/* * Copyright (c) 1989, 1993, 1995 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Poul-Henning Kamp of the FreeBSD Project. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94 * $FreeBSD: head/sys/kern/vfs_cache.c 22521 1997-02-10 02:22:35Z dyson $ */ #include #include #include #include #include #include #include #include #include #include #define MAXVNODEUSE 32 /* * Name caching works as follows: * * Names found by directory scans are retained in a cache * for future reference. It is managed LRU, so frequently * used names will hang around. Cache is indexed by hash value * obtained from (vp, name) where vp refers to the directory * containing name. * * If it is a "negative" entry, (i.e. for a name that is known NOT to * exist) the vnode pointer will be NULL. * * For simplicity (and economy of storage), names longer than * a maximum length of NCHNAMLEN are not cached; they occur * infrequently in any case, and are almost never of interest. * * Upon reaching the last segment of a path, if the reference * is for DELETE, or NOCACHE is set (rewrite), and the * name is located in the cache, it will be dropped. */ /* * Structures associated with name cacheing. */ #define NCHHASH(dvp, cnp) \ (&nchashtbl[((dvp)->v_id + (cnp)->cn_hash) & nchash]) static LIST_HEAD(nchashhead, namecache) *nchashtbl; /* Hash Table */ static u_long nchash; /* size of hash table - 1 */ static int doingcache = 1; /* 1 => enable the cache */ SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0, ""); static u_long numcache; /* number of cache entries allocated */ static TAILQ_HEAD(, namecache) nclruhead; /* LRU chain */ struct nchstats nchstats; /* cache effectiveness statistics */ #ifdef NCH_STATISTICS u_long nchnbr; #define NCHNBR(ncp) (ncp)->nc_nbr = ++nchnbr; #define NCHHIT(ncp) (ncp)->nc_hits++ #else #define NCHNBR(ncp) #define NCHHIT(ncp) #endif /* * Delete an entry from its hash list and move it to the front * of the LRU list for immediate reuse. */ #define PURGE(ncp) { \ LIST_REMOVE(ncp, nc_hash); \ ncp->nc_hash.le_prev = 0; \ TAILQ_REMOVE(&nclruhead, ncp, nc_lru); \ TAILQ_INSERT_HEAD(&nclruhead, ncp, nc_lru); \ } /* * Move an entry that has been used to the tail of the LRU list * so that it will be preserved for future use. */ #define TOUCH(ncp) { \ if (ncp->nc_lru.tqe_next != 0) { \ TAILQ_REMOVE(&nclruhead, ncp, nc_lru); \ TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru); \ NCHNBR(ncp); \ } \ } /* * Lookup an entry in the cache * * We don't do this if the segment name is long, simply so the cache * can avoid holding long names (which would either waste space, or * add greatly to the complexity). * * Lookup is called with dvp pointing to the directory to search, * cnp pointing to the name of the entry being sought. If the lookup * succeeds, the vnode is returned in *vpp, and a status of -1 is * returned. If the lookup determines that the name does not exist * (negative cacheing), a status of ENOENT is returned. If the lookup * fails, a status of zero is returned. */ int cache_lookup(dvp, vpp, cnp) struct vnode *dvp; struct vnode **vpp; struct componentname *cnp; { register struct namecache *ncp, *nnp; register struct nchashhead *ncpp; if (!doingcache) { cnp->cn_flags &= ~MAKEENTRY; return (0); } if (cnp->cn_namelen > NCHNAMLEN) { nchstats.ncs_long++; cnp->cn_flags &= ~MAKEENTRY; return (0); } ncpp = NCHHASH(dvp, cnp); for (ncp = ncpp->lh_first; ncp != 0; ncp = nnp) { nnp = ncp->nc_hash.le_next; /* If one of the vp's went stale, don't bother anymore. */ if ((ncp->nc_dvpid != ncp->nc_dvp->v_id) || (ncp->nc_vp && ncp->nc_vpid != ncp->nc_vp->v_id)) { nchstats.ncs_falsehits++; PURGE(ncp); continue; } /* Now that we know the vp's to be valid, is it ours ? */ if (ncp->nc_dvp == dvp && ncp->nc_nlen == cnp->cn_namelen && !bcmp(ncp->nc_name, cnp->cn_nameptr, (u_int)ncp->nc_nlen)) break; } /* We failed to find an entry */ if (ncp == 0) { nchstats.ncs_miss++; return (0); } NCHHIT(ncp); /* We don't want to have an entry, so dump it */ if ((cnp->cn_flags & MAKEENTRY) == 0) { nchstats.ncs_badhits++; PURGE(ncp); return (0); } /* We found a "positive" match, return the vnode */ if (ncp->nc_vp) { nchstats.ncs_goodhits++; TOUCH(ncp); *vpp = ncp->nc_vp; if ((*vpp)->v_usage < MAXVNODEUSE) (*vpp)->v_usage++; return (-1); } /* We found a negative match, and want to create it, so purge */ if (cnp->cn_nameiop == CREATE) { nchstats.ncs_badhits++; PURGE(ncp); return (0); } /* * We found a "negative" match, ENOENT notifies client of this match. * The nc_vpid field records whether this is a whiteout. */ nchstats.ncs_neghits++; TOUCH(ncp); cnp->cn_flags |= ncp->nc_vpid; return (ENOENT); } /* * Add an entry to the cache. */ void cache_enter(dvp, vp, cnp) struct vnode *dvp; struct vnode *vp; struct componentname *cnp; { register struct namecache *ncp; register struct nchashhead *ncpp; if (!doingcache) return; #ifdef DIAGNOSTIC if (cnp->cn_namelen > NCHNAMLEN) { printf("cache_enter: name too long"); return; } #endif /* * We allocate a new entry if we are less than the maximum * allowed and the one at the front of the LRU list is in use. * Otherwise we use the one at the front of the LRU list. */ if (numcache < desiredvnodes && ((ncp = nclruhead.tqh_first) == NULL || ncp->nc_hash.le_prev != 0)) { /* Add one more entry */ ncp = (struct namecache *) malloc((u_long)sizeof *ncp, M_CACHE, M_WAITOK); bzero((char *)ncp, sizeof *ncp); numcache++; } else if (ncp = nclruhead.tqh_first) { /* reuse an old entry */ TAILQ_REMOVE(&nclruhead, ncp, nc_lru); if (ncp->nc_hash.le_prev != 0) { LIST_REMOVE(ncp, nc_hash); ncp->nc_hash.le_prev = 0; } } else { /* give up */ return; } /* * Fill in cache info, if vp is NULL this is a "negative" cache entry. * For negative entries, we have to record whether it is a whiteout. * the whiteout flag is stored in the nc_vpid field which is * otherwise unused. */ ncp->nc_vp = vp; if (vp) { ncp->nc_vpid = vp->v_id; if (vp->v_usage < MAXVNODEUSE) ++vp->v_usage; } else ncp->nc_vpid = cnp->cn_flags & ISWHITEOUT; ncp->nc_dvp = dvp; ncp->nc_dvpid = dvp->v_id; ncp->nc_nlen = cnp->cn_namelen; bcopy(cnp->cn_nameptr, ncp->nc_name, (unsigned)ncp->nc_nlen); TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru); ncpp = NCHHASH(dvp, cnp); LIST_INSERT_HEAD(ncpp, ncp, nc_hash); } /* * Name cache initialization, from vfs_init() when we are booting */ void nchinit() { TAILQ_INIT(&nclruhead); nchashtbl = phashinit(desiredvnodes, M_CACHE, &nchash); } /* * Invalidate all entries to particular vnode. * * We actually just increment the v_id, that will do it. The stale entries * will be purged by lookup as they get found. If the v_id wraps around, we * need to ditch the entire cache, to avoid confusion. No valid vnode will * ever have (v_id == 0). */ void cache_purge(vp) struct vnode *vp; { struct namecache *ncp; struct nchashhead *ncpp; static u_long nextvnodeid; vp->v_id = ++nextvnodeid; if (nextvnodeid != 0) return; for (ncpp = &nchashtbl[nchash - 1]; ncpp >= nchashtbl; ncpp--) { while (ncp = ncpp->lh_first) PURGE(ncp); } vp->v_id = ++nextvnodeid; } /* * Flush all entries referencing a particular filesystem. * * Since we need to check it anyway, we will flush all the invalid * entries at the same time. */ void cache_purgevfs(mp) struct mount *mp; { struct nchashhead *ncpp; struct namecache *ncp, *nnp; /* Scan hash tables for applicable entries */ for (ncpp = &nchashtbl[nchash - 1]; ncpp >= nchashtbl; ncpp--) { for (ncp = ncpp->lh_first; ncp != 0; ncp = nnp) { nnp = ncp->nc_hash.le_next; if (ncp->nc_dvpid != ncp->nc_dvp->v_id || (ncp->nc_vp && ncp->nc_vpid != ncp->nc_vp->v_id) || ncp->nc_dvp->v_mount == mp) { PURGE(ncp); } } } }