplateParamsArg TemplateParams) { const DeclSpec &DS = D.getDeclSpec(); assert(DS.isFriendSpecified()); assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); SourceLocation Loc = D.getIdentifierLoc(); TypeSourceInfo *TInfo = 0; QualType T = GetTypeForDeclarator(D, S, &TInfo); // C++ [class.friend]p1 // A friend of a class is a function or class.... // Note that this sees through typedefs, which is intended. // It *doesn't* see through dependent types, which is correct // according to [temp.arg.type]p3: // If a declaration acquires a function type through a // type dependent on a template-parameter and this causes // a declaration that does not use the syntactic form of a // function declarator to have a function type, the program // is ill-formed. if (!T->isFunctionType()) { Diag(Loc, diag::err_unexpected_friend); // It might be worthwhile to try to recover by creating an // appropriate declaration. return DeclPtrTy(); } // C++ [namespace.memdef]p3 // - If a friend declaration in a non-local class first declares a // class or function, the friend class or function is a member // of the innermost enclosing namespace. // - The name of the friend is not found by simple name lookup // until a matching declaration is provided in that namespace // scope (either before or after the class declaration granting // friendship). // - If a friend function is called, its name may be found by the // name lookup that considers functions from namespaces and // classes associated with the types of the function arguments. // - When looking for a prior declaration of a class or a function // declared as a friend, scopes outside the innermost enclosing // namespace scope are not considered. CXXScopeSpec &ScopeQual = D.getCXXScopeSpec(); DeclarationName Name = GetNameForDeclarator(D); assert(Name); // The context we found the declaration in, or in which we should // create the declaration. DeclContext *DC; // FIXME: handle local classes // Recover from invalid scope qualifiers as if they just weren't there. LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName, ForRedeclaration); if (!ScopeQual.isInvalid() && ScopeQual.isSet()) { // FIXME: RequireCompleteDeclContext DC = computeDeclContext(ScopeQual); // FIXME: handle dependent contexts if (!DC) return DeclPtrTy(); LookupQualifiedName(Previous, DC); // If searching in that context implicitly found a declaration in // a different context, treat it like it wasn't found at all. // TODO: better diagnostics for this case. Suggesting the right // qualified scope would be nice... // FIXME: getRepresentativeDecl() is not right here at all if (Previous.empty() || !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) { D.setInvalidType(); Diag(Loc, diag::err_qualified_friend_not_found) << Name << T; return DeclPtrTy(); } // C++ [class.friend]p1: A friend of a class is a function or // class that is not a member of the class . . . if (DC->Equals(CurContext)) Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); // Otherwise walk out to the nearest namespace scope looking for matches. } else { // TODO: handle local class contexts. DC = CurContext; while (true) { // Skip class contexts. If someone can cite chapter and verse // for this behavior, that would be nice --- it's what GCC and // EDG do, and it seems like a reasonable intent, but the spec // really only says that checks for unqualified existing // declarations should stop at the nearest enclosing namespace, // not that they should only consider the nearest enclosing // namespace. while (DC->isRecord()) DC = DC->getParent(); LookupQualifiedName(Previous, DC); // TODO: decide what we think about using declarations. if (!Previous.empty()) break; if (DC->isFileContext()) break; DC = DC->getParent(); } // C++ [class.friend]p1: A friend of a class is a function or // class that is not a member of the class . . . // C++0x changes this for both friend types and functions. // Most C++ 98 compilers do seem to give an error here, so // we do, too. if (!Previous.empty() && DC->Equals(CurContext) && !getLangOptions().CPlusPlus0x) Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member); } if (DC->isFileContext()) { // This implies that it has to be an operator or function. if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName || D.getName().getKind() == UnqualifiedId::IK_DestructorName || D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) { Diag(Loc, diag::err_introducing_special_friend) << (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 : D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2); return DeclPtrTy(); } } bool Redeclaration = false; NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous, move(TemplateParams), IsDefinition, Redeclaration); if (!ND) return DeclPtrTy(); assert(ND->getDeclContext() == DC); assert(ND->getLexicalDeclContext() == CurContext); // Add the function declaration to the appropriate lookup tables, // adjusting the redeclarations list as necessary. We don't // want to do this yet if the friending class is dependent. // // Also update the scope-based lookup if the target context's // lookup context is in lexical scope. if (!CurContext->isDependentContext()) { DC = DC->getLookupContext(); DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false); if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false); } FriendDecl *FrD = FriendDecl::Create(Context, CurContext, D.getIdentifierLoc(), ND, DS.getFriendSpecLoc()); FrD->setAccess(AS_public); CurContext->addDecl(FrD); if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) FrD->setSpecialization(true); return DeclPtrTy::make(ND); } void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) { AdjustDeclIfTemplate(dcl); Decl *Dcl = dcl.getAs(); FunctionDecl *Fn = dyn_cast(Dcl); if (!Fn) { Diag(DelLoc, diag::err_deleted_non_function); return; } if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) { Diag(DelLoc, diag::err_deleted_decl_not_first); Diag(Prev->getLocation(), diag::note_previous_declaration); // If the declaration wasn't the first, we delete the function anyway for // recovery. } Fn->setDeleted(); } static void SearchForReturnInStmt(Sema &Self, Stmt *S) { for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; ++CI) { Stmt *SubStmt = *CI; if (!SubStmt) continue; if (isa(SubStmt)) Self.Diag(SubStmt->getSourceRange().getBegin(), diag::err_return_in_constructor_handler); if (!isa(SubStmt)) SearchForReturnInStmt(Self, SubStmt); } } void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { CXXCatchStmt *Handler = TryBlock->getHandler(I); SearchForReturnInStmt(*this, Handler); } } bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, const CXXMethodDecl *Old) { QualType NewTy = New->getType()->getAs()->getResultType(); QualType OldTy = Old->getType()->getAs()->getResultType(); QualType CNewTy = Context.getCanonicalType(NewTy); QualType COldTy = Context.getCanonicalType(OldTy); if (CNewTy == COldTy && CNewTy.getLocalCVRQualifiers() == COldTy.getLocalCVRQualifiers()) return false; // Check if the return types are covariant QualType NewClassTy, OldClassTy; /// Both types must be pointers or references to classes. if (PointerType *NewPT = dyn_cast(NewTy)) { if (PointerType *OldPT = dyn_cast(OldTy)) { NewClassTy = NewPT->getPointeeType(); OldClassTy = OldPT->getPointeeType(); } } else if (ReferenceType *NewRT = dyn_cast(NewTy)) { if (ReferenceType *OldRT = dyn_cast(OldTy)) { NewClassTy = NewRT->getPointeeType(); OldClassTy = OldRT->getPointeeType(); } } // The return types aren't either both pointers or references to a class type. if (NewClassTy.isNull()) { Diag(New->getLocation(), diag::err_different_return_type_for_overriding_virtual_function) << New->getDeclName() << NewTy << OldTy; Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; } // C++ [class.virtual]p6: // If the return type of D::f differs from the return type of B::f, the // class type in the return type of D::f shall be complete at the point of // declaration of D::f or shall be the class type D. if (const RecordType *RT = NewClassTy->getAs()) { if (!RT->isBeingDefined() && RequireCompleteType(New->getLocation(), NewClassTy, PDiag(diag::err_covariant_return_incomplete) << New->getDeclName())) return true; } if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) { // Check if the new class derives from the old class. if (!IsDerivedFrom(NewClassTy, OldClassTy)) { Diag(New->getLocation(), diag::err_covariant_return_not_derived) << New->getDeclName() << NewTy << OldTy; Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; } // Check if we the conversion from derived to base is valid. if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy, diag::err_covariant_return_inaccessible_base, diag::err_covariant_return_ambiguous_derived_to_base_conv, // FIXME: Should this point to the return type? New->getLocation(), SourceRange(), New->getDeclName())) { Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; } } // The qualifiers of the return types must be the same. if (CNewTy.getLocalCVRQualifiers() != COldTy.getLocalCVRQualifiers()) { Diag(New->getLocation(), diag::err_covariant_return_type_different_qualifications) << New->getDeclName() << NewTy << OldTy; Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; }; // The new class type must have the same or less qualifiers as the old type. if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { Diag(New->getLocation(), diag::err_covariant_return_type_class_type_more_qualified) << New->getDeclName() << NewTy << OldTy; Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; }; return false; } bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New, const CXXMethodDecl *Old) { if (Old->hasAttr()) { Diag(New->getLocation(), diag::err_final_function_overridden) << New->getDeclName(); Diag(Old->getLocation(), diag::note_overridden_virtual_function); return true; } return false; } /// \brief Mark the given method pure. /// /// \param Method the method to be marked pure. /// /// \param InitRange the source range that covers the "0" initializer. bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { if (Method->isVirtual() || Method->getParent()->isDependentContext()) { Method->setPure(); // A class is abstract if at least one function is pure virtual. Method->getParent()->setAbstract(true); return false; } if (!Method->isInvalidDecl()) Diag(Method->getLocation(), diag::err_non_virtual_pure) << Method->getDeclName() << InitRange; return true; } /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse /// an initializer for the out-of-line declaration 'Dcl'. The scope /// is a fresh scope pushed for just this purpose. /// /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a /// static data member of class X, names should be looked up in the scope of /// class X. void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) { // If there is no declaration, there was an error parsing it. Decl *D = Dcl.getAs(); if (D == 0) return; // We should only get called for declarations with scope specifiers, like: // int foo::bar; assert(D->isOutOfLine()); EnterDeclaratorContext(S, D->getDeclContext()); } /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an /// initializer for the out-of-line declaration 'Dcl'. void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) { // If there is no declaration, there was an error parsing it. Decl *D = Dcl.getAs(); if (D == 0) return; assert(D->isOutOfLine()); ExitDeclaratorContext(S); } /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a /// C++ if/switch/while/for statement. /// e.g: "if (int x = f()) {...}" Action::DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { // C++ 6.4p2: // The declarator shall not specify a function or an array. // The type-specifier-seq shall not contain typedef and shall not declare a // new class or enumeration. assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."); TypeSourceInfo *TInfo = 0; TagDecl *OwnedTag = 0; QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag); if (Ty->isFunctionType()) { // The declarator shall not specify a function... // We exit without creating a CXXConditionDeclExpr because a FunctionDecl // would be created and CXXConditionDeclExpr wants a VarDecl. Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type) << D.getSourceRange(); return DeclResult(); } else if (OwnedTag && OwnedTag->isDefinition()) { // The type-specifier-seq shall not declare a new class or enumeration. Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition); } DeclPtrTy Dcl = ActOnDeclarator(S, D); if (!Dcl) return DeclResult(); VarDecl *VD = cast(Dcl.getAs()); VD->setDeclaredInCondition(true); return Dcl; } void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc, CXXMethodDecl *MD) { // Ignore dependent types. if (MD->isDependentContext()) return; CXXRecordDecl *RD = MD->getParent(); // Ignore classes without a vtable. if (!RD->isDynamicClass()) return; if (!MD->isOutOfLine()) { // The only inline functions we care about are constructors. We also defer // marking the virtual members as referenced until we've reached the end // of the translation unit. We do this because we need to know the key // function of the class in order to determine the key function. if (isa(MD)) ClassesWithUnmarkedVirtualMembers.insert(std::make_pair(RD, Loc)); return; } const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD); if (!KeyFunction) { // This record does not have a key function, so we assume that the vtable // will be emitted when it's used by the constructor. if (!isa(MD)) return; } else if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl()) { // We don't have the right key function. return; } // Mark the members as referenced. MarkVirtualMembersReferenced(Loc, RD); ClassesWithUnmarkedVirtualMembers.erase(RD); } bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() { if (ClassesWithUnmarkedVirtualMembers.empty()) return false; for (std::map::iterator i = ClassesWithUnmarkedVirtualMembers.begin(), e = ClassesWithUnmarkedVirtualMembers.end(); i != e; ++i) { CXXRecordDecl *RD = i->first; const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD); if (KeyFunction) { // We know that the class has a key function. If the key function was // declared in this translation unit, then it the class decl would not // have been in the ClassesWithUnmarkedVirtualMembers map. continue; } SourceLocation Loc = i->second; MarkVirtualMembersReferenced(Loc, RD); } ClassesWithUnmarkedVirtualMembers.clear(); return true; } void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) { for (CXXRecordDecl::method_iterator i = RD->method_begin(), e = RD->method_end(); i != e; ++i) { CXXMethodDecl *MD = *i; // C++ [basic.def.odr]p2: // [...] A virtual member function is used if it is not pure. [...] if (MD->isVirtual() && !MD->isPure()) MarkDeclarationReferenced(Loc, MD); } }