//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the code that handles AST -> LLVM type lowering. // //===----------------------------------------------------------------------===// #include "CodeGenTypes.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/Expr.h" #include "clang/AST/RecordLayout.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Target/TargetData.h" #include "CGCall.h" #include "CGRecordLayoutBuilder.h" using namespace clang; using namespace CodeGen; CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M, const llvm::TargetData &TD, const ABIInfo &Info) : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD), TheABIInfo(Info) { } CodeGenTypes::~CodeGenTypes() { for (llvm::DenseMap::iterator I = CGRecordLayouts.begin(), E = CGRecordLayouts.end(); I != E; ++I) delete I->second; for (llvm::FoldingSet::iterator I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) delete &*I++; } /// ConvertType - Convert the specified type to its LLVM form. const llvm::Type *CodeGenTypes::ConvertType(QualType T) { llvm::PATypeHolder Result = ConvertTypeRecursive(T); // Any pointers that were converted defered evaluation of their pointee type, // creating an opaque type instead. This is in order to avoid problems with // circular types. Loop through all these defered pointees, if any, and // resolve them now. while (!PointersToResolve.empty()) { std::pair P = PointersToResolve.pop_back_val(); // We can handle bare pointers here because we know that the only pointers // to the Opaque type are P.second and from other types. Refining the // opqaue type away will invalidate P.second, but we don't mind :). const llvm::Type *NT = ConvertTypeForMemRecursive(P.first); P.second->refineAbstractTypeTo(NT); } return Result; } const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) { T = Context.getCanonicalType(T); // See if type is already cached. llvm::DenseMap::iterator I = TypeCache.find(T.getTypePtr()); // If type is found in map and this is not a definition for a opaque // place holder type then use it. Otherwise, convert type T. if (I != TypeCache.end()) return I->second.get(); const llvm::Type *ResultType = ConvertNewType(T); TypeCache.insert(std::make_pair(T.getTypePtr(), llvm::PATypeHolder(ResultType))); return ResultType; } const llvm::Type *CodeGenTypes::ConvertTypeForMemRecursive(QualType T) { const llvm::Type *ResultType = ConvertTypeRecursive(T); if (ResultType->isInteger(1)) return llvm::IntegerType::get(getLLVMContext(), (unsigned)Context.getTypeSize(T)); // FIXME: Should assert that the llvm type and AST type has the same size. return ResultType; } /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from /// ConvertType in that it is used to convert to the memory representation for /// a type. For example, the scalar representation for _Bool is i1, but the /// memory representation is usually i8 or i32, depending on the target. const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) { const llvm::Type *R = ConvertType(T); // If this is a non-bool type, don't map it. if (!R->isInteger(1)) return R; // Otherwise, return an integer of the target-specified size. return llvm::IntegerType::get(getLLVMContext(), (unsigned)Context.getTypeSize(T)); } // Code to verify a given function type is complete, i.e. the return type // and all of the argument types are complete. static const TagType *VerifyFuncTypeComplete(const Type* T) { const FunctionType *FT = cast(T); if (const TagType* TT = FT->getResultType()->getAs()) if (!TT->getDecl()->isDefinition()) return TT; if (const FunctionProtoType *FPT = dyn_cast(T)) for (unsigned i = 0; i < FPT->getNumArgs(); i++) if (const TagType* TT = FPT->getArgType(i)->getAs()) if (!TT->getDecl()->isDefinition()) return TT; return 0; } /// UpdateCompletedType - When we find the full definition for a TagDecl, /// replace the 'opaque' type we previously made for it if applicable. void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { const Type *Key = Context.getTagDeclType(TD).getTypePtr(); llvm::DenseMap::iterator TDTI = TagDeclTypes.find(Key); if (TDTI == TagDeclTypes.end()) return; // Remember the opaque LLVM type for this tagdecl. llvm::PATypeHolder OpaqueHolder = TDTI->second; assert(isa(OpaqueHolder.get()) && "Updating compilation of an already non-opaque type?"); // Remove it from TagDeclTypes so that it will be regenerated. TagDeclTypes.erase(TDTI); // Generate the new type. const llvm::Type *NT = ConvertTagDeclType(TD); // Refine the old opaque type to its new definition. cast(OpaqueHolder.get())->refineAbstractTypeTo(NT); // Since we just completed a tag type, check to see if any function types // were completed along with the tag type. // FIXME: This is very inefficient; if we track which function types depend // on which tag types, though, it should be reasonably efficient. llvm::DenseMap::iterator i; for (i = FunctionTypes.begin(); i != FunctionTypes.end(); ++i) { if (const TagType* TT = VerifyFuncTypeComplete(i->first)) { // This function type still depends on an incomplete tag type; make sure // that tag type has an associated opaque type. ConvertTagDeclType(TT->getDecl()); } else { // This function no longer depends on an incomplete tag type; create the // function type, and refine the opaque type to the new function type. llvm::PATypeHolder OpaqueHolder = i->second; const llvm::Type *NFT = ConvertNewType(QualType(i->first, 0)); cast(OpaqueHolder.get())->refineAbstractTypeTo(NFT); FunctionTypes.erase(i); } } } static const llvm::Type* getTypeForFormat(llvm::LLVMContext &VMContext, const llvm::fltSemantics &format) { if (&format == &llvm::APFloat::IEEEsingle) return llvm::Type::getFloatTy(VMContext); if (&format == &llvm::APFloat::IEEEdouble) return llvm::Type::getDoubleTy(VMContext); if (&format == &llvm::APFloat::IEEEquad) return llvm::Type::getFP128Ty(VMContext); if (&format == &llvm::APFloat::PPCDoubleDouble) return llvm::Type::getPPC_FP128Ty(VMContext); if (&format == &llvm::APFloat::x87DoubleExtended) return llvm::Type::getX86_FP80Ty(VMContext); assert(0 && "Unknown float format!"); return 0; } const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) { const clang::Type &Ty = *Context.getCanonicalType(T).getTypePtr(); switch (Ty.getTypeClass()) { #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: #define DEPENDENT_TYPE(Class, Base) case Type::Class: #include "clang/AST/TypeNodes.def" assert(false && "Non-canonical or dependent types aren't possible."); break; case Type::Builtin: { switch (cast(Ty).getKind()) { case BuiltinType::Void: case BuiltinType::ObjCId: case BuiltinType::ObjCClass: case BuiltinType::ObjCSel: // LLVM void type can only be used as the result of a function call. Just // map to the same as char. return llvm::IntegerType::get(getLLVMContext(), 8); case BuiltinType::Bool: // Note that we always return bool as i1 for use as a scalar type. return llvm::Type::getInt1Ty(getLLVMContext()); case BuiltinType::Char_S: case BuiltinType::Char_U: case BuiltinType::SChar: case BuiltinType::UChar: case BuiltinType::Short: case BuiltinType::UShort: case BuiltinType::Int: case BuiltinType::UInt: case BuiltinType::Long: case BuiltinType::ULong: case BuiltinType::LongLong: case BuiltinType::ULongLong: case BuiltinType::WChar: case BuiltinType::Char16: case BuiltinType::Char32: return llvm::IntegerType::get(getLLVMContext(), static_cast(Context.getTypeSize(T))); case BuiltinType::Float: case BuiltinType::Double: case BuiltinType::LongDouble: return getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T)); case BuiltinType::NullPtr: { // Model std::nullptr_t as i8* const llvm::Type *Ty = llvm::IntegerType::get(getLLVMContext(), 8); return llvm::PointerType::getUnqual(Ty); } case BuiltinType::UInt128: case BuiltinType::Int128: return llvm::IntegerType::get(getLLVMContext(), 128); case BuiltinType::Overload: case BuiltinType::Dependent: case BuiltinType::UndeducedAuto: assert(0 && "Unexpected builtin type!"); break; } assert(0 && "Unknown builtin type!"); break; } case Type::Complex: { const llvm::Type *EltTy = ConvertTypeRecursive(cast(Ty).getElementType()); return llvm::StructType::get(TheModule.getContext(), EltTy, EltTy, NULL); } case Type::LValueReference: case Type::RValueReference: { const ReferenceType &RTy = cast(Ty); QualType ETy = RTy.getPointeeType(); llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext()); PointersToResolve.push_back(std::make_pair(ETy, PointeeType)); return llvm::PointerType::get(PointeeType, ETy.getAddressSpace()); } case Type::Pointer: { const PointerType &PTy = cast(Ty); QualType ETy = PTy.getPointeeType(); llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext()); PointersToResolve.push_back(std::make_pair(ETy, PointeeType)); return llvm::PointerType::get(PointeeType, ETy.getAddressSpace()); } case Type::VariableArray: { const VariableArrayType &A = cast(Ty); assert(A.getIndexTypeCVRQualifiers() == 0 && "FIXME: We only handle trivial array types so far!"); // VLAs resolve to the innermost element type; this matches // the return of alloca, and there isn't any obviously better choice. return ConvertTypeForMemRecursive(A.getElementType()); } case Type::IncompleteArray: { const IncompleteArrayType &A = cast(Ty); assert(A.getIndexTypeCVRQualifiers() == 0 && "FIXME: We only handle trivial array types so far!"); // int X[] -> [0 x int] return llvm::ArrayType::get(ConvertTypeForMemRecursive(A.getElementType()), 0); } case Type::ConstantArray: { const ConstantArrayType &A = cast(Ty); const llvm::Type *EltTy = ConvertTypeForMemRecursive(A.getElementType()); return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue()); } case Type::ExtVector: case Type::Vector: { const VectorType &VT = cast(Ty); return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()), VT.getNumElements()); } case Type::FunctionNoProto: case Type::FunctionProto: { // First, check whether we can build the full function type. if (const TagType* TT = VerifyFuncTypeComplete(&Ty)) { // This function's type depends on an incomplete tag type; make sure // we have an opaque type corresponding to the tag type. ConvertTagDeclType(TT->getDecl()); // Create an opaque type for this function type, save it, and return it. llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext()); FunctionTypes.insert(std::make_pair(&Ty, ResultType)); return ResultType; } // The function type can be built; call the appropriate routines to // build it. if (const FunctionProtoType *FPT = dyn_cast(&Ty)) return GetFunctionType(getFunctionInfo(FPT), FPT->isVariadic()); const FunctionNoProtoType *FNPT = cast(&Ty); return GetFunctionType(getFunctionInfo(FNPT), true); } case Type::ObjCInterface: { // Objective-C interfaces are always opaque (outside of the // runtime, which can do whatever it likes); we never refine // these. const llvm::Type *&T = InterfaceTypes[cast(&Ty)]; if (!T) T = llvm::OpaqueType::get(getLLVMContext()); return T; } case Type::ObjCObjectPointer: { // Protocol qualifications do not influence the LLVM type, we just return a // pointer to the underlying interface type. We don't need to worry about // recursive conversion. const llvm::Type *T = ConvertTypeRecursive(cast(Ty).getPointeeType()); return llvm::PointerType::getUnqual(T); } case Type::Record: case Type::Enum: { const TagDecl *TD = cast(Ty).getDecl(); const llvm::Type *Res = ConvertTagDeclType(TD); std::string TypeName(TD->getKindName()); TypeName += '.'; // Name the codegen type after the typedef name // if there is no tag type name available if (TD->getIdentifier()) // FIXME: We should not have to check for a null decl context here. // Right now we do it because the implicit Obj-C decls don't have one. TypeName += TD->getDeclContext() ? TD->getQualifiedNameAsString() : TD->getNameAsString(); else if (const TypedefType *TdT = dyn_cast(T)) // FIXME: We should not have to check for a null decl context here. // Right now we do it because the implicit Obj-C decls don't have one. TypeName += TdT->getDecl()->getDeclContext() ? TdT->getDecl()->getQualifiedNameAsString() : TdT->getDecl()->getNameAsString(); else TypeName += "anon"; TheModule.addTypeName(TypeName, Res); return Res; } case Type::BlockPointer: { const QualType FTy = cast(Ty).getPointeeType(); llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext()); PointersToResolve.push_back(std::make_pair(FTy, PointeeType)); return llvm::PointerType::get(PointeeType, FTy.getAddressSpace()); } case Type::MemberPointer: { // FIXME: This is ABI dependent. We use the Itanium C++ ABI. // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers // If we ever want to support other ABIs this needs to be abstracted. QualType ETy = cast(Ty).getPointeeType(); const llvm::Type *PtrDiffTy = ConvertTypeRecursive(Context.getPointerDiffType()); if (ETy->isFunctionType()) return llvm::StructType::get(TheModule.getContext(), PtrDiffTy, PtrDiffTy, NULL); return PtrDiffTy; } case Type::TemplateSpecialization: assert(false && "Dependent types can't get here"); } // FIXME: implement. return llvm::OpaqueType::get(getLLVMContext()); } /// ConvertTagDeclType - Lay out a tagged decl type like struct or union or /// enum. const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) { // FIXME. This may have to move to a better place. if (const CXXRecordDecl *RD = dyn_cast(TD)) { for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), e = RD->bases_end(); i != e; ++i) { if (!i->isVirtual()) { const CXXRecordDecl *Base = cast(i->getType()->getAs()->getDecl()); ConvertTagDeclType(Base); } } } // TagDecl's are not necessarily unique, instead use the (clang) // type connected to the decl. const Type *Key = Context.getTagDeclType(TD).getTypePtr(); llvm::DenseMap::iterator TDTI = TagDeclTypes.find(Key); // If we've already compiled this tag type, use the previous definition. if (TDTI != TagDeclTypes.end()) return TDTI->second; // If this is still a forward definition, just define an opaque type to use // for this tagged decl. if (!TD->isDefinition()) { llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext()); TagDeclTypes.insert(std::make_pair(Key, ResultType)); return ResultType; } // Okay, this is a definition of a type. Compile the implementation now. if (TD->isEnum()) // Don't bother storing enums in TagDeclTypes. return ConvertTypeRecursive(cast(TD)->getIntegerType()); // This decl could well be recursive. In this case, insert an opaque // definition of this type, which the recursive uses will get. We will then // refine this opaque version later. // Create new OpaqueType now for later use in case this is a recursive // type. This will later be refined to the actual type. llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get(getLLVMContext()); TagDeclTypes.insert(std::make_pair(Key, ResultHolder)); const RecordDecl *RD = cast(TD); // Layout fields. CGRecordLayout *Layout = CGRecordLayoutBuilder::ComputeLayout(*this, RD); CGRecordLayouts[Key] = Layout; const llvm::Type *ResultType = Layout->getLLVMType(); // Refine our Opaque type to ResultType. This can invalidate ResultType, so // make sure to read the result out of the holder. cast(ResultHolder.get()) ->refineAbstractTypeTo(ResultType); return ResultHolder.get(); } /// getLLVMFieldNo - Return llvm::StructType element number /// that corresponds to the field FD. unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) { assert(!FD->isBitField() && "Don't use getLLVMFieldNo on bit fields!"); llvm::DenseMap::iterator I = FieldInfo.find(FD); assert (I != FieldInfo.end() && "Unable to find field info"); return I->second; } /// addFieldInfo - Assign field number to field FD. void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) { FieldInfo[FD] = No; } /// getBitFieldInfo - Return the BitFieldInfo that corresponds to the field FD. CodeGenTypes::BitFieldInfo CodeGenTypes::getBitFieldInfo(const FieldDecl *FD) { llvm::DenseMap::iterator I = BitFields.find(FD); assert (I != BitFields.end() && "Unable to find bitfield info"); return I->second; } /// addBitFieldInfo - Assign a start bit and a size to field FD. void CodeGenTypes::addBitFieldInfo(const FieldDecl *FD, unsigned FieldNo, unsigned Start, unsigned Size) { BitFields.insert(std::make_pair(FD, BitFieldInfo(FieldNo, Start, Size))); } /// getCGRecordLayout - Return record layout info for the given llvm::Type. const CGRecordLayout & CodeGenTypes::getCGRecordLayout(const TagDecl *TD) const { const Type *Key = Context.getTagDeclType(TD).getTypePtr(); llvm::DenseMap::const_iterator I = CGRecordLayouts.find(Key); assert (I != CGRecordLayouts.end() && "Unable to find record layout information for type"); return *I->second; }