/* * Device driver for National Semiconductor DS8390 based ethernet * adapters. By David Greenman, 29-April-1993 * * Copyright (C) 1993, David Greenman. This software may be used, modified, * copied, distributed, and sold, in both source and binary form provided * that the above copyright and these terms are retained. Under no * circumstances is the author responsible for the proper functioning * of this software, nor does the author assume any responsibility * for damages incurred with its use. * * Currently supports the Western Digital/SMC 8003 and 8013 series * and the 3Com 3c503 */ /* * Modification history * * $Log$ * */ #include "ed.h" #if NED > 0 #include "bpfilter.h" #include "param.h" #include "errno.h" #include "ioctl.h" #include "mbuf.h" #include "socket.h" #include "syslog.h" #include "net/if.h" #include "net/if_dl.h" #include "net/if_types.h" #include "net/netisr.h" #ifdef INET #include "netinet/in.h" #include "netinet/in_systm.h" #include "netinet/in_var.h" #include "netinet/ip.h" #include "netinet/if_ether.h" #endif #ifdef NS #include "netns/ns.h" #include "netns/ns_if.h" #endif #if NBPFILTER > 0 #include "net/bpf.h" #include "net/bpfdesc.h" #endif #include "i386/isa/isa.h" #include "i386/isa/isa_device.h" #include "i386/isa/icu.h" #include "i386/isa/if_edreg.h" #include "i386/include/pio.h" /* * ed_softc: per line info and status */ struct ed_softc { struct arpcom arpcom; /* ethernet common */ char *type_str; /* pointer to type string */ u_char vendor; /* interface vendor */ u_char type; /* interface type code */ u_short vector; /* interrupt vector */ u_short asic_addr; /* ASIC I/O bus address */ u_short nic_addr; /* NIC (DS8390) I/O bus address */ caddr_t smem_start; /* shared memory start address */ caddr_t smem_end; /* shared memory end address */ u_long smem_size; /* total shared memory size */ caddr_t smem_ring; /* start of RX ring-buffer (in smem) */ caddr_t bpf; /* BPF "magic cookie" */ u_char memwidth; /* width of access to card mem 8 or 16 */ u_char xmit_busy; /* transmitter is busy */ u_char txb_cnt; /* Number of transmit buffers */ u_char txb_next; /* Pointer to next buffer ready to xmit */ u_short txb_next_len; /* next xmit buffer length */ u_char data_buffered; /* data has been buffered in interface memory */ u_char tx_page_start; /* first page of TX buffer area */ u_char rec_page_start; /* first page of RX ring-buffer */ u_char rec_page_stop; /* last page of RX ring-buffer */ u_char next_packet; /* pointer to next unread RX packet */ } ed_softc[NED]; int ed_attach(), ed_init(), edintr(), ed_ioctl(), ed_probe(), ed_start(), ed_reset(), ed_watchdog(); static void ed_stop(); static inline void ed_rint(); static inline void ed_xmit(); static inline char *ed_ring_copy(); extern int ether_output(); struct isa_driver eddriver = { ed_probe, ed_attach, "ed" }; /* * Interrupt conversion table for WD/SMC ASIC * (IRQ* are defined in icu.h) */ static unsigned short ed_intr_mask[] = { IRQ9, IRQ3, IRQ5, IRQ7, IRQ10, IRQ11, IRQ15, IRQ4 }; #define ETHER_MIN_LEN 64 #define ETHER_MAX_LEN 1518 #define ETHER_ADDR_LEN 6 #define ETHER_HDR_SIZE 14 /* * Determine if the device is present * * on entry: * a pointer to an isa_device struct * on exit: * NULL if device not found * or # of i/o addresses used (if found) */ int ed_probe(isa_dev) struct isa_device *isa_dev; { struct ed_softc *sc = &ed_softc[isa_dev->id_unit]; int i, x; u_int memsize; u_char iptr, memwidth, sum, tmp; /* * Setup initial i/o address for ASIC and NIC */ sc->asic_addr = isa_dev->id_iobase; sc->vector = isa_dev->id_irq; sc->smem_start = (caddr_t)isa_dev->id_maddr; /* * Attempt to do a checksum over the station address PROM. * This is mapped differently on the WD80x3 and 3C503, so if * it fails, it might be a 3C503. There is a problem with * this, though: some clone WD boards don't pass the * checksum test. Danpex boards for one. We need to do * additional checking for this case. */ for (sum = 0, i = 0; i < 8; ++i) { sum += inb(sc->asic_addr + ED_WD_PROM + i); } if (sum == ED_WD_ROM_CHECKSUM_TOTAL) { goto type_WD80x3; } else { /* * Do additional checking to make sure its a 3Com and * not a broken WD clone */ goto type_3Com; } type_WD80x3: /* * Looks like a WD/SMC board */ sc->vendor = ED_VENDOR_WD_SMC; sc->type = inb(sc->asic_addr + ED_WD_CARD_ID); sc->nic_addr = sc->asic_addr + ED_WD_NIC_OFFSET; /* reset card to force it into a known state. */ outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST); DELAY(100); outb(sc->asic_addr + ED_WD_MSR, inb(sc->asic_addr + ED_WD_MSR) & ~ED_WD_MSR_RST); /* wait in the case this card is reading it's EEROM */ DELAY(5000); /* * Set initial values for width/size. */ switch (sc->type) { case ED_TYPE_WD8003S: sc->type_str = "WD8003S"; memsize = 8192; memwidth = 8; break; case ED_TYPE_WD8003E: sc->type_str = "WD8003E"; memsize = 8192; memwidth = 8; break; case ED_TYPE_WD8013EBT: sc->type_str = "WD8013EBT"; memsize = 16384; memwidth = 16; break; case ED_TYPE_WD8013EB: /* also WD8003EP */ if (inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) { memwidth = 16; memsize = 16384; sc->type_str = "WD8013EB"; } else { sc->type_str = "WD8003EP"; memsize = 8192; memwidth = 8; } break; case ED_TYPE_WD8013EBP: sc->type_str = "WD8013EBP"; memsize = 16384; memwidth = 16; break; case ED_TYPE_WD8013EPC: sc->type_str = "WD8013EPC"; memsize = 16384; memwidth = 16; break; default: sc->type_str = "unknown"; memsize = 8192; memwidth = 8; break; } /* * Make some adjustments to initial values depending on what is * found in the ICR. */ if ((memwidth==16) && ((inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) { memwidth = 8; memsize = 8192; } if (inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_MSZ) { memsize = 32768; } #if ED_DEBUG printf("type=%s width=%d memsize=%d\n",sc->type_str,memwidth,memsize); for (i=0; i<8; i++) printf("%x -> %x\n", i, inb(sc->asic_addr + i)); #endif if (sc->type & ED_WD_SOFTCONFIG) { iptr = inb(isa_dev->id_iobase + 1) & 4 | ((inb(isa_dev->id_iobase+4) & 0x60) >> 5); if (ed_intr_mask[iptr] != isa_dev->id_irq) { printf("ed%d: kernel configured irq doesn't match board configured irq\n", isa_dev->id_unit); return(0); } outb(isa_dev->id_iobase+4, inb(isa_dev->id_iobase+4) | 0x80); } sc->memwidth = memwidth; /* * allocate one xmit buffer if < 16k, two buffers otherwise */ if (memsize < 16384) { sc->smem_ring = sc->smem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE); sc->txb_cnt = 1; sc->rec_page_start = ED_TXBUF_SIZE; } else { sc->smem_ring = sc->smem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE * 2); sc->txb_cnt = 2; sc->rec_page_start = ED_TXBUF_SIZE * 2; } sc->smem_size = memsize; sc->smem_end = sc->smem_start + memsize; sc->rec_page_stop = memsize / ED_PAGE_SIZE; sc->tx_page_start = ED_WD_PAGE_OFFSET; /* * Get station address from on-board ROM */ for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->arpcom.ac_enaddr[i] = inb(sc->asic_addr + ED_WD_PROM + i); /* * Set address and enable interface shared memory. */ outb(sc->asic_addr + ED_WD_MSR, ((kvtop(sc->smem_start) >> 13) & ED_WD_MSR_ADDR) | ED_WD_MSR_MENB); /* * Set upper address bits and 8/16 bit access to shared memory */ if (sc->type & ED_WD_SOFTCONFIG) { if (memwidth == 8) { outb(sc->asic_addr + ED_WD_LAAR, ((kvtop(sc->smem_start) >> 19) & ED_WD_LAAR_ADDRHI)); } else { outb(sc->asic_addr + ED_WD_LAAR, ED_WD_LAAR_L16EN | ED_WD_LAAR_M16EN | ((kvtop(sc->smem_start) >> 19) & ED_WD_LAAR_ADDRHI)); } } /* * Now zero memory and verify that it is clear */ bzero(sc->smem_start, memsize); for (i = 0; i < memsize; ++i) if (sc->smem_start[i]) { printf("ed%d: failed to clear shared memory at %x - check configuration\n", isa_dev->id_unit, sc->smem_start + i); /* * Disable 16 bit access to shared memory */ if (memwidth == 16) outb(sc->asic_addr + ED_WD_LAAR, inb(sc->asic_addr + ED_WD_LAAR) & ~ED_WD_LAAR_M16EN); return(0); } /* * Disable 16bit access to shared memory - we leave it disabled so * that 1) machines reboot properly when the board is set * 16 bit mode and there are conflicting 8bit devices/ROMS * in the same 128k address space as this boards shared * memory. and 2) so that other 8 bit devices with shared * memory can be used in this 128k region, too. */ if (memwidth == 16) outb(sc->asic_addr + ED_WD_LAAR, inb(sc->asic_addr + ED_WD_LAAR) & ~ED_WD_LAAR_M16EN); isa_dev->id_msize = memsize; return (ED_WD_IO_PORTS); type_3Com: /* * Looks like a 3Com board */ sc->vendor = ED_VENDOR_3COM; sc->asic_addr = isa_dev->id_iobase + ED_3COM_ASIC_OFFSET; sc->nic_addr = isa_dev->id_iobase + ED_3COM_NIC_OFFSET; sc->type_str = "3c503"; memsize = 8192; /* * Verify that the kernel configured I/O address matches the board * configured address */ switch (sc->asic_addr + ED_3COM_BCFR) { case ED_3COM_BCFR_300: if (isa_dev->id_iobase != 0x300) return(0); break; case ED_3COM_BCFR_310: if (isa_dev->id_iobase != 0x310) return(0); break; case ED_3COM_BCFR_330: if (isa_dev->id_iobase != 0x330) return(0); break; case ED_3COM_BCFR_350: if (isa_dev->id_iobase != 0x350) return(0); break; case ED_3COM_BCFR_250: if (isa_dev->id_iobase != 0x250) return(0); break; case ED_3COM_BCFR_280: if (isa_dev->id_iobase != 0x280) return(0); break; case ED_3COM_BCFR_2A0: if (isa_dev->id_iobase != 0x2a0) return(0); break; case ED_3COM_BCFR_2E0: if (isa_dev->id_iobase != 0x2e0) return(0); break; } /* * Verify that the kernel shared memory address matches the * board configured address. */ switch (sc->asic_addr + ED_3COM_PCFR) { case ED_3COM_PCFR_DC000: if (kvtop(isa_dev->id_maddr) != ED_3COM_PCFR_DC000) return(0); break; case ED_3COM_PCFR_D8000: if (kvtop(isa_dev->id_maddr) != ED_3COM_PCFR_D8000) return(0); break; case ED_3COM_PCFR_CC000: if (kvtop(isa_dev->id_maddr) != ED_3COM_PCFR_CC000) return(0); break; case ED_3COM_PCFR_C8000: if (kvtop(isa_dev->id_maddr) != ED_3COM_PCFR_C8000) return(0); break; } /* * Reset NIC and ASIC */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_RST); /* * Verify that reset bit was set */ if ((inb(sc->asic_addr + ED_3COM_CR) & ED_3COM_CR_RST) == 0) return (0); /* * Wait for a while, then un-reset it */ DELAY(5000); outb(sc->asic_addr + ED_3COM_CR, 0); /* * Verify that the bit cleared */ if (inb(sc->asic_addr + ED_3COM_CR) & ED_3COM_CR_RST) return (0); /* * Wait a bit for the NIC to recover from the reset */ DELAY(5000); /* * Determine if this is an 8bit or 16bit board */ /* XXX - either this code is broken...or the hardware is... */ /* it always comes up 8bit */ /* * select page 0 registers */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2|ED_CR_STP); /* * Attempt to clear WTS bit. If it doesn't clear, then this is a * 16bit board. */ outb(sc->nic_addr + ED_P0_DCR, 0); /* * select page 2 registers */ outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_2|ED_CR_RD2|ED_CR_STP); /* * The 3c503 forces the WTS bit to a one if this is a 16bit board */ if (inb(sc->nic_addr + ED_P2_DCR) & ED_DCR_WTS) memwidth = 16; else memwidth = 8; #if 0 printf(" (%dbit)",memwidth); #endif /* * select page 0 registers */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2|ED_CR_STP); sc->txb_cnt = 1; sc->tx_page_start = ED_3COM_PAGE_OFFSET; sc->rec_page_start = ED_TXBUF_SIZE + ED_3COM_PAGE_OFFSET; sc->rec_page_stop = memsize / ED_PAGE_SIZE + ED_3COM_PAGE_OFFSET; sc->smem_size = memsize; sc->smem_end = sc->smem_start + memsize; sc->smem_ring = sc->smem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE); sc->memwidth = memwidth; /* * Initialize GA page start/stop registers. Probably only needed * if doing DMA, but what the hell. */ outb(sc->asic_addr + ED_3COM_PSTR, sc->rec_page_start); outb(sc->asic_addr + ED_3COM_PSPR, sc->rec_page_stop); /* * Set IRQ. 3c503 only allows a choice of irq 2-5. */ switch (isa_dev->id_irq) { case IRQ2: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ2); break; case IRQ3: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ3); break; case IRQ4: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ4); break; case IRQ5: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ5); break; default: printf("ed0: Invalid irq configuration\n"); return(0); } /* * Initialize GA configuration register. Set bank and enable smem. */ outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0); /* * Initialize "Vector Pointer" registers. These gawd-awful things * are compared to 20 bits of the address on ISA, and if they * match, the shared memory is disabled. We set them to * 0xffff0...allegedly the reset vector. */ outb(sc->asic_addr + ED_3COM_VPTR2, 0xff); outb(sc->asic_addr + ED_3COM_VPTR1, 0xff); outb(sc->asic_addr + ED_3COM_VPTR0, 0x00); /* * Get station address from on-board ROM */ /* * First, map ethernet address PROM over the top of where the NIC * registers normally appear. */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_EALO); for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->arpcom.ac_enaddr[i] = inb(sc->nic_addr + i); /* * Unmap PROM - select NIC registers */ outb(sc->asic_addr + ED_3COM_CR, 0); /* * Zero memory and verify that it is clear */ #if 0 { char test_buf[1024]; printf("starting write\n"); for (i = 0; i < 8*8192; ++i) bcopy(test_buf, sc->smem_start, 1024); printf("starting read\n"); for (i = 0; i < 8*8192; ++i) bcopy(sc->smem_start, test_buf, 1024); printf("done.\n"); } #endif bzero(sc->smem_start, memsize); for (i = 0; i < memsize; ++i) if (sc->smem_start[i]) { printf("ed%d: failed to clear shared memory at %x - check configuration\n", isa_dev->id_unit, sc->smem_start + i); return(0); } isa_dev->id_msize = memsize; return(ED_3COM_IO_PORTS); } /* * Install interface into kernel networking data structures */ int ed_attach(isa_dev) struct isa_device *isa_dev; { struct ed_softc *sc = &ed_softc[isa_dev->id_unit]; struct ifnet *ifp = &sc->arpcom.ac_if; struct ifaddr *ifa; struct sockaddr_dl *sdl; /* * Set interface to stopped condition (reset) */ ed_stop(isa_dev->id_unit); /* * Initialize ifnet structure */ ifp->if_unit = isa_dev->id_unit; ifp->if_name = "ed" ; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS ; ifp->if_init = ed_init; ifp->if_output = ether_output; ifp->if_start = ed_start; ifp->if_ioctl = ed_ioctl; ifp->if_reset = ed_reset; ifp->if_watchdog = ed_watchdog; if_attach(ifp); #if NBPFILTER > 0 bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif /* * Search down the ifa address list looking for the AF_LINK type entry */ ifa = ifp->if_addrlist; while ((ifa != 0) && (ifa->ifa_addr != 0) && (ifa->ifa_addr->sa_family != AF_LINK)) ifa = ifa->ifa_next; /* * If we find an AF_LINK type entry, we well fill in the hardware addr */ if ((ifa != 0) && (ifa->ifa_addr != 0)) { /* * Fill in the link level address for this interface */ sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_ETHER; sdl->sdl_alen = ETHER_ADDR_LEN; sdl->sdl_slen = 0; bcopy(sc->arpcom.ac_enaddr, LLADDR(sdl), ETHER_ADDR_LEN); } /* * Print additional info when attached */ printf(" enet %s type %s", ether_sprintf(sc->arpcom.ac_enaddr), sc->type_str); } /* * Reset interface. */ int ed_reset(unit, uban) int unit; { int s; s = splnet(); /* * Stop interface and re-initialize. */ ed_stop(unit); ed_init(unit); s = splx(s); } /* * Take interface offline. */ void ed_stop(unit) int unit; { struct ed_softc *sc = &ed_softc[unit]; int n = 5000; /* * Stop everything on the interface, and select page 0 registers. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2|ED_CR_STP); /* * Wait for interface to enter stopped state, but limit # of checks * to 'n' (about 5ms). It shouldn't even take 5us on modern * DS8390's, but just in case it's an old one. */ while ((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) == 0) { if (--n == 0) break; } } int ed_watchdog(unit) int unit; { log(LOG_ERR, "ed%d: device timeout\n", unit); ed_reset(unit); } /* * Initialize device. */ ed_init(unit) int unit; { struct ed_softc *sc = &ed_softc[unit]; struct ifnet *ifp = &sc->arpcom.ac_if; int i, s; u_char command; /* address not known */ if (ifp->if_addrlist == (struct ifaddr *)0) return; /* * Initialize the NIC in the exact order outlined in the NS manual. * This init procedure is "mandatory"...don't change what or when * things happen. */ s = splnet(); /* reset transmitter flags */ sc->data_buffered = 0; sc->xmit_busy = 0; sc->arpcom.ac_if.if_timer = 0; sc->txb_next = 0; /* This variable is used below - don't move this assignment */ sc->next_packet = sc->rec_page_start + 1; /* * Set interface for page 0, Remote DMA complete, Stopped */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2|ED_CR_STP); if (sc->memwidth == 16) { /* * Set FIFO threshold to 8, No auto-init Remote DMA, * byte order=80x86, word-wide DMA xfers */ outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1|ED_DCR_WTS); } else { /* * Same as above, but byte-wide DMA xfers */ outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1); } /* * Clear Remote Byte Count Registers */ outb(sc->nic_addr + ED_P0_RBCR0, 0); outb(sc->nic_addr + ED_P0_RBCR1, 0); /* * Enable reception of broadcast packets */ outb(sc->nic_addr + ED_P0_RCR, ED_RCR_AB); /* * Place NIC in internal loopback mode */ outb(sc->nic_addr + ED_P0_TCR, ED_TCR_LB0); /* * Initialize transmit/receive (ring-buffer) Page Start */ outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start); outb(sc->nic_addr + ED_P0_PSTART, sc->rec_page_start); /* * Initialize Receiver (ring-buffer) Page Stop and Boundry */ outb(sc->nic_addr + ED_P0_PSTOP, sc->rec_page_stop); outb(sc->nic_addr + ED_P0_BNRY, sc->rec_page_start); /* * Clear all interrupts. A '1' in each bit position clears the * corresponding flag. */ outb(sc->nic_addr + ED_P0_ISR, 0xff); /* * Enable the following interrupts: receive/transmit complete, * receive/transmit error, and Receiver OverWrite. * * Counter overflow and Remote DMA complete are *not* enabled. */ outb(sc->nic_addr + ED_P0_IMR, ED_IMR_PRXE|ED_IMR_PTXE|ED_IMR_RXEE|ED_IMR_TXEE|ED_IMR_OVWE); /* * Program Command Register for page 1 */ outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_1|ED_CR_RD2|ED_CR_STP); /* * Copy out our station address */ for (i = 0; i < ETHER_ADDR_LEN; ++i) outb(sc->nic_addr + ED_P1_PAR0 + i, sc->arpcom.ac_enaddr[i]); #if NBPFILTER > 0 /* * Initialize multicast address hashing registers to accept * all multicasts (only used when in promiscuous mode) */ for (i = 0; i < 8; ++i) outb(sc->nic_addr + ED_P1_MAR0 + i, 0xff); #endif /* * Set Current Page pointer to next_packet (initialized above) */ outb(sc->nic_addr + ED_P1_CURR, sc->next_packet); /* * Set Command Register for page 0, Remote DMA complete, * and interface Start. */ outb(sc->nic_addr + ED_P1_CR, ED_CR_RD2|ED_CR_STA); /* * Take interface out of loopback */ outb(sc->nic_addr + ED_P0_TCR, 0); /* * Set 'running' flag, and clear output active flag. */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* * ...and attempt to start output */ ed_start(ifp); (void) splx(s); } static inline void ed_xmit(ifp) struct ifnet *ifp; { struct ed_softc *sc = &ed_softc[ifp->if_unit]; u_short len = sc->txb_next_len; /* * Set NIC for page 0 register access */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2|ED_CR_STA); /* * Set TX buffer start page */ outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start + sc->txb_next * ED_TXBUF_SIZE); /* * Set TX length */ outb(sc->nic_addr + ED_P0_TBCR0, len & 0xff); outb(sc->nic_addr + ED_P0_TBCR1, len >> 8); /* * Set page 0, Remote DMA complete, Transmit Packet, and Start */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2|ED_CR_TXP|ED_CR_STA); sc->xmit_busy = 1; sc->data_buffered = 0; if ((sc->txb_next == 0) && (sc->txb_cnt > 1)) sc->txb_next = 1; else sc->txb_next = 0; /* * Set a timer just in case we never hear from the board again */ ifp->if_timer = 2; } /* * Start output on interface. * We make two assumptions here: * 1) that the current priority is set to splnet _before_ this code * is called *and* is returned to the appropriate priority after * return * 2) that the IFF_OACTIVE flag is checked before this code is called * (i.e. that the output part of the interface is idle) */ int ed_start(ifp) struct ifnet *ifp; { struct ed_softc *sc = &ed_softc[ifp->if_unit]; struct mbuf *m0, *m; caddr_t buffer; int len; u_char laar_tmp; outloop: if (sc->data_buffered) if (sc->xmit_busy) { ifp->if_flags |= IFF_OACTIVE; return; } else { /* * Note that ed_xmit() resets the data_buffered flag * before returning */ ed_xmit(ifp); } IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m); if (m == 0) { /* * The following isn't pretty; we are using the !OACTIVE flag to * indicate to the outside world that we can accept an additional * packet rather than that the transmitter is _actually_ * active. Indeed, the transmitter may be active, but if we haven't * filled the secondary buffer with data then we still want to * accept more. * Note that it isn't necessary to test the data_buffered flag - * we wouldn't have tried to de-queue the packet in the first place * if it was set. */ ifp->if_flags &= ~IFF_OACTIVE; return; } /* * Copy the mbuf chain into the transmit buffer */ /* * Enable 16bit access to shared memory on WD/SMC boards */ if (sc->memwidth == 16) if (sc->vendor == ED_VENDOR_WD_SMC) { laar_tmp = inb(sc->asic_addr + ED_WD_LAAR); outb(sc->asic_addr + ED_WD_LAAR, laar_tmp | ED_WD_LAAR_M16EN); } buffer = sc->smem_start + (sc->txb_next * ED_TXBUF_SIZE * ED_PAGE_SIZE); len = 0; for (m0 = m; m != 0; m = m->m_next) { bcopy(mtod(m, caddr_t), buffer, m->m_len); buffer += m->m_len; len += m->m_len; } /* * Restore previous shared mem access type */ if (sc->memwidth == 16) if (sc->vendor == ED_VENDOR_WD_SMC) { outb(sc->asic_addr + ED_WD_LAAR, laar_tmp); } sc->txb_next_len = MAX(len, ETHER_MIN_LEN); if (sc->txb_cnt > 1) /* * only set 'buffered' flag if doing multiple buffers */ sc->data_buffered = 1; if (sc->xmit_busy == 0) ed_xmit(ifp); /* * If there is BPF support in the configuration, tap off here. * The following has support for converting trailer packets * back to normal. */ #if NBPFILTER > 0 if (sc->bpf) { u_short etype; int off, datasize, resid; struct ether_header *eh; struct trailer_header { u_short ether_type; u_short ether_residual; } trailer_header; char ether_packet[ETHER_MAX_LEN]; char *ep; ep = ether_packet; /* * We handle trailers below: * Copy ether header first, then residual data, * then data. Put all this in a temporary buffer * 'ether_packet' and send off to bpf. Since the * system has generated this packet, we assume * that all of the offsets in the packet are * correct; if they're not, the system will almost * certainly crash in m_copydata. * We make no assumptions about how the data is * arranged in the mbuf chain (i.e. how much * data is in each mbuf, if mbuf clusters are * used, etc.), which is why we use m_copydata * to get the ether header rather than assume * that this is located in the first mbuf. */ /* copy ether header */ m_copydata(m0, 0, sizeof(struct ether_header), ep); eh = (struct ether_header *) ep; ep += sizeof(struct ether_header); etype = ntohs(eh->ether_type); if (etype >= ETHERTYPE_TRAIL && etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) { datasize = ((etype - ETHERTYPE_TRAIL) << 9); off = datasize + sizeof(struct ether_header); /* copy trailer_header into a data structure */ m_copydata(m0, off, sizeof(struct trailer_header), &trailer_header.ether_type); /* copy residual data */ m_copydata(m0, off+sizeof(struct trailer_header), resid = ntohs(trailer_header.ether_residual) - sizeof(struct trailer_header), ep); ep += resid; /* copy data */ m_copydata(m0, sizeof(struct ether_header), datasize, ep); ep += datasize; /* restore original ether packet type */ eh->ether_type = trailer_header.ether_type; bpf_tap(sc->bpf, ether_packet, ep - ether_packet); } else bpf_mtap(sc->bpf, m0); } #endif m_freem(m0); if (sc->txb_cnt > 1) goto outloop; else { ifp->if_flags |= IFF_OACTIVE; return; } } /* * Ethernet interface receiver interrupt. */ static inline void /* only called from one place, so may as well integrate */ ed_rint(unit) int unit; { register struct ed_softc *sc = &ed_softc[unit]; u_char boundry, current; u_short len; struct ed_ring *packet_ptr; /* * Set NIC to page 1 registers to get 'current' pointer */ outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_1|ED_CR_RD2|ED_CR_STA); /* * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e. * it points to where new data has been buffered. The 'CURR' * (current) register points to the logical end of the ring-buffer * - i.e. it points to where additional new data will be added. * We loop here until the logical beginning equals the logical * end (or in other words, until the ring-buffer is empty). */ while (sc->next_packet != inb(sc->nic_addr + ED_P1_CURR)) { /* get pointer to this buffer header structure */ packet_ptr = (struct ed_ring *)(sc->smem_ring + (sc->next_packet - sc->rec_page_start) * ED_PAGE_SIZE); /* * The byte count includes the FCS - Frame Check Sequence (a * 32 bit CRC). */ len = packet_ptr->count; if ((len >= ETHER_MIN_LEN) && (len <= ETHER_MAX_LEN)) { /* * Go get packet. len - 4 removes CRC from length. * (packet_ptr + 1) points to data just after the packet ring * header (+4 bytes) */ ed_get_packet(sc, (caddr_t)(packet_ptr + 1), len - 4); ++sc->arpcom.ac_if.if_ipackets; } else { /* * Really BAD...probably indicates that the ring pointers * are corrupted. Also seen on early rev chips under * high load - the byte order of the length gets switched. */ log(LOG_ERR, "ed%d: shared memory corrupt - invalid packet length %d\n", unit, len); ed_reset(unit); return; } /* * Update next packet pointer */ sc->next_packet = packet_ptr->next_packet; /* * Update NIC boundry pointer - being careful to keep it * one buffer behind. (as recommended by NS databook) */ boundry = sc->next_packet - 1; if (boundry < sc->rec_page_start) boundry = sc->rec_page_stop - 1; /* * Set NIC to page 0 registers to update boundry register */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2|ED_CR_STA); outb(sc->nic_addr + ED_P0_BNRY, boundry); /* * Set NIC to page 1 registers before looping to top (prepare to * get 'CURR' current pointer) */ outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_1|ED_CR_RD2|ED_CR_STA); } } /* * Ethernet interface interrupt processor */ int edintr(unit) int unit; { struct ed_softc *sc = &ed_softc[unit]; u_char isr; /* * Set NIC to page 0 registers */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2|ED_CR_STA); /* * loop until there are no more new interrupts */ while (isr = inb(sc->nic_addr + ED_P0_ISR)) { /* * reset all the bits that we are 'acknowleging' * by writing a '1' to each bit position that was set * (writing a '1' *clears* the bit) */ outb(sc->nic_addr + ED_P0_ISR, isr); /* * Transmit error. If a TX completed with an error, we end up * throwing the packet away. Really the only error that is * possible is excessive collisions, and in this case it is * best to allow the automatic mechanisms of TCP to backoff * the flow. Of course, with UDP we're screwed, but this is * expected when a network is heavily loaded. */ if (isr & ED_ISR_TXE) { u_char tsr = inb(sc->nic_addr + ED_P0_TSR); u_char ncr = inb(sc->nic_addr + ED_P0_NCR); /* * Excessive collisions (16) */ if ((tsr & ED_TSR_ABT) && (ncr == 0)) { /* * When collisions total 16, the P0_NCR will * indicate 0, and the TSR_ABT is set. */ sc->arpcom.ac_if.if_collisions += 16; } else sc->arpcom.ac_if.if_collisions += ncr; /* * update output errors counter */ ++sc->arpcom.ac_if.if_oerrors; /* * reset tx busy and output active flags */ sc->xmit_busy = 0; sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE; /* * reset watchdog timer */ sc->arpcom.ac_if.if_timer = 0; } /* * Receiver Error. One or more of: CRC error, frame alignment error * FIFO overrun, or missed packet. */ if (isr & ED_ISR_RXE) { ++sc->arpcom.ac_if.if_ierrors; } /* * Overwrite warning. In order to make sure that a lockup * of the local DMA hasn't occurred, we reset and * re-init the NIC. The NSC manual suggests only a * partial reset/re-init is necessary - but some * chips seem to want more. The DMA lockup has been * seen only with early rev chips - Methinks this * bug was fixed in later revs. -DG */ if (isr & ED_ISR_OVW) { ++sc->arpcom.ac_if.if_ierrors; log(LOG_WARNING, "ed%d: warning - receiver ring buffer overrun\n", unit); /* * Stop/reset/re-init NIC */ ed_reset(unit); } /* * Transmission completed normally. */ if (isr & ED_ISR_PTX) { /* * reset tx busy and output active flags */ sc->xmit_busy = 0; sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE; /* * reset watchdog timer */ sc->arpcom.ac_if.if_timer = 0; /* * Update total number of successfully transmitted * packets. */ ++sc->arpcom.ac_if.if_opackets; /* * Add in total number of collisions on last * transmission. */ sc->arpcom.ac_if.if_collisions += inb(sc->nic_addr + ED_P0_TBCR0); } /* * Receive Completion. Go and get the packet. * XXX - Doing this on an error is dubious because there * shouldn't be any data to get (we've configured the * interface to not accept packets with errors). */ if (isr & (ED_ISR_PRX|ED_ISR_RXE)) { /* * Enable access to shared memory on WD/SMC boards */ if (sc->memwidth == 16) if (sc->vendor == ED_VENDOR_WD_SMC) { outb(sc->asic_addr + ED_WD_LAAR, inb(sc->asic_addr + ED_WD_LAAR) | ED_WD_LAAR_M16EN); } ed_rint (unit); /* * Disable access to shared memory */ if (sc->memwidth == 16) if (sc->vendor == ED_VENDOR_WD_SMC) { outb(sc->asic_addr + ED_WD_LAAR, inb(sc->asic_addr + ED_WD_LAAR) & ~ED_WD_LAAR_M16EN); } } /* * If it looks like the transmitter can take more data, * attempt to start output on the interface. If data is * already buffered and ready to go, send it first. */ if ((sc->arpcom.ac_if.if_flags & IFF_OACTIVE) == 0) { if (sc->data_buffered) ed_xmit(&sc->arpcom.ac_if); ed_start(&sc->arpcom.ac_if); } /* * return NIC CR to standard state before looping back * to top: page 0, remote DMA complete, start * (toggling the TXP bit off, even if was just set in the * transmit routine, is *okay* - it is 'edge' triggered * from low to high) */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2|ED_CR_STA); } } /* * Process an ioctl request. This code needs some work - it looks * pretty ugly. */ int ed_ioctl(ifp, command, data) register struct ifnet *ifp; int command; caddr_t data; { register struct ifaddr *ifa = (struct ifaddr *)data; struct ed_softc *sc = &ed_softc[ifp->if_unit]; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ed_init(ifp->if_unit); /* before arpwhohas */ /* * See if another station has *our* IP address. * i.e.: There is an address conflict! If a * conflict exists, a message is sent to the * console. */ ((struct arpcom *)ifp)->ac_ipaddr = IA_SIN(ifa)->sin_addr; arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr); break; #endif #ifdef NS /* * XXX - This code is probably wrong */ case AF_NS: { register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr); if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *)(sc->arpcom.ac_enaddr); else { /* * */ bcopy((caddr_t)ina->x_host.c_host, (caddr_t)sc->arpcom.ac_enaddr, sizeof(sc->arpcom.ac_enaddr)); } /* * Set new address */ ed_init(ifp->if_unit); break; } #endif default: ed_init(ifp->if_unit); break; } break; case SIOCSIFFLAGS: /* * If interface is marked down and it is running, then stop it */ if (((ifp->if_flags & IFF_UP) == 0) && (ifp->if_flags & IFF_RUNNING)) { ed_stop(ifp->if_unit); ifp->if_flags &= ~IFF_RUNNING; } else { /* * If interface is marked up and it is stopped, then start it */ if ((ifp->if_flags & IFF_UP) && ((ifp->if_flags & IFF_RUNNING) == 0)) ed_init(ifp->if_unit); } #if NBPFILTER > 0 if (ifp->if_flags & IFF_PROMISC) { /* * Set promiscuous mode on interface. * XXX - for multicasts to work, we would need to * write 1's in all bits of multicast * hashing array. For now we assume that * this was done in ed_init(). */ outb(sc->nic_addr + ED_P0_RCR, ED_RCR_PRO|ED_RCR_AM|ED_RCR_AB); } else /* * XXX - for multicasts to work, we would need to * rewrite the multicast hashing array with the * proper hash (would have been destroyed above). */ outb(sc->nic_addr + ED_P0_RCR, ED_RCR_AB); #endif break; default: error = EINVAL; } (void) splx(s); return (error); } /* * Macro to calculate a new address within shared memory when given an offset * from an address, taking into account ring-wrap. */ #define ringoffset(sc, start, off, type) \ ((type)( ((caddr_t)(start)+(off) >= (sc)->smem_end) ? \ (((caddr_t)(start)+(off))) - (sc)->smem_end \ + (sc)->smem_ring: \ ((caddr_t)(start)+(off)) )) /* * Retreive packet from shared memory and send to the next level up via * ether_input(). If there is a BPF listener, give a copy to BPF, too. */ ed_get_packet(sc, buf, len) struct ed_softc *sc; char *buf; u_short len; { struct ether_header *eh; struct mbuf *m, *head, *ed_ring_to_mbuf(); u_short off; int resid; u_short etype; struct trailer_header { u_short trail_type; u_short trail_residual; } trailer_header; /* Allocate a header mbuf */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) goto bad; m->m_pkthdr.rcvif = &sc->arpcom.ac_if; m->m_pkthdr.len = len; m->m_len = 0; head = m; eh = (struct ether_header *)buf; /* The following sillines is to make NFS happy */ #define EROUND ((sizeof(struct ether_header) + 3) & ~3) #define EOFF (EROUND - sizeof(struct ether_header)) /* * The following assumes there is room for * the ether header in the header mbuf */ head->m_data += EOFF; bcopy(buf, mtod(head, caddr_t), sizeof(struct ether_header)); buf += sizeof(struct ether_header); head->m_len += sizeof(struct ether_header); len -= sizeof(struct ether_header); etype = ntohs((u_short)eh->ether_type); /* * Deal with trailer protocol: * If trailer protocol, calculate the datasize as 'off', * which is also the offset to the trailer header. * Set resid to the amount of packet data following the * trailer header. * Finally, copy residual data into mbuf chain. */ if (etype >= ETHERTYPE_TRAIL && etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) { off = (etype - ETHERTYPE_TRAIL) << 9; if ((off + sizeof(struct trailer_header)) > len) goto bad; /* insanity */ eh->ether_type = *ringoffset(sc, buf, off, u_short *); resid = ntohs(*ringoffset(sc, buf, off+2, u_short *)); if ((off + resid) > len) goto bad; /* insanity */ resid -= sizeof(struct trailer_header); if (resid < 0) goto bad; /* insanity */ m = ed_ring_to_mbuf(sc, ringoffset(sc, buf, off+4, char *), head, resid); if (m == 0) goto bad; len = off; head->m_pkthdr.len -= 4; /* subtract trailer header */ } /* * Pull packet off interface. Or if this was a trailer packet, * the data portion is appended. */ m = ed_ring_to_mbuf(sc, buf, m, len); if (m == 0) goto bad; #if NBPFILTER > 0 /* * Check if there's a BPF listener on this interface. * If so, hand off the raw packet to bpf. */ if (sc->bpf) { bpf_mtap(sc->bpf, head); /* * Note that the interface cannot be in promiscuous mode if * there are no BPF listeners. And if we are in promiscuous * mode, we have to check if this packet is really ours. * * XXX This test does not support multicasts. */ if ((sc->arpcom.ac_if.if_flags & IFF_PROMISC) && bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr, sizeof(eh->ether_dhost)) != 0 && bcmp(eh->ether_dhost, etherbroadcastaddr, sizeof(eh->ether_dhost)) != 0) { m_freem(head); return; } } #endif /* * Fix up data start offset in mbuf to point past ether header */ m_adj(head, sizeof(struct ether_header)); /* * silly ether_input routine needs 'type' in host byte order */ eh->ether_type = ntohs(eh->ether_type); ether_input(&sc->arpcom.ac_if, eh, head); return; bad: if (head) m_freem(head); return; } /* * Supporting routines */ /* * Given a source and destination address, copy 'amount' of a packet from * the ring buffer into a linear destination buffer. Takes into account * ring-wrap. */ static inline char * ed_ring_copy(sc,src,dst,amount) struct ed_softc *sc; char *src; char *dst; u_short amount; { u_short tmp_amount; /* does copy wrap to lower addr in ring buffer? */ if (src + amount > sc->smem_end) { tmp_amount = sc->smem_end - src; bcopy(src,dst,tmp_amount); /* copy amount up to end of smem */ amount -= tmp_amount; src = sc->smem_ring; dst += tmp_amount; } bcopy(src, dst, amount); return(src + amount); } /* * Copy data from receive buffer to end of mbuf chain * allocate additional mbufs as needed. return pointer * to last mbuf in chain. * sc = ed info (softc) * src = pointer in ed ring buffer * dst = pointer to last mbuf in mbuf chain to copy to * amount = amount of data to copy */ struct mbuf * ed_ring_to_mbuf(sc,src,dst,total_len) struct ed_softc *sc; char *src; struct mbuf *dst; u_short total_len; { register struct mbuf *m = dst; while (total_len) { register u_short amount = min(total_len, M_TRAILINGSPACE(m)); if (amount == 0) { /* no more data in this mbuf, alloc another */ /* * if there is enough data for an mbuf cluster, attempt * to allocate one of those, otherwise, a regular mbuf * will do. */ dst = m; MGET(m, M_DONTWAIT, MT_DATA); if (m == 0) return (0); if (total_len >= MINCLSIZE) MCLGET(m, M_DONTWAIT); m->m_len = 0; dst->m_next = m; amount = min(total_len, M_TRAILINGSPACE(m)); } src = ed_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len, amount); m->m_len += amount; total_len -= amount; } return (m); } #endif