//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the code that handles AST -> LLVM type lowering. // //===----------------------------------------------------------------------===// #include "CodeGenTypes.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/RecordLayout.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Target/TargetData.h" #include "CGCall.h" using namespace clang; using namespace CodeGen; namespace { /// RecordOrganizer - This helper class, used by CGRecordLayout, layouts /// structs and unions. It manages transient information used during layout. /// FIXME : Handle field aligments. Handle packed structs. class RecordOrganizer { public: explicit RecordOrganizer(CodeGenTypes &Types, const RecordDecl& Record) : CGT(Types), RD(Record), STy(NULL) {} /// layoutStructFields - Do the actual work and lay out all fields. Create /// corresponding llvm struct type. This should be invoked only after /// all fields are added. void layoutStructFields(const ASTRecordLayout &RL); /// layoutUnionFields - Do the actual work and lay out all fields. Create /// corresponding llvm struct type. This should be invoked only after /// all fields are added. void layoutUnionFields(const ASTRecordLayout &RL); /// getLLVMType - Return associated llvm struct type. This may be NULL /// if fields are not laid out. llvm::Type *getLLVMType() const { return STy; } llvm::SmallSet &getPaddingFields() { return PaddingFields; } private: CodeGenTypes &CGT; const RecordDecl& RD; llvm::Type *STy; llvm::SmallSet PaddingFields; }; } CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M, const llvm::TargetData &TD) : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD), TheABIInfo(0) { } CodeGenTypes::~CodeGenTypes() { for(llvm::DenseMap::iterator I = CGRecordLayouts.begin(), E = CGRecordLayouts.end(); I != E; ++I) delete I->second; CGRecordLayouts.clear(); } /// ConvertType - Convert the specified type to its LLVM form. const llvm::Type *CodeGenTypes::ConvertType(QualType T) { llvm::PATypeHolder Result = ConvertTypeRecursive(T); // Any pointers that were converted defered evaluation of their pointee type, // creating an opaque type instead. This is in order to avoid problems with // circular types. Loop through all these defered pointees, if any, and // resolve them now. while (!PointersToResolve.empty()) { std::pair P = PointersToResolve.back(); PointersToResolve.pop_back(); // We can handle bare pointers here because we know that the only pointers // to the Opaque type are P.second and from other types. Refining the // opqaue type away will invalidate P.second, but we don't mind :). const llvm::Type *NT = ConvertTypeForMemRecursive(P.first); P.second->refineAbstractTypeTo(NT); } return Result; } const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) { T = Context.getCanonicalType(T); // See if type is already cached. llvm::DenseMap::iterator I = TypeCache.find(T.getTypePtr()); // If type is found in map and this is not a definition for a opaque // place holder type then use it. Otherwise, convert type T. if (I != TypeCache.end()) return I->second.get(); const llvm::Type *ResultType = ConvertNewType(T); TypeCache.insert(std::make_pair(T.getTypePtr(), llvm::PATypeHolder(ResultType))); return ResultType; } const llvm::Type *CodeGenTypes::ConvertTypeForMemRecursive(QualType T) { const llvm::Type *ResultType = ConvertTypeRecursive(T); if (ResultType == llvm::Type::Int1Ty) return llvm::IntegerType::get((unsigned)Context.getTypeSize(T)); return ResultType; } /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from /// ConvertType in that it is used to convert to the memory representation for /// a type. For example, the scalar representation for _Bool is i1, but the /// memory representation is usually i8 or i32, depending on the target. const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) { const llvm::Type *R = ConvertType(T); // If this is a non-bool type, don't map it. if (R != llvm::Type::Int1Ty) return R; // Otherwise, return an integer of the target-specified size. return llvm::IntegerType::get((unsigned)Context.getTypeSize(T)); } // Code to verify a given function type is complete, i.e. the return type // and all of the argument types are complete. static const TagType *VerifyFuncTypeComplete(const Type* T) { const FunctionType *FT = cast(T); if (const TagType* TT = FT->getResultType()->getAsTagType()) if (!TT->getDecl()->isDefinition()) return TT; if (const FunctionProtoType *FPT = dyn_cast(T)) for (unsigned i = 0; i < FPT->getNumArgs(); i++) if (const TagType* TT = FPT->getArgType(i)->getAsTagType()) if (!TT->getDecl()->isDefinition()) return TT; return 0; } /// UpdateCompletedType - When we find the full definition for a TagDecl, /// replace the 'opaque' type we previously made for it if applicable. void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { const Type *Key = Context.getTagDeclType(const_cast(TD)).getTypePtr(); llvm::DenseMap::iterator TDTI = TagDeclTypes.find(Key); if (TDTI == TagDeclTypes.end()) return; // Remember the opaque LLVM type for this tagdecl. llvm::PATypeHolder OpaqueHolder = TDTI->second; assert(isa(OpaqueHolder.get()) && "Updating compilation of an already non-opaque type?"); // Remove it from TagDeclTypes so that it will be regenerated. TagDeclTypes.erase(TDTI); // Generate the new type. const llvm::Type *NT = ConvertTagDeclType(TD); // Refine the old opaque type to its new definition. cast(OpaqueHolder.get())->refineAbstractTypeTo(NT); // Since we just completed a tag type, check to see if any function types // were completed along with the tag type. // FIXME: This is very inefficient; if we track which function types depend // on which tag types, though, it should be reasonably efficient. llvm::DenseMap::iterator i; for (i = FunctionTypes.begin(); i != FunctionTypes.end(); ++i) { if (const TagType* TT = VerifyFuncTypeComplete(i->first)) { // This function type still depends on an incomplete tag type; make sure // that tag type has an associated opaque type. ConvertTagDeclType(TT->getDecl()); } else { // This function no longer depends on an incomplete tag type; create the // function type, and refine the opaque type to the new function type. llvm::PATypeHolder OpaqueHolder = i->second; const llvm::Type *NFT = ConvertNewType(QualType(i->first, 0)); cast(OpaqueHolder.get())->refineAbstractTypeTo(NFT); FunctionTypes.erase(i); } } } static const llvm::Type* getTypeForFormat(const llvm::fltSemantics &format) { if (&format == &llvm::APFloat::IEEEsingle) return llvm::Type::FloatTy; if (&format == &llvm::APFloat::IEEEdouble) return llvm::Type::DoubleTy; if (&format == &llvm::APFloat::IEEEquad) return llvm::Type::FP128Ty; if (&format == &llvm::APFloat::PPCDoubleDouble) return llvm::Type::PPC_FP128Ty; if (&format == &llvm::APFloat::x87DoubleExtended) return llvm::Type::X86_FP80Ty; assert(0 && "Unknown float format!"); return 0; } const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) { const clang::Type &Ty = *Context.getCanonicalType(T); switch (Ty.getTypeClass()) { #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: #define DEPENDENT_TYPE(Class, Base) case Type::Class: #include "clang/AST/TypeNodes.def" assert(false && "Non-canonical or dependent types aren't possible."); break; case Type::Builtin: { switch (cast(Ty).getKind()) { default: assert(0 && "Unknown builtin type!"); case BuiltinType::Void: // LLVM void type can only be used as the result of a function call. Just // map to the same as char. return llvm::IntegerType::get(8); case BuiltinType::Bool: // Note that we always return bool as i1 for use as a scalar type. return llvm::Type::Int1Ty; case BuiltinType::Char_S: case BuiltinType::Char_U: case BuiltinType::SChar: case BuiltinType::UChar: case BuiltinType::Short: case BuiltinType::UShort: case BuiltinType::Int: case BuiltinType::UInt: case BuiltinType::Long: case BuiltinType::ULong: case BuiltinType::LongLong: case BuiltinType::ULongLong: case BuiltinType::WChar: return llvm::IntegerType::get( static_cast(Context.getTypeSize(T))); case BuiltinType::Float: case BuiltinType::Double: case BuiltinType::LongDouble: return getTypeForFormat(Context.getFloatTypeSemantics(T)); case BuiltinType::UInt128: case BuiltinType::Int128: return llvm::IntegerType::get(128); } break; } case Type::FixedWidthInt: return llvm::IntegerType::get(cast(T)->getWidth()); case Type::Complex: { const llvm::Type *EltTy = ConvertTypeRecursive(cast(Ty).getElementType()); return llvm::StructType::get(EltTy, EltTy, NULL); } case Type::LValueReference: case Type::RValueReference: { const ReferenceType &RTy = cast(Ty); QualType ETy = RTy.getPointeeType(); llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(); PointersToResolve.push_back(std::make_pair(ETy, PointeeType)); return llvm::PointerType::get(PointeeType, ETy.getAddressSpace()); } case Type::Pointer: { const PointerType &PTy = cast(Ty); QualType ETy = PTy.getPointeeType(); llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(); PointersToResolve.push_back(std::make_pair(ETy, PointeeType)); return llvm::PointerType::get(PointeeType, ETy.getAddressSpace()); } case Type::VariableArray: { const VariableArrayType &A = cast(Ty); assert(A.getIndexTypeQualifier() == 0 && "FIXME: We only handle trivial array types so far!"); // VLAs resolve to the innermost element type; this matches // the return of alloca, and there isn't any obviously better choice. return ConvertTypeForMemRecursive(A.getElementType()); } case Type::IncompleteArray: { const IncompleteArrayType &A = cast(Ty); assert(A.getIndexTypeQualifier() == 0 && "FIXME: We only handle trivial array types so far!"); // int X[] -> [0 x int] return llvm::ArrayType::get(ConvertTypeForMemRecursive(A.getElementType()), 0); } case Type::ConstantArray: { const ConstantArrayType &A = cast(Ty); const llvm::Type *EltTy = ConvertTypeForMemRecursive(A.getElementType()); return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue()); } case Type::ExtVector: case Type::Vector: { const VectorType &VT = cast(Ty); return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()), VT.getNumElements()); } case Type::FunctionNoProto: case Type::FunctionProto: { // First, check whether we can build the full function type. if (const TagType* TT = VerifyFuncTypeComplete(&Ty)) { // This function's type depends on an incomplete tag type; make sure // we have an opaque type corresponding to the tag type. ConvertTagDeclType(TT->getDecl()); // Create an opaque type for this function type, save it, and return it. llvm::Type *ResultType = llvm::OpaqueType::get(); FunctionTypes.insert(std::make_pair(&Ty, ResultType)); return ResultType; } // The function type can be built; call the appropriate routines to // build it. if (const FunctionProtoType *FPT = dyn_cast(&Ty)) return GetFunctionType(getFunctionInfo(FPT), FPT->isVariadic()); const FunctionNoProtoType *FNPT = cast(&Ty); return GetFunctionType(getFunctionInfo(FNPT), true); } case Type::ExtQual: return ConvertTypeRecursive(QualType(cast(Ty).getBaseType(), 0)); case Type::ObjCQualifiedInterface: { // Lower foo just like foo. ObjCInterfaceDecl *ID = cast(Ty).getDecl(); return ConvertTypeRecursive(Context.getObjCInterfaceType(ID)); } case Type::ObjCInterface: { // Objective-C interfaces are always opaque (outside of the // runtime, which can do whatever it likes); we never refine // these. const llvm::Type *&T = InterfaceTypes[cast(&Ty)]; if (!T) T = llvm::OpaqueType::get(); return T; } case Type::ObjCQualifiedId: // Protocols don't influence the LLVM type. return ConvertTypeRecursive(Context.getObjCIdType()); case Type::Record: case Type::Enum: { const TagDecl *TD = cast(Ty).getDecl(); const llvm::Type *Res = ConvertTagDeclType(TD); std::string TypeName(TD->getKindName()); TypeName += '.'; // Name the codegen type after the typedef name // if there is no tag type name available if (TD->getIdentifier()) TypeName += TD->getNameAsString(); else if (const TypedefType *TdT = dyn_cast(T)) TypeName += TdT->getDecl()->getNameAsString(); else TypeName += "anon"; TheModule.addTypeName(TypeName, Res); return Res; } case Type::BlockPointer: { const QualType FTy = cast(Ty).getPointeeType(); llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(); PointersToResolve.push_back(std::make_pair(FTy, PointeeType)); return llvm::PointerType::get(PointeeType, FTy.getAddressSpace()); } case Type::MemberPointer: { // FIXME: This is ABI dependent. We use the Itanium C++ ABI. // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers // If we ever want to support other ABIs this needs to be abstracted. QualType ETy = cast(Ty).getPointeeType(); if (ETy->isFunctionType()) { return llvm::StructType::get(ConvertType(Context.getPointerDiffType()), ConvertType(Context.getPointerDiffType()), NULL); } else return ConvertType(Context.getPointerDiffType()); } case Type::TemplateSpecialization: assert(false && "Dependent types can't get here"); } // FIXME: implement. return llvm::OpaqueType::get(); } /// ConvertTagDeclType - Lay out a tagged decl type like struct or union or /// enum. const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) { // TagDecl's are not necessarily unique, instead use the (clang) // type connected to the decl. const Type *Key = Context.getTagDeclType(const_cast(TD)).getTypePtr(); llvm::DenseMap::iterator TDTI = TagDeclTypes.find(Key); // If we've already compiled this tag type, use the previous definition. if (TDTI != TagDeclTypes.end()) return TDTI->second; // If this is still a forward definition, just define an opaque type to use // for this tagged decl. if (!TD->isDefinition()) { llvm::Type *ResultType = llvm::OpaqueType::get(); TagDeclTypes.insert(std::make_pair(Key, ResultType)); return ResultType; } // Okay, this is a definition of a type. Compile the implementation now. if (TD->isEnum()) { // Don't bother storing enums in TagDeclTypes. return ConvertTypeRecursive(cast(TD)->getIntegerType()); } // This decl could well be recursive. In this case, insert an opaque // definition of this type, which the recursive uses will get. We will then // refine this opaque version later. // Create new OpaqueType now for later use in case this is a recursive // type. This will later be refined to the actual type. llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get(); TagDeclTypes.insert(std::make_pair(Key, ResultHolder)); const llvm::Type *ResultType; const RecordDecl *RD = cast(TD); // There isn't any extra information for empty structures/unions. if (RD->field_empty(getContext())) { ResultType = llvm::StructType::get(std::vector()); } else { // Layout fields. RecordOrganizer RO(*this, *RD); if (TD->isStruct() || TD->isClass()) RO.layoutStructFields(Context.getASTRecordLayout(RD)); else { assert(TD->isUnion() && "unknown tag decl kind!"); RO.layoutUnionFields(Context.getASTRecordLayout(RD)); } // Get llvm::StructType. const Type *Key = Context.getTagDeclType(const_cast(TD)).getTypePtr(); CGRecordLayouts[Key] = new CGRecordLayout(RO.getLLVMType(), RO.getPaddingFields()); ResultType = RO.getLLVMType(); } // Refine our Opaque type to ResultType. This can invalidate ResultType, so // make sure to read the result out of the holder. cast(ResultHolder.get()) ->refineAbstractTypeTo(ResultType); return ResultHolder.get(); } /// getLLVMFieldNo - Return llvm::StructType element number /// that corresponds to the field FD. unsigned CodeGenTypes::getLLVMFieldNo(const FieldDecl *FD) { llvm::DenseMap::iterator I = FieldInfo.find(FD); assert (I != FieldInfo.end() && "Unable to find field info"); return I->second; } /// addFieldInfo - Assign field number to field FD. void CodeGenTypes::addFieldInfo(const FieldDecl *FD, unsigned No) { FieldInfo[FD] = No; } /// getBitFieldInfo - Return the BitFieldInfo that corresponds to the field FD. CodeGenTypes::BitFieldInfo CodeGenTypes::getBitFieldInfo(const FieldDecl *FD) { llvm::DenseMap::iterator I = BitFields.find(FD); assert (I != BitFields.end() && "Unable to find bitfield info"); return I->second; } /// addBitFieldInfo - Assign a start bit and a size to field FD. void CodeGenTypes::addBitFieldInfo(const FieldDecl *FD, unsigned Begin, unsigned Size) { BitFields.insert(std::make_pair(FD, BitFieldInfo(Begin, Size))); } /// getCGRecordLayout - Return record layout info for the given llvm::Type. const CGRecordLayout * CodeGenTypes::getCGRecordLayout(const TagDecl *TD) const { const Type *Key = Context.getTagDeclType(const_cast(TD)).getTypePtr(); llvm::DenseMap::iterator I = CGRecordLayouts.find(Key); assert (I != CGRecordLayouts.end() && "Unable to find record layout information for type"); return I->second; } /// layoutStructFields - Do the actual work and lay out all fields. Create /// corresponding llvm struct type. /// Note that this doesn't actually try to do struct layout; it depends on /// the layout built by the AST. (We have to do struct layout to do Sema, /// and there's no point to duplicating the work.) void RecordOrganizer::layoutStructFields(const ASTRecordLayout &RL) { // FIXME: This code currently always generates packed structures. // Unpacked structures are more readable, and sometimes more efficient! // (But note that any changes here are likely to impact CGExprConstant, // which makes some messy assumptions.) uint64_t llvmSize = 0; // FIXME: Make this a SmallVector std::vector LLVMFields; unsigned curField = 0; for (RecordDecl::field_iterator Field = RD.field_begin(CGT.getContext()), FieldEnd = RD.field_end(CGT.getContext()); Field != FieldEnd; ++Field) { uint64_t offset = RL.getFieldOffset(curField); const llvm::Type *Ty = CGT.ConvertTypeForMemRecursive(Field->getType()); uint64_t size = CGT.getTargetData().getTypeAllocSizeInBits(Ty); if (Field->isBitField()) { uint64_t BitFieldSize = Field->getBitWidth()->EvaluateAsInt(CGT.getContext()).getZExtValue(); // Bitfield field info is different from other field info; // it actually ignores the underlying LLVM struct because // there isn't any convenient mapping. CGT.addFieldInfo(*Field, offset / size); CGT.addBitFieldInfo(*Field, offset % size, BitFieldSize); } else { // Put the element into the struct. This would be simpler // if we didn't bother, but it seems a bit too strange to // allocate all structs as i8 arrays. while (llvmSize < offset) { LLVMFields.push_back(llvm::Type::Int8Ty); llvmSize += 8; } llvmSize += size; CGT.addFieldInfo(*Field, LLVMFields.size()); LLVMFields.push_back(Ty); } ++curField; } while (llvmSize < RL.getSize()) { LLVMFields.push_back(llvm::Type::Int8Ty); llvmSize += 8; } STy = llvm::StructType::get(LLVMFields, true); assert(CGT.getTargetData().getTypeAllocSizeInBits(STy) == RL.getSize()); } /// layoutUnionFields - Do the actual work and lay out all fields. Create /// corresponding llvm struct type. This should be invoked only after /// all fields are added. void RecordOrganizer::layoutUnionFields(const ASTRecordLayout &RL) { unsigned curField = 0; for (RecordDecl::field_iterator Field = RD.field_begin(CGT.getContext()), FieldEnd = RD.field_end(CGT.getContext()); Field != FieldEnd; ++Field) { // The offset should usually be zero, but bitfields could be strange uint64_t offset = RL.getFieldOffset(curField); CGT.ConvertTypeRecursive(Field->getType()); if (Field->isBitField()) { Expr *BitWidth = Field->getBitWidth(); uint64_t BitFieldSize = BitWidth->EvaluateAsInt(CGT.getContext()).getZExtValue(); CGT.addFieldInfo(*Field, 0); CGT.addBitFieldInfo(*Field, offset, BitFieldSize); } else { CGT.addFieldInfo(*Field, 0); } ++curField; } // This looks stupid, but it is correct in the sense that // it works no matter how complicated the sizes and alignments // of the union elements are. The natural alignment // of the result doesn't matter because anyone allocating // structures should be aligning them appropriately anyway. // FIXME: We can be a bit more intuitive in a lot of cases. // FIXME: Make this a struct type to work around PR2399; the // C backend doesn't like structs using array types. std::vector LLVMFields; LLVMFields.push_back(llvm::ArrayType::get(llvm::Type::Int8Ty, RL.getSize() / 8)); STy = llvm::StructType::get(LLVMFields, true); assert(CGT.getTargetData().getTypeAllocSizeInBits(STy) == RL.getSize()); }