//===--- Stmt.cpp - Statement AST Node Implementation ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Stmt class and statement subclasses. // //===----------------------------------------------------------------------===// #include "clang/AST/Stmt.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/Type.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include using namespace clang; static struct StmtClassNameTable { const char *Name; unsigned Counter; unsigned Size; } StmtClassInfo[Stmt::lastExprConstant+1]; static StmtClassNameTable &getStmtInfoTableEntry(Stmt::StmtClass E) { static bool Initialized = false; if (Initialized) return StmtClassInfo[E]; // Intialize the table on the first use. Initialized = true; #define STMT(CLASS, PARENT) \ StmtClassInfo[(unsigned)Stmt::CLASS##Class].Name = #CLASS; \ StmtClassInfo[(unsigned)Stmt::CLASS##Class].Size = sizeof(CLASS); #include "clang/AST/StmtNodes.def" return StmtClassInfo[E]; } const char *Stmt::getStmtClassName() const { return getStmtInfoTableEntry((StmtClass)sClass).Name; } void Stmt::PrintStats() { // Ensure the table is primed. getStmtInfoTableEntry(Stmt::NullStmtClass); unsigned sum = 0; fprintf(stderr, "*** Stmt/Expr Stats:\n"); for (int i = 0; i != Stmt::lastExprConstant+1; i++) { if (StmtClassInfo[i].Name == 0) continue; sum += StmtClassInfo[i].Counter; } fprintf(stderr, " %d stmts/exprs total.\n", sum); sum = 0; for (int i = 0; i != Stmt::lastExprConstant+1; i++) { if (StmtClassInfo[i].Name == 0) continue; if (StmtClassInfo[i].Counter == 0) continue; fprintf(stderr, " %d %s, %d each (%d bytes)\n", StmtClassInfo[i].Counter, StmtClassInfo[i].Name, StmtClassInfo[i].Size, StmtClassInfo[i].Counter*StmtClassInfo[i].Size); sum += StmtClassInfo[i].Counter*StmtClassInfo[i].Size; } fprintf(stderr, "Total bytes = %d\n", sum); } void Stmt::addStmtClass(StmtClass s) { ++getStmtInfoTableEntry(s).Counter; } static bool StatSwitch = false; bool Stmt::CollectingStats(bool Enable) { if (Enable) StatSwitch = true; return StatSwitch; } void CompoundStmt::setStmts(ASTContext &C, Stmt **Stmts, unsigned NumStmts) { if (this->Body) C.Deallocate(Body); this->NumStmts = NumStmts; Body = new (C) Stmt*[NumStmts]; memcpy(Body, Stmts, sizeof(Stmt *) * NumStmts); } const char *LabelStmt::getName() const { return getID()->getNameStart(); } // This is defined here to avoid polluting Stmt.h with importing Expr.h SourceRange ReturnStmt::getSourceRange() const { if (RetExpr) return SourceRange(RetLoc, RetExpr->getLocEnd()); else return SourceRange(RetLoc); } bool Stmt::hasImplicitControlFlow() const { switch (sClass) { default: return false; case CallExprClass: case ConditionalOperatorClass: case ChooseExprClass: case StmtExprClass: case DeclStmtClass: return true; case Stmt::BinaryOperatorClass: { const BinaryOperator* B = cast(this); if (B->isLogicalOp() || B->getOpcode() == BinaryOperator::Comma) return true; else return false; } } } Expr *AsmStmt::getOutputExpr(unsigned i) { return cast(Exprs[i]); } /// getOutputConstraint - Return the constraint string for the specified /// output operand. All output constraints are known to be non-empty (either /// '=' or '+'). std::string AsmStmt::getOutputConstraint(unsigned i) const { return std::string(Constraints[i]->getStrData(), Constraints[i]->getByteLength()); } /// getNumPlusOperands - Return the number of output operands that have a "+" /// constraint. unsigned AsmStmt::getNumPlusOperands() const { unsigned Res = 0; for (unsigned i = 0, e = getNumOutputs(); i != e; ++i) if (isOutputPlusConstraint(i)) ++Res; return Res; } Expr *AsmStmt::getInputExpr(unsigned i) { return cast(Exprs[i + NumOutputs]); } /// getInputConstraint - Return the specified input constraint. Unlike output /// constraints, these can be empty. std::string AsmStmt::getInputConstraint(unsigned i) const { return std::string(Constraints[i + NumOutputs]->getStrData(), Constraints[i + NumOutputs]->getByteLength()); } void AsmStmt::setOutputsAndInputs(unsigned NumOutputs, unsigned NumInputs, const std::string *Names, StringLiteral **Constraints, Stmt **Exprs) { this->NumOutputs = NumOutputs; this->NumInputs = NumInputs; this->Names.clear(); this->Names.insert(this->Names.end(), Names, Names + NumOutputs + NumInputs); this->Constraints.clear(); this->Constraints.insert(this->Constraints.end(), Constraints, Constraints + NumOutputs + NumInputs); this->Exprs.clear(); this->Exprs.insert(this->Exprs.end(), Exprs, Exprs + NumOutputs + NumInputs); } /// getNamedOperand - Given a symbolic operand reference like %[foo], /// translate this into a numeric value needed to reference the same operand. /// This returns -1 if the operand name is invalid. int AsmStmt::getNamedOperand(const std::string &SymbolicName) const { unsigned NumPlusOperands = 0; // Check if this is an output operand. for (unsigned i = 0, e = getNumOutputs(); i != e; ++i) { if (getOutputName(i) == SymbolicName) return i; } for (unsigned i = 0, e = getNumInputs(); i != e; ++i) if (getInputName(i) == SymbolicName) return getNumOutputs() + NumPlusOperands + i; // Not found. return -1; } void AsmStmt::setClobbers(StringLiteral **Clobbers, unsigned NumClobbers) { this->Clobbers.clear(); this->Clobbers.insert(this->Clobbers.end(), Clobbers, Clobbers + NumClobbers); } /// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing /// it into pieces. If the asm string is erroneous, emit errors and return /// true, otherwise return false. unsigned AsmStmt::AnalyzeAsmString(llvm::SmallVectorImpl&Pieces, ASTContext &C, unsigned &DiagOffs) const { const char *StrStart = getAsmString()->getStrData(); const char *StrEnd = StrStart + getAsmString()->getByteLength(); const char *CurPtr = StrStart; // "Simple" inline asms have no constraints or operands, just convert the asm // string to escape $'s. if (isSimple()) { std::string Result; for (; CurPtr != StrEnd; ++CurPtr) { switch (*CurPtr) { case '$': Result += "$$"; break; default: Result += *CurPtr; break; } } Pieces.push_back(AsmStringPiece(Result)); return 0; } // CurStringPiece - The current string that we are building up as we scan the // asm string. std::string CurStringPiece; while (1) { // Done with the string? if (CurPtr == StrEnd) { if (!CurStringPiece.empty()) Pieces.push_back(AsmStringPiece(CurStringPiece)); return 0; } char CurChar = *CurPtr++; if (CurChar == '$') { CurStringPiece += "$$"; continue; } else if (CurChar != '%') { CurStringPiece += CurChar; continue; } // Escaped "%" character in asm string. if (CurPtr == StrEnd) { // % at end of string is invalid (no escape). DiagOffs = CurPtr-StrStart-1; return diag::err_asm_invalid_escape; } char EscapedChar = *CurPtr++; if (EscapedChar == '%') { // %% -> % // Escaped percentage sign. CurStringPiece += '%'; continue; } if (EscapedChar == '=') { // %= -> Generate an unique ID. CurStringPiece += "${:uid}"; continue; } // Otherwise, we have an operand. If we have accumulated a string so far, // add it to the Pieces list. if (!CurStringPiece.empty()) { Pieces.push_back(AsmStringPiece(CurStringPiece)); CurStringPiece.clear(); } // Handle %x4 and %x[foo] by capturing x as the modifier character. char Modifier = '\0'; if (isalpha(EscapedChar)) { Modifier = EscapedChar; EscapedChar = *CurPtr++; } if (isdigit(EscapedChar)) { // %n - Assembler operand n unsigned N = 0; --CurPtr; while (CurPtr != StrEnd && isdigit(*CurPtr)) N = N*10 + ((*CurPtr++)-'0'); unsigned NumOperands = getNumOutputs() + getNumPlusOperands() + getNumInputs(); if (N >= NumOperands) { DiagOffs = CurPtr-StrStart-1; return diag::err_asm_invalid_operand_number; } Pieces.push_back(AsmStringPiece(N, Modifier)); continue; } // Handle %[foo], a symbolic operand reference. if (EscapedChar == '[') { DiagOffs = CurPtr-StrStart-1; // Find the ']'. const char *NameEnd = (const char*)memchr(CurPtr, ']', StrEnd-CurPtr); if (NameEnd == 0) return diag::err_asm_unterminated_symbolic_operand_name; if (NameEnd == CurPtr) return diag::err_asm_empty_symbolic_operand_name; std::string SymbolicName(CurPtr, NameEnd); int N = getNamedOperand(SymbolicName); if (N == -1) { // Verify that an operand with that name exists. DiagOffs = CurPtr-StrStart; return diag::err_asm_unknown_symbolic_operand_name; } Pieces.push_back(AsmStringPiece(N, Modifier)); CurPtr = NameEnd+1; continue; } DiagOffs = CurPtr-StrStart-1; return diag::err_asm_invalid_escape; } } //===----------------------------------------------------------------------===// // Constructors //===----------------------------------------------------------------------===// AsmStmt::AsmStmt(SourceLocation asmloc, bool issimple, bool isvolatile, bool msasm, unsigned numoutputs, unsigned numinputs, std::string *names, StringLiteral **constraints, Expr **exprs, StringLiteral *asmstr, unsigned numclobbers, StringLiteral **clobbers, SourceLocation rparenloc) : Stmt(AsmStmtClass), AsmLoc(asmloc), RParenLoc(rparenloc), AsmStr(asmstr) , IsSimple(issimple), IsVolatile(isvolatile), MSAsm(msasm) , NumOutputs(numoutputs), NumInputs(numinputs) { for (unsigned i = 0, e = numinputs + numoutputs; i != e; i++) { Names.push_back(names[i]); Exprs.push_back(exprs[i]); Constraints.push_back(constraints[i]); } for (unsigned i = 0; i != numclobbers; i++) Clobbers.push_back(clobbers[i]); } ObjCForCollectionStmt::ObjCForCollectionStmt(Stmt *Elem, Expr *Collect, Stmt *Body, SourceLocation FCL, SourceLocation RPL) : Stmt(ObjCForCollectionStmtClass) { SubExprs[ELEM] = Elem; SubExprs[COLLECTION] = reinterpret_cast(Collect); SubExprs[BODY] = Body; ForLoc = FCL; RParenLoc = RPL; } ObjCAtCatchStmt::ObjCAtCatchStmt(SourceLocation atCatchLoc, SourceLocation rparenloc, ParmVarDecl *catchVarDecl, Stmt *atCatchStmt, Stmt *atCatchList) : Stmt(ObjCAtCatchStmtClass) { ExceptionDecl = catchVarDecl; SubExprs[BODY] = atCatchStmt; SubExprs[NEXT_CATCH] = NULL; // FIXME: O(N^2) in number of catch blocks. if (atCatchList) { ObjCAtCatchStmt *AtCatchList = static_cast(atCatchList); while (ObjCAtCatchStmt* NextCatch = AtCatchList->getNextCatchStmt()) AtCatchList = NextCatch; AtCatchList->SubExprs[NEXT_CATCH] = this; } AtCatchLoc = atCatchLoc; RParenLoc = rparenloc; } //===----------------------------------------------------------------------===// // AST Destruction. //===----------------------------------------------------------------------===// void Stmt::DestroyChildren(ASTContext &C) { for (child_iterator I = child_begin(), E = child_end(); I !=E; ) if (Stmt* Child = *I++) Child->Destroy(C); } static void BranchDestroy(ASTContext &C, Stmt *S, Stmt **SubExprs, unsigned NumExprs) { // We do not use child_iterator here because that will include // the expressions referenced by the condition variable. for (Stmt **I = SubExprs, **E = SubExprs + NumExprs; I != E; ++I) if (Stmt *Child = *I) Child->Destroy(C); S->~Stmt(); C.Deallocate((void *) S); } void Stmt::DoDestroy(ASTContext &C) { DestroyChildren(C); this->~Stmt(); C.Deallocate((void *)this); } void CXXCatchStmt::DoDestroy(ASTContext& C) { if (ExceptionDecl) ExceptionDecl->Destroy(C); Stmt::DoDestroy(C); } void DeclStmt::DoDestroy(ASTContext &C) { // Don't use StmtIterator to iterate over the Decls, as that can recurse // into VLA size expressions (which are owned by the VLA). Further, Decls // are owned by the DeclContext, and will be destroyed with them. if (DG.isDeclGroup()) DG.getDeclGroup().Destroy(C); } void IfStmt::DoDestroy(ASTContext &C) { BranchDestroy(C, this, SubExprs, END_EXPR); } void ForStmt::DoDestroy(ASTContext &C) { BranchDestroy(C, this, SubExprs, END_EXPR); } void SwitchStmt::DoDestroy(ASTContext &C) { // Destroy the SwitchCase statements in this switch. In the normal // case, this loop will merely decrement the reference counts from // the Retain() calls in addSwitchCase(); SwitchCase *SC = FirstCase; while (SC) { SwitchCase *Next = SC->getNextSwitchCase(); SC->Destroy(C); SC = Next; } BranchDestroy(C, this, SubExprs, END_EXPR); } void WhileStmt::DoDestroy(ASTContext &C) { BranchDestroy(C, this, SubExprs, END_EXPR); } //===----------------------------------------------------------------------===// // Child Iterators for iterating over subexpressions/substatements //===----------------------------------------------------------------------===// // DeclStmt Stmt::child_iterator DeclStmt::child_begin() { return StmtIterator(DG.begin(), DG.end()); } Stmt::child_iterator DeclStmt::child_end() { return StmtIterator(DG.end(), DG.end()); } // NullStmt Stmt::child_iterator NullStmt::child_begin() { return child_iterator(); } Stmt::child_iterator NullStmt::child_end() { return child_iterator(); } // CompoundStmt Stmt::child_iterator CompoundStmt::child_begin() { return &Body[0]; } Stmt::child_iterator CompoundStmt::child_end() { return &Body[0]+NumStmts; } // CaseStmt Stmt::child_iterator CaseStmt::child_begin() { return &SubExprs[0]; } Stmt::child_iterator CaseStmt::child_end() { return &SubExprs[END_EXPR]; } // DefaultStmt Stmt::child_iterator DefaultStmt::child_begin() { return &SubStmt; } Stmt::child_iterator DefaultStmt::child_end() { return &SubStmt+1; } // LabelStmt Stmt::child_iterator LabelStmt::child_begin() { return &SubStmt; } Stmt::child_iterator LabelStmt::child_end() { return &SubStmt+1; } // IfStmt Stmt::child_iterator IfStmt::child_begin() { return child_iterator(Var, &SubExprs[0]); } Stmt::child_iterator IfStmt::child_end() { return child_iterator(0, &SubExprs[0]+END_EXPR); } // SwitchStmt Stmt::child_iterator SwitchStmt::child_begin() { return child_iterator(Var, &SubExprs[0]); } Stmt::child_iterator SwitchStmt::child_end() { return child_iterator(0, &SubExprs[0]+END_EXPR); } // WhileStmt Stmt::child_iterator WhileStmt::child_begin() { return child_iterator(Var, &SubExprs[0]); } Stmt::child_iterator WhileStmt::child_end() { return child_iterator(0, &SubExprs[0]+END_EXPR); } // DoStmt Stmt::child_iterator DoStmt::child_begin() { return &SubExprs[0]; } Stmt::child_iterator DoStmt::child_end() { return &SubExprs[0]+END_EXPR; } // ForStmt Stmt::child_iterator ForStmt::child_begin() { return child_iterator(CondVar, &SubExprs[0]); } Stmt::child_iterator ForStmt::child_end() { return child_iterator(0, &SubExprs[0]+END_EXPR); } // ObjCForCollectionStmt Stmt::child_iterator ObjCForCollectionStmt::child_begin() { return &SubExprs[0]; } Stmt::child_iterator ObjCForCollectionStmt::child_end() { return &SubExprs[0]+END_EXPR; } // GotoStmt Stmt::child_iterator GotoStmt::child_begin() { return child_iterator(); } Stmt::child_iterator GotoStmt::child_end() { return child_iterator(); } // IndirectGotoStmt Expr* IndirectGotoStmt::getTarget() { return cast(Target); } const Expr* IndirectGotoStmt::getTarget() const { return cast(Target); } Stmt::child_iterator IndirectGotoStmt::child_begin() { return &Target; } Stmt::child_iterator IndirectGotoStmt::child_end() { return &Target+1; } // ContinueStmt Stmt::child_iterator ContinueStmt::child_begin() { return child_iterator(); } Stmt::child_iterator ContinueStmt::child_end() { return child_iterator(); } // BreakStmt Stmt::child_iterator BreakStmt::child_begin() { return child_iterator(); } Stmt::child_iterator BreakStmt::child_end() { return child_iterator(); } // ReturnStmt const Expr* ReturnStmt::getRetValue() const { return cast_or_null(RetExpr); } Expr* ReturnStmt::getRetValue() { return cast_or_null(RetExpr); } Stmt::child_iterator ReturnStmt::child_begin() { return &RetExpr; } Stmt::child_iterator ReturnStmt::child_end() { return RetExpr ? &RetExpr+1 : &RetExpr; } // AsmStmt Stmt::child_iterator AsmStmt::child_begin() { return Exprs.empty() ? 0 : &Exprs[0]; } Stmt::child_iterator AsmStmt::child_end() { return Exprs.empty() ? 0 : &Exprs[0] + Exprs.size(); } // ObjCAtCatchStmt Stmt::child_iterator ObjCAtCatchStmt::child_begin() { return &SubExprs[0]; } Stmt::child_iterator ObjCAtCatchStmt::child_end() { return &SubExprs[0]+END_EXPR; } // ObjCAtFinallyStmt Stmt::child_iterator ObjCAtFinallyStmt::child_begin() { return &AtFinallyStmt; } Stmt::child_iterator ObjCAtFinallyStmt::child_end() { return &AtFinallyStmt+1; } // ObjCAtTryStmt Stmt::child_iterator ObjCAtTryStmt::child_begin() { return &SubStmts[0]; } Stmt::child_iterator ObjCAtTryStmt::child_end() { return &SubStmts[0]+END_EXPR; } // ObjCAtThrowStmt Stmt::child_iterator ObjCAtThrowStmt::child_begin() { return &Throw; } Stmt::child_iterator ObjCAtThrowStmt::child_end() { return &Throw+1; } // ObjCAtSynchronizedStmt Stmt::child_iterator ObjCAtSynchronizedStmt::child_begin() { return &SubStmts[0]; } Stmt::child_iterator ObjCAtSynchronizedStmt::child_end() { return &SubStmts[0]+END_EXPR; } // CXXCatchStmt Stmt::child_iterator CXXCatchStmt::child_begin() { return &HandlerBlock; } Stmt::child_iterator CXXCatchStmt::child_end() { return &HandlerBlock + 1; } QualType CXXCatchStmt::getCaughtType() const { if (ExceptionDecl) return ExceptionDecl->getType(); return QualType(); } // CXXTryStmt Stmt::child_iterator CXXTryStmt::child_begin() { return &Stmts[0]; } Stmt::child_iterator CXXTryStmt::child_end() { return &Stmts[0]+Stmts.size(); } CXXTryStmt::CXXTryStmt(SourceLocation tryLoc, Stmt *tryBlock, Stmt **handlers, unsigned numHandlers) : Stmt(CXXTryStmtClass), TryLoc(tryLoc) { Stmts.push_back(tryBlock); Stmts.insert(Stmts.end(), handlers, handlers + numHandlers); }