//===------ CXXInheritance.cpp - C++ Inheritance ----------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides routines that help analyzing C++ inheritance hierarchies. // //===----------------------------------------------------------------------===// #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclCXX.h" #include #include using namespace clang; /// \brief Computes the set of declarations referenced by these base /// paths. void CXXBasePaths::ComputeDeclsFound() { assert(NumDeclsFound == 0 && !DeclsFound && "Already computed the set of declarations"); std::set Decls; for (CXXBasePaths::paths_iterator Path = begin(), PathEnd = end(); Path != PathEnd; ++Path) Decls.insert(*Path->Decls.first); NumDeclsFound = Decls.size(); DeclsFound = new NamedDecl * [NumDeclsFound]; std::copy(Decls.begin(), Decls.end(), DeclsFound); } CXXBasePaths::decl_iterator CXXBasePaths::found_decls_begin() { if (NumDeclsFound == 0) ComputeDeclsFound(); return DeclsFound; } CXXBasePaths::decl_iterator CXXBasePaths::found_decls_end() { if (NumDeclsFound == 0) ComputeDeclsFound(); return DeclsFound + NumDeclsFound; } /// isAmbiguous - Determines whether the set of paths provided is /// ambiguous, i.e., there are two or more paths that refer to /// different base class subobjects of the same type. BaseType must be /// an unqualified, canonical class type. bool CXXBasePaths::isAmbiguous(QualType BaseType) { assert(BaseType.isCanonical() && "Base type must be the canonical type"); assert(BaseType.hasQualifiers() == 0 && "Base type must be unqualified"); std::pair& Subobjects = ClassSubobjects[BaseType]; return Subobjects.second + (Subobjects.first? 1 : 0) > 1; } /// clear - Clear out all prior path information. void CXXBasePaths::clear() { Paths.clear(); ClassSubobjects.clear(); ScratchPath.clear(); DetectedVirtual = 0; } /// @brief Swaps the contents of this CXXBasePaths structure with the /// contents of Other. void CXXBasePaths::swap(CXXBasePaths &Other) { std::swap(Origin, Other.Origin); Paths.swap(Other.Paths); ClassSubobjects.swap(Other.ClassSubobjects); std::swap(FindAmbiguities, Other.FindAmbiguities); std::swap(RecordPaths, Other.RecordPaths); std::swap(DetectVirtual, Other.DetectVirtual); std::swap(DetectedVirtual, Other.DetectedVirtual); } bool CXXRecordDecl::isDerivedFrom(CXXRecordDecl *Base) const { CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false, /*DetectVirtual=*/false); return isDerivedFrom(Base, Paths); } bool CXXRecordDecl::isDerivedFrom(CXXRecordDecl *Base, CXXBasePaths &Paths) const { if (getCanonicalDecl() == Base->getCanonicalDecl()) return false; Paths.setOrigin(const_cast(this)); return lookupInBases(&FindBaseClass, Base->getCanonicalDecl(), Paths); } static bool BaseIsNot(const CXXRecordDecl *Base, void *OpaqueTarget) { // OpaqueTarget is a CXXRecordDecl*. return Base->getCanonicalDecl() != (const CXXRecordDecl*) OpaqueTarget; } bool CXXRecordDecl::isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const { return forallBases(BaseIsNot, (void*) Base->getCanonicalDecl()); } bool CXXRecordDecl::forallBases(ForallBasesCallback *BaseMatches, void *OpaqueData, bool AllowShortCircuit) const { ASTContext &Context = getASTContext(); llvm::SmallVector Queue; const CXXRecordDecl *Record = this; bool AllMatches = true; while (true) { for (CXXRecordDecl::base_class_const_iterator I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { const RecordType *Ty = I->getType()->getAs(); if (!Ty) { if (AllowShortCircuit) return false; AllMatches = false; continue; } CXXRecordDecl *Base = cast_or_null(Ty->getDecl()->getDefinition(Context)); if (!Base) { if (AllowShortCircuit) return false; AllMatches = false; continue; } Queue.push_back(Base); if (!BaseMatches(Base, OpaqueData)) { if (AllowShortCircuit) return false; AllMatches = false; continue; } } if (Queue.empty()) break; Record = Queue.back(); // not actually a queue. Queue.pop_back(); } return AllMatches; } bool CXXRecordDecl::lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData, CXXBasePaths &Paths) const { bool FoundPath = false; // The access of the path down to this record. AccessSpecifier AccessToHere = Paths.ScratchPath.Access; bool IsFirstStep = Paths.ScratchPath.empty(); ASTContext &Context = getASTContext(); for (base_class_const_iterator BaseSpec = bases_begin(), BaseSpecEnd = bases_end(); BaseSpec != BaseSpecEnd; ++BaseSpec) { // Find the record of the base class subobjects for this type. QualType BaseType = Context.getCanonicalType(BaseSpec->getType()) .getUnqualifiedType(); // C++ [temp.dep]p3: // In the definition of a class template or a member of a class template, // if a base class of the class template depends on a template-parameter, // the base class scope is not examined during unqualified name lookup // either at the point of definition of the class template or member or // during an instantiation of the class tem- plate or member. if (BaseType->isDependentType()) continue; // Determine whether we need to visit this base class at all, // updating the count of subobjects appropriately. std::pair& Subobjects = Paths.ClassSubobjects[BaseType]; bool VisitBase = true; bool SetVirtual = false; if (BaseSpec->isVirtual()) { VisitBase = !Subobjects.first; Subobjects.first = true; if (Paths.isDetectingVirtual() && Paths.DetectedVirtual == 0) { // If this is the first virtual we find, remember it. If it turns out // there is no base path here, we'll reset it later. Paths.DetectedVirtual = BaseType->getAs(); SetVirtual = true; } } else ++Subobjects.second; if (Paths.isRecordingPaths()) { // Add this base specifier to the current path. CXXBasePathElement Element; Element.Base = &*BaseSpec; Element.Class = this; if (BaseSpec->isVirtual()) Element.SubobjectNumber = 0; else Element.SubobjectNumber = Subobjects.second; Paths.ScratchPath.push_back(Element); // Calculate the "top-down" access to this base class. // The spec actually describes this bottom-up, but top-down is // equivalent because the definition works out as follows: // 1. Write down the access along each step in the inheritance // chain, followed by the access of the decl itself. // For example, in // class A { public: int foo; }; // class B : protected A {}; // class C : public B {}; // class D : private C {}; // we would write: // private public protected public // 2. If 'private' appears anywhere except far-left, access is denied. // 3. Otherwise, overall access is determined by the most restrictive // access in the sequence. if (IsFirstStep) Paths.ScratchPath.Access = BaseSpec->getAccessSpecifier(); else Paths.ScratchPath.Access = MergeAccess(AccessToHere, BaseSpec->getAccessSpecifier()); } if (BaseMatches(BaseSpec, Paths.ScratchPath, UserData)) { // We've found a path that terminates at this base. FoundPath = true; if (Paths.isRecordingPaths()) { // We have a path. Make a copy of it before moving on. Paths.Paths.push_back(Paths.ScratchPath); } else if (!Paths.isFindingAmbiguities()) { // We found a path and we don't care about ambiguities; // return immediately. return FoundPath; } } else if (VisitBase) { CXXRecordDecl *BaseRecord = cast(BaseSpec->getType()->getAs() ->getDecl()); if (BaseRecord->lookupInBases(BaseMatches, UserData, Paths)) { // C++ [class.member.lookup]p2: // A member name f in one sub-object B hides a member name f in // a sub-object A if A is a base class sub-object of B. Any // declarations that are so hidden are eliminated from // consideration. // There is a path to a base class that meets the criteria. If we're // not collecting paths or finding ambiguities, we're done. FoundPath = true; if (!Paths.isFindingAmbiguities()) return FoundPath; } } // Pop this base specifier off the current path (if we're // collecting paths). if (Paths.isRecordingPaths()) { Paths.ScratchPath.pop_back(); } // If we set a virtual earlier, and this isn't a path, forget it again. if (SetVirtual && !FoundPath) { Paths.DetectedVirtual = 0; } } // Reset the scratch path access. Paths.ScratchPath.Access = AccessToHere; return FoundPath; } bool CXXRecordDecl::FindBaseClass(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *BaseRecord) { assert(((Decl *)BaseRecord)->getCanonicalDecl() == BaseRecord && "User data for FindBaseClass is not canonical!"); return Specifier->getType()->getAs()->getDecl() ->getCanonicalDecl() == BaseRecord; } bool CXXRecordDecl::FindTagMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *Name) { RecordDecl *BaseRecord = Specifier->getType()->getAs()->getDecl(); DeclarationName N = DeclarationName::getFromOpaquePtr(Name); for (Path.Decls = BaseRecord->lookup(N); Path.Decls.first != Path.Decls.second; ++Path.Decls.first) { if ((*Path.Decls.first)->isInIdentifierNamespace(IDNS_Tag)) return true; } return false; } bool CXXRecordDecl::FindOrdinaryMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *Name) { RecordDecl *BaseRecord = Specifier->getType()->getAs()->getDecl(); const unsigned IDNS = IDNS_Ordinary | IDNS_Tag | IDNS_Member; DeclarationName N = DeclarationName::getFromOpaquePtr(Name); for (Path.Decls = BaseRecord->lookup(N); Path.Decls.first != Path.Decls.second; ++Path.Decls.first) { if ((*Path.Decls.first)->isInIdentifierNamespace(IDNS)) return true; } return false; } bool CXXRecordDecl:: FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, void *Name) { RecordDecl *BaseRecord = Specifier->getType()->getAs()->getDecl(); DeclarationName N = DeclarationName::getFromOpaquePtr(Name); for (Path.Decls = BaseRecord->lookup(N); Path.Decls.first != Path.Decls.second; ++Path.Decls.first) { // FIXME: Refactor the "is it a nested-name-specifier?" check if (isa(*Path.Decls.first) || (*Path.Decls.first)->isInIdentifierNamespace(IDNS_Tag)) return true; } return false; }