//===--- Diagnostic.cpp - C Language Family Diagnostic Handling -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Diagnostic-related interfaces. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTDiagnostic.h" #include "clang/Analysis/AnalysisDiagnostic.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Lex/LexDiagnostic.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Sema/SemaDiagnostic.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace clang; //===----------------------------------------------------------------------===// // Builtin Diagnostic information //===----------------------------------------------------------------------===// // Diagnostic classes. enum { CLASS_NOTE = 0x01, CLASS_WARNING = 0x02, CLASS_EXTENSION = 0x03, CLASS_ERROR = 0x04 }; struct StaticDiagInfoRec { unsigned short DiagID; unsigned Mapping : 3; unsigned Class : 3; bool SFINAE : 1; unsigned Category : 5; const char *Description; const char *OptionGroup; bool operator<(const StaticDiagInfoRec &RHS) const { return DiagID < RHS.DiagID; } bool operator>(const StaticDiagInfoRec &RHS) const { return DiagID > RHS.DiagID; } }; static const StaticDiagInfoRec StaticDiagInfo[] = { #define DIAG(ENUM,CLASS,DEFAULT_MAPPING,DESC,GROUP,SFINAE, CATEGORY) \ { diag::ENUM, DEFAULT_MAPPING, CLASS, SFINAE, CATEGORY, DESC, GROUP }, #include "clang/Basic/DiagnosticCommonKinds.inc" #include "clang/Basic/DiagnosticDriverKinds.inc" #include "clang/Basic/DiagnosticFrontendKinds.inc" #include "clang/Basic/DiagnosticLexKinds.inc" #include "clang/Basic/DiagnosticParseKinds.inc" #include "clang/Basic/DiagnosticASTKinds.inc" #include "clang/Basic/DiagnosticSemaKinds.inc" #include "clang/Basic/DiagnosticAnalysisKinds.inc" { 0, 0, 0, 0, 0, 0, 0} }; #undef DIAG /// GetDiagInfo - Return the StaticDiagInfoRec entry for the specified DiagID, /// or null if the ID is invalid. static const StaticDiagInfoRec *GetDiagInfo(unsigned DiagID) { unsigned NumDiagEntries = sizeof(StaticDiagInfo)/sizeof(StaticDiagInfo[0])-1; // If assertions are enabled, verify that the StaticDiagInfo array is sorted. #ifndef NDEBUG static bool IsFirst = true; if (IsFirst) { for (unsigned i = 1; i != NumDiagEntries; ++i) { assert(StaticDiagInfo[i-1].DiagID != StaticDiagInfo[i].DiagID && "Diag ID conflict, the enums at the start of clang::diag (in " "Diagnostic.h) probably need to be increased"); assert(StaticDiagInfo[i-1] < StaticDiagInfo[i] && "Improperly sorted diag info"); } IsFirst = false; } #endif // Search the diagnostic table with a binary search. StaticDiagInfoRec Find = { DiagID, 0, 0, 0, 0, 0, 0 }; const StaticDiagInfoRec *Found = std::lower_bound(StaticDiagInfo, StaticDiagInfo + NumDiagEntries, Find); if (Found == StaticDiagInfo + NumDiagEntries || Found->DiagID != DiagID) return 0; return Found; } static unsigned GetDefaultDiagMapping(unsigned DiagID) { if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID)) return Info->Mapping; return diag::MAP_FATAL; } /// getWarningOptionForDiag - Return the lowest-level warning option that /// enables the specified diagnostic. If there is no -Wfoo flag that controls /// the diagnostic, this returns null. const char *Diagnostic::getWarningOptionForDiag(unsigned DiagID) { if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID)) return Info->OptionGroup; return 0; } Diagnostic::SFINAEResponse Diagnostic::getDiagnosticSFINAEResponse(unsigned DiagID) { if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID)) { if (!Info->SFINAE) return SFINAE_Report; if (Info->Class == CLASS_ERROR) return SFINAE_SubstitutionFailure; // Suppress notes, warnings, and extensions; return SFINAE_Suppress; } return SFINAE_Report; } /// getDiagClass - Return the class field of the diagnostic. /// static unsigned getBuiltinDiagClass(unsigned DiagID) { if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID)) return Info->Class; return ~0U; } //===----------------------------------------------------------------------===// // Custom Diagnostic information //===----------------------------------------------------------------------===// namespace clang { namespace diag { class CustomDiagInfo { typedef std::pair DiagDesc; std::vector DiagInfo; std::map DiagIDs; public: /// getDescription - Return the description of the specified custom /// diagnostic. const char *getDescription(unsigned DiagID) const { assert(this && DiagID-DIAG_UPPER_LIMIT < DiagInfo.size() && "Invalid diagnosic ID"); return DiagInfo[DiagID-DIAG_UPPER_LIMIT].second.c_str(); } /// getLevel - Return the level of the specified custom diagnostic. Diagnostic::Level getLevel(unsigned DiagID) const { assert(this && DiagID-DIAG_UPPER_LIMIT < DiagInfo.size() && "Invalid diagnosic ID"); return DiagInfo[DiagID-DIAG_UPPER_LIMIT].first; } unsigned getOrCreateDiagID(Diagnostic::Level L, llvm::StringRef Message, Diagnostic &Diags) { DiagDesc D(L, Message); // Check to see if it already exists. std::map::iterator I = DiagIDs.lower_bound(D); if (I != DiagIDs.end() && I->first == D) return I->second; // If not, assign a new ID. unsigned ID = DiagInfo.size()+DIAG_UPPER_LIMIT; DiagIDs.insert(std::make_pair(D, ID)); DiagInfo.push_back(D); return ID; } }; } // end diag namespace } // end clang namespace //===----------------------------------------------------------------------===// // Common Diagnostic implementation //===----------------------------------------------------------------------===// static void DummyArgToStringFn(Diagnostic::ArgumentKind AK, intptr_t QT, const char *Modifier, unsigned ML, const char *Argument, unsigned ArgLen, const Diagnostic::ArgumentValue *PrevArgs, unsigned NumPrevArgs, llvm::SmallVectorImpl &Output, void *Cookie) { const char *Str = ""; Output.append(Str, Str+strlen(Str)); } Diagnostic::Diagnostic(DiagnosticClient *client) : Client(client) { AllExtensionsSilenced = 0; IgnoreAllWarnings = false; WarningsAsErrors = false; ErrorsAsFatal = false; SuppressSystemWarnings = false; SuppressAllDiagnostics = false; ExtBehavior = Ext_Ignore; ErrorOccurred = false; FatalErrorOccurred = false; ErrorLimit = 0; TemplateBacktraceLimit = 0; NumWarnings = 0; NumErrors = 0; NumErrorsSuppressed = 0; CustomDiagInfo = 0; CurDiagID = ~0U; LastDiagLevel = Ignored; ArgToStringFn = DummyArgToStringFn; ArgToStringCookie = 0; DelayedDiagID = 0; // Set all mappings to 'unset'. DiagMappings BlankDiags(diag::DIAG_UPPER_LIMIT/2, 0); DiagMappingsStack.push_back(BlankDiags); } Diagnostic::~Diagnostic() { delete CustomDiagInfo; } void Diagnostic::pushMappings() { // Avoids undefined behavior when the stack has to resize. DiagMappingsStack.reserve(DiagMappingsStack.size() + 1); DiagMappingsStack.push_back(DiagMappingsStack.back()); } bool Diagnostic::popMappings() { if (DiagMappingsStack.size() == 1) return false; DiagMappingsStack.pop_back(); return true; } /// getCustomDiagID - Return an ID for a diagnostic with the specified message /// and level. If this is the first request for this diagnosic, it is /// registered and created, otherwise the existing ID is returned. unsigned Diagnostic::getCustomDiagID(Level L, llvm::StringRef Message) { if (CustomDiagInfo == 0) CustomDiagInfo = new diag::CustomDiagInfo(); return CustomDiagInfo->getOrCreateDiagID(L, Message, *this); } /// isBuiltinWarningOrExtension - Return true if the unmapped diagnostic /// level of the specified diagnostic ID is a Warning or Extension. /// This only works on builtin diagnostics, not custom ones, and is not legal to /// call on NOTEs. bool Diagnostic::isBuiltinWarningOrExtension(unsigned DiagID) { return DiagID < diag::DIAG_UPPER_LIMIT && getBuiltinDiagClass(DiagID) != CLASS_ERROR; } /// \brief Determine whether the given built-in diagnostic ID is a /// Note. bool Diagnostic::isBuiltinNote(unsigned DiagID) { return DiagID < diag::DIAG_UPPER_LIMIT && getBuiltinDiagClass(DiagID) == CLASS_NOTE; } /// isBuiltinExtensionDiag - Determine whether the given built-in diagnostic /// ID is for an extension of some sort. This also returns EnabledByDefault, /// which is set to indicate whether the diagnostic is ignored by default (in /// which case -pedantic enables it) or treated as a warning/error by default. /// bool Diagnostic::isBuiltinExtensionDiag(unsigned DiagID, bool &EnabledByDefault) { if (DiagID >= diag::DIAG_UPPER_LIMIT || getBuiltinDiagClass(DiagID) != CLASS_EXTENSION) return false; EnabledByDefault = StaticDiagInfo[DiagID].Mapping != diag::MAP_IGNORE; return true; } /// getDescription - Given a diagnostic ID, return a description of the /// issue. const char *Diagnostic::getDescription(unsigned DiagID) const { if (const StaticDiagInfoRec *Info = GetDiagInfo(DiagID)) return Info->Description; return CustomDiagInfo->getDescription(DiagID); } void Diagnostic::SetDelayedDiagnostic(unsigned DiagID, llvm::StringRef Arg1, llvm::StringRef Arg2) { if (DelayedDiagID) return; DelayedDiagID = DiagID; DelayedDiagArg1 = Arg1.str(); DelayedDiagArg2 = Arg2.str(); } void Diagnostic::ReportDelayed() { Report(DelayedDiagID) << DelayedDiagArg1 << DelayedDiagArg2; DelayedDiagID = 0; DelayedDiagArg1.clear(); DelayedDiagArg2.clear(); } /// getDiagnosticLevel - Based on the way the client configured the Diagnostic /// object, classify the specified diagnostic ID into a Level, consumable by /// the DiagnosticClient. Diagnostic::Level Diagnostic::getDiagnosticLevel(unsigned DiagID) const { // Handle custom diagnostics, which cannot be mapped. if (DiagID >= diag::DIAG_UPPER_LIMIT) return CustomDiagInfo->getLevel(DiagID); unsigned DiagClass = getBuiltinDiagClass(DiagID); assert(DiagClass != CLASS_NOTE && "Cannot get diagnostic level of a note!"); return getDiagnosticLevel(DiagID, DiagClass); } /// getDiagnosticLevel - Based on the way the client configured the Diagnostic /// object, classify the specified diagnostic ID into a Level, consumable by /// the DiagnosticClient. Diagnostic::Level Diagnostic::getDiagnosticLevel(unsigned DiagID, unsigned DiagClass) const { // Specific non-error diagnostics may be mapped to various levels from ignored // to error. Errors can only be mapped to fatal. Diagnostic::Level Result = Diagnostic::Fatal; // Get the mapping information, if unset, compute it lazily. unsigned MappingInfo = getDiagnosticMappingInfo((diag::kind)DiagID); if (MappingInfo == 0) { MappingInfo = GetDefaultDiagMapping(DiagID); setDiagnosticMappingInternal(DiagID, MappingInfo, false); } switch (MappingInfo & 7) { default: assert(0 && "Unknown mapping!"); case diag::MAP_IGNORE: // Ignore this, unless this is an extension diagnostic and we're mapping // them onto warnings or errors. if (!isBuiltinExtensionDiag(DiagID) || // Not an extension ExtBehavior == Ext_Ignore || // Extensions ignored anyway (MappingInfo & 8) != 0) // User explicitly mapped it. return Diagnostic::Ignored; Result = Diagnostic::Warning; if (ExtBehavior == Ext_Error) Result = Diagnostic::Error; if (Result == Diagnostic::Error && ErrorsAsFatal) Result = Diagnostic::Fatal; break; case diag::MAP_ERROR: Result = Diagnostic::Error; if (ErrorsAsFatal) Result = Diagnostic::Fatal; break; case diag::MAP_FATAL: Result = Diagnostic::Fatal; break; case diag::MAP_WARNING: // If warnings are globally mapped to ignore or error, do it. if (IgnoreAllWarnings) return Diagnostic::Ignored; Result = Diagnostic::Warning; // If this is an extension diagnostic and we're in -pedantic-error mode, and // if the user didn't explicitly map it, upgrade to an error. if (ExtBehavior == Ext_Error && (MappingInfo & 8) == 0 && isBuiltinExtensionDiag(DiagID)) Result = Diagnostic::Error; if (WarningsAsErrors) Result = Diagnostic::Error; if (Result == Diagnostic::Error && ErrorsAsFatal) Result = Diagnostic::Fatal; break; case diag::MAP_WARNING_NO_WERROR: // Diagnostics specified with -Wno-error=foo should be set to warnings, but // not be adjusted by -Werror or -pedantic-errors. Result = Diagnostic::Warning; // If warnings are globally mapped to ignore or error, do it. if (IgnoreAllWarnings) return Diagnostic::Ignored; break; case diag::MAP_ERROR_NO_WFATAL: // Diagnostics specified as -Wno-fatal-error=foo should be errors, but // unaffected by -Wfatal-errors. Result = Diagnostic::Error; break; } // Okay, we're about to return this as a "diagnostic to emit" one last check: // if this is any sort of extension warning, and if we're in an __extension__ // block, silence it. if (AllExtensionsSilenced && isBuiltinExtensionDiag(DiagID)) return Diagnostic::Ignored; return Result; } struct WarningOption { const char *Name; const short *Members; const char *SubGroups; }; #define GET_DIAG_ARRAYS #include "clang/Basic/DiagnosticGroups.inc" #undef GET_DIAG_ARRAYS // Second the table of options, sorted by name for fast binary lookup. static const WarningOption OptionTable[] = { #define GET_DIAG_TABLE #include "clang/Basic/DiagnosticGroups.inc" #undef GET_DIAG_TABLE }; static const size_t OptionTableSize = sizeof(OptionTable) / sizeof(OptionTable[0]); static bool WarningOptionCompare(const WarningOption &LHS, const WarningOption &RHS) { return strcmp(LHS.Name, RHS.Name) < 0; } static void MapGroupMembers(const WarningOption *Group, diag::Mapping Mapping, Diagnostic &Diags) { // Option exists, poke all the members of its diagnostic set. if (const short *Member = Group->Members) { for (; *Member != -1; ++Member) Diags.setDiagnosticMapping(*Member, Mapping); } // Enable/disable all subgroups along with this one. if (const char *SubGroups = Group->SubGroups) { for (; *SubGroups != (char)-1; ++SubGroups) MapGroupMembers(&OptionTable[(unsigned char)*SubGroups], Mapping, Diags); } } /// setDiagnosticGroupMapping - Change an entire diagnostic group (e.g. /// "unknown-pragmas" to have the specified mapping. This returns true and /// ignores the request if "Group" was unknown, false otherwise. bool Diagnostic::setDiagnosticGroupMapping(const char *Group, diag::Mapping Map) { WarningOption Key = { Group, 0, 0 }; const WarningOption *Found = std::lower_bound(OptionTable, OptionTable + OptionTableSize, Key, WarningOptionCompare); if (Found == OptionTable + OptionTableSize || strcmp(Found->Name, Group) != 0) return true; // Option not found. MapGroupMembers(Found, Map, *this); return false; } /// ProcessDiag - This is the method used to report a diagnostic that is /// finally fully formed. bool Diagnostic::ProcessDiag() { DiagnosticInfo Info(this); if (SuppressAllDiagnostics) return false; // Figure out the diagnostic level of this message. Diagnostic::Level DiagLevel; unsigned DiagID = Info.getID(); // ShouldEmitInSystemHeader - True if this diagnostic should be produced even // in a system header. bool ShouldEmitInSystemHeader; if (DiagID >= diag::DIAG_UPPER_LIMIT) { // Handle custom diagnostics, which cannot be mapped. DiagLevel = CustomDiagInfo->getLevel(DiagID); // Custom diagnostics always are emitted in system headers. ShouldEmitInSystemHeader = true; } else { // Get the class of the diagnostic. If this is a NOTE, map it onto whatever // the diagnostic level was for the previous diagnostic so that it is // filtered the same as the previous diagnostic. unsigned DiagClass = getBuiltinDiagClass(DiagID); if (DiagClass == CLASS_NOTE) { DiagLevel = Diagnostic::Note; ShouldEmitInSystemHeader = false; // extra consideration is needed } else { // If this is not an error and we are in a system header, we ignore it. // Check the original Diag ID here, because we also want to ignore // extensions and warnings in -Werror and -pedantic-errors modes, which // *map* warnings/extensions to errors. ShouldEmitInSystemHeader = DiagClass == CLASS_ERROR; DiagLevel = getDiagnosticLevel(DiagID, DiagClass); } } if (DiagLevel != Diagnostic::Note) { // Record that a fatal error occurred only when we see a second // non-note diagnostic. This allows notes to be attached to the // fatal error, but suppresses any diagnostics that follow those // notes. if (LastDiagLevel == Diagnostic::Fatal) FatalErrorOccurred = true; LastDiagLevel = DiagLevel; } // If a fatal error has already been emitted, silence all subsequent // diagnostics. if (FatalErrorOccurred) { if (DiagLevel >= Diagnostic::Error) { ++NumErrors; ++NumErrorsSuppressed; } return false; } // If the client doesn't care about this message, don't issue it. If this is // a note and the last real diagnostic was ignored, ignore it too. if (DiagLevel == Diagnostic::Ignored || (DiagLevel == Diagnostic::Note && LastDiagLevel == Diagnostic::Ignored)) return false; // If this diagnostic is in a system header and is not a clang error, suppress // it. if (SuppressSystemWarnings && !ShouldEmitInSystemHeader && Info.getLocation().isValid() && Info.getLocation().getInstantiationLoc().isInSystemHeader() && (DiagLevel != Diagnostic::Note || LastDiagLevel == Diagnostic::Ignored)) { LastDiagLevel = Diagnostic::Ignored; return false; } if (DiagLevel >= Diagnostic::Error) { ErrorOccurred = true; ++NumErrors; // If we've emitted a lot of errors, emit a fatal error after it to stop a // flood of bogus errors. if (ErrorLimit && NumErrors >= ErrorLimit && DiagLevel == Diagnostic::Error) SetDelayedDiagnostic(diag::fatal_too_many_errors); } // Finally, report it. Client->HandleDiagnostic(DiagLevel, Info); if (Client->IncludeInDiagnosticCounts()) { if (DiagLevel == Diagnostic::Warning) ++NumWarnings; } CurDiagID = ~0U; return true; } bool DiagnosticBuilder::Emit() { // If DiagObj is null, then its soul was stolen by the copy ctor // or the user called Emit(). if (DiagObj == 0) return false; // When emitting diagnostics, we set the final argument count into // the Diagnostic object. DiagObj->NumDiagArgs = NumArgs; DiagObj->NumDiagRanges = NumRanges; DiagObj->NumFixItHints = NumFixItHints; // Process the diagnostic, sending the accumulated information to the // DiagnosticClient. bool Emitted = DiagObj->ProcessDiag(); // Clear out the current diagnostic object. unsigned DiagID = DiagObj->CurDiagID; DiagObj->Clear(); // If there was a delayed diagnostic, emit it now. if (DiagObj->DelayedDiagID && DiagObj->DelayedDiagID != DiagID) DiagObj->ReportDelayed(); // This diagnostic is dead. DiagObj = 0; return Emitted; } DiagnosticClient::~DiagnosticClient() {} /// ModifierIs - Return true if the specified modifier matches specified string. template static bool ModifierIs(const char *Modifier, unsigned ModifierLen, const char (&Str)[StrLen]) { return StrLen-1 == ModifierLen && !memcmp(Modifier, Str, StrLen-1); } /// ScanForward - Scans forward, looking for the given character, skipping /// nested clauses and escaped characters. static const char *ScanFormat(const char *I, const char *E, char Target) { unsigned Depth = 0; for ( ; I != E; ++I) { if (Depth == 0 && *I == Target) return I; if (Depth != 0 && *I == '}') Depth--; if (*I == '%') { I++; if (I == E) break; // Escaped characters get implicitly skipped here. // Format specifier. if (!isdigit(*I) && !ispunct(*I)) { for (I++; I != E && !isdigit(*I) && *I != '{'; I++) ; if (I == E) break; if (*I == '{') Depth++; } } } return E; } /// HandleSelectModifier - Handle the integer 'select' modifier. This is used /// like this: %select{foo|bar|baz}2. This means that the integer argument /// "%2" has a value from 0-2. If the value is 0, the diagnostic prints 'foo'. /// If the value is 1, it prints 'bar'. If it has the value 2, it prints 'baz'. /// This is very useful for certain classes of variant diagnostics. static void HandleSelectModifier(const DiagnosticInfo &DInfo, unsigned ValNo, const char *Argument, unsigned ArgumentLen, llvm::SmallVectorImpl &OutStr) { const char *ArgumentEnd = Argument+ArgumentLen; // Skip over 'ValNo' |'s. while (ValNo) { const char *NextVal = ScanFormat(Argument, ArgumentEnd, '|'); assert(NextVal != ArgumentEnd && "Value for integer select modifier was" " larger than the number of options in the diagnostic string!"); Argument = NextVal+1; // Skip this string. --ValNo; } // Get the end of the value. This is either the } or the |. const char *EndPtr = ScanFormat(Argument, ArgumentEnd, '|'); // Recursively format the result of the select clause into the output string. DInfo.FormatDiagnostic(Argument, EndPtr, OutStr); } /// HandleIntegerSModifier - Handle the integer 's' modifier. This adds the /// letter 's' to the string if the value is not 1. This is used in cases like /// this: "you idiot, you have %4 parameter%s4!". static void HandleIntegerSModifier(unsigned ValNo, llvm::SmallVectorImpl &OutStr) { if (ValNo != 1) OutStr.push_back('s'); } /// HandleOrdinalModifier - Handle the integer 'ord' modifier. This /// prints the ordinal form of the given integer, with 1 corresponding /// to the first ordinal. Currently this is hard-coded to use the /// English form. static void HandleOrdinalModifier(unsigned ValNo, llvm::SmallVectorImpl &OutStr) { assert(ValNo != 0 && "ValNo must be strictly positive!"); llvm::raw_svector_ostream Out(OutStr); // We could use text forms for the first N ordinals, but the numeric // forms are actually nicer in diagnostics because they stand out. Out << ValNo; // It is critically important that we do this perfectly for // user-written sequences with over 100 elements. switch (ValNo % 100) { case 11: case 12: case 13: Out << "th"; return; default: switch (ValNo % 10) { case 1: Out << "st"; return; case 2: Out << "nd"; return; case 3: Out << "rd"; return; default: Out << "th"; return; } } } /// PluralNumber - Parse an unsigned integer and advance Start. static unsigned PluralNumber(const char *&Start, const char *End) { // Programming 101: Parse a decimal number :-) unsigned Val = 0; while (Start != End && *Start >= '0' && *Start <= '9') { Val *= 10; Val += *Start - '0'; ++Start; } return Val; } /// TestPluralRange - Test if Val is in the parsed range. Modifies Start. static bool TestPluralRange(unsigned Val, const char *&Start, const char *End) { if (*Start != '[') { unsigned Ref = PluralNumber(Start, End); return Ref == Val; } ++Start; unsigned Low = PluralNumber(Start, End); assert(*Start == ',' && "Bad plural expression syntax: expected ,"); ++Start; unsigned High = PluralNumber(Start, End); assert(*Start == ']' && "Bad plural expression syntax: expected )"); ++Start; return Low <= Val && Val <= High; } /// EvalPluralExpr - Actual expression evaluator for HandlePluralModifier. static bool EvalPluralExpr(unsigned ValNo, const char *Start, const char *End) { // Empty condition? if (*Start == ':') return true; while (1) { char C = *Start; if (C == '%') { // Modulo expression ++Start; unsigned Arg = PluralNumber(Start, End); assert(*Start == '=' && "Bad plural expression syntax: expected ="); ++Start; unsigned ValMod = ValNo % Arg; if (TestPluralRange(ValMod, Start, End)) return true; } else { assert((C == '[' || (C >= '0' && C <= '9')) && "Bad plural expression syntax: unexpected character"); // Range expression if (TestPluralRange(ValNo, Start, End)) return true; } // Scan for next or-expr part. Start = std::find(Start, End, ','); if (Start == End) break; ++Start; } return false; } /// HandlePluralModifier - Handle the integer 'plural' modifier. This is used /// for complex plural forms, or in languages where all plurals are complex. /// The syntax is: %plural{cond1:form1|cond2:form2|:form3}, where condn are /// conditions that are tested in order, the form corresponding to the first /// that applies being emitted. The empty condition is always true, making the /// last form a default case. /// Conditions are simple boolean expressions, where n is the number argument. /// Here are the rules. /// condition := expression | empty /// empty := -> always true /// expression := numeric [',' expression] -> logical or /// numeric := range -> true if n in range /// | '%' number '=' range -> true if n % number in range /// range := number /// | '[' number ',' number ']' -> ranges are inclusive both ends /// /// Here are some examples from the GNU gettext manual written in this form: /// English: /// {1:form0|:form1} /// Latvian: /// {0:form2|%100=11,%10=0,%10=[2,9]:form1|:form0} /// Gaeilge: /// {1:form0|2:form1|:form2} /// Romanian: /// {1:form0|0,%100=[1,19]:form1|:form2} /// Lithuanian: /// {%10=0,%100=[10,19]:form2|%10=1:form0|:form1} /// Russian (requires repeated form): /// {%100=[11,14]:form2|%10=1:form0|%10=[2,4]:form1|:form2} /// Slovak /// {1:form0|[2,4]:form1|:form2} /// Polish (requires repeated form): /// {1:form0|%100=[10,20]:form2|%10=[2,4]:form1|:form2} static void HandlePluralModifier(unsigned ValNo, const char *Argument, unsigned ArgumentLen, llvm::SmallVectorImpl &OutStr) { const char *ArgumentEnd = Argument + ArgumentLen; while (1) { assert(Argument < ArgumentEnd && "Plural expression didn't match."); const char *ExprEnd = Argument; while (*ExprEnd != ':') { assert(ExprEnd != ArgumentEnd && "Plural missing expression end"); ++ExprEnd; } if (EvalPluralExpr(ValNo, Argument, ExprEnd)) { Argument = ExprEnd + 1; ExprEnd = ScanFormat(Argument, ArgumentEnd, '|'); OutStr.append(Argument, ExprEnd); return; } Argument = ScanFormat(Argument, ArgumentEnd - 1, '|') + 1; } } /// FormatDiagnostic - Format this diagnostic into a string, substituting the /// formal arguments into the %0 slots. The result is appended onto the Str /// array. void DiagnosticInfo:: FormatDiagnostic(llvm::SmallVectorImpl &OutStr) const { const char *DiagStr = getDiags()->getDescription(getID()); const char *DiagEnd = DiagStr+strlen(DiagStr); FormatDiagnostic(DiagStr, DiagEnd, OutStr); } void DiagnosticInfo:: FormatDiagnostic(const char *DiagStr, const char *DiagEnd, llvm::SmallVectorImpl &OutStr) const { /// FormattedArgs - Keep track of all of the arguments formatted by /// ConvertArgToString and pass them into subsequent calls to /// ConvertArgToString, allowing the implementation to avoid redundancies in /// obvious cases. llvm::SmallVector FormattedArgs; while (DiagStr != DiagEnd) { if (DiagStr[0] != '%') { // Append non-%0 substrings to Str if we have one. const char *StrEnd = std::find(DiagStr, DiagEnd, '%'); OutStr.append(DiagStr, StrEnd); DiagStr = StrEnd; continue; } else if (ispunct(DiagStr[1])) { OutStr.push_back(DiagStr[1]); // %% -> %. DiagStr += 2; continue; } // Skip the %. ++DiagStr; // This must be a placeholder for a diagnostic argument. The format for a // placeholder is one of "%0", "%modifier0", or "%modifier{arguments}0". // The digit is a number from 0-9 indicating which argument this comes from. // The modifier is a string of digits from the set [-a-z]+, arguments is a // brace enclosed string. const char *Modifier = 0, *Argument = 0; unsigned ModifierLen = 0, ArgumentLen = 0; // Check to see if we have a modifier. If so eat it. if (!isdigit(DiagStr[0])) { Modifier = DiagStr; while (DiagStr[0] == '-' || (DiagStr[0] >= 'a' && DiagStr[0] <= 'z')) ++DiagStr; ModifierLen = DiagStr-Modifier; // If we have an argument, get it next. if (DiagStr[0] == '{') { ++DiagStr; // Skip {. Argument = DiagStr; DiagStr = ScanFormat(DiagStr, DiagEnd, '}'); assert(DiagStr != DiagEnd && "Mismatched {}'s in diagnostic string!"); ArgumentLen = DiagStr-Argument; ++DiagStr; // Skip }. } } assert(isdigit(*DiagStr) && "Invalid format for argument in diagnostic"); unsigned ArgNo = *DiagStr++ - '0'; Diagnostic::ArgumentKind Kind = getArgKind(ArgNo); switch (Kind) { // ---- STRINGS ---- case Diagnostic::ak_std_string: { const std::string &S = getArgStdStr(ArgNo); assert(ModifierLen == 0 && "No modifiers for strings yet"); OutStr.append(S.begin(), S.end()); break; } case Diagnostic::ak_c_string: { const char *S = getArgCStr(ArgNo); assert(ModifierLen == 0 && "No modifiers for strings yet"); // Don't crash if get passed a null pointer by accident. if (!S) S = "(null)"; OutStr.append(S, S + strlen(S)); break; } // ---- INTEGERS ---- case Diagnostic::ak_sint: { int Val = getArgSInt(ArgNo); if (ModifierIs(Modifier, ModifierLen, "select")) { HandleSelectModifier(*this, (unsigned)Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "s")) { HandleIntegerSModifier(Val, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "plural")) { HandlePluralModifier((unsigned)Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "ordinal")) { HandleOrdinalModifier((unsigned)Val, OutStr); } else { assert(ModifierLen == 0 && "Unknown integer modifier"); llvm::raw_svector_ostream(OutStr) << Val; } break; } case Diagnostic::ak_uint: { unsigned Val = getArgUInt(ArgNo); if (ModifierIs(Modifier, ModifierLen, "select")) { HandleSelectModifier(*this, Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "s")) { HandleIntegerSModifier(Val, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "plural")) { HandlePluralModifier((unsigned)Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "ordinal")) { HandleOrdinalModifier(Val, OutStr); } else { assert(ModifierLen == 0 && "Unknown integer modifier"); llvm::raw_svector_ostream(OutStr) << Val; } break; } // ---- NAMES and TYPES ---- case Diagnostic::ak_identifierinfo: { const IdentifierInfo *II = getArgIdentifier(ArgNo); assert(ModifierLen == 0 && "No modifiers for strings yet"); // Don't crash if get passed a null pointer by accident. if (!II) { const char *S = "(null)"; OutStr.append(S, S + strlen(S)); continue; } llvm::raw_svector_ostream(OutStr) << '\'' << II->getName() << '\''; break; } case Diagnostic::ak_qualtype: case Diagnostic::ak_declarationname: case Diagnostic::ak_nameddecl: case Diagnostic::ak_nestednamespec: case Diagnostic::ak_declcontext: getDiags()->ConvertArgToString(Kind, getRawArg(ArgNo), Modifier, ModifierLen, Argument, ArgumentLen, FormattedArgs.data(), FormattedArgs.size(), OutStr); break; } // Remember this argument info for subsequent formatting operations. Turn // std::strings into a null terminated string to make it be the same case as // all the other ones. if (Kind != Diagnostic::ak_std_string) FormattedArgs.push_back(std::make_pair(Kind, getRawArg(ArgNo))); else FormattedArgs.push_back(std::make_pair(Diagnostic::ak_c_string, (intptr_t)getArgStdStr(ArgNo).c_str())); } } StoredDiagnostic::StoredDiagnostic() { } StoredDiagnostic::StoredDiagnostic(Diagnostic::Level Level, llvm::StringRef Message) : Level(Level), Loc(), Message(Message) { } StoredDiagnostic::StoredDiagnostic(Diagnostic::Level Level, const DiagnosticInfo &Info) : Level(Level), Loc(Info.getLocation()) { llvm::SmallString<64> Message; Info.FormatDiagnostic(Message); this->Message.assign(Message.begin(), Message.end()); Ranges.reserve(Info.getNumRanges()); for (unsigned I = 0, N = Info.getNumRanges(); I != N; ++I) Ranges.push_back(Info.getRange(I)); FixIts.reserve(Info.getNumFixItHints()); for (unsigned I = 0, N = Info.getNumFixItHints(); I != N; ++I) FixIts.push_back(Info.getFixItHint(I)); } StoredDiagnostic::~StoredDiagnostic() { } static void WriteUnsigned(llvm::raw_ostream &OS, unsigned Value) { OS.write((const char *)&Value, sizeof(unsigned)); } static void WriteString(llvm::raw_ostream &OS, llvm::StringRef String) { WriteUnsigned(OS, String.size()); OS.write(String.data(), String.size()); } static void WriteSourceLocation(llvm::raw_ostream &OS, SourceManager *SM, SourceLocation Location) { if (!SM || Location.isInvalid()) { // If we don't have a source manager or this location is invalid, // just write an invalid location. WriteUnsigned(OS, 0); WriteUnsigned(OS, 0); WriteUnsigned(OS, 0); return; } Location = SM->getInstantiationLoc(Location); std::pair Decomposed = SM->getDecomposedLoc(Location); const FileEntry *FE = SM->getFileEntryForID(Decomposed.first); if (FE) WriteString(OS, FE->getName()); else { // Fallback to using the buffer name when there is no entry. WriteString(OS, SM->getBuffer(Decomposed.first)->getBufferIdentifier()); } WriteUnsigned(OS, SM->getLineNumber(Decomposed.first, Decomposed.second)); WriteUnsigned(OS, SM->getColumnNumber(Decomposed.first, Decomposed.second)); } void StoredDiagnostic::Serialize(llvm::raw_ostream &OS) const { SourceManager *SM = 0; if (getLocation().isValid()) SM = &const_cast(getLocation().getManager()); // Write a short header to help identify diagnostics. OS << (char)0x06 << (char)0x07; // Write the diagnostic level and location. WriteUnsigned(OS, (unsigned)Level); WriteSourceLocation(OS, SM, getLocation()); // Write the diagnostic message. llvm::SmallString<64> Message; WriteString(OS, getMessage()); // Count the number of ranges that don't point into macros, since // only simple file ranges serialize well. unsigned NumNonMacroRanges = 0; for (range_iterator R = range_begin(), REnd = range_end(); R != REnd; ++R) { if (R->getBegin().isMacroID() || R->getEnd().isMacroID()) continue; ++NumNonMacroRanges; } // Write the ranges. WriteUnsigned(OS, NumNonMacroRanges); if (NumNonMacroRanges) { for (range_iterator R = range_begin(), REnd = range_end(); R != REnd; ++R) { if (R->getBegin().isMacroID() || R->getEnd().isMacroID()) continue; WriteSourceLocation(OS, SM, R->getBegin()); WriteSourceLocation(OS, SM, R->getEnd()); } } // Determine if all of the fix-its involve rewrites with simple file // locations (not in macro instantiations). If so, we can write // fix-it information. unsigned NumFixIts = 0; for (fixit_iterator F = fixit_begin(), FEnd = fixit_end(); F != FEnd; ++F) { if (F->RemoveRange.isValid() && (F->RemoveRange.getBegin().isMacroID() || F->RemoveRange.getEnd().isMacroID())) { NumFixIts = 0; break; } if (F->InsertionLoc.isValid() && F->InsertionLoc.isMacroID()) { NumFixIts = 0; break; } ++NumFixIts; } // Write the fix-its. WriteUnsigned(OS, NumFixIts); for (fixit_iterator F = fixit_begin(), FEnd = fixit_end(); F != FEnd; ++F) { WriteSourceLocation(OS, SM, F->RemoveRange.getBegin()); WriteSourceLocation(OS, SM, F->RemoveRange.getEnd()); WriteSourceLocation(OS, SM, F->InsertionLoc); WriteString(OS, F->CodeToInsert); } } static bool ReadUnsigned(const char *&Memory, const char *MemoryEnd, unsigned &Value) { if (Memory + sizeof(unsigned) > MemoryEnd) return true; memmove(&Value, Memory, sizeof(unsigned)); Memory += sizeof(unsigned); return false; } static bool ReadSourceLocation(FileManager &FM, SourceManager &SM, const char *&Memory, const char *MemoryEnd, SourceLocation &Location) { // Read the filename. unsigned FileNameLen = 0; if (ReadUnsigned(Memory, MemoryEnd, FileNameLen) || Memory + FileNameLen > MemoryEnd) return true; llvm::StringRef FileName(Memory, FileNameLen); Memory += FileNameLen; // Read the line, column. unsigned Line = 0, Column = 0; if (ReadUnsigned(Memory, MemoryEnd, Line) || ReadUnsigned(Memory, MemoryEnd, Column)) return true; if (FileName.empty()) { Location = SourceLocation(); return false; } const FileEntry *File = FM.getFile(FileName); if (!File) return true; // Make sure that this file has an entry in the source manager. if (!SM.hasFileInfo(File)) SM.createFileID(File, SourceLocation(), SrcMgr::C_User); Location = SM.getLocation(File, Line, Column); return false; } StoredDiagnostic StoredDiagnostic::Deserialize(FileManager &FM, SourceManager &SM, const char *&Memory, const char *MemoryEnd) { while (true) { if (Memory == MemoryEnd) return StoredDiagnostic(); if (*Memory != 0x06) { ++Memory; continue; } ++Memory; if (Memory == MemoryEnd) return StoredDiagnostic(); if (*Memory != 0x07) { ++Memory; continue; } // We found the header. We're done. ++Memory; break; } // Read the severity level. unsigned Level = 0; if (ReadUnsigned(Memory, MemoryEnd, Level) || Level > Diagnostic::Fatal) return StoredDiagnostic(); // Read the source location. SourceLocation Location; if (ReadSourceLocation(FM, SM, Memory, MemoryEnd, Location)) return StoredDiagnostic(); // Read the diagnostic text. if (Memory == MemoryEnd) return StoredDiagnostic(); unsigned MessageLen = 0; if (ReadUnsigned(Memory, MemoryEnd, MessageLen) || Memory + MessageLen > MemoryEnd) return StoredDiagnostic(); llvm::StringRef Message(Memory, MessageLen); Memory += MessageLen; // At this point, we have enough information to form a diagnostic. Do so. StoredDiagnostic Diag; Diag.Level = (Diagnostic::Level)Level; Diag.Loc = FullSourceLoc(Location, SM); Diag.Message = Message; if (Memory == MemoryEnd) return Diag; // Read the source ranges. unsigned NumSourceRanges = 0; if (ReadUnsigned(Memory, MemoryEnd, NumSourceRanges)) return Diag; for (unsigned I = 0; I != NumSourceRanges; ++I) { SourceLocation Begin, End; if (ReadSourceLocation(FM, SM, Memory, MemoryEnd, Begin) || ReadSourceLocation(FM, SM, Memory, MemoryEnd, End)) return Diag; Diag.Ranges.push_back(SourceRange(Begin, End)); } // Read the fix-it hints. unsigned NumFixIts = 0; if (ReadUnsigned(Memory, MemoryEnd, NumFixIts)) return Diag; for (unsigned I = 0; I != NumFixIts; ++I) { SourceLocation RemoveBegin, RemoveEnd, InsertionLoc; unsigned InsertLen = 0; if (ReadSourceLocation(FM, SM, Memory, MemoryEnd, RemoveBegin) || ReadSourceLocation(FM, SM, Memory, MemoryEnd, RemoveEnd) || ReadSourceLocation(FM, SM, Memory, MemoryEnd, InsertionLoc) || ReadUnsigned(Memory, MemoryEnd, InsertLen) || Memory + InsertLen > MemoryEnd) { Diag.FixIts.clear(); return Diag; } FixItHint Hint; Hint.RemoveRange = SourceRange(RemoveBegin, RemoveEnd); Hint.InsertionLoc = InsertionLoc; Hint.CodeToInsert.assign(Memory, Memory + InsertLen); Memory += InsertLen; Diag.FixIts.push_back(Hint); } return Diag; } /// IncludeInDiagnosticCounts - This method (whose default implementation /// returns true) indicates whether the diagnostics handled by this /// DiagnosticClient should be included in the number of diagnostics /// reported by Diagnostic. bool DiagnosticClient::IncludeInDiagnosticCounts() const { return true; } PartialDiagnostic::StorageAllocator::StorageAllocator() { for (unsigned I = 0; I != NumCached; ++I) FreeList[I] = Cached + I; NumFreeListEntries = NumCached; } PartialDiagnostic::StorageAllocator::~StorageAllocator() { assert(NumFreeListEntries == NumCached && "A partial is on the lamb"); }