/* Subroutines for insn-output.c for Sun SPARC. Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@cygnus.com) 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, at Cygnus Support. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "tree.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-flags.h" #include "output.h" #include "insn-attr.h" #include "flags.h" #include "expr.h" #include "recog.h" #include "toplev.h" /* 1 if the caller has placed an "unimp" insn immediately after the call. This is used in v8 code when calling a function that returns a structure. v9 doesn't have this. Be careful to have this test be the same as that used on the call. */ #define SKIP_CALLERS_UNIMP_P \ (!TARGET_ARCH64 && current_function_returns_struct \ && ! integer_zerop (DECL_SIZE (DECL_RESULT (current_function_decl))) \ && (TREE_CODE (DECL_SIZE (DECL_RESULT (current_function_decl))) \ == INTEGER_CST)) /* Global variables for machine-dependent things. */ /* Size of frame. Need to know this to emit return insns from leaf procedures. ACTUAL_FSIZE is set by compute_frame_size() which is called during the reload pass. This is important as the value is later used in insn scheduling (to see what can go in a delay slot). APPARENT_FSIZE is the size of the stack less the register save area and less the outgoing argument area. It is used when saving call preserved regs. */ static int apparent_fsize; static int actual_fsize; /* Save the operands last given to a compare for use when we generate a scc or bcc insn. */ rtx sparc_compare_op0, sparc_compare_op1; /* We may need an epilogue if we spill too many registers. If this is non-zero, then we branch here for the epilogue. */ static rtx leaf_label; #ifdef LEAF_REGISTERS /* Vector to say how input registers are mapped to output registers. FRAME_POINTER_REGNUM cannot be remapped by this function to eliminate it. You must use -fomit-frame-pointer to get that. */ char leaf_reg_remap[] = { 0, 1, 2, 3, 4, 5, 6, 7, -1, -1, -1, -1, -1, -1, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1, 8, 9, 10, 11, 12, 13, -1, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100}; #endif /* Name of where we pretend to think the frame pointer points. Normally, this is "%fp", but if we are in a leaf procedure, this is "%sp+something". We record "something" separately as it may be too big for reg+constant addressing. */ static const char *frame_base_name; static int frame_base_offset; static rtx pic_setup_code PROTO((void)); static void sparc_init_modes PROTO((void)); static int save_regs PROTO((FILE *, int, int, const char *, int, int, int)); static int restore_regs PROTO((FILE *, int, int, const char *, int, int)); static void build_big_number PROTO((FILE *, int, const char *)); static int function_arg_slotno PROTO((const CUMULATIVE_ARGS *, enum machine_mode, tree, int, int, int *, int *)); static int supersparc_adjust_cost PROTO((rtx, rtx, rtx, int)); static int hypersparc_adjust_cost PROTO((rtx, rtx, rtx, int)); static int ultrasparc_adjust_cost PROTO((rtx, rtx, rtx, int)); static void sparc_output_addr_vec PROTO((rtx)); static void sparc_output_addr_diff_vec PROTO((rtx)); static void sparc_output_deferred_case_vectors PROTO((void)); #ifdef DWARF2_DEBUGGING_INFO extern char *dwarf2out_cfi_label (); #endif /* Option handling. */ /* Code model option as passed by user. */ const char *sparc_cmodel_string; /* Parsed value. */ enum cmodel sparc_cmodel; /* Record alignment options as passed by user. */ const char *sparc_align_loops_string; const char *sparc_align_jumps_string; const char *sparc_align_funcs_string; /* Parsed values, as a power of two. */ int sparc_align_loops; int sparc_align_jumps; int sparc_align_funcs; struct sparc_cpu_select sparc_select[] = { /* switch name, tune arch */ { (char *)0, "default", 1, 1 }, { (char *)0, "-mcpu=", 1, 1 }, { (char *)0, "-mtune=", 1, 0 }, { 0, 0, 0, 0 } }; /* CPU type. This is set from TARGET_CPU_DEFAULT and -m{cpu,tune}=xxx. */ enum processor_type sparc_cpu; /* Validate and override various options, and do some machine dependent initialization. */ void sparc_override_options () { static struct code_model { const char *name; int value; } cmodels[] = { { "32", CM_32 }, { "medlow", CM_MEDLOW }, { "medmid", CM_MEDMID }, { "medany", CM_MEDANY }, { "embmedany", CM_EMBMEDANY }, { 0, 0 } }; struct code_model *cmodel; /* Map TARGET_CPU_DEFAULT to value for -m{arch,tune}=. */ static struct cpu_default { int cpu; const char *name; } cpu_default[] = { /* There must be one entry here for each TARGET_CPU value. */ { TARGET_CPU_sparc, "cypress" }, { TARGET_CPU_sparclet, "tsc701" }, { TARGET_CPU_sparclite, "f930" }, { TARGET_CPU_v8, "v8" }, { TARGET_CPU_hypersparc, "hypersparc" }, { TARGET_CPU_sparclite86x, "sparclite86x" }, { TARGET_CPU_supersparc, "supersparc" }, { TARGET_CPU_v9, "v9" }, { TARGET_CPU_ultrasparc, "ultrasparc" }, { 0, 0 } }; struct cpu_default *def; /* Table of values for -m{cpu,tune}=. */ static struct cpu_table { const char *name; enum processor_type processor; int disable; int enable; } cpu_table[] = { { "v7", PROCESSOR_V7, MASK_ISA, 0 }, { "cypress", PROCESSOR_CYPRESS, MASK_ISA, 0 }, { "v8", PROCESSOR_V8, MASK_ISA, MASK_V8 }, /* TI TMS390Z55 supersparc */ { "supersparc", PROCESSOR_SUPERSPARC, MASK_ISA, MASK_V8 }, { "sparclite", PROCESSOR_SPARCLITE, MASK_ISA, MASK_SPARCLITE }, /* The Fujitsu MB86930 is the original sparclite chip, with no fpu. The Fujitsu MB86934 is the recent sparclite chip, with an fpu. */ { "f930", PROCESSOR_F930, MASK_ISA|MASK_FPU, MASK_SPARCLITE }, { "f934", PROCESSOR_F934, MASK_ISA, MASK_SPARCLITE|MASK_FPU }, { "hypersparc", PROCESSOR_HYPERSPARC, MASK_ISA, MASK_V8|MASK_FPU }, { "sparclite86x", PROCESSOR_SPARCLITE86X, MASK_ISA|MASK_FPU, MASK_V8 }, { "sparclet", PROCESSOR_SPARCLET, MASK_ISA, MASK_SPARCLET }, /* TEMIC sparclet */ { "tsc701", PROCESSOR_TSC701, MASK_ISA, MASK_SPARCLET }, { "v9", PROCESSOR_V9, MASK_ISA, MASK_V9 }, /* TI ultrasparc */ { "ultrasparc", PROCESSOR_ULTRASPARC, MASK_ISA, MASK_V9 }, { 0, 0, 0, 0 } }; struct cpu_table *cpu; struct sparc_cpu_select *sel; int fpu; #ifndef SPARC_BI_ARCH /* Check for unsupported architecture size. */ if (! TARGET_64BIT != DEFAULT_ARCH32_P) { error ("%s is not supported by this configuration", DEFAULT_ARCH32_P ? "-m64" : "-m32"); } #endif /* At the moment we don't allow different pointer size and architecture */ if (! TARGET_64BIT != ! TARGET_PTR64) { error ("-mptr%d not allowed on -m%d", TARGET_PTR64 ? 64 : 32, TARGET_64BIT ? 64 : 32); if (TARGET_64BIT) target_flags |= MASK_PTR64; else target_flags &= ~MASK_PTR64; } /* Code model selection. */ sparc_cmodel = SPARC_DEFAULT_CMODEL; #ifdef SPARC_BI_ARCH if (TARGET_ARCH32) sparc_cmodel = CM_32; #endif if (sparc_cmodel_string != NULL) { if (TARGET_ARCH64) { for (cmodel = &cmodels[0]; cmodel->name; cmodel++) if (strcmp (sparc_cmodel_string, cmodel->name) == 0) break; if (cmodel->name == NULL) error ("bad value (%s) for -mcmodel= switch", sparc_cmodel_string); else sparc_cmodel = cmodel->value; } else error ("-mcmodel= is not supported on 32 bit systems"); } fpu = TARGET_FPU; /* save current -mfpu status */ /* Set the default CPU. */ for (def = &cpu_default[0]; def->name; ++def) if (def->cpu == TARGET_CPU_DEFAULT) break; if (! def->name) abort (); sparc_select[0].string = def->name; for (sel = &sparc_select[0]; sel->name; ++sel) { if (sel->string) { for (cpu = &cpu_table[0]; cpu->name; ++cpu) if (! strcmp (sel->string, cpu->name)) { if (sel->set_tune_p) sparc_cpu = cpu->processor; if (sel->set_arch_p) { target_flags &= ~cpu->disable; target_flags |= cpu->enable; } break; } if (! cpu->name) error ("bad value (%s) for %s switch", sel->string, sel->name); } } /* If -mfpu or -mno-fpu was explicitly used, don't override with the processor default. */ if (TARGET_FPU_SET) target_flags = (target_flags & ~MASK_FPU) | fpu; /* Use the deprecated v8 insns for sparc64 in 32 bit mode. */ if (TARGET_V9 && TARGET_ARCH32) target_flags |= MASK_DEPRECATED_V8_INSNS; /* V8PLUS requires V9, makes no sense in 64 bit mode. */ if (! TARGET_V9 || TARGET_ARCH64) target_flags &= ~MASK_V8PLUS; /* Don't use stack biasing in 32 bit mode. */ if (TARGET_ARCH32) target_flags &= ~MASK_STACK_BIAS; /* Don't allow -mvis if FPU is disabled. */ if (! TARGET_FPU) target_flags &= ~MASK_VIS; /* Validate -malign-loops= value, or provide default. */ if (sparc_align_loops_string) { sparc_align_loops = exact_log2 (atoi (sparc_align_loops_string)); if (sparc_align_loops < 2 || sparc_align_loops > 7) fatal ("-malign-loops=%s is not between 4 and 128 or is not a power of two", sparc_align_loops_string); } else { /* ??? This relies on ASM_OUTPUT_ALIGN to not emit the alignment if its 0. This sounds a bit kludgey. */ sparc_align_loops = 0; } /* Validate -malign-jumps= value, or provide default. */ if (sparc_align_jumps_string) { sparc_align_jumps = exact_log2 (atoi (sparc_align_jumps_string)); if (sparc_align_jumps < 2 || sparc_align_loops > 7) fatal ("-malign-jumps=%s is not between 4 and 128 or is not a power of two", sparc_align_jumps_string); } else { /* ??? This relies on ASM_OUTPUT_ALIGN to not emit the alignment if its 0. This sounds a bit kludgey. */ sparc_align_jumps = 0; } /* Validate -malign-functions= value, or provide default. */ if (sparc_align_funcs_string) { sparc_align_funcs = exact_log2 (atoi (sparc_align_funcs_string)); if (sparc_align_funcs < 2 || sparc_align_loops > 7) fatal ("-malign-functions=%s is not between 4 and 128 or is not a power of two", sparc_align_funcs_string); } else sparc_align_funcs = DEFAULT_SPARC_ALIGN_FUNCS; /* Validate PCC_STRUCT_RETURN. */ if (flag_pcc_struct_return == DEFAULT_PCC_STRUCT_RETURN) flag_pcc_struct_return = (TARGET_ARCH64 ? 0 : 1); /* Do various machine dependent initializations. */ sparc_init_modes (); if ((profile_flag || profile_block_flag) && sparc_cmodel != CM_MEDLOW) { error ("profiling does not support code models other than medlow"); } } /* Miscellaneous utilities. */ /* Nonzero if CODE, a comparison, is suitable for use in v9 conditional move or branch on register contents instructions. */ int v9_regcmp_p (code) enum rtx_code code; { return (code == EQ || code == NE || code == GE || code == LT || code == LE || code == GT); } /* Operand constraints. */ /* Return non-zero only if OP is a register of mode MODE, or const0_rtx. Don't allow const0_rtx if TARGET_LIVE_G0 because %g0 may contain anything. */ int reg_or_0_operand (op, mode) rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (TARGET_LIVE_G0) return 0; if (op == const0_rtx) return 1; if (GET_MODE (op) == VOIDmode && GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0 && CONST_DOUBLE_LOW (op) == 0) return 1; if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT && GET_CODE (op) == CONST_DOUBLE && fp_zero_operand (op)) return 1; return 0; } /* Nonzero if OP is a floating point value with value 0.0. */ int fp_zero_operand (op) rtx op; { REAL_VALUE_TYPE r; REAL_VALUE_FROM_CONST_DOUBLE (r, op); return (REAL_VALUES_EQUAL (r, dconst0) && ! REAL_VALUE_MINUS_ZERO (r)); } /* Nonzero if OP is an integer register. */ int intreg_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (register_operand (op, SImode) || (TARGET_ARCH64 && register_operand (op, DImode))); } /* Nonzero if OP is a floating point condition code register. */ int fcc_reg_operand (op, mode) rtx op; enum machine_mode mode; { /* This can happen when recog is called from combine. Op may be a MEM. Fail instead of calling abort in this case. */ if (GET_CODE (op) != REG) return 0; if (mode != VOIDmode && mode != GET_MODE (op)) return 0; if (mode == VOIDmode && (GET_MODE (op) != CCFPmode && GET_MODE (op) != CCFPEmode)) return 0; #if 0 /* ??? ==> 1 when %fcc0-3 are pseudos first. See gen_compare_reg(). */ if (reg_renumber == 0) return REGNO (op) >= FIRST_PSEUDO_REGISTER; return REGNO_OK_FOR_CCFP_P (REGNO (op)); #else return (unsigned) REGNO (op) - SPARC_FIRST_V9_FCC_REG < 4; #endif } /* Nonzero if OP is an integer or floating point condition code register. */ int icc_or_fcc_reg_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == REG && REGNO (op) == SPARC_ICC_REG) { if (mode != VOIDmode && mode != GET_MODE (op)) return 0; if (mode == VOIDmode && GET_MODE (op) != CCmode && GET_MODE (op) != CCXmode) return 0; return 1; } return fcc_reg_operand (op, mode); } /* Nonzero if OP can appear as the dest of a RESTORE insn. */ int restore_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == REG && GET_MODE (op) == mode && (REGNO (op) < 8 || (REGNO (op) >= 24 && REGNO (op) < 32))); } /* Call insn on SPARC can take a PC-relative constant address, or any regular memory address. */ int call_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) != MEM) abort (); op = XEXP (op, 0); return (symbolic_operand (op, mode) || memory_address_p (Pmode, op)); } int call_operand_address (op, mode) rtx op; enum machine_mode mode; { return (symbolic_operand (op, mode) || memory_address_p (Pmode, op)); } /* Returns 1 if OP is either a symbol reference or a sum of a symbol reference and a constant. */ int symbolic_operand (op, mode) register rtx op; enum machine_mode mode; { switch (GET_CODE (op)) { case SYMBOL_REF: case LABEL_REF: return 1; case CONST: op = XEXP (op, 0); return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF || GET_CODE (XEXP (op, 0)) == LABEL_REF) && GET_CODE (XEXP (op, 1)) == CONST_INT); /* ??? This clause seems to be irrelevant. */ case CONST_DOUBLE: return GET_MODE (op) == mode; default: return 0; } } /* Return truth value of statement that OP is a symbolic memory operand of mode MODE. */ int symbolic_memory_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; op = XEXP (op, 0); return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST || GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF); } /* Return truth value of statement that OP is a LABEL_REF of mode MODE. */ int label_ref_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) != LABEL_REF) return 0; if (GET_MODE (op) != mode) return 0; return 1; } /* Return 1 if the operand is an argument used in generating pic references in either the medium/low or medium/anywhere code models of sparc64. */ int sp64_medium_pic_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { /* Check for (const (minus (symbol_ref:GOT) (const (minus (label) (pc))))). */ if (GET_CODE (op) != CONST) return 0; op = XEXP (op, 0); if (GET_CODE (op) != MINUS) return 0; if (GET_CODE (XEXP (op, 0)) != SYMBOL_REF) return 0; /* ??? Ensure symbol is GOT. */ if (GET_CODE (XEXP (op, 1)) != CONST) return 0; if (GET_CODE (XEXP (XEXP (op, 1), 0)) != MINUS) return 0; return 1; } /* Return 1 if the operand is a data segment reference. This includes the readonly data segment, or in other words anything but the text segment. This is needed in the medium/anywhere code model on v9. These values are accessed with EMBMEDANY_BASE_REG. */ int data_segment_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { switch (GET_CODE (op)) { case SYMBOL_REF : return ! SYMBOL_REF_FLAG (op); case PLUS : /* Assume canonical format of symbol + constant. Fall through. */ case CONST : return data_segment_operand (XEXP (op, 0)); default : return 0; } } /* Return 1 if the operand is a text segment reference. This is needed in the medium/anywhere code model on v9. */ int text_segment_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { switch (GET_CODE (op)) { case LABEL_REF : return 1; case SYMBOL_REF : return SYMBOL_REF_FLAG (op); case PLUS : /* Assume canonical format of symbol + constant. Fall through. */ case CONST : return text_segment_operand (XEXP (op, 0)); default : return 0; } } /* Return 1 if the operand is either a register or a memory operand that is not symbolic. */ int reg_or_nonsymb_mem_operand (op, mode) register rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode)) return 1; return 0; } int splittable_symbolic_memory_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) != MEM) return 0; if (! symbolic_operand (XEXP (op, 0), Pmode)) return 0; return 1; } int splittable_immediate_memory_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) != MEM) return 0; if (! immediate_operand (XEXP (op, 0), Pmode)) return 0; return 1; } /* Return truth value of whether OP is EQ or NE. */ int eq_or_neq (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == EQ || GET_CODE (op) == NE); } /* Return 1 if this is a comparison operator, but not an EQ, NE, GEU, or LTU for non-floating-point. We handle those specially. */ int normal_comp_operator (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (op); if (GET_RTX_CLASS (code) != '<') return 0; if (GET_MODE (XEXP (op, 0)) == CCFPmode || GET_MODE (XEXP (op, 0)) == CCFPEmode) return 1; return (code != NE && code != EQ && code != GEU && code != LTU); } /* Return 1 if this is a comparison operator. This allows the use of MATCH_OPERATOR to recognize all the branch insns. */ int noov_compare_op (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (op); if (GET_RTX_CLASS (code) != '<') return 0; if (GET_MODE (XEXP (op, 0)) == CC_NOOVmode) /* These are the only branches which work with CC_NOOVmode. */ return (code == EQ || code == NE || code == GE || code == LT); return 1; } /* Nonzero if OP is a comparison operator suitable for use in v9 conditional move or branch on register contents instructions. */ int v9_regcmp_op (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (op); if (GET_RTX_CLASS (code) != '<') return 0; return v9_regcmp_p (code); } /* Return 1 if this is a SIGN_EXTEND or ZERO_EXTEND operation. */ int extend_op (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND; } /* Return nonzero if OP is an operator of mode MODE which can set the condition codes explicitly. We do not include PLUS and MINUS because these require CC_NOOVmode, which we handle explicitly. */ int cc_arithop (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) == AND || GET_CODE (op) == IOR || GET_CODE (op) == XOR) return 1; return 0; } /* Return nonzero if OP is an operator of mode MODE which can bitwise complement its second operand and set the condition codes explicitly. */ int cc_arithopn (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { /* XOR is not here because combine canonicalizes (xor (not ...) ...) and (xor ... (not ...)) to (not (xor ...)). */ return (GET_CODE (op) == AND || GET_CODE (op) == IOR); } /* Return true if OP is a register, or is a CONST_INT that can fit in a signed 13 bit immediate field. This is an acceptable SImode operand for most 3 address instructions. */ int arith_operand (op, mode) rtx op; enum machine_mode mode; { int val; if (register_operand (op, mode)) return 1; if (GET_CODE (op) != CONST_INT) return 0; val = INTVAL (op) & 0xffffffff; return SPARC_SIMM13_P (val); } /* Return true if OP is a constant 4096 */ int arith_4096_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { int val; if (GET_CODE (op) != CONST_INT) return 0; val = INTVAL (op) & 0xffffffff; return val == 4096; } /* Return true if OP is suitable as second operand for add/sub */ int arith_add_operand (op, mode) rtx op; enum machine_mode mode; { return arith_operand (op, mode) || arith_4096_operand (op, mode); } /* Return true if OP is a CONST_INT or a CONST_DOUBLE which can fit in the immediate field of OR and XOR instructions. Used for 64-bit constant formation patterns. */ int const64_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return ((GET_CODE (op) == CONST_INT && SPARC_SIMM13_P (INTVAL (op))) #if HOST_BITS_PER_WIDE_INT != 64 || (GET_CODE (op) == CONST_DOUBLE && SPARC_SIMM13_P (CONST_DOUBLE_LOW (op)) && (CONST_DOUBLE_HIGH (op) == ((CONST_DOUBLE_LOW (op) & 0x80000000) != 0 ? (HOST_WIDE_INT)0xffffffff : 0))) #endif ); } /* The same, but only for sethi instructions. */ int const64_high_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return ((GET_CODE (op) == CONST_INT && (INTVAL (op) & 0xfffffc00) != 0 && SPARC_SETHI_P (INTVAL (op)) #if HOST_BITS_PER_WIDE_INT != 64 /* Must be positive on non-64bit host else the optimizer is fooled into thinking that sethi sign extends, even though it does not. */ && INTVAL (op) >= 0 #endif ) || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0 && (CONST_DOUBLE_LOW (op) & 0xfffffc00) != 0 && SPARC_SETHI_P (CONST_DOUBLE_LOW (op)))); } /* Return true if OP is a register, or is a CONST_INT that can fit in a signed 11 bit immediate field. This is an acceptable SImode operand for the movcc instructions. */ int arith11_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && SPARC_SIMM11_P (INTVAL (op)))); } /* Return true if OP is a register, or is a CONST_INT that can fit in a signed 10 bit immediate field. This is an acceptable SImode operand for the movrcc instructions. */ int arith10_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && SPARC_SIMM10_P (INTVAL (op)))); } /* Return true if OP is a register, is a CONST_INT that fits in a 13 bit immediate field, or is a CONST_DOUBLE whose both parts fit in a 13 bit immediate field. v9: Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that can fit in a 13 bit immediate field. This is an acceptable DImode operand for most 3 address instructions. */ int arith_double_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && SMALL_INT (op)) || (! TARGET_ARCH64 && GET_CODE (op) == CONST_DOUBLE && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000 && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_HIGH (op) + 0x1000) < 0x2000) || (TARGET_ARCH64 && GET_CODE (op) == CONST_DOUBLE && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000 && ((CONST_DOUBLE_HIGH (op) == -1 && (CONST_DOUBLE_LOW (op) & 0x1000) == 0x1000) || (CONST_DOUBLE_HIGH (op) == 0 && (CONST_DOUBLE_LOW (op) & 0x1000) == 0)))); } /* Return true if OP is a constant 4096 for DImode on ARCH64 */ int arith_double_4096_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (TARGET_ARCH64 && ((GET_CODE (op) == CONST_INT && INTVAL (op) == 4096) || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_LOW (op) == 4096 && CONST_DOUBLE_HIGH (op) == 0))); } /* Return true if OP is suitable as second operand for add/sub in DImode */ int arith_double_add_operand (op, mode) rtx op; enum machine_mode mode; { return arith_double_operand (op, mode) || arith_double_4096_operand (op, mode); } /* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that can fit in an 11 bit immediate field. This is an acceptable DImode operand for the movcc instructions. */ /* ??? Replace with arith11_operand? */ int arith11_double_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_DOUBLE && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x400) < 0x800 && ((CONST_DOUBLE_HIGH (op) == -1 && (CONST_DOUBLE_LOW (op) & 0x400) == 0x400) || (CONST_DOUBLE_HIGH (op) == 0 && (CONST_DOUBLE_LOW (op) & 0x400) == 0))) || (GET_CODE (op) == CONST_INT && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) && (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x400) < 0x800)); } /* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that can fit in an 10 bit immediate field. This is an acceptable DImode operand for the movrcc instructions. */ /* ??? Replace with arith10_operand? */ int arith10_double_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_DOUBLE && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) && (unsigned) (CONST_DOUBLE_LOW (op) + 0x200) < 0x400 && ((CONST_DOUBLE_HIGH (op) == -1 && (CONST_DOUBLE_LOW (op) & 0x200) == 0x200) || (CONST_DOUBLE_HIGH (op) == 0 && (CONST_DOUBLE_LOW (op) & 0x200) == 0))) || (GET_CODE (op) == CONST_INT && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) && (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x200) < 0x400)); } /* Return truth value of whether OP is a integer which fits the range constraining immediate operands in most three-address insns, which have a 13 bit immediate field. */ int small_int (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == CONST_INT && SMALL_INT (op)); } int small_int_or_double (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return ((GET_CODE (op) == CONST_INT && SMALL_INT (op)) || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0 && SPARC_SIMM13_P (CONST_DOUBLE_LOW (op)))); } /* Recognize operand values for the umul instruction. That instruction sign extends immediate values just like all other sparc instructions, but interprets the extended result as an unsigned number. */ int uns_small_int (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { #if HOST_BITS_PER_WIDE_INT > 32 /* All allowed constants will fit a CONST_INT. */ return (GET_CODE (op) == CONST_INT && ((INTVAL (op) >= 0 && INTVAL (op) < 0x1000) || (INTVAL (op) >= 0xFFFFF000 && INTVAL (op) < 0x100000000))); #else return ((GET_CODE (op) == CONST_INT && (unsigned) INTVAL (op) < 0x1000) || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0 && (unsigned) CONST_DOUBLE_LOW (op) - 0xFFFFF000 < 0x1000)); #endif } int uns_arith_operand (op, mode) rtx op; enum machine_mode mode; { return register_operand (op, mode) || uns_small_int (op, mode); } /* Return truth value of statement that OP is a call-clobbered register. */ int clobbered_register (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == REG && call_used_regs[REGNO (op)]); } /* Return 1 if OP is const0_rtx, used for TARGET_LIVE_G0 insns. */ int zero_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return op == const0_rtx; } /* Return 1 if OP is a valid operand for the source of a move insn. */ int input_operand (op, mode) rtx op; enum machine_mode mode; { /* If both modes are non-void they must be the same. */ if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op)) return 0; /* Only a tiny bit of handling for CONSTANT_P_RTX is necessary. */ if (GET_CODE (op) == CONST && GET_CODE (XEXP (op, 0)) == CONSTANT_P_RTX) return 1; /* Allow any one instruction integer constant, and all CONST_INT variants when we are working in DImode and !arch64. */ if (GET_MODE_CLASS (mode) == MODE_INT && ((GET_CODE (op) == CONST_INT && ((SPARC_SETHI_P (INTVAL (op)) && (! TARGET_ARCH64 || (INTVAL (op) >= 0) || mode == SImode)) || SPARC_SIMM13_P (INTVAL (op)) || (mode == DImode && ! TARGET_ARCH64))) || (TARGET_ARCH64 && GET_CODE (op) == CONST_DOUBLE && ((CONST_DOUBLE_HIGH (op) == 0 && SPARC_SETHI_P (CONST_DOUBLE_LOW (op))) || #if HOST_BITS_PER_WIDE_INT == 64 (CONST_DOUBLE_HIGH (op) == 0 && SPARC_SIMM13_P (CONST_DOUBLE_LOW (op))) #else (SPARC_SIMM13_P (CONST_DOUBLE_LOW (op)) && (((CONST_DOUBLE_LOW (op) & 0x80000000) == 0 && CONST_DOUBLE_HIGH (op) == 0) || (CONST_DOUBLE_HIGH (op) == -1))) #endif )))) return 1; /* If !arch64 and this is a DImode const, allow it so that the splits can be generated. */ if (! TARGET_ARCH64 && mode == DImode && GET_CODE (op) == CONST_DOUBLE) return 1; if (register_operand (op, mode)) return 1; /* If this is a SUBREG, look inside so that we handle paradoxical ones. */ if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); /* Check for valid MEM forms. */ if (GET_CODE (op) == MEM) { rtx inside = XEXP (op, 0); if (GET_CODE (inside) == LO_SUM) { /* We can't allow these because all of the splits (eventually as they trickle down into DFmode splits) require offsettable memory references. */ if (! TARGET_V9 && GET_MODE (op) == TFmode) return 0; return (register_operand (XEXP (inside, 0), Pmode) && CONSTANT_P (XEXP (inside, 1))); } return memory_address_p (mode, inside); } return 0; } /* We know it can't be done in one insn when we get here, the movsi expander guarentees this. */ void sparc_emit_set_const32 (op0, op1) rtx op0; rtx op1; { enum machine_mode mode = GET_MODE (op0); rtx temp; if (GET_CODE (op1) == CONST_INT) { HOST_WIDE_INT value = INTVAL (op1); if (SPARC_SETHI_P (value) || SPARC_SIMM13_P (value)) abort (); } /* Full 2-insn decomposition is needed. */ if (reload_in_progress || reload_completed) temp = op0; else temp = gen_reg_rtx (mode); if (GET_CODE (op1) == CONST_INT) { /* Emit them as real moves instead of a HIGH/LO_SUM, this way CSE can see everything and reuse intermediate values if it wants. */ if (TARGET_ARCH64 && HOST_BITS_PER_WIDE_INT != 64 && (INTVAL (op1) & 0x80000000) != 0) { emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_CONST_DOUBLE (VOIDmode, const0_rtx, INTVAL (op1) & 0xfffffc00, 0))); } else { emit_insn (gen_rtx_SET (VOIDmode, temp, GEN_INT (INTVAL (op1) & 0xfffffc00))); } emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_IOR (mode, temp, GEN_INT (INTVAL (op1) & 0x3ff)))); } else { /* A symbol, emit in the traditional way. */ emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_HIGH (mode, op1))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_LO_SUM (mode, temp, op1))); } } /* Sparc-v9 code-model support. */ void sparc_emit_set_symbolic_const64 (op0, op1, temp1) rtx op0; rtx op1; rtx temp1; { switch (sparc_cmodel) { case CM_MEDLOW: /* The range spanned by all instructions in the object is less than 2^31 bytes (2GB) and the distance from any instruction to the location of the label _GLOBAL_OFFSET_TABLE_ is less than 2^31 bytes (2GB). The executable must be in the low 4TB of the virtual address space. sethi %hi(symbol), %temp or %temp, %lo(symbol), %reg */ emit_insn (gen_rtx_SET (VOIDmode, temp1, gen_rtx_HIGH (DImode, op1))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_LO_SUM (DImode, temp1, op1))); break; case CM_MEDMID: /* The range spanned by all instructions in the object is less than 2^31 bytes (2GB) and the distance from any instruction to the location of the label _GLOBAL_OFFSET_TABLE_ is less than 2^31 bytes (2GB). The executable must be in the low 16TB of the virtual address space. sethi %h44(symbol), %temp1 or %temp1, %m44(symbol), %temp2 sllx %temp2, 12, %temp3 or %temp3, %l44(symbol), %reg */ emit_insn (gen_seth44 (op0, op1)); emit_insn (gen_setm44 (op0, op0, op1)); emit_insn (gen_rtx_SET (VOIDmode, temp1, gen_rtx_ASHIFT (DImode, op0, GEN_INT (12)))); emit_insn (gen_setl44 (op0, temp1, op1)); break; case CM_MEDANY: /* The range spanned by all instructions in the object is less than 2^31 bytes (2GB) and the distance from any instruction to the location of the label _GLOBAL_OFFSET_TABLE_ is less than 2^31 bytes (2GB). The executable can be placed anywhere in the virtual address space. sethi %hh(symbol), %temp1 sethi %lm(symbol), %temp2 or %temp1, %hm(symbol), %temp3 or %temp2, %lo(symbol), %temp4 sllx %temp3, 32, %temp5 or %temp4, %temp5, %reg */ /* Getting this right wrt. reloading is really tricky. We _MUST_ have a seperate temporary at this point, if we don't barf immediately instead of generating incorrect code. */ if (temp1 == op0) abort (); emit_insn (gen_sethh (op0, op1)); emit_insn (gen_setlm (temp1, op1)); emit_insn (gen_sethm (op0, op0, op1)); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, op0, GEN_INT (32)))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_PLUS (DImode, op0, temp1))); emit_insn (gen_setlo (op0, op0, op1)); break; case CM_EMBMEDANY: /* Old old old backwards compatibility kruft here. Essentially it is MEDLOW with a fixed 64-bit virtual base added to all data segment addresses. Text-segment stuff is computed like MEDANY, we can't reuse the code above because the relocation knobs look different. Data segment: sethi %hi(symbol), %temp1 or %temp1, %lo(symbol), %temp2 add %temp2, EMBMEDANY_BASE_REG, %reg Text segment: sethi %uhi(symbol), %temp1 sethi %hi(symbol), %temp2 or %temp1, %ulo(symbol), %temp3 or %temp2, %lo(symbol), %temp4 sllx %temp3, 32, %temp5 or %temp4, %temp5, %reg */ if (data_segment_operand (op1, GET_MODE (op1))) { emit_insn (gen_embmedany_sethi (temp1, op1)); emit_insn (gen_embmedany_brsum (op0, temp1)); emit_insn (gen_embmedany_losum (op0, op0, op1)); } else { /* Getting this right wrt. reloading is really tricky. We _MUST_ have a seperate temporary at this point, so we barf immediately instead of generating incorrect code. */ if (temp1 == op0) abort (); emit_insn (gen_embmedany_textuhi (op0, op1)); emit_insn (gen_embmedany_texthi (temp1, op1)); emit_insn (gen_embmedany_textulo (op0, op0, op1)); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, op0, GEN_INT (32)))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_PLUS (DImode, op0, temp1))); emit_insn (gen_embmedany_textlo (op0, op0, op1)); } break; default: abort(); } } /* These avoid problems when cross compiling. If we do not go through all this hair then the optimizer will see invalid REG_EQUAL notes or in some cases none at all. */ static void sparc_emit_set_safe_HIGH64 PROTO ((rtx, HOST_WIDE_INT)); static rtx gen_safe_SET64 PROTO ((rtx, HOST_WIDE_INT)); static rtx gen_safe_OR64 PROTO ((rtx, HOST_WIDE_INT)); static rtx gen_safe_XOR64 PROTO ((rtx, HOST_WIDE_INT)); #if HOST_BITS_PER_WIDE_INT == 64 #define GEN_HIGHINT64(__x) GEN_INT ((__x) & 0xfffffc00) #define GEN_INT64(__x) GEN_INT (__x) #else #define GEN_HIGHINT64(__x) \ gen_rtx_CONST_DOUBLE (VOIDmode, const0_rtx, \ (__x) & 0xfffffc00, 0) #define GEN_INT64(__x) \ gen_rtx_CONST_DOUBLE (VOIDmode, const0_rtx, \ (__x) & 0xffffffff, \ ((__x) & 0x80000000 \ ? 0xffffffff : 0)) #endif /* The optimizer is not to assume anything about exactly which bits are set for a HIGH, they are unspecified. Unfortunately this leads to many missed optimizations during CSE. We mask out the non-HIGH bits, and matches a plain movdi, to alleviate this problem. */ static void sparc_emit_set_safe_HIGH64 (dest, val) rtx dest; HOST_WIDE_INT val; { emit_insn (gen_rtx_SET (VOIDmode, dest, GEN_HIGHINT64 (val))); } static rtx gen_safe_SET64 (dest, val) rtx dest; HOST_WIDE_INT val; { return gen_rtx_SET (VOIDmode, dest, GEN_INT64 (val)); } static rtx gen_safe_OR64 (src, val) rtx src; HOST_WIDE_INT val; { return gen_rtx_IOR (DImode, src, GEN_INT64 (val)); } static rtx gen_safe_XOR64 (src, val) rtx src; HOST_WIDE_INT val; { return gen_rtx_XOR (DImode, src, GEN_INT64 (val)); } /* Worker routines for 64-bit constant formation on arch64. One of the key things to be doing in these emissions is to create as many temp REGs as possible. This makes it possible for half-built constants to be used later when such values are similar to something required later on. Without doing this, the optimizer cannot see such opportunities. */ static void sparc_emit_set_const64_quick1 PROTO((rtx, rtx, unsigned HOST_WIDE_INT, int)); static void sparc_emit_set_const64_quick1 (op0, temp, low_bits, is_neg) rtx op0; rtx temp; unsigned HOST_WIDE_INT low_bits; int is_neg; { unsigned HOST_WIDE_INT high_bits; if (is_neg) high_bits = (~low_bits) & 0xffffffff; else high_bits = low_bits; sparc_emit_set_safe_HIGH64 (temp, high_bits); if (!is_neg) { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_safe_OR64 (temp, (high_bits & 0x3ff)))); } else { /* If we are XOR'ing with -1, then we should emit a one's complement instead. This way the combiner will notice logical operations such as ANDN later on and substitute. */ if ((low_bits & 0x3ff) == 0x3ff) { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_NOT (DImode, temp))); } else { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_safe_XOR64 (temp, (-0x400 | (low_bits & 0x3ff))))); } } } static void sparc_emit_set_const64_quick2 PROTO((rtx, rtx, unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, int)); static void sparc_emit_set_const64_quick2 (op0, temp, high_bits, low_immediate, shift_count) rtx op0; rtx temp; unsigned HOST_WIDE_INT high_bits; unsigned HOST_WIDE_INT low_immediate; int shift_count; { rtx temp2 = op0; if ((high_bits & 0xfffffc00) != 0) { sparc_emit_set_safe_HIGH64 (temp, high_bits); if ((high_bits & ~0xfffffc00) != 0) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_safe_OR64 (temp, (high_bits & 0x3ff)))); else temp2 = temp; } else { emit_insn (gen_safe_SET64 (temp, high_bits)); temp2 = temp; } /* Now shift it up into place. */ emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, temp2, GEN_INT (shift_count)))); /* If there is a low immediate part piece, finish up by putting that in as well. */ if (low_immediate != 0) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_safe_OR64 (op0, low_immediate))); } static void sparc_emit_set_const64_longway PROTO((rtx, rtx, unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT)); /* Full 64-bit constant decomposition. Even though this is the 'worst' case, we still optimize a few things away. */ static void sparc_emit_set_const64_longway (op0, temp, high_bits, low_bits) rtx op0; rtx temp; unsigned HOST_WIDE_INT high_bits; unsigned HOST_WIDE_INT low_bits; { rtx sub_temp; if (reload_in_progress || reload_completed) sub_temp = op0; else sub_temp = gen_reg_rtx (DImode); if ((high_bits & 0xfffffc00) != 0) { sparc_emit_set_safe_HIGH64 (temp, high_bits); if ((high_bits & ~0xfffffc00) != 0) emit_insn (gen_rtx_SET (VOIDmode, sub_temp, gen_safe_OR64 (temp, (high_bits & 0x3ff)))); else sub_temp = temp; } else { emit_insn (gen_safe_SET64 (temp, high_bits)); sub_temp = temp; } if (!reload_in_progress && !reload_completed) { rtx temp2 = gen_reg_rtx (DImode); rtx temp3 = gen_reg_rtx (DImode); rtx temp4 = gen_reg_rtx (DImode); emit_insn (gen_rtx_SET (VOIDmode, temp4, gen_rtx_ASHIFT (DImode, sub_temp, GEN_INT (32)))); sparc_emit_set_safe_HIGH64 (temp2, low_bits); if ((low_bits & ~0xfffffc00) != 0) { emit_insn (gen_rtx_SET (VOIDmode, temp3, gen_safe_OR64 (temp2, (low_bits & 0x3ff)))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_PLUS (DImode, temp4, temp3))); } else { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_PLUS (DImode, temp4, temp2))); } } else { rtx low1 = GEN_INT ((low_bits >> (32 - 12)) & 0xfff); rtx low2 = GEN_INT ((low_bits >> (32 - 12 - 12)) & 0xfff); rtx low3 = GEN_INT ((low_bits >> (32 - 12 - 12 - 8)) & 0x0ff); int to_shift = 12; /* We are in the middle of reload, so this is really painful. However we do still make an attempt to avoid emitting truly stupid code. */ if (low1 != const0_rtx) { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, sub_temp, GEN_INT (to_shift)))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_IOR (DImode, op0, low1))); sub_temp = op0; to_shift = 12; } else { to_shift += 12; } if (low2 != const0_rtx) { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, sub_temp, GEN_INT (to_shift)))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_IOR (DImode, op0, low2))); sub_temp = op0; to_shift = 8; } else { to_shift += 8; } emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, sub_temp, GEN_INT (to_shift)))); if (low3 != const0_rtx) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_IOR (DImode, op0, low3))); /* phew... */ } } /* Analyze a 64-bit constant for certain properties. */ static void analyze_64bit_constant PROTO((unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, int *, int *, int *)); static void analyze_64bit_constant (high_bits, low_bits, hbsp, lbsp, abbasp) unsigned HOST_WIDE_INT high_bits, low_bits; int *hbsp, *lbsp, *abbasp; { int lowest_bit_set, highest_bit_set, all_bits_between_are_set; int i; lowest_bit_set = highest_bit_set = -1; i = 0; do { if ((lowest_bit_set == -1) && ((low_bits >> i) & 1)) lowest_bit_set = i; if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1)) highest_bit_set = (64 - i - 1); } while (++i < 32 && ((highest_bit_set == -1) || (lowest_bit_set == -1))); if (i == 32) { i = 0; do { if ((lowest_bit_set == -1) && ((high_bits >> i) & 1)) lowest_bit_set = i + 32; if ((highest_bit_set == -1) && ((low_bits >> (32 - i - 1)) & 1)) highest_bit_set = 32 - i - 1; } while (++i < 32 && ((highest_bit_set == -1) || (lowest_bit_set == -1))); } /* If there are no bits set this should have gone out as one instruction! */ if (lowest_bit_set == -1 || highest_bit_set == -1) abort (); all_bits_between_are_set = 1; for (i = lowest_bit_set; i <= highest_bit_set; i++) { if (i < 32) { if ((low_bits & (1 << i)) != 0) continue; } else { if ((high_bits & (1 << (i - 32))) != 0) continue; } all_bits_between_are_set = 0; break; } *hbsp = highest_bit_set; *lbsp = lowest_bit_set; *abbasp = all_bits_between_are_set; } static int const64_is_2insns PROTO((unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT)); static int const64_is_2insns (high_bits, low_bits) unsigned HOST_WIDE_INT high_bits, low_bits; { int highest_bit_set, lowest_bit_set, all_bits_between_are_set; if (high_bits == 0 || high_bits == 0xffffffff) return 1; analyze_64bit_constant (high_bits, low_bits, &highest_bit_set, &lowest_bit_set, &all_bits_between_are_set); if ((highest_bit_set == 63 || lowest_bit_set == 0) && all_bits_between_are_set != 0) return 1; if ((highest_bit_set - lowest_bit_set) < 21) return 1; return 0; } static unsigned HOST_WIDE_INT create_simple_focus_bits PROTO((unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, int, int)); static unsigned HOST_WIDE_INT create_simple_focus_bits (high_bits, low_bits, lowest_bit_set, shift) unsigned HOST_WIDE_INT high_bits, low_bits; int lowest_bit_set, shift; { HOST_WIDE_INT hi, lo; if (lowest_bit_set < 32) { lo = (low_bits >> lowest_bit_set) << shift; hi = ((high_bits << (32 - lowest_bit_set)) << shift); } else { lo = 0; hi = ((high_bits >> (lowest_bit_set - 32)) << shift); } if (hi & lo) abort (); return (hi | lo); } /* Here we are sure to be arch64 and this is an integer constant being loaded into a register. Emit the most efficient insn sequence possible. Detection of all the 1-insn cases has been done already. */ void sparc_emit_set_const64 (op0, op1) rtx op0; rtx op1; { unsigned HOST_WIDE_INT high_bits, low_bits; int lowest_bit_set, highest_bit_set; int all_bits_between_are_set; rtx temp; /* Sanity check that we know what we are working with. */ if (! TARGET_ARCH64 || GET_CODE (op0) != REG || (REGNO (op0) >= SPARC_FIRST_FP_REG && REGNO (op0) <= SPARC_LAST_V9_FP_REG)) abort (); if (reload_in_progress || reload_completed) temp = op0; else temp = gen_reg_rtx (DImode); if (GET_CODE (op1) != CONST_DOUBLE && GET_CODE (op1) != CONST_INT) { sparc_emit_set_symbolic_const64 (op0, op1, temp); return; } if (GET_CODE (op1) == CONST_DOUBLE) { #if HOST_BITS_PER_WIDE_INT == 64 high_bits = (CONST_DOUBLE_LOW (op1) >> 32) & 0xffffffff; low_bits = CONST_DOUBLE_LOW (op1) & 0xffffffff; #else high_bits = CONST_DOUBLE_HIGH (op1); low_bits = CONST_DOUBLE_LOW (op1); #endif } else { #if HOST_BITS_PER_WIDE_INT == 64 high_bits = ((INTVAL (op1) >> 32) & 0xffffffff); low_bits = (INTVAL (op1) & 0xffffffff); #else high_bits = ((INTVAL (op1) < 0) ? 0xffffffff : 0x00000000); low_bits = INTVAL (op1); #endif } /* low_bits bits 0 --> 31 high_bits bits 32 --> 63 */ analyze_64bit_constant (high_bits, low_bits, &highest_bit_set, &lowest_bit_set, &all_bits_between_are_set); /* First try for a 2-insn sequence. */ /* These situations are preferred because the optimizer can * do more things with them: * 1) mov -1, %reg * sllx %reg, shift, %reg * 2) mov -1, %reg * srlx %reg, shift, %reg * 3) mov some_small_const, %reg * sllx %reg, shift, %reg */ if (((highest_bit_set == 63 || lowest_bit_set == 0) && all_bits_between_are_set != 0) || ((highest_bit_set - lowest_bit_set) < 12)) { HOST_WIDE_INT the_const = -1; int shift = lowest_bit_set; if ((highest_bit_set != 63 && lowest_bit_set != 0) || all_bits_between_are_set == 0) { the_const = create_simple_focus_bits (high_bits, low_bits, lowest_bit_set, 0); } else if (lowest_bit_set == 0) shift = -(63 - highest_bit_set); if (! SPARC_SIMM13_P (the_const)) abort (); emit_insn (gen_safe_SET64 (temp, the_const)); if (shift > 0) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, temp, GEN_INT (shift)))); else if (shift < 0) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_LSHIFTRT (DImode, temp, GEN_INT (-shift)))); else abort (); return; } /* Now a range of 22 or less bits set somewhere. * 1) sethi %hi(focus_bits), %reg * sllx %reg, shift, %reg * 2) sethi %hi(focus_bits), %reg * srlx %reg, shift, %reg */ if ((highest_bit_set - lowest_bit_set) < 21) { unsigned HOST_WIDE_INT focus_bits = create_simple_focus_bits (high_bits, low_bits, lowest_bit_set, 10); if (! SPARC_SETHI_P (focus_bits)) abort (); sparc_emit_set_safe_HIGH64 (temp, focus_bits); /* If lowest_bit_set == 10 then a sethi alone could have done it. */ if (lowest_bit_set < 10) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_LSHIFTRT (DImode, temp, GEN_INT (10 - lowest_bit_set)))); else if (lowest_bit_set > 10) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, temp, GEN_INT (lowest_bit_set - 10)))); else abort (); return; } /* 1) sethi %hi(low_bits), %reg * or %reg, %lo(low_bits), %reg * 2) sethi %hi(~low_bits), %reg * xor %reg, %lo(-0x400 | (low_bits & 0x3ff)), %reg */ if (high_bits == 0 || high_bits == 0xffffffff) { sparc_emit_set_const64_quick1 (op0, temp, low_bits, (high_bits == 0xffffffff)); return; } /* Now, try 3-insn sequences. */ /* 1) sethi %hi(high_bits), %reg * or %reg, %lo(high_bits), %reg * sllx %reg, 32, %reg */ if (low_bits == 0) { sparc_emit_set_const64_quick2 (op0, temp, high_bits, 0, 32); return; } /* We may be able to do something quick when the constant is negated, so try that. */ if (const64_is_2insns ((~high_bits) & 0xffffffff, (~low_bits) & 0xfffffc00)) { /* NOTE: The trailing bits get XOR'd so we need the non-negated bits, not the negated ones. */ unsigned HOST_WIDE_INT trailing_bits = low_bits & 0x3ff; if ((((~high_bits) & 0xffffffff) == 0 && ((~low_bits) & 0x80000000) == 0) || (((~high_bits) & 0xffffffff) == 0xffffffff && ((~low_bits) & 0x80000000) != 0)) { int fast_int = (~low_bits & 0xffffffff); if ((SPARC_SETHI_P (fast_int) && (~high_bits & 0xffffffff) == 0) || SPARC_SIMM13_P (fast_int)) emit_insn (gen_safe_SET64 (temp, fast_int)); else sparc_emit_set_const64 (temp, GEN_INT64 (fast_int)); } else { rtx negated_const; #if HOST_BITS_PER_WIDE_INT == 64 negated_const = GEN_INT (((~low_bits) & 0xfffffc00) | (((HOST_WIDE_INT)((~high_bits) & 0xffffffff))<<32)); #else negated_const = gen_rtx_CONST_DOUBLE (DImode, const0_rtx, (~low_bits) & 0xfffffc00, (~high_bits) & 0xffffffff); #endif sparc_emit_set_const64 (temp, negated_const); } /* If we are XOR'ing with -1, then we should emit a one's complement instead. This way the combiner will notice logical operations such as ANDN later on and substitute. */ if (trailing_bits == 0x3ff) { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_NOT (DImode, temp))); } else { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_safe_XOR64 (temp, (-0x400 | trailing_bits)))); } return; } /* 1) sethi %hi(xxx), %reg * or %reg, %lo(xxx), %reg * sllx %reg, yyy, %reg * * ??? This is just a generalized version of the low_bits==0 * thing above, FIXME... */ if ((highest_bit_set - lowest_bit_set) < 32) { unsigned HOST_WIDE_INT focus_bits = create_simple_focus_bits (high_bits, low_bits, lowest_bit_set, 0); /* We can't get here in this state. */ if (highest_bit_set < 32 || lowest_bit_set >= 32) abort (); /* So what we know is that the set bits straddle the middle of the 64-bit word. */ sparc_emit_set_const64_quick2 (op0, temp, focus_bits, 0, lowest_bit_set); return; } /* 1) sethi %hi(high_bits), %reg * or %reg, %lo(high_bits), %reg * sllx %reg, 32, %reg * or %reg, low_bits, %reg */ if (SPARC_SIMM13_P(low_bits) && ((int)low_bits > 0)) { sparc_emit_set_const64_quick2 (op0, temp, high_bits, low_bits, 32); return; } /* The easiest way when all else fails, is full decomposition. */ #if 0 printf ("sparc_emit_set_const64: Hard constant [%08lx%08lx] neg[%08lx%08lx]\n", high_bits, low_bits, ~high_bits, ~low_bits); #endif sparc_emit_set_const64_longway (op0, temp, high_bits, low_bits); } /* X and Y are two things to compare using CODE. Emit the compare insn and return the rtx for the cc reg in the proper mode. */ rtx gen_compare_reg (code, x, y) enum rtx_code code; rtx x, y; { enum machine_mode mode = SELECT_CC_MODE (code, x, y); rtx cc_reg; /* ??? We don't have movcc patterns so we cannot generate pseudo regs for the fcc regs (cse can't tell they're really call clobbered regs and will remove a duplicate comparison even if there is an intervening function call - it will then try to reload the cc reg via an int reg which is why we need the movcc patterns). It is possible to provide the movcc patterns by using the ldxfsr/stxfsr v9 insns. I tried it: you need two registers (say %g1,%g5) and it takes about 6 insns. A better fix would be to tell cse that CCFPE mode registers (even pseudos) are call clobbered. */ /* ??? This is an experiment. Rather than making changes to cse which may or may not be easy/clean, we do our own cse. This is possible because we will generate hard registers. Cse knows they're call clobbered (it doesn't know the same thing about pseudos). If we guess wrong, no big deal, but if we win, great! */ if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) #if 1 /* experiment */ { int reg; /* We cycle through the registers to ensure they're all exercised. */ static int next_fcc_reg = 0; /* Previous x,y for each fcc reg. */ static rtx prev_args[4][2]; /* Scan prev_args for x,y. */ for (reg = 0; reg < 4; reg++) if (prev_args[reg][0] == x && prev_args[reg][1] == y) break; if (reg == 4) { reg = next_fcc_reg; prev_args[reg][0] = x; prev_args[reg][1] = y; next_fcc_reg = (next_fcc_reg + 1) & 3; } cc_reg = gen_rtx_REG (mode, reg + SPARC_FIRST_V9_FCC_REG); } #else cc_reg = gen_reg_rtx (mode); #endif /* ! experiment */ else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) cc_reg = gen_rtx_REG (mode, SPARC_FCC_REG); else cc_reg = gen_rtx_REG (mode, SPARC_ICC_REG); emit_insn (gen_rtx_SET (VOIDmode, cc_reg, gen_rtx_COMPARE (mode, x, y))); return cc_reg; } /* This function is used for v9 only. CODE is the code for an Scc's comparison. OPERANDS[0] is the target of the Scc insn. OPERANDS[1] is the value we compare against const0_rtx (which hasn't been generated yet). This function is needed to turn (set (reg:SI 110) (gt (reg:CCX 100 %icc) (const_int 0))) into (set (reg:SI 110) (gt:DI (reg:CCX 100 %icc) (const_int 0))) IE: The instruction recognizer needs to see the mode of the comparison to find the right instruction. We could use "gt:DI" right in the define_expand, but leaving it out allows us to handle DI, SI, etc. We refer to the global sparc compare operands sparc_compare_op0 and sparc_compare_op1. */ int gen_v9_scc (compare_code, operands) enum rtx_code compare_code; register rtx *operands; { rtx temp, op0, op1; if (! TARGET_ARCH64 && (GET_MODE (sparc_compare_op0) == DImode || GET_MODE (operands[0]) == DImode)) return 0; /* Handle the case where operands[0] == sparc_compare_op0. We "early clobber" the result. */ if (REGNO (operands[0]) == REGNO (sparc_compare_op0)) { op0 = gen_reg_rtx (GET_MODE (sparc_compare_op0)); emit_move_insn (op0, sparc_compare_op0); } else op0 = sparc_compare_op0; /* For consistency in the following. */ op1 = sparc_compare_op1; /* Try to use the movrCC insns. */ if (TARGET_ARCH64 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT && op1 == const0_rtx && v9_regcmp_p (compare_code)) { /* Special case for op0 != 0. This can be done with one instruction if operands[0] == sparc_compare_op0. We don't assume they are equal now though. */ if (compare_code == NE && GET_MODE (operands[0]) == DImode && GET_MODE (op0) == DImode) { emit_insn (gen_rtx_SET (VOIDmode, operands[0], op0)); emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (DImode, gen_rtx_fmt_ee (compare_code, DImode, op0, const0_rtx), const1_rtx, operands[0]))); return 1; } emit_insn (gen_rtx_SET (VOIDmode, operands[0], const0_rtx)); if (GET_MODE (op0) != DImode) { temp = gen_reg_rtx (DImode); convert_move (temp, op0, 0); } else temp = op0; emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), gen_rtx_fmt_ee (compare_code, DImode, temp, const0_rtx), const1_rtx, operands[0]))); return 1; } else { operands[1] = gen_compare_reg (compare_code, op0, op1); switch (GET_MODE (operands[1])) { case CCmode : case CCXmode : case CCFPEmode : case CCFPmode : break; default : abort (); } emit_insn (gen_rtx_SET (VOIDmode, operands[0], const0_rtx)); emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), gen_rtx_fmt_ee (compare_code, GET_MODE (operands[1]), operands[1], const0_rtx), const1_rtx, operands[0]))); return 1; } } /* Emit a conditional jump insn for the v9 architecture using comparison code CODE and jump target LABEL. This function exists to take advantage of the v9 brxx insns. */ void emit_v9_brxx_insn (code, op0, label) enum rtx_code code; rtx op0, label; { emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, gen_rtx_fmt_ee (code, GET_MODE (op0), op0, const0_rtx), gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx))); } /* Return nonzero if a return peephole merging return with setting of output register is ok. */ int leaf_return_peephole_ok () { return (actual_fsize == 0); } /* Return nonzero if TRIAL can go into the function epilogue's delay slot. SLOT is the slot we are trying to fill. */ int eligible_for_epilogue_delay (trial, slot) rtx trial; int slot; { rtx pat, src; if (slot >= 1) return 0; if (GET_CODE (trial) != INSN || GET_CODE (PATTERN (trial)) != SET) return 0; if (get_attr_length (trial) != 1) return 0; /* If %g0 is live, there are lots of things we can't handle. Rather than trying to find them all now, let's punt and only optimize things as necessary. */ if (TARGET_LIVE_G0) return 0; /* In the case of a true leaf function, anything can go into the delay slot. A delay slot only exists however if the frame size is zero, otherwise we will put an insn to adjust the stack after the return. */ if (current_function_uses_only_leaf_regs) { if (leaf_return_peephole_ok ()) return ((get_attr_in_uncond_branch_delay (trial) == IN_BRANCH_DELAY_TRUE)); return 0; } /* If only trivial `restore' insns work, nothing can go in the delay slot. */ else if (TARGET_BROKEN_SAVERESTORE) return 0; pat = PATTERN (trial); /* Otherwise, only operations which can be done in tandem with a `restore' insn can go into the delay slot. */ if (GET_CODE (SET_DEST (pat)) != REG || REGNO (SET_DEST (pat)) >= 32 || REGNO (SET_DEST (pat)) < 24) return 0; /* The set of insns matched here must agree precisely with the set of patterns paired with a RETURN in sparc.md. */ src = SET_SRC (pat); /* This matches "*return_[qhs]i" or even "*return_di" on TARGET_ARCH64. */ if (arith_operand (src, GET_MODE (src))) { if (TARGET_ARCH64) return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); else return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode); } /* This matches "*return_di". */ else if (arith_double_operand (src, GET_MODE (src))) return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); /* This matches "*return_sf_no_fpu". */ else if (! TARGET_FPU && restore_operand (SET_DEST (pat), SFmode) && register_operand (src, SFmode)) return 1; /* This matches "*return_addsi". */ else if (GET_CODE (src) == PLUS && arith_operand (XEXP (src, 0), SImode) && arith_operand (XEXP (src, 1), SImode) && (register_operand (XEXP (src, 0), SImode) || register_operand (XEXP (src, 1), SImode))) return 1; /* This matches "*return_adddi". */ else if (GET_CODE (src) == PLUS && arith_double_operand (XEXP (src, 0), DImode) && arith_double_operand (XEXP (src, 1), DImode) && (register_operand (XEXP (src, 0), DImode) || register_operand (XEXP (src, 1), DImode))) return 1; return 0; } static int check_return_regs (x) rtx x; { switch (GET_CODE (x)) { case REG: return IN_OR_GLOBAL_P (x); case CONST_INT: case CONST_DOUBLE: case CONST: case SYMBOL_REF: case LABEL_REF: return 1; case SET: case IOR: case AND: case XOR: case PLUS: case MINUS: if (check_return_regs (XEXP (x, 1)) == 0) return 0; case NOT: case NEG: case MEM: return check_return_regs (XEXP (x, 0)); default: return 0; } } /* Return 1 if TRIAL references only in and global registers. */ int eligible_for_return_delay (trial) rtx trial; { if (GET_CODE (PATTERN (trial)) != SET) return 0; return check_return_regs (PATTERN (trial)); } int short_branch (uid1, uid2) int uid1, uid2; { unsigned int delta = insn_addresses[uid1] - insn_addresses[uid2]; if (delta + 1024 < 2048) return 1; /* warning ("long branch, distance %d", delta); */ return 0; } /* Return non-zero if REG is not used after INSN. We assume REG is a reload reg, and therefore does not live past labels or calls or jumps. */ int reg_unused_after (reg, insn) rtx reg; rtx insn; { enum rtx_code code, prev_code = UNKNOWN; while ((insn = NEXT_INSN (insn))) { if (prev_code == CALL_INSN && call_used_regs[REGNO (reg)]) return 1; code = GET_CODE (insn); if (GET_CODE (insn) == CODE_LABEL) return 1; if (GET_RTX_CLASS (code) == 'i') { rtx set = single_set (insn); int in_src = set && reg_overlap_mentioned_p (reg, SET_SRC (set)); if (set && in_src) return 0; if (set && reg_overlap_mentioned_p (reg, SET_DEST (set))) return 1; if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn))) return 0; } prev_code = code; } return 1; } /* The table we use to reference PIC data. */ static rtx global_offset_table; /* The function we use to get at it. */ static rtx get_pc_symbol; static char get_pc_symbol_name[256]; /* Ensure that we are not using patterns that are not OK with PIC. */ int check_pic (i) int i; { switch (flag_pic) { case 1: if (GET_CODE (recog_operand[i]) == SYMBOL_REF || (GET_CODE (recog_operand[i]) == CONST && ! (GET_CODE (XEXP (recog_operand[i], 0)) == MINUS && (XEXP (XEXP (recog_operand[i], 0), 0) == global_offset_table) && (GET_CODE (XEXP (XEXP (recog_operand[i], 0), 1)) == CONST)))) abort (); case 2: default: return 1; } } /* Return true if X is an address which needs a temporary register when reloaded while generating PIC code. */ int pic_address_needs_scratch (x) rtx x; { if (GET_CODE (x) == LABEL_REF) return 1; /* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */ if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && ! SMALL_INT (XEXP (XEXP (x, 0), 1))) return 1; return 0; } /* Legitimize PIC addresses. If the address is already position-independent, we return ORIG. Newly generated position-independent addresses go into a reg. This is REG if non zero, otherwise we allocate register(s) as necessary. */ rtx legitimize_pic_address (orig, mode, reg) rtx orig; enum machine_mode mode ATTRIBUTE_UNUSED; rtx reg; { if (GET_CODE (orig) == SYMBOL_REF) { rtx pic_ref, address; rtx insn; if (reg == 0) { if (reload_in_progress || reload_completed) abort (); else reg = gen_reg_rtx (Pmode); } if (flag_pic == 2) { /* If not during reload, allocate another temp reg here for loading in the address, so that these instructions can be optimized properly. */ rtx temp_reg = ((reload_in_progress || reload_completed) ? reg : gen_reg_rtx (Pmode)); /* Must put the SYMBOL_REF inside an UNSPEC here so that cse won't get confused into thinking that these two instructions are loading in the true address of the symbol. If in the future a PIC rtx exists, that should be used instead. */ if (Pmode == SImode) { emit_insn (gen_movsi_high_pic (temp_reg, orig)); emit_insn (gen_movsi_lo_sum_pic (temp_reg, temp_reg, orig)); } else { emit_insn (gen_movdi_high_pic (temp_reg, orig)); emit_insn (gen_movdi_lo_sum_pic (temp_reg, temp_reg, orig)); } address = temp_reg; } else address = orig; pic_ref = gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, pic_offset_table_rtx, address)); current_function_uses_pic_offset_table = 1; RTX_UNCHANGING_P (pic_ref) = 1; insn = emit_move_insn (reg, pic_ref); /* Put a REG_EQUAL note on this insn, so that it can be optimized by loop. */ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, orig, REG_NOTES (insn)); return reg; } else if (GET_CODE (orig) == CONST) { rtx base, offset; if (GET_CODE (XEXP (orig, 0)) == PLUS && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx) return orig; if (reg == 0) { if (reload_in_progress || reload_completed) abort (); else reg = gen_reg_rtx (Pmode); } if (GET_CODE (XEXP (orig, 0)) == PLUS) { base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg); offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode, base == reg ? 0 : reg); } else abort (); if (GET_CODE (offset) == CONST_INT) { if (SMALL_INT (offset)) return plus_constant_for_output (base, INTVAL (offset)); else if (! reload_in_progress && ! reload_completed) offset = force_reg (Pmode, offset); else /* If we reach here, then something is seriously wrong. */ abort (); } return gen_rtx_PLUS (Pmode, base, offset); } else if (GET_CODE (orig) == LABEL_REF) /* ??? Why do we do this? */ /* Now movsi_pic_label_ref uses it, but we ought to be checking that the register is live instead, in case it is eliminated. */ current_function_uses_pic_offset_table = 1; return orig; } /* Return the RTX for insns to set the PIC register. */ static rtx pic_setup_code () { rtx seq; start_sequence (); emit_insn (gen_get_pc (pic_offset_table_rtx, global_offset_table, get_pc_symbol)); seq = gen_sequence (); end_sequence (); return seq; } /* Emit special PIC prologues and epilogues. */ void finalize_pic () { /* Labels to get the PC in the prologue of this function. */ int orig_flag_pic = flag_pic; rtx insn; if (current_function_uses_pic_offset_table == 0) return; if (! flag_pic) abort (); /* If we havn't emitted the special get_pc helper function, do so now. */ if (get_pc_symbol_name[0] == 0) { int align; ASM_GENERATE_INTERNAL_LABEL (get_pc_symbol_name, "LGETPC", 0); text_section (); align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT); if (align > 0) ASM_OUTPUT_ALIGN (asm_out_file, align); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LGETPC", 0); fputs ("\tretl\n\tadd %o7,%l7,%l7\n", asm_out_file); } /* Initialize every time through, since we can't easily know this to be permanent. */ global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); get_pc_symbol = gen_rtx_SYMBOL_REF (Pmode, get_pc_symbol_name); flag_pic = 0; emit_insn_after (pic_setup_code (), get_insns ()); /* Insert the code in each nonlocal goto receiver. If you make changes here or to the nonlocal_goto_receiver pattern, make sure the unspec_volatile numbers still match. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE && XINT (PATTERN (insn), 1) == 5) emit_insn_after (pic_setup_code (), insn); flag_pic = orig_flag_pic; /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp can cause life info to screw up. ??? In the case where we don't obey regdecls, this is not sufficient since we may not fall out the bottom. */ emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx)); } /* Return 1 if RTX is a MEM which is known to be aligned to at least an 8 byte boundary. */ int mem_min_alignment (mem, desired) rtx mem; int desired; { rtx addr, base, offset; /* If it's not a MEM we can't accept it. */ if (GET_CODE (mem) != MEM) return 0; addr = XEXP (mem, 0); base = offset = NULL_RTX; if (GET_CODE (addr) == PLUS) { if (GET_CODE (XEXP (addr, 0)) == REG) { base = XEXP (addr, 0); /* What we are saying here is that if the base REG is aligned properly, the compiler will make sure any REG based index upon it will be so as well. */ if (GET_CODE (XEXP (addr, 1)) == CONST_INT) offset = XEXP (addr, 1); else offset = const0_rtx; } } else if (GET_CODE (addr) == REG) { base = addr; offset = const0_rtx; } if (base != NULL_RTX) { int regno = REGNO (base); if (regno != FRAME_POINTER_REGNUM && regno != STACK_POINTER_REGNUM) { /* Check if the compiler has recorded some information about the alignment of the base REG. If reload has completed, we already matched with proper alignments. */ if (((regno_pointer_align != NULL && REGNO_POINTER_ALIGN (regno) >= desired) || reload_completed) && ((INTVAL (offset) & (desired - 1)) == 0)) return 1; } else { if (((INTVAL (offset) - SPARC_STACK_BIAS) & (desired - 1)) == 0) return 1; } } else if (! TARGET_UNALIGNED_DOUBLES || CONSTANT_P (addr) || GET_CODE (addr) == LO_SUM) { /* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES is true, in which case we can only assume that an access is aligned if it is to a constant address, or the address involves a LO_SUM. */ return 1; } /* An obviously unaligned address. */ return 0; } /* Vectors to keep interesting information about registers where it can easily be got. We use to use the actual mode value as the bit number, but there are more than 32 modes now. Instead we use two tables: one indexed by hard register number, and one indexed by mode. */ /* The purpose of sparc_mode_class is to shrink the range of modes so that they all fit (as bit numbers) in a 32 bit word (again). Each real mode is mapped into one sparc_mode_class mode. */ enum sparc_mode_class { S_MODE, D_MODE, T_MODE, O_MODE, SF_MODE, DF_MODE, TF_MODE, OF_MODE, CC_MODE, CCFP_MODE }; /* Modes for single-word and smaller quantities. */ #define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE)) /* Modes for double-word and smaller quantities. */ #define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE)) /* Modes for quad-word and smaller quantities. */ #define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE)) /* Modes for single-float quantities. We must allow any single word or smaller quantity. This is because the fix/float conversion instructions take integer inputs/outputs from the float registers. */ #define SF_MODES (S_MODES) /* Modes for double-float and smaller quantities. */ #define DF_MODES (S_MODES | D_MODES) #define DF_MODES64 DF_MODES /* Modes for double-float only quantities. */ #define DF_ONLY_MODES ((1 << (int) DF_MODE) | (1 << (int) D_MODE)) /* Modes for double-float and larger quantities. */ #define DF_UP_MODES (DF_ONLY_MODES | TF_ONLY_MODES) /* Modes for quad-float only quantities. */ #define TF_ONLY_MODES (1 << (int) TF_MODE) /* Modes for quad-float and smaller quantities. */ #define TF_MODES (DF_MODES | TF_ONLY_MODES) #define TF_MODES64 (DF_MODES64 | TF_ONLY_MODES) /* Modes for condition codes. */ #define CC_MODES (1 << (int) CC_MODE) #define CCFP_MODES (1 << (int) CCFP_MODE) /* Value is 1 if register/mode pair is acceptable on sparc. The funny mixture of D and T modes is because integer operations do not specially operate on tetra quantities, so non-quad-aligned registers can hold quadword quantities (except %o4 and %i4 because they cross fixed registers). */ /* This points to either the 32 bit or the 64 bit version. */ int *hard_regno_mode_classes; static int hard_32bit_mode_classes[] = { S_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, /* FP regs f32 to f63. Only the even numbered registers actually exist, and none can hold SFmode/SImode values. */ DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, /* %fcc[0123] */ CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES, /* %icc */ CC_MODES }; static int hard_64bit_mode_classes[] = { D_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, /* FP regs f32 to f63. Only the even numbered registers actually exist, and none can hold SFmode/SImode values. */ DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, /* %fcc[0123] */ CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES, /* %icc */ CC_MODES }; int sparc_mode_class [NUM_MACHINE_MODES]; enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER]; static void sparc_init_modes () { int i; for (i = 0; i < NUM_MACHINE_MODES; i++) { switch (GET_MODE_CLASS (i)) { case MODE_INT: case MODE_PARTIAL_INT: case MODE_COMPLEX_INT: if (GET_MODE_SIZE (i) <= 4) sparc_mode_class[i] = 1 << (int) S_MODE; else if (GET_MODE_SIZE (i) == 8) sparc_mode_class[i] = 1 << (int) D_MODE; else if (GET_MODE_SIZE (i) == 16) sparc_mode_class[i] = 1 << (int) T_MODE; else if (GET_MODE_SIZE (i) == 32) sparc_mode_class[i] = 1 << (int) O_MODE; else sparc_mode_class[i] = 0; break; case MODE_FLOAT: case MODE_COMPLEX_FLOAT: if (GET_MODE_SIZE (i) <= 4) sparc_mode_class[i] = 1 << (int) SF_MODE; else if (GET_MODE_SIZE (i) == 8) sparc_mode_class[i] = 1 << (int) DF_MODE; else if (GET_MODE_SIZE (i) == 16) sparc_mode_class[i] = 1 << (int) TF_MODE; else if (GET_MODE_SIZE (i) == 32) sparc_mode_class[i] = 1 << (int) OF_MODE; else sparc_mode_class[i] = 0; break; case MODE_CC: default: /* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so we must explicitly check for them here. */ if (i == (int) CCFPmode || i == (int) CCFPEmode) sparc_mode_class[i] = 1 << (int) CCFP_MODE; else if (i == (int) CCmode || i == (int) CC_NOOVmode || i == (int) CCXmode || i == (int) CCX_NOOVmode) sparc_mode_class[i] = 1 << (int) CC_MODE; else sparc_mode_class[i] = 0; break; } } if (TARGET_ARCH64) hard_regno_mode_classes = hard_64bit_mode_classes; else hard_regno_mode_classes = hard_32bit_mode_classes; /* Initialize the array used by REGNO_REG_CLASS. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (i < 16 && TARGET_V8PLUS) sparc_regno_reg_class[i] = I64_REGS; else if (i < 32) sparc_regno_reg_class[i] = GENERAL_REGS; else if (i < 64) sparc_regno_reg_class[i] = FP_REGS; else if (i < 96) sparc_regno_reg_class[i] = EXTRA_FP_REGS; else if (i < 100) sparc_regno_reg_class[i] = FPCC_REGS; else sparc_regno_reg_class[i] = NO_REGS; } } /* Save non call used registers from LOW to HIGH at BASE+OFFSET. N_REGS is the number of 4-byte regs saved thus far. This applies even to v9 int regs as it simplifies the code. */ static int save_regs (file, low, high, base, offset, n_regs, real_offset) FILE *file; int low, high; const char *base; int offset; int n_regs; int real_offset; { int i; if (TARGET_ARCH64 && high <= 32) { for (i = low; i < high; i++) { if (regs_ever_live[i] && ! call_used_regs[i]) { fprintf (file, "\tstx\t%s, [%s+%d]\n", reg_names[i], base, offset + 4 * n_regs); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", i, real_offset + 4 * n_regs); n_regs += 2; } } } else { for (i = low; i < high; i += 2) { if (regs_ever_live[i] && ! call_used_regs[i]) { if (regs_ever_live[i+1] && ! call_used_regs[i+1]) { fprintf (file, "\tstd\t%s, [%s+%d]\n", reg_names[i], base, offset + 4 * n_regs); if (dwarf2out_do_frame ()) { char *l = dwarf2out_cfi_label (); dwarf2out_reg_save (l, i, real_offset + 4 * n_regs); dwarf2out_reg_save (l, i+1, real_offset + 4 * n_regs + 4); } n_regs += 2; } else { fprintf (file, "\tst\t%s, [%s+%d]\n", reg_names[i], base, offset + 4 * n_regs); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", i, real_offset + 4 * n_regs); n_regs += 2; } } else { if (regs_ever_live[i+1] && ! call_used_regs[i+1]) { fprintf (file, "\tst\t%s, [%s+%d]\n", reg_names[i+1], base, offset + 4 * n_regs + 4); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", i + 1, real_offset + 4 * n_regs + 4); n_regs += 2; } } } } return n_regs; } /* Restore non call used registers from LOW to HIGH at BASE+OFFSET. N_REGS is the number of 4-byte regs saved thus far. This applies even to v9 int regs as it simplifies the code. */ static int restore_regs (file, low, high, base, offset, n_regs) FILE *file; int low, high; const char *base; int offset; int n_regs; { int i; if (TARGET_ARCH64 && high <= 32) { for (i = low; i < high; i++) { if (regs_ever_live[i] && ! call_used_regs[i]) fprintf (file, "\tldx\t[%s+%d], %s\n", base, offset + 4 * n_regs, reg_names[i]), n_regs += 2; } } else { for (i = low; i < high; i += 2) { if (regs_ever_live[i] && ! call_used_regs[i]) if (regs_ever_live[i+1] && ! call_used_regs[i+1]) fprintf (file, "\tldd\t[%s+%d], %s\n", base, offset + 4 * n_regs, reg_names[i]), n_regs += 2; else fprintf (file, "\tld\t[%s+%d],%s\n", base, offset + 4 * n_regs, reg_names[i]), n_regs += 2; else if (regs_ever_live[i+1] && ! call_used_regs[i+1]) fprintf (file, "\tld\t[%s+%d],%s\n", base, offset + 4 * n_regs + 4, reg_names[i+1]), n_regs += 2; } } return n_regs; } /* Static variables we want to share between prologue and epilogue. */ /* Number of live general or floating point registers needed to be saved (as 4-byte quantities). This is only done if TARGET_EPILOGUE. */ static int num_gfregs; /* Compute the frame size required by the function. This function is called during the reload pass and also by output_function_prologue(). */ int compute_frame_size (size, leaf_function) int size; int leaf_function; { int n_regs = 0, i; int outgoing_args_size = (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (current_function_decl)); if (TARGET_EPILOGUE) { /* N_REGS is the number of 4-byte regs saved thus far. This applies even to v9 int regs to be consistent with save_regs/restore_regs. */ if (TARGET_ARCH64) { for (i = 0; i < 8; i++) if (regs_ever_live[i] && ! call_used_regs[i]) n_regs += 2; } else { for (i = 0; i < 8; i += 2) if ((regs_ever_live[i] && ! call_used_regs[i]) || (regs_ever_live[i+1] && ! call_used_regs[i+1])) n_regs += 2; } for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2) if ((regs_ever_live[i] && ! call_used_regs[i]) || (regs_ever_live[i+1] && ! call_used_regs[i+1])) n_regs += 2; } /* Set up values for use in `function_epilogue'. */ num_gfregs = n_regs; if (leaf_function && n_regs == 0 && size == 0 && current_function_outgoing_args_size == 0) { actual_fsize = apparent_fsize = 0; } else { /* We subtract STARTING_FRAME_OFFSET, remember it's negative. The stack bias (if any) is taken out to undo its effects. */ apparent_fsize = (size - STARTING_FRAME_OFFSET + SPARC_STACK_BIAS + 7) & -8; apparent_fsize += n_regs * 4; actual_fsize = apparent_fsize + ((outgoing_args_size + 7) & -8); } /* Make sure nothing can clobber our register windows. If a SAVE must be done, or there is a stack-local variable, the register window area must be allocated. ??? For v8 we apparently need an additional 8 bytes of reserved space. */ if (leaf_function == 0 || size > 0) actual_fsize += (16 * UNITS_PER_WORD) + (TARGET_ARCH64 ? 0 : 8); return SPARC_STACK_ALIGN (actual_fsize); } /* Build a (32 bit) big number in a register. */ /* ??? We may be able to use the set macro here too. */ static void build_big_number (file, num, reg) FILE *file; int num; const char *reg; { if (num >= 0 || ! TARGET_ARCH64) { fprintf (file, "\tsethi\t%%hi(%d), %s\n", num, reg); if ((num & 0x3ff) != 0) fprintf (file, "\tor\t%s, %%lo(%d), %s\n", reg, num, reg); } else /* num < 0 && TARGET_ARCH64 */ { /* Sethi does not sign extend, so we must use a little trickery to use it for negative numbers. Invert the constant before loading it in, then use xor immediate to invert the loaded bits (along with the upper 32 bits) to the desired constant. This works because the sethi and immediate fields overlap. */ int asize = num; int inv = ~asize; int low = -0x400 + (asize & 0x3FF); fprintf (file, "\tsethi\t%%hi(%d), %s\n\txor\t%s, %d, %s\n", inv, reg, reg, low, reg); } } /* Output code for the function prologue. */ void output_function_prologue (file, size, leaf_function) FILE *file; int size; int leaf_function; { /* Need to use actual_fsize, since we are also allocating space for our callee (and our own register save area). */ actual_fsize = compute_frame_size (size, leaf_function); if (leaf_function) { frame_base_name = "%sp"; frame_base_offset = actual_fsize + SPARC_STACK_BIAS; } else { frame_base_name = "%fp"; frame_base_offset = SPARC_STACK_BIAS; } /* This is only for the human reader. */ fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START); if (actual_fsize == 0) /* do nothing. */ ; else if (! leaf_function && ! TARGET_BROKEN_SAVERESTORE) { if (actual_fsize <= 4096) fprintf (file, "\tsave\t%%sp, -%d, %%sp\n", actual_fsize); else if (actual_fsize <= 8192) { fprintf (file, "\tsave\t%%sp, -4096, %%sp\n"); fprintf (file, "\tadd\t%%sp, -%d, %%sp\n", actual_fsize - 4096); } else { build_big_number (file, -actual_fsize, "%g1"); fprintf (file, "\tsave\t%%sp, %%g1, %%sp\n"); } } else if (! leaf_function && TARGET_BROKEN_SAVERESTORE) { /* We assume the environment will properly handle or otherwise avoid trouble associated with an interrupt occurring after the `save' or trap occurring during it. */ fprintf (file, "\tsave\n"); if (actual_fsize <= 4096) fprintf (file, "\tadd\t%%fp, -%d, %%sp\n", actual_fsize); else if (actual_fsize <= 8192) { fprintf (file, "\tadd\t%%fp, -4096, %%sp\n"); fprintf (file, "\tadd\t%%fp, -%d, %%sp\n", actual_fsize - 4096); } else { build_big_number (file, -actual_fsize, "%g1"); fprintf (file, "\tadd\t%%fp, %%g1, %%sp\n"); } } else /* leaf function */ { if (actual_fsize <= 4096) fprintf (file, "\tadd\t%%sp, -%d, %%sp\n", actual_fsize); else if (actual_fsize <= 8192) { fprintf (file, "\tadd\t%%sp, -4096, %%sp\n"); fprintf (file, "\tadd\t%%sp, -%d, %%sp\n", actual_fsize - 4096); } else { build_big_number (file, -actual_fsize, "%g1"); fprintf (file, "\tadd\t%%sp, %%g1, %%sp\n"); } } if (dwarf2out_do_frame () && actual_fsize) { char *label = dwarf2out_cfi_label (); /* The canonical frame address refers to the top of the frame. */ dwarf2out_def_cfa (label, (leaf_function ? STACK_POINTER_REGNUM : FRAME_POINTER_REGNUM), frame_base_offset); if (! leaf_function) { /* Note the register window save. This tells the unwinder that it needs to restore the window registers from the previous frame's window save area at 0(cfa). */ dwarf2out_window_save (label); /* The return address (-8) is now in %i7. */ dwarf2out_return_reg (label, 31); } } /* If doing anything with PIC, do it now. */ if (! flag_pic) fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START); /* Call saved registers are saved just above the outgoing argument area. */ if (num_gfregs) { int offset, real_offset, n_regs; const char *base; real_offset = -apparent_fsize; offset = -apparent_fsize + frame_base_offset; if (offset < -4096 || offset + num_gfregs * 4 > 4096) { /* ??? This might be optimized a little as %g1 might already have a value close enough that a single add insn will do. */ /* ??? Although, all of this is probably only a temporary fix because if %g1 can hold a function result, then output_function_epilogue will lose (the result will get clobbered). */ build_big_number (file, offset, "%g1"); fprintf (file, "\tadd\t%s, %%g1, %%g1\n", frame_base_name); base = "%g1"; offset = 0; } else { base = frame_base_name; } n_regs = 0; if (TARGET_EPILOGUE && ! leaf_function) /* ??? Originally saved regs 0-15 here. */ n_regs = save_regs (file, 0, 8, base, offset, 0, real_offset); else if (leaf_function) /* ??? Originally saved regs 0-31 here. */ n_regs = save_regs (file, 0, 8, base, offset, 0, real_offset); if (TARGET_EPILOGUE) save_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs, real_offset); } leaf_label = 0; if (leaf_function && actual_fsize != 0) { /* warning ("leaf procedure with frame size %d", actual_fsize); */ if (! TARGET_EPILOGUE) leaf_label = gen_label_rtx (); } } /* Output code for the function epilogue. */ void output_function_epilogue (file, size, leaf_function) FILE *file; int size ATTRIBUTE_UNUSED; int leaf_function; { const char *ret; if (leaf_label) { emit_label_after (leaf_label, get_last_insn ()); final_scan_insn (get_last_insn (), file, 0, 0, 1); } #ifdef FUNCTION_BLOCK_PROFILER_EXIT else if (profile_block_flag == 2) { FUNCTION_BLOCK_PROFILER_EXIT(file); } #endif else if (current_function_epilogue_delay_list == 0) { /* If code does not drop into the epilogue, we need do nothing except output pending case vectors. */ rtx insn = get_last_insn (); if (GET_CODE (insn) == NOTE) insn = prev_nonnote_insn (insn); if (insn && GET_CODE (insn) == BARRIER) goto output_vectors; } /* Restore any call saved registers. */ if (num_gfregs) { int offset, n_regs; const char *base; offset = -apparent_fsize + frame_base_offset; if (offset < -4096 || offset + num_gfregs * 4 > 4096 - 8 /*double*/) { build_big_number (file, offset, "%g1"); fprintf (file, "\tadd\t%s, %%g1, %%g1\n", frame_base_name); base = "%g1"; offset = 0; } else { base = frame_base_name; } n_regs = 0; if (TARGET_EPILOGUE && ! leaf_function) /* ??? Originally saved regs 0-15 here. */ n_regs = restore_regs (file, 0, 8, base, offset, 0); else if (leaf_function) /* ??? Originally saved regs 0-31 here. */ n_regs = restore_regs (file, 0, 8, base, offset, 0); if (TARGET_EPILOGUE) restore_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs); } /* Work out how to skip the caller's unimp instruction if required. */ if (leaf_function) ret = (SKIP_CALLERS_UNIMP_P ? "jmp\t%o7+12" : "retl"); else ret = (SKIP_CALLERS_UNIMP_P ? "jmp\t%i7+12" : "ret"); if (TARGET_EPILOGUE || leaf_label) { int old_target_epilogue = TARGET_EPILOGUE; target_flags &= ~old_target_epilogue; if (! leaf_function) { /* If we wound up with things in our delay slot, flush them here. */ if (current_function_epilogue_delay_list) { rtx insn = emit_jump_insn_after (gen_rtx_RETURN (VOIDmode), get_last_insn ()); PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, PATTERN (XEXP (current_function_epilogue_delay_list, 0)), PATTERN (insn))); final_scan_insn (insn, file, 1, 0, 1); } else if (TARGET_V9 && ! SKIP_CALLERS_UNIMP_P) fputs ("\treturn\t%i7+8\n\tnop\n", file); else fprintf (file, "\t%s\n\trestore\n", ret); } /* All of the following cases are for leaf functions. */ else if (current_function_epilogue_delay_list) { /* eligible_for_epilogue_delay_slot ensures that if this is a leaf function, then we will only have insn in the delay slot if the frame size is zero, thus no adjust for the stack is needed here. */ if (actual_fsize != 0) abort (); fprintf (file, "\t%s\n", ret); final_scan_insn (XEXP (current_function_epilogue_delay_list, 0), file, 1, 0, 1); } /* Output 'nop' instead of 'sub %sp,-0,%sp' when no frame, so as to avoid generating confusing assembly language output. */ else if (actual_fsize == 0) fprintf (file, "\t%s\n\tnop\n", ret); else if (actual_fsize <= 4096) fprintf (file, "\t%s\n\tsub\t%%sp, -%d, %%sp\n", ret, actual_fsize); else if (actual_fsize <= 8192) fprintf (file, "\tsub\t%%sp, -4096, %%sp\n\t%s\n\tsub\t%%sp, -%d, %%sp\n", ret, actual_fsize - 4096); else if ((actual_fsize & 0x3ff) == 0) fprintf (file, "\tsethi\t%%hi(%d), %%g1\n\t%s\n\tadd\t%%sp, %%g1, %%sp\n", actual_fsize, ret); else fprintf (file, "\tsethi\t%%hi(%d), %%g1\n\tor\t%%g1, %%lo(%d), %%g1\n\t%s\n\tadd\t%%sp, %%g1, %%sp\n", actual_fsize, actual_fsize, ret); target_flags |= old_target_epilogue; } output_vectors: sparc_output_deferred_case_vectors (); } /* Functions for handling argument passing. For v8 the first six args are normally in registers and the rest are pushed. Any arg that starts within the first 6 words is at least partially passed in a register unless its data type forbids. For v9, the argument registers are laid out as an array of 16 elements and arguments are added sequentially. The first 6 int args and up to the first 16 fp args (depending on size) are passed in regs. Slot Stack Integral Float Float in structure Double Long Double ---- ----- -------- ----- ------------------ ------ ----------- 15 [SP+248] %f31 %f30,%f31 %d30 14 [SP+240] %f29 %f28,%f29 %d28 %q28 13 [SP+232] %f27 %f26,%f27 %d26 12 [SP+224] %f25 %f24,%f25 %d24 %q24 11 [SP+216] %f23 %f22,%f23 %d22 10 [SP+208] %f21 %f20,%f21 %d20 %q20 9 [SP+200] %f19 %f18,%f19 %d18 8 [SP+192] %f17 %f16,%f17 %d16 %q16 7 [SP+184] %f15 %f14,%f15 %d14 6 [SP+176] %f13 %f12,%f13 %d12 %q12 5 [SP+168] %o5 %f11 %f10,%f11 %d10 4 [SP+160] %o4 %f9 %f8,%f9 %d8 %q8 3 [SP+152] %o3 %f7 %f6,%f7 %d6 2 [SP+144] %o2 %f5 %f4,%f5 %d4 %q4 1 [SP+136] %o1 %f3 %f2,%f3 %d2 0 [SP+128] %o0 %f1 %f0,%f1 %d0 %q0 Here SP = %sp if -mno-stack-bias or %sp+stack_bias otherwise. Integral arguments are always passed as 64 bit quantities appropriately extended. Passing of floating point values is handled as follows. If a prototype is in scope: If the value is in a named argument (i.e. not a stdarg function or a value not part of the `...') then the value is passed in the appropriate fp reg. If the value is part of the `...' and is passed in one of the first 6 slots then the value is passed in the appropriate int reg. If the value is part of the `...' and is not passed in one of the first 6 slots then the value is passed in memory. If a prototype is not in scope: If the value is one of the first 6 arguments the value is passed in the appropriate integer reg and the appropriate fp reg. If the value is not one of the first 6 arguments the value is passed in the appropriate fp reg and in memory. */ /* Maximum number of int regs for args. */ #define SPARC_INT_ARG_MAX 6 /* Maximum number of fp regs for args. */ #define SPARC_FP_ARG_MAX 16 #define ROUND_ADVANCE(SIZE) (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) /* Handle the INIT_CUMULATIVE_ARGS macro. Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ void init_cumulative_args (cum, fntype, libname, indirect) CUMULATIVE_ARGS *cum; tree fntype; tree libname ATTRIBUTE_UNUSED; int indirect ATTRIBUTE_UNUSED; { cum->words = 0; cum->prototype_p = fntype && TYPE_ARG_TYPES (fntype); cum->libcall_p = fntype == 0; } /* Compute the slot number to pass an argument in. Returns the slot number or -1 if passing on the stack. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG. *PREGNO records the register number to use if scalar type. *PPADDING records the amount of padding needed in words. */ static int function_arg_slotno (cum, mode, type, named, incoming_p, pregno, ppadding) const CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; int incoming_p; int *pregno; int *ppadding; { int regbase = (incoming_p ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST); int slotno = cum->words; int regno; *ppadding = 0; if (type != 0 && TREE_ADDRESSABLE (type)) return -1; if (TARGET_ARCH32 && type != 0 && mode == BLKmode && TYPE_ALIGN (type) % PARM_BOUNDARY != 0) return -1; switch (mode) { case VOIDmode : /* MODE is VOIDmode when generating the actual call. See emit_call_1. */ return -1; case QImode : case CQImode : case HImode : case CHImode : case SImode : case CSImode : case DImode : case CDImode : if (slotno >= SPARC_INT_ARG_MAX) return -1; regno = regbase + slotno; break; case SFmode : case SCmode : case DFmode : case DCmode : case TFmode : case TCmode : if (TARGET_ARCH32) { if (slotno >= SPARC_INT_ARG_MAX) return -1; regno = regbase + slotno; } else { if ((mode == TFmode || mode == TCmode) && (slotno & 1) != 0) slotno++, *ppadding = 1; if (TARGET_FPU && named) { if (slotno >= SPARC_FP_ARG_MAX) return -1; regno = SPARC_FP_ARG_FIRST + slotno * 2; if (mode == SFmode) regno++; } else { if (slotno >= SPARC_INT_ARG_MAX) return -1; regno = regbase + slotno; } } break; case BLKmode : /* For sparc64, objects requiring 16 byte alignment get it. */ if (TARGET_ARCH64) { if (type && TYPE_ALIGN (type) == 128 && (slotno & 1) != 0) slotno++, *ppadding = 1; } if (TARGET_ARCH32 || (type && TREE_CODE (type) == UNION_TYPE)) { if (slotno >= SPARC_INT_ARG_MAX) return -1; regno = regbase + slotno; } else { tree field; int intregs_p = 0, fpregs_p = 0; /* The ABI obviously doesn't specify how packed structures are passed. These are defined to be passed in int regs if possible, otherwise memory. */ int packed_p = 0; /* First see what kinds of registers we need. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE && TARGET_FPU) fpregs_p = 1; else intregs_p = 1; if (DECL_PACKED (field)) packed_p = 1; } } if (packed_p || !named) fpregs_p = 0, intregs_p = 1; /* If all arg slots are filled, then must pass on stack. */ if (fpregs_p && slotno >= SPARC_FP_ARG_MAX) return -1; /* If there are only int args and all int arg slots are filled, then must pass on stack. */ if (!fpregs_p && intregs_p && slotno >= SPARC_INT_ARG_MAX) return -1; /* Note that even if all int arg slots are filled, fp members may still be passed in regs if such regs are available. *PREGNO isn't set because there may be more than one, it's up to the caller to compute them. */ return slotno; } break; default : abort (); } *pregno = regno; return slotno; } /* Handle recursive register counting for structure field layout. */ struct function_arg_record_value_parms { rtx ret; int slotno, named, regbase; int nregs, intoffset; }; static void function_arg_record_value_3 PROTO((int, struct function_arg_record_value_parms *)); static void function_arg_record_value_2 PROTO((tree, int, struct function_arg_record_value_parms *)); static rtx function_arg_record_value PROTO((tree, enum machine_mode, int, int, int)); static void function_arg_record_value_1 (type, startbitpos, parms) tree type; int startbitpos; struct function_arg_record_value_parms *parms; { tree field; /* The ABI obviously doesn't specify how packed structures are passed. These are defined to be passed in int regs if possible, otherwise memory. */ int packed_p = 0; /* We need to compute how many registers are needed so we can allocate the PARALLEL but before we can do that we need to know whether there are any packed fields. If there are, int regs are used regardless of whether there are fp values present. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field)) { packed_p = 1; break; } } /* Compute how many registers we need. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { int bitpos = startbitpos; if (DECL_FIELD_BITPOS (field)) bitpos += TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field)); /* ??? FIXME: else assume zero offset. */ if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE) { function_arg_record_value_1 (TREE_TYPE (field), bitpos, parms); } else if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE && TARGET_FPU && ! packed_p && parms->named) { if (parms->intoffset != -1) { int intslots, this_slotno; intslots = (bitpos - parms->intoffset + BITS_PER_WORD - 1) / BITS_PER_WORD; this_slotno = parms->slotno + parms->intoffset / BITS_PER_WORD; intslots = MIN (intslots, SPARC_INT_ARG_MAX - this_slotno); intslots = MAX (intslots, 0); parms->nregs += intslots; parms->intoffset = -1; } /* There's no need to check this_slotno < SPARC_FP_ARG MAX. If it wasn't true we wouldn't be here. */ parms->nregs += 1; } else { if (parms->intoffset == -1) parms->intoffset = bitpos; } } } } /* Handle recursive structure field register assignment. */ static void function_arg_record_value_3 (bitpos, parms) int bitpos; struct function_arg_record_value_parms *parms; { enum machine_mode mode; int regno, this_slotno, intslots, intoffset; rtx reg; if (parms->intoffset == -1) return; intoffset = parms->intoffset; parms->intoffset = -1; intslots = (bitpos - intoffset + BITS_PER_WORD - 1) / BITS_PER_WORD; this_slotno = parms->slotno + intoffset / BITS_PER_WORD; intslots = MIN (intslots, SPARC_INT_ARG_MAX - this_slotno); if (intslots <= 0) return; /* If this is the trailing part of a word, only load that much into the register. Otherwise load the whole register. Note that in the latter case we may pick up unwanted bits. It's not a problem at the moment but may wish to revisit. */ if (intoffset % BITS_PER_WORD != 0) { mode = mode_for_size (BITS_PER_WORD - intoffset%BITS_PER_WORD, MODE_INT, 0); } else mode = word_mode; intoffset /= BITS_PER_UNIT; do { regno = parms->regbase + this_slotno; reg = gen_rtx_REG (mode, regno); XVECEXP (parms->ret, 0, parms->nregs) = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset)); this_slotno += 1; intoffset = (intoffset | (UNITS_PER_WORD-1)) + 1; parms->nregs += 1; intslots -= 1; } while (intslots > 0); } static void function_arg_record_value_2 (type, startbitpos, parms) tree type; int startbitpos; struct function_arg_record_value_parms *parms; { tree field; int packed_p = 0; for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field)) { packed_p = 1; break; } } for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { int bitpos = startbitpos; if (DECL_FIELD_BITPOS (field)) bitpos += TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field)); /* ??? FIXME: else assume zero offset. */ if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE) { function_arg_record_value_2 (TREE_TYPE (field), bitpos, parms); } else if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE && TARGET_FPU && ! packed_p && parms->named) { int this_slotno = parms->slotno + bitpos / BITS_PER_WORD; rtx reg; function_arg_record_value_3 (bitpos, parms); reg = gen_rtx_REG (DECL_MODE (field), (SPARC_FP_ARG_FIRST + this_slotno * 2 + (DECL_MODE (field) == SFmode && (bitpos & 32) != 0))); XVECEXP (parms->ret, 0, parms->nregs) = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (bitpos / BITS_PER_UNIT)); parms->nregs += 1; } else { if (parms->intoffset == -1) parms->intoffset = bitpos; } } } } static rtx function_arg_record_value (type, mode, slotno, named, regbase) tree type; enum machine_mode mode; int slotno, named, regbase; { HOST_WIDE_INT typesize = int_size_in_bytes (type); struct function_arg_record_value_parms parms; int nregs; parms.ret = NULL_RTX; parms.slotno = slotno; parms.named = named; parms.regbase = regbase; /* Compute how many registers we need. */ parms.nregs = 0; parms.intoffset = 0; function_arg_record_value_1 (type, 0, &parms); if (parms.intoffset != -1) { int intslots, this_slotno; intslots = (typesize*BITS_PER_UNIT - parms.intoffset + BITS_PER_WORD - 1) / BITS_PER_WORD; this_slotno = slotno + parms.intoffset / BITS_PER_WORD; intslots = MIN (intslots, SPARC_INT_ARG_MAX - this_slotno); intslots = MAX (intslots, 0); parms.nregs += intslots; } nregs = parms.nregs; /* Allocate the vector and handle some annoying special cases. */ if (nregs == 0) { /* ??? Empty structure has no value? Duh? */ if (typesize <= 0) { /* Though there's nothing really to store, return a word register anyway so the rest of gcc doesn't go nuts. Returning a PARALLEL leads to breakage due to the fact that there are zero bytes to load. */ return gen_rtx_REG (mode, regbase); } else { /* ??? C++ has structures with no fields, and yet a size. Give up for now and pass everything back in integer registers. */ nregs = (typesize + UNITS_PER_WORD - 1) / UNITS_PER_WORD; } if (nregs + slotno > SPARC_INT_ARG_MAX) nregs = SPARC_INT_ARG_MAX - slotno; } if (nregs == 0) abort (); parms.ret = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs)); /* Fill in the entries. */ parms.nregs = 0; parms.intoffset = 0; function_arg_record_value_2 (type, 0, &parms); function_arg_record_value_3 (typesize * BITS_PER_UNIT, &parms); if (parms.nregs != nregs) abort (); return parms.ret; } /* Handle the FUNCTION_ARG macro. Determine where to put an argument to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG. */ rtx function_arg (cum, mode, type, named, incoming_p) const CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; int incoming_p; { int regbase = (incoming_p ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST); int slotno, regno, padding; rtx reg; slotno = function_arg_slotno (cum, mode, type, named, incoming_p, ®no, &padding); if (slotno == -1) return 0; if (TARGET_ARCH32) { reg = gen_rtx_REG (mode, regno); return reg; } /* v9 fp args in reg slots beyond the int reg slots get passed in regs but also have the slot allocated for them. If no prototype is in scope fp values in register slots get passed in two places, either fp regs and int regs or fp regs and memory. */ if ((GET_MODE_CLASS (mode) == MODE_FLOAT || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) && SPARC_FP_REG_P (regno)) { reg = gen_rtx_REG (mode, regno); if (cum->prototype_p || cum->libcall_p) { /* "* 2" because fp reg numbers are recorded in 4 byte quantities. */ #if 0 /* ??? This will cause the value to be passed in the fp reg and in the stack. When a prototype exists we want to pass the value in the reg but reserve space on the stack. That's an optimization, and is deferred [for a bit]. */ if ((regno - SPARC_FP_ARG_FIRST) >= SPARC_INT_ARG_MAX * 2) return gen_rtx_PARALLEL (mode, gen_rtvec (2, gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx), gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx))); else #else /* ??? It seems that passing back a register even when past the area declared by REG_PARM_STACK_SPACE will allocate space appropriately, and will not copy the data onto the stack, exactly as we desire. This is due to locate_and_pad_parm being called in expand_call whenever reg_parm_stack_space > 0, which while benefical to our example here, would seem to be in error from what had been intended. Ho hum... -- r~ */ #endif return reg; } else { rtx v0, v1; if ((regno - SPARC_FP_ARG_FIRST) < SPARC_INT_ARG_MAX * 2) { int intreg; /* On incoming, we don't need to know that the value is passed in %f0 and %i0, and it confuses other parts causing needless spillage even on the simplest cases. */ if (incoming_p) return reg; intreg = (SPARC_OUTGOING_INT_ARG_FIRST + (regno - SPARC_FP_ARG_FIRST) / 2); v0 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx); v1 = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, intreg), const0_rtx); return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1)); } else { v0 = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx); v1 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx); return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1)); } } } else if (type && TREE_CODE (type) == RECORD_TYPE) { /* Structures up to 16 bytes in size are passed in arg slots on the stack and are promoted to registers where possible. */ if (int_size_in_bytes (type) > 16) abort (); /* shouldn't get here */ return function_arg_record_value (type, mode, slotno, named, regbase); } else if (type && TREE_CODE (type) == UNION_TYPE) { enum machine_mode mode; int bytes = int_size_in_bytes (type); if (bytes > 16) abort (); mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 0); reg = gen_rtx_REG (mode, regno); } else { /* Scalar or complex int. */ reg = gen_rtx_REG (mode, regno); } return reg; } /* Handle the FUNCTION_ARG_PARTIAL_NREGS macro. For an arg passed partly in registers and partly in memory, this is the number of registers used. For args passed entirely in registers or entirely in memory, zero. Any arg that starts in the first 6 regs but won't entirely fit in them needs partial registers on v8. On v9, structures with integer values in arg slots 5,6 will be passed in %o5 and SP+176, and complex fp values that begin in the last fp reg [where "last fp reg" varies with the mode] will be split between that reg and memory. */ int function_arg_partial_nregs (cum, mode, type, named) const CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; { int slotno, regno, padding; /* We pass 0 for incoming_p here, it doesn't matter. */ slotno = function_arg_slotno (cum, mode, type, named, 0, ®no, &padding); if (slotno == -1) return 0; if (TARGET_ARCH32) { if ((slotno + (mode == BLKmode ? ROUND_ADVANCE (int_size_in_bytes (type)) : ROUND_ADVANCE (GET_MODE_SIZE (mode)))) > NPARM_REGS (SImode)) return NPARM_REGS (SImode) - slotno; return 0; } else { if (type && AGGREGATE_TYPE_P (type)) { int size = int_size_in_bytes (type); int align = TYPE_ALIGN (type); if (align == 16) slotno += slotno & 1; if (size > 8 && size <= 16 && slotno == SPARC_INT_ARG_MAX - 1) return 1; } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT || (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT && ! TARGET_FPU)) { if (GET_MODE_ALIGNMENT (mode) == 128) { slotno += slotno & 1; if (slotno == SPARC_INT_ARG_MAX - 2) return 1; } else { if (slotno == SPARC_INT_ARG_MAX - 1) return 1; } } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) { if (GET_MODE_ALIGNMENT (mode) == 128) slotno += slotno & 1; if ((slotno + GET_MODE_SIZE (mode) / UNITS_PER_WORD) > SPARC_FP_ARG_MAX) return 1; } return 0; } } /* Handle the FUNCTION_ARG_PASS_BY_REFERENCE macro. !v9: The SPARC ABI stipulates passing struct arguments (of any size) and quad-precision floats by invisible reference. v9: Aggregates greater than 16 bytes are passed by reference. For Pascal, also pass arrays by reference. */ int function_arg_pass_by_reference (cum, mode, type, named) const CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED; enum machine_mode mode; tree type; int named ATTRIBUTE_UNUSED; { if (TARGET_ARCH32) { return ((type && AGGREGATE_TYPE_P (type)) || mode == TFmode || mode == TCmode); } else { return ((type && TREE_CODE (type) == ARRAY_TYPE) /* Consider complex values as aggregates, so care for TCmode. */ || GET_MODE_SIZE (mode) > 16 || (type && AGGREGATE_TYPE_P (type) && int_size_in_bytes (type) > 16)); } } /* Handle the FUNCTION_ARG_ADVANCE macro. Update the data in CUM to advance over an argument of mode MODE and data type TYPE. TYPE is null for libcalls where that information may not be available. */ void function_arg_advance (cum, mode, type, named) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; { int slotno, regno, padding; /* We pass 0 for incoming_p here, it doesn't matter. */ slotno = function_arg_slotno (cum, mode, type, named, 0, ®no, &padding); /* If register required leading padding, add it. */ if (slotno != -1) cum->words += padding; if (TARGET_ARCH32) { cum->words += (mode != BLKmode ? ROUND_ADVANCE (GET_MODE_SIZE (mode)) : ROUND_ADVANCE (int_size_in_bytes (type))); } else { if (type && AGGREGATE_TYPE_P (type)) { int size = int_size_in_bytes (type); if (size <= 8) ++cum->words; else if (size <= 16) cum->words += 2; else /* passed by reference */ ++cum->words; } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT) { cum->words += 2; } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) { cum->words += GET_MODE_SIZE (mode) / UNITS_PER_WORD; } else { cum->words += (mode != BLKmode ? ROUND_ADVANCE (GET_MODE_SIZE (mode)) : ROUND_ADVANCE (int_size_in_bytes (type))); } } } /* Handle the FUNCTION_ARG_PADDING macro. For the 64 bit ABI structs are always stored left shifted in their argument slot. */ enum direction function_arg_padding (mode, type) enum machine_mode mode; tree type; { if (TARGET_ARCH64 && type != 0 && AGGREGATE_TYPE_P (type)) return upward; /* This is the default definition. */ return (! BYTES_BIG_ENDIAN ? upward : ((mode == BLKmode ? (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && int_size_in_bytes (type) < (PARM_BOUNDARY / BITS_PER_UNIT)) : GET_MODE_BITSIZE (mode) < PARM_BOUNDARY) ? downward : upward)); } /* Handle FUNCTION_VALUE, FUNCTION_OUTGOING_VALUE, and LIBCALL_VALUE macros. For v9, function return values are subject to the same rules as arguments, except that up to 32-bytes may be returned in registers. */ rtx function_value (type, mode, incoming_p) tree type; enum machine_mode mode; int incoming_p; { int regno; int regbase = (incoming_p ? SPARC_OUTGOING_INT_ARG_FIRST : SPARC_INCOMING_INT_ARG_FIRST); if (TARGET_ARCH64 && type) { if (TREE_CODE (type) == RECORD_TYPE) { /* Structures up to 32 bytes in size are passed in registers, promoted to fp registers where possible. */ if (int_size_in_bytes (type) > 32) abort (); /* shouldn't get here */ return function_arg_record_value (type, mode, 0, 1, regbase); } else if (TREE_CODE (type) == UNION_TYPE) { int bytes = int_size_in_bytes (type); if (bytes > 32) abort (); mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 0); } } if (TARGET_ARCH64 && GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) < UNITS_PER_WORD && type && TREE_CODE (type) != UNION_TYPE) mode = DImode; if (incoming_p) regno = BASE_RETURN_VALUE_REG (mode); else regno = BASE_OUTGOING_VALUE_REG (mode); return gen_rtx_REG (mode, regno); } /* Do what is necessary for `va_start'. The argument is ignored. We look at the current function to determine if stdarg or varargs is used and return the address of the first unnamed parameter. */ rtx sparc_builtin_saveregs (arglist) tree arglist ATTRIBUTE_UNUSED; { int first_reg = current_function_args_info.words; rtx address; int regno; for (regno = first_reg; regno < NPARM_REGS (word_mode); regno++) emit_move_insn (gen_rtx_MEM (word_mode, gen_rtx_PLUS (Pmode, frame_pointer_rtx, GEN_INT (STACK_POINTER_OFFSET + UNITS_PER_WORD * regno))), gen_rtx_REG (word_mode, BASE_INCOMING_ARG_REG (word_mode) + regno)); address = gen_rtx_PLUS (Pmode, frame_pointer_rtx, GEN_INT (STACK_POINTER_OFFSET + UNITS_PER_WORD * first_reg)); if (current_function_check_memory_usage && first_reg < NPARM_REGS (word_mode)) emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3, address, ptr_mode, GEN_INT (UNITS_PER_WORD * (NPARM_REGS (word_mode) - first_reg)), TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW), TYPE_MODE (integer_type_node)); return address; } /* Return the string to output a conditional branch to LABEL, which is the operand number of the label. OP is the conditional expression. XEXP (OP, 0) is assumed to be a condition code register (integer or floating point) and its mode specifies what kind of comparison we made. REVERSED is non-zero if we should reverse the sense of the comparison. ANNUL is non-zero if we should generate an annulling branch. NOOP is non-zero if we have to follow this branch by a noop. INSN, if set, is the insn. */ char * output_cbranch (op, label, reversed, annul, noop, insn) rtx op; int label; int reversed, annul, noop; rtx insn; { static char string[32]; enum rtx_code code = GET_CODE (op); rtx cc_reg = XEXP (op, 0); enum machine_mode mode = GET_MODE (cc_reg); static char v8_labelno[] = "%lX"; static char v9_icc_labelno[] = "%%icc, %lX"; static char v9_xcc_labelno[] = "%%xcc, %lX"; static char v9_fcc_labelno[] = "%%fccX, %lY"; char *labelno; int labeloff, spaces = 8; /* ??? !v9: FP branches cannot be preceded by another floating point insn. Because there is currently no concept of pre-delay slots, we can fix this only by always emitting a nop before a floating point branch. */ if ((mode == CCFPmode || mode == CCFPEmode) && ! TARGET_V9) strcpy (string, "nop\n\t"); else string[0] = '\0'; /* If not floating-point or if EQ or NE, we can just reverse the code. */ if (reversed && ((mode != CCFPmode && mode != CCFPEmode) || code == EQ || code == NE)) code = reverse_condition (code), reversed = 0; /* Start by writing the branch condition. */ switch (code) { case NE: if (mode == CCFPmode || mode == CCFPEmode) { strcat (string, "fbne"); spaces -= 4; } else { strcpy (string, "bne"); spaces -= 3; } break; case EQ: if (mode == CCFPmode || mode == CCFPEmode) { strcat (string, "fbe"); spaces -= 3; } else { strcpy (string, "be"); spaces -= 2; } break; case GE: if (mode == CCFPmode || mode == CCFPEmode) { if (reversed) strcat (string, "fbul"); else strcat (string, "fbge"); spaces -= 4; } else if (mode == CC_NOOVmode) { strcpy (string, "bpos"); spaces -= 4; } else { strcpy (string, "bge"); spaces -= 3; } break; case GT: if (mode == CCFPmode || mode == CCFPEmode) { if (reversed) { strcat (string, "fbule"); spaces -= 5; } else { strcat (string, "fbg"); spaces -= 3; } } else { strcpy (string, "bg"); spaces -= 2; } break; case LE: if (mode == CCFPmode || mode == CCFPEmode) { if (reversed) strcat (string, "fbug"); else strcat (string, "fble"); spaces -= 4; } else { strcpy (string, "ble"); spaces -= 3; } break; case LT: if (mode == CCFPmode || mode == CCFPEmode) { if (reversed) { strcat (string, "fbuge"); spaces -= 5; } else { strcat (string, "fbl"); spaces -= 3; } } else if (mode == CC_NOOVmode) { strcpy (string, "bneg"); spaces -= 4; } else { strcpy (string, "bl"); spaces -= 2; } break; case GEU: strcpy (string, "bgeu"); spaces -= 4; break; case GTU: strcpy (string, "bgu"); spaces -= 3; break; case LEU: strcpy (string, "bleu"); spaces -= 4; break; case LTU: strcpy (string, "blu"); spaces -= 3; break; default: abort (); } /* Now add the annulling, the label, and a possible noop. */ if (annul) { strcat (string, ",a"); spaces -= 2; } if (! TARGET_V9) { labeloff = 2; labelno = v8_labelno; } else { rtx note; if (insn && (note = find_reg_note (insn, REG_BR_PRED, NULL_RTX))) { strcat (string, INTVAL (XEXP (note, 0)) & ATTR_FLAG_likely ? ",pt" : ",pn"); spaces -= 3; } labeloff = 9; if (mode == CCFPmode || mode == CCFPEmode) { labeloff = 10; labelno = v9_fcc_labelno; /* Set the char indicating the number of the fcc reg to use. */ labelno[5] = REGNO (cc_reg) - SPARC_FIRST_V9_FCC_REG + '0'; } else if (mode == CCXmode || mode == CCX_NOOVmode) labelno = v9_xcc_labelno; else labelno = v9_icc_labelno; } /* Set the char indicating the number of the operand containing the label_ref. */ labelno[labeloff] = label + '0'; if (spaces > 0) strcat (string, "\t"); else strcat (string, " "); strcat (string, labelno); if (noop) strcat (string, "\n\tnop"); return string; } /* Return the string to output a conditional branch to LABEL, testing register REG. LABEL is the operand number of the label; REG is the operand number of the reg. OP is the conditional expression. The mode of REG says what kind of comparison we made. REVERSED is non-zero if we should reverse the sense of the comparison. ANNUL is non-zero if we should generate an annulling branch. NOOP is non-zero if we have to follow this branch by a noop. */ char * output_v9branch (op, reg, label, reversed, annul, noop, insn) rtx op; int reg, label; int reversed, annul, noop; rtx insn; { static char string[20]; enum rtx_code code = GET_CODE (op); enum machine_mode mode = GET_MODE (XEXP (op, 0)); static char labelno[] = "%X, %lX"; rtx note; int spaces = 8; /* If not floating-point or if EQ or NE, we can just reverse the code. */ if (reversed) code = reverse_condition (code), reversed = 0; /* Only 64 bit versions of these instructions exist. */ if (mode != DImode) abort (); /* Start by writing the branch condition. */ switch (code) { case NE: strcpy (string, "brnz"); spaces -= 4; break; case EQ: strcpy (string, "brz"); spaces -= 3; break; case GE: strcpy (string, "brgez"); spaces -= 5; break; case LT: strcpy (string, "brlz"); spaces -= 4; break; case LE: strcpy (string, "brlez"); spaces -= 5; break; case GT: strcpy (string, "brgz"); spaces -= 4; break; default: abort (); } /* Now add the annulling, reg, label, and nop. */ if (annul) { strcat (string, ",a"); spaces -= 2; } if (insn && (note = find_reg_note (insn, REG_BR_PRED, NULL_RTX))) { strcat (string, INTVAL (XEXP (note, 0)) & ATTR_FLAG_likely ? ",pt" : ",pn"); spaces -= 3; } labelno[1] = reg + '0'; labelno[6] = label + '0'; if (spaces > 0) strcat (string, "\t"); else strcat (string, " "); strcat (string, labelno); if (noop) strcat (string, "\n\tnop"); return string; } /* Renumber registers in delay slot. Replace registers instead of renumbering because they may be shared. This does not handle instructions other than move. */ static void epilogue_renumber (where) rtx *where; { rtx x = *where; enum rtx_code code = GET_CODE (x); switch (code) { case MEM: *where = x = copy_rtx (x); epilogue_renumber (&XEXP (x, 0)); return; case REG: { int regno = REGNO (x); if (regno > 8 && regno < 24) abort (); if (regno >= 24 && regno < 32) *where = gen_rtx_REG (GET_MODE (x), regno - 16); return; } case CONST_INT: case CONST_DOUBLE: case CONST: case SYMBOL_REF: case LABEL_REF: return; case IOR: case AND: case XOR: case PLUS: case MINUS: epilogue_renumber (&XEXP (x, 1)); case NEG: case NOT: epilogue_renumber (&XEXP (x, 0)); return; default: debug_rtx (*where); abort (); } } /* Output assembler code to return from a function. */ const char * output_return (operands) rtx *operands; { rtx delay = final_sequence ? XVECEXP (final_sequence, 0, 1) : 0; if (leaf_label) { operands[0] = leaf_label; return "b%* %l0%("; } else if (current_function_uses_only_leaf_regs) { /* No delay slot in a leaf function. */ if (delay) abort (); /* If we didn't allocate a frame pointer for the current function, the stack pointer might have been adjusted. Output code to restore it now. */ operands[0] = GEN_INT (actual_fsize); /* Use sub of negated value in first two cases instead of add to allow actual_fsize == 4096. */ if (actual_fsize <= 4096) { if (SKIP_CALLERS_UNIMP_P) return "jmp\t%%o7+12\n\tsub\t%%sp, -%0, %%sp"; else return "retl\n\tsub\t%%sp, -%0, %%sp"; } else if (actual_fsize <= 8192) { operands[0] = GEN_INT (actual_fsize - 4096); if (SKIP_CALLERS_UNIMP_P) return "sub\t%%sp, -4096, %%sp\n\tjmp\t%%o7+12\n\tsub\t%%sp, -%0, %%sp"; else return "sub\t%%sp, -4096, %%sp\n\tretl\n\tsub\t%%sp, -%0, %%sp"; } else if (SKIP_CALLERS_UNIMP_P) { if ((actual_fsize & 0x3ff) != 0) return "sethi\t%%hi(%a0), %%g1\n\tor\t%%g1, %%lo(%a0), %%g1\n\tjmp\t%%o7+12\n\tadd\t%%sp, %%g1, %%sp"; else return "sethi\t%%hi(%a0), %%g1\n\tjmp\t%%o7+12\n\tadd\t%%sp, %%g1, %%sp"; } else { if ((actual_fsize & 0x3ff) != 0) return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp"; else return "sethi %%hi(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp"; } } else if (TARGET_V9) { if (delay) { epilogue_renumber (&SET_DEST (PATTERN (delay))); epilogue_renumber (&SET_SRC (PATTERN (delay))); } if (SKIP_CALLERS_UNIMP_P) return "return\t%%i7+12%#"; else return "return\t%%i7+8%#"; } else { if (delay) abort (); if (SKIP_CALLERS_UNIMP_P) return "jmp\t%%i7+12\n\trestore"; else return "ret\n\trestore"; } } /* Leaf functions and non-leaf functions have different needs. */ static int reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER; static int reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER; static int *reg_alloc_orders[] = { reg_leaf_alloc_order, reg_nonleaf_alloc_order}; void order_regs_for_local_alloc () { static int last_order_nonleaf = 1; if (regs_ever_live[15] != last_order_nonleaf) { last_order_nonleaf = !last_order_nonleaf; bcopy ((char *) reg_alloc_orders[last_order_nonleaf], (char *) reg_alloc_order, FIRST_PSEUDO_REGISTER * sizeof (int)); } } /* Return 1 if REG and MEM are legitimate enough to allow the various mem<-->reg splits to be run. */ int sparc_splitdi_legitimate (reg, mem) rtx reg; rtx mem; { /* Punt if we are here by mistake. */ if (! reload_completed) abort (); /* We must have an offsettable memory reference. */ if (! offsettable_memref_p (mem)) return 0; /* If we have legitimate args for ldd/std, we do not want the split to happen. */ if ((REGNO (reg) % 2) == 0 && mem_min_alignment (mem, 8)) return 0; /* Success. */ return 1; } /* Return 1 if x and y are some kind of REG and they refer to different hard registers. This test is guarenteed to be run after reload. */ int sparc_absnegfloat_split_legitimate (x, y) rtx x, y; { if (GET_CODE (x) == SUBREG) x = alter_subreg (x); if (GET_CODE (x) != REG) return 0; if (GET_CODE (y) == SUBREG) y = alter_subreg (y); if (GET_CODE (y) != REG) return 0; if (REGNO (x) == REGNO (y)) return 0; return 1; } /* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1. This makes them candidates for using ldd and std insns. Note reg1 and reg2 *must* be hard registers. */ int registers_ok_for_ldd_peep (reg1, reg2) rtx reg1, reg2; { /* We might have been passed a SUBREG. */ if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG) return 0; if (REGNO (reg1) % 2 != 0) return 0; /* Integer ldd is deprecated in SPARC V9 */ if (TARGET_V9 && REGNO (reg1) < 32) return 0; return (REGNO (reg1) == REGNO (reg2) - 1); } /* Return 1 if addr1 and addr2 are suitable for use in an ldd or std insn. This can only happen when addr1 and addr2 are consecutive memory locations (addr1 + 4 == addr2). addr1 must also be aligned on a 64 bit boundary (addr1 % 8 == 0). We know %sp and %fp are kept aligned on a 64 bit boundary. Other registers are assumed to *never* be properly aligned and are rejected. Knowing %sp and %fp are kept aligned on a 64 bit boundary, we need only check that the offset for addr1 % 8 == 0. */ int addrs_ok_for_ldd_peep (addr1, addr2) rtx addr1, addr2; { int reg1, offset1; /* Extract a register number and offset (if used) from the first addr. */ if (GET_CODE (addr1) == PLUS) { /* If not a REG, return zero. */ if (GET_CODE (XEXP (addr1, 0)) != REG) return 0; else { reg1 = REGNO (XEXP (addr1, 0)); /* The offset must be constant! */ if (GET_CODE (XEXP (addr1, 1)) != CONST_INT) return 0; offset1 = INTVAL (XEXP (addr1, 1)); } } else if (GET_CODE (addr1) != REG) return 0; else { reg1 = REGNO (addr1); /* This was a simple (mem (reg)) expression. Offset is 0. */ offset1 = 0; } /* Make sure the second address is a (mem (plus (reg) (const_int). */ if (GET_CODE (addr2) != PLUS) return 0; if (GET_CODE (XEXP (addr2, 0)) != REG || GET_CODE (XEXP (addr2, 1)) != CONST_INT) return 0; /* Only %fp and %sp are allowed. Additionally both addresses must use the same register. */ if (reg1 != FRAME_POINTER_REGNUM && reg1 != STACK_POINTER_REGNUM) return 0; if (reg1 != REGNO (XEXP (addr2, 0))) return 0; /* The first offset must be evenly divisible by 8 to ensure the address is 64 bit aligned. */ if (offset1 % 8 != 0) return 0; /* The offset for the second addr must be 4 more than the first addr. */ if (INTVAL (XEXP (addr2, 1)) != offset1 + 4) return 0; /* All the tests passed. addr1 and addr2 are valid for ldd and std instructions. */ return 1; } /* Return 1 if reg is a pseudo, or is the first register in a hard register pair. This makes it a candidate for use in ldd and std insns. */ int register_ok_for_ldd (reg) rtx reg; { /* We might have been passed a SUBREG. */ if (GET_CODE (reg) != REG) return 0; if (REGNO (reg) < FIRST_PSEUDO_REGISTER) return (REGNO (reg) % 2 == 0); else return 1; } /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. */ void print_operand (file, x, code) FILE *file; rtx x; int code; { switch (code) { case '#': /* Output a 'nop' if there's nothing for the delay slot. */ if (dbr_sequence_length () == 0) fputs ("\n\t nop", file); return; case '*': /* Output an annul flag if there's nothing for the delay slot and we are optimizing. This is always used with '(' below. */ /* Sun OS 4.1.1 dbx can't handle an annulled unconditional branch; this is a dbx bug. So, we only do this when optimizing. */ /* On UltraSPARC, a branch in a delay slot causes a pipeline flush. Always emit a nop in case the next instruction is a branch. */ if (dbr_sequence_length () == 0 && (optimize && (int)sparc_cpu < PROCESSOR_V9)) fputs (",a", file); return; case '(': /* Output a 'nop' if there's nothing for the delay slot and we are not optimizing. This is always used with '*' above. */ if (dbr_sequence_length () == 0 && ! (optimize && (int)sparc_cpu < PROCESSOR_V9)) fputs ("\n\t nop", file); return; case '_': /* Output the Embedded Medium/Anywhere code model base register. */ fputs (EMBMEDANY_BASE_REG, file); return; case '@': /* Print out what we are using as the frame pointer. This might be %fp, or might be %sp+offset. */ /* ??? What if offset is too big? Perhaps the caller knows it isn't? */ fprintf (file, "%s+%d", frame_base_name, frame_base_offset); return; case 'Y': /* Adjust the operand to take into account a RESTORE operation. */ if (GET_CODE (x) == CONST_INT) break; else if (GET_CODE (x) != REG) output_operand_lossage ("Invalid %%Y operand"); else if (REGNO (x) < 8) fputs (reg_names[REGNO (x)], file); else if (REGNO (x) >= 24 && REGNO (x) < 32) fputs (reg_names[REGNO (x)-16], file); else output_operand_lossage ("Invalid %%Y operand"); return; case 'L': /* Print out the low order register name of a register pair. */ if (WORDS_BIG_ENDIAN) fputs (reg_names[REGNO (x)+1], file); else fputs (reg_names[REGNO (x)], file); return; case 'H': /* Print out the high order register name of a register pair. */ if (WORDS_BIG_ENDIAN) fputs (reg_names[REGNO (x)], file); else fputs (reg_names[REGNO (x)+1], file); return; case 'R': /* Print out the second register name of a register pair or quad. I.e., R (%o0) => %o1. */ fputs (reg_names[REGNO (x)+1], file); return; case 'S': /* Print out the third register name of a register quad. I.e., S (%o0) => %o2. */ fputs (reg_names[REGNO (x)+2], file); return; case 'T': /* Print out the fourth register name of a register quad. I.e., T (%o0) => %o3. */ fputs (reg_names[REGNO (x)+3], file); return; case 'x': /* Print a condition code register. */ if (REGNO (x) == SPARC_ICC_REG) { /* We don't handle CC[X]_NOOVmode because they're not supposed to occur here. */ if (GET_MODE (x) == CCmode) fputs ("%icc", file); else if (GET_MODE (x) == CCXmode) fputs ("%xcc", file); else abort (); } else /* %fccN register */ fputs (reg_names[REGNO (x)], file); return; case 'm': /* Print the operand's address only. */ output_address (XEXP (x, 0)); return; case 'r': /* In this case we need a register. Use %g0 if the operand is const0_rtx. */ if (x == const0_rtx || (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x)))) { fputs ("%g0", file); return; } else break; case 'A': switch (GET_CODE (x)) { case IOR: fputs ("or", file); break; case AND: fputs ("and", file); break; case XOR: fputs ("xor", file); break; default: output_operand_lossage ("Invalid %%A operand"); } return; case 'B': switch (GET_CODE (x)) { case IOR: fputs ("orn", file); break; case AND: fputs ("andn", file); break; case XOR: fputs ("xnor", file); break; default: output_operand_lossage ("Invalid %%B operand"); } return; /* These are used by the conditional move instructions. */ case 'c' : case 'C': { enum rtx_code rc = (code == 'c' ? reverse_condition (GET_CODE (x)) : GET_CODE (x)); switch (rc) { case NE: fputs ("ne", file); break; case EQ: fputs ("e", file); break; case GE: fputs ("ge", file); break; case GT: fputs ("g", file); break; case LE: fputs ("le", file); break; case LT: fputs ("l", file); break; case GEU: fputs ("geu", file); break; case GTU: fputs ("gu", file); break; case LEU: fputs ("leu", file); break; case LTU: fputs ("lu", file); break; default: output_operand_lossage (code == 'c' ? "Invalid %%c operand" : "Invalid %%C operand"); } return; } /* These are used by the movr instruction pattern. */ case 'd': case 'D': { enum rtx_code rc = (code == 'd' ? reverse_condition (GET_CODE (x)) : GET_CODE (x)); switch (rc) { case NE: fputs ("ne", file); break; case EQ: fputs ("e", file); break; case GE: fputs ("gez", file); break; case LT: fputs ("lz", file); break; case LE: fputs ("lez", file); break; case GT: fputs ("gz", file); break; default: output_operand_lossage (code == 'd' ? "Invalid %%d operand" : "Invalid %%D operand"); } return; } case 'b': { /* Print a sign-extended character. */ int i = INTVAL (x) & 0xff; if (i & 0x80) i |= 0xffffff00; fprintf (file, "%d", i); return; } case 'f': /* Operand must be a MEM; write its address. */ if (GET_CODE (x) != MEM) output_operand_lossage ("Invalid %%f operand"); output_address (XEXP (x, 0)); return; case 0: /* Do nothing special. */ break; default: /* Undocumented flag. */ output_operand_lossage ("invalid operand output code"); } if (GET_CODE (x) == REG) fputs (reg_names[REGNO (x)], file); else if (GET_CODE (x) == MEM) { fputc ('[', file); /* Poor Sun assembler doesn't understand absolute addressing. */ if (CONSTANT_P (XEXP (x, 0)) && ! TARGET_LIVE_G0) fputs ("%g0+", file); output_address (XEXP (x, 0)); fputc (']', file); } else if (GET_CODE (x) == HIGH) { fputs ("%hi(", file); output_addr_const (file, XEXP (x, 0)); fputc (')', file); } else if (GET_CODE (x) == LO_SUM) { print_operand (file, XEXP (x, 0), 0); if (TARGET_CM_MEDMID) fputs ("+%l44(", file); else fputs ("+%lo(", file); output_addr_const (file, XEXP (x, 1)); fputc (')', file); } else if (GET_CODE (x) == CONST_DOUBLE && (GET_MODE (x) == VOIDmode || GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)) { if (CONST_DOUBLE_HIGH (x) == 0) fprintf (file, "%u", CONST_DOUBLE_LOW (x)); else if (CONST_DOUBLE_HIGH (x) == -1 && CONST_DOUBLE_LOW (x) < 0) fprintf (file, "%d", CONST_DOUBLE_LOW (x)); else output_operand_lossage ("long long constant not a valid immediate operand"); } else if (GET_CODE (x) == CONST_DOUBLE) output_operand_lossage ("floating point constant not a valid immediate operand"); else { output_addr_const (file, x); } } /* This function outputs assembler code for VALUE to FILE, where VALUE is a 64 bit (DImode) value. */ /* ??? If there is a 64 bit counterpart to .word that the assembler understands, then using that would simply this code greatly. */ /* ??? We only output .xword's for symbols and only then in environments where the assembler can handle them. */ void output_double_int (file, value) FILE *file; rtx value; { if (GET_CODE (value) == CONST_INT) { /* ??? This has endianness issues. */ #if HOST_BITS_PER_WIDE_INT == 64 HOST_WIDE_INT xword = INTVAL (value); HOST_WIDE_INT high, low; high = (xword >> 32) & 0xffffffff; low = xword & 0xffffffff; ASM_OUTPUT_INT (file, GEN_INT (high)); ASM_OUTPUT_INT (file, GEN_INT (low)); #else if (INTVAL (value) < 0) ASM_OUTPUT_INT (file, constm1_rtx); else ASM_OUTPUT_INT (file, const0_rtx); ASM_OUTPUT_INT (file, value); #endif } else if (GET_CODE (value) == CONST_DOUBLE) { ASM_OUTPUT_INT (file, GEN_INT (CONST_DOUBLE_HIGH (value))); ASM_OUTPUT_INT (file, GEN_INT (CONST_DOUBLE_LOW (value))); } else if (GET_CODE (value) == SYMBOL_REF || GET_CODE (value) == CONST || GET_CODE (value) == PLUS || (TARGET_ARCH64 && (GET_CODE (value) == LABEL_REF || GET_CODE (value) == CODE_LABEL || GET_CODE (value) == MINUS))) { if (! TARGET_V9) { ASM_OUTPUT_INT (file, const0_rtx); ASM_OUTPUT_INT (file, value); } else { fprintf (file, "\t%s\t", ASM_LONGLONG); output_addr_const (file, value); fprintf (file, "\n"); } } else abort (); } /* Return the value of a code used in the .proc pseudo-op that says what kind of result this function returns. For non-C types, we pick the closest C type. */ #ifndef CHAR_TYPE_SIZE #define CHAR_TYPE_SIZE BITS_PER_UNIT #endif #ifndef SHORT_TYPE_SIZE #define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2) #endif #ifndef INT_TYPE_SIZE #define INT_TYPE_SIZE BITS_PER_WORD #endif #ifndef LONG_TYPE_SIZE #define LONG_TYPE_SIZE BITS_PER_WORD #endif #ifndef LONG_LONG_TYPE_SIZE #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2) #endif #ifndef FLOAT_TYPE_SIZE #define FLOAT_TYPE_SIZE BITS_PER_WORD #endif #ifndef DOUBLE_TYPE_SIZE #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) #endif #ifndef LONG_DOUBLE_TYPE_SIZE #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) #endif unsigned long sparc_type_code (type) register tree type; { register unsigned long qualifiers = 0; register unsigned shift; /* Only the first 30 bits of the qualifier are valid. We must refrain from setting more, since some assemblers will give an error for this. Also, we must be careful to avoid shifts of 32 bits or more to avoid getting unpredictable results. */ for (shift = 6; shift < 30; shift += 2, type = TREE_TYPE (type)) { switch (TREE_CODE (type)) { case ERROR_MARK: return qualifiers; case ARRAY_TYPE: qualifiers |= (3 << shift); break; case FUNCTION_TYPE: case METHOD_TYPE: qualifiers |= (2 << shift); break; case POINTER_TYPE: case REFERENCE_TYPE: case OFFSET_TYPE: qualifiers |= (1 << shift); break; case RECORD_TYPE: return (qualifiers | 8); case UNION_TYPE: case QUAL_UNION_TYPE: return (qualifiers | 9); case ENUMERAL_TYPE: return (qualifiers | 10); case VOID_TYPE: return (qualifiers | 16); case INTEGER_TYPE: /* If this is a range type, consider it to be the underlying type. */ if (TREE_TYPE (type) != 0) break; /* Carefully distinguish all the standard types of C, without messing up if the language is not C. We do this by testing TYPE_PRECISION and TREE_UNSIGNED. The old code used to look at both the names and the above fields, but that's redundant. Any type whose size is between two C types will be considered to be the wider of the two types. Also, we do not have a special code to use for "long long", so anything wider than long is treated the same. Note that we can't distinguish between "int" and "long" in this code if they are the same size, but that's fine, since neither can the assembler. */ if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE) return (qualifiers | (TREE_UNSIGNED (type) ? 12 : 2)); else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE) return (qualifiers | (TREE_UNSIGNED (type) ? 13 : 3)); else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE) return (qualifiers | (TREE_UNSIGNED (type) ? 14 : 4)); else return (qualifiers | (TREE_UNSIGNED (type) ? 15 : 5)); case REAL_TYPE: /* If this is a range type, consider it to be the underlying type. */ if (TREE_TYPE (type) != 0) break; /* Carefully distinguish all the standard types of C, without messing up if the language is not C. */ if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE) return (qualifiers | 6); else return (qualifiers | 7); case COMPLEX_TYPE: /* GNU Fortran COMPLEX type. */ /* ??? We need to distinguish between double and float complex types, but I don't know how yet because I can't reach this code from existing front-ends. */ return (qualifiers | 7); /* Who knows? */ case CHAR_TYPE: /* GNU Pascal CHAR type. Not used in C. */ case BOOLEAN_TYPE: /* GNU Fortran BOOLEAN type. */ case FILE_TYPE: /* GNU Pascal FILE type. */ case SET_TYPE: /* GNU Pascal SET type. */ case LANG_TYPE: /* ? */ return qualifiers; default: abort (); /* Not a type! */ } } return qualifiers; } /* Nested function support. */ /* Emit RTL insns to initialize the variable parts of a trampoline. FNADDR is an RTX for the address of the function's pure code. CXT is an RTX for the static chain value for the function. This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes (to store insns). This is a bit excessive. Perhaps a different mechanism would be better here. Emit enough FLUSH insns to synchronize the data and instruction caches. */ void sparc_initialize_trampoline (tramp, fnaddr, cxt) rtx tramp, fnaddr, cxt; { /* SPARC 32 bit trampoline: sethi %hi(fn), %g1 sethi %hi(static), %g2 jmp %g1+%lo(fn) or %g2, %lo(static), %g2 SETHI i,r = 00rr rrr1 00ii iiii iiii iiii iiii iiii JMPL r+i,d = 10dd ddd1 1100 0rrr rr1i iiii iiii iiii */ #ifdef TRANSFER_FROM_TRAMPOLINE emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__enable_execute_stack"), 0, VOIDmode, 1, tramp, Pmode); #endif emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 0)), expand_binop (SImode, ior_optab, expand_shift (RSHIFT_EXPR, SImode, fnaddr, size_int (10), 0, 1), GEN_INT (0x03000000), NULL_RTX, 1, OPTAB_DIRECT)); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 4)), expand_binop (SImode, ior_optab, expand_shift (RSHIFT_EXPR, SImode, cxt, size_int (10), 0, 1), GEN_INT (0x05000000), NULL_RTX, 1, OPTAB_DIRECT)); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 8)), expand_binop (SImode, ior_optab, expand_and (fnaddr, GEN_INT (0x3ff), NULL_RTX), GEN_INT (0x81c06000), NULL_RTX, 1, OPTAB_DIRECT)); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 12)), expand_binop (SImode, ior_optab, expand_and (cxt, GEN_INT (0x3ff), NULL_RTX), GEN_INT (0x8410a000), NULL_RTX, 1, OPTAB_DIRECT)); emit_insn (gen_flush (validize_mem (gen_rtx_MEM (SImode, tramp)))); /* On UltraSPARC a flush flushes an entire cache line. The trampoline is aligned on a 16 byte boundary so one flush clears it all. */ if (sparc_cpu != PROCESSOR_ULTRASPARC) emit_insn (gen_flush (validize_mem (gen_rtx_MEM (SImode, plus_constant (tramp, 8))))); } /* The 64 bit version is simpler because it makes more sense to load the values as "immediate" data out of the trampoline. It's also easier since we can read the PC without clobbering a register. */ void sparc64_initialize_trampoline (tramp, fnaddr, cxt) rtx tramp, fnaddr, cxt; { #ifdef TRANSFER_FROM_TRAMPOLINE emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__enable_execute_stack"), 0, VOIDmode, 1, tramp, Pmode); #endif /* rd %pc, %g1 ldx [%g1+24], %g5 jmp %g5 ldx [%g1+16], %g5 +16 bytes data */ emit_move_insn (gen_rtx_MEM (SImode, tramp), GEN_INT (0x83414000)); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 4)), GEN_INT (0xca586018)); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 8)), GEN_INT (0x81c14000)); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 12)), GEN_INT (0xca586010)); emit_move_insn (gen_rtx_MEM (DImode, plus_constant (tramp, 16)), cxt); emit_move_insn (gen_rtx_MEM (DImode, plus_constant (tramp, 24)), fnaddr); emit_insn (gen_flush (validize_mem (gen_rtx_MEM (DImode, tramp)))); if (sparc_cpu != PROCESSOR_ULTRASPARC) emit_insn (gen_flush (validize_mem (gen_rtx_MEM (DImode, plus_constant (tramp, 8))))); } /* Subroutines to support a flat (single) register window calling convention. */ /* Single-register window sparc stack frames look like: Before call After call +-----------------------+ +-----------------------+ high | | | | mem | caller's temps. | | caller's temps. | | | | | +-----------------------+ +-----------------------+ | | | | | arguments on stack. | | arguments on stack. | | | | | +-----------------------+FP+92->+-----------------------+ | 6 words to save | | 6 words to save | | arguments passed | | arguments passed | | in registers, even | | in registers, even | | if not passed. | | if not passed. | SP+68->+-----------------------+FP+68->+-----------------------+ | 1 word struct addr | | 1 word struct addr | +-----------------------+FP+64->+-----------------------+ | | | | | 16 word reg save area | | 16 word reg save area | | | | | SP->+-----------------------+ FP->+-----------------------+ | 4 word area for | | fp/alu reg moves | FP-16->+-----------------------+ | | | local variables | | | +-----------------------+ | | | fp register save | | | +-----------------------+ | | | gp register save | | | +-----------------------+ | | | alloca allocations | | | +-----------------------+ | | | arguments on stack | | | SP+92->+-----------------------+ | 6 words to save | | arguments passed | | in registers, even | low | if not passed. | memory SP+68->+-----------------------+ | 1 word struct addr | SP+64->+-----------------------+ | | I 16 word reg save area | | | SP->+-----------------------+ */ /* Structure to be filled in by sparc_flat_compute_frame_size with register save masks, and offsets for the current function. */ struct sparc_frame_info { unsigned long total_size; /* # bytes that the entire frame takes up. */ unsigned long var_size; /* # bytes that variables take up. */ unsigned long args_size; /* # bytes that outgoing arguments take up. */ unsigned long extra_size; /* # bytes of extra gunk. */ unsigned int gp_reg_size; /* # bytes needed to store gp regs. */ unsigned int fp_reg_size; /* # bytes needed to store fp regs. */ unsigned long gmask; /* Mask of saved gp registers. */ unsigned long fmask; /* Mask of saved fp registers. */ unsigned long reg_offset; /* Offset from new sp to store regs. */ int initialized; /* Nonzero if frame size already calculated. */ }; /* Current frame information calculated by sparc_flat_compute_frame_size. */ struct sparc_frame_info current_frame_info; /* Zero structure to initialize current_frame_info. */ struct sparc_frame_info zero_frame_info; /* Tell prologue and epilogue if register REGNO should be saved / restored. */ #define RETURN_ADDR_REGNUM 15 #define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM)) #define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM)) #define MUST_SAVE_REGISTER(regno) \ ((regs_ever_live[regno] && !call_used_regs[regno]) \ || (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \ || (regno == RETURN_ADDR_REGNUM && regs_ever_live[RETURN_ADDR_REGNUM])) /* Return the bytes needed to compute the frame pointer from the current stack pointer. */ unsigned long sparc_flat_compute_frame_size (size) int size; /* # of var. bytes allocated. */ { int regno; unsigned long total_size; /* # bytes that the entire frame takes up. */ unsigned long var_size; /* # bytes that variables take up. */ unsigned long args_size; /* # bytes that outgoing arguments take up. */ unsigned long extra_size; /* # extra bytes. */ unsigned int gp_reg_size; /* # bytes needed to store gp regs. */ unsigned int fp_reg_size; /* # bytes needed to store fp regs. */ unsigned long gmask; /* Mask of saved gp registers. */ unsigned long fmask; /* Mask of saved fp registers. */ unsigned long reg_offset; /* Offset to register save area. */ int need_aligned_p; /* 1 if need the save area 8 byte aligned. */ /* This is the size of the 16 word reg save area, 1 word struct addr area, and 4 word fp/alu register copy area. */ extra_size = -STARTING_FRAME_OFFSET + FIRST_PARM_OFFSET(0); var_size = size; gp_reg_size = 0; fp_reg_size = 0; gmask = 0; fmask = 0; reg_offset = 0; need_aligned_p = 0; args_size = 0; if (!leaf_function_p ()) { /* Also include the size needed for the 6 parameter registers. */ args_size = current_function_outgoing_args_size + 24; } total_size = var_size + args_size; /* Calculate space needed for gp registers. */ for (regno = 1; regno <= 31; regno++) { if (MUST_SAVE_REGISTER (regno)) { /* If we need to save two regs in a row, ensure there's room to bump up the address to align it to a doubleword boundary. */ if ((regno & 0x1) == 0 && MUST_SAVE_REGISTER (regno+1)) { if (gp_reg_size % 8 != 0) gp_reg_size += 4; gp_reg_size += 2 * UNITS_PER_WORD; gmask |= 3 << regno; regno++; need_aligned_p = 1; } else { gp_reg_size += UNITS_PER_WORD; gmask |= 1 << regno; } } } /* Calculate space needed for fp registers. */ for (regno = 32; regno <= 63; regno++) { if (regs_ever_live[regno] && !call_used_regs[regno]) { fp_reg_size += UNITS_PER_WORD; fmask |= 1 << (regno - 32); } } if (gmask || fmask) { int n; reg_offset = FIRST_PARM_OFFSET(0) + args_size; /* Ensure save area is 8 byte aligned if we need it. */ n = reg_offset % 8; if (need_aligned_p && n != 0) { total_size += 8 - n; reg_offset += 8 - n; } total_size += gp_reg_size + fp_reg_size; } /* If we must allocate a stack frame at all, we must also allocate room for register window spillage, so as to be binary compatible with libraries and operating systems that do not use -mflat. */ if (total_size > 0) total_size += extra_size; else extra_size = 0; total_size = SPARC_STACK_ALIGN (total_size); /* Save other computed information. */ current_frame_info.total_size = total_size; current_frame_info.var_size = var_size; current_frame_info.args_size = args_size; current_frame_info.extra_size = extra_size; current_frame_info.gp_reg_size = gp_reg_size; current_frame_info.fp_reg_size = fp_reg_size; current_frame_info.gmask = gmask; current_frame_info.fmask = fmask; current_frame_info.reg_offset = reg_offset; current_frame_info.initialized = reload_completed; /* Ok, we're done. */ return total_size; } /* Save/restore registers in GMASK and FMASK at register BASE_REG plus offset OFFSET. BASE_REG must be 8 byte aligned. This allows us to test OFFSET for appropriate alignment and use DOUBLEWORD_OP when we can. We assume [BASE_REG+OFFSET] will always be a valid address. WORD_OP is either "st" for save, "ld" for restore. DOUBLEWORD_OP is either "std" for save, "ldd" for restore. */ void sparc_flat_save_restore (file, base_reg, offset, gmask, fmask, word_op, doubleword_op, base_offset) FILE *file; char *base_reg; unsigned int offset; unsigned long gmask; unsigned long fmask; char *word_op; char *doubleword_op; unsigned long base_offset; { int regno; if (gmask == 0 && fmask == 0) return; /* Save registers starting from high to low. We've already saved the previous frame pointer and previous return address for the debugger's sake. The debugger allows us to not need a nop in the epilog if at least one register is reloaded in addition to return address. */ if (gmask) { for (regno = 1; regno <= 31; regno++) { if ((gmask & (1L << regno)) != 0) { if ((regno & 0x1) == 0 && ((gmask & (1L << (regno+1))) != 0)) { /* We can save two registers in a row. If we're not at a double word boundary, move to one. sparc_flat_compute_frame_size ensures there's room to do this. */ if (offset % 8 != 0) offset += UNITS_PER_WORD; if (word_op[0] == 's') { fprintf (file, "\t%s\t%s, [%s+%d]\n", doubleword_op, reg_names[regno], base_reg, offset); if (dwarf2out_do_frame ()) { char *l = dwarf2out_cfi_label (); dwarf2out_reg_save (l, regno, offset + base_offset); dwarf2out_reg_save (l, regno+1, offset+base_offset + UNITS_PER_WORD); } } else fprintf (file, "\t%s\t[%s+%d], %s\n", doubleword_op, base_reg, offset, reg_names[regno]); offset += 2 * UNITS_PER_WORD; regno++; } else { if (word_op[0] == 's') { fprintf (file, "\t%s\t%s, [%s+%d]\n", word_op, reg_names[regno], base_reg, offset); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", regno, offset + base_offset); } else fprintf (file, "\t%s\t[%s+%d], %s\n", word_op, base_reg, offset, reg_names[regno]); offset += UNITS_PER_WORD; } } } } if (fmask) { for (regno = 32; regno <= 63; regno++) { if ((fmask & (1L << (regno - 32))) != 0) { if (word_op[0] == 's') { fprintf (file, "\t%s\t%s, [%s+%d]\n", word_op, reg_names[regno], base_reg, offset); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", regno, offset + base_offset); } else fprintf (file, "\t%s\t[%s+%d], %s\n", word_op, base_reg, offset, reg_names[regno]); offset += UNITS_PER_WORD; } } } } /* Set up the stack and frame (if desired) for the function. */ void sparc_flat_output_function_prologue (file, size) FILE *file; int size; { char *sp_str = reg_names[STACK_POINTER_REGNUM]; unsigned long gmask = current_frame_info.gmask; /* This is only for the human reader. */ fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START); fprintf (file, "\t%s# vars= %ld, regs= %d/%d, args= %d, extra= %ld\n", ASM_COMMENT_START, current_frame_info.var_size, current_frame_info.gp_reg_size / 4, current_frame_info.fp_reg_size / 4, current_function_outgoing_args_size, current_frame_info.extra_size); size = SPARC_STACK_ALIGN (size); size = (! current_frame_info.initialized ? sparc_flat_compute_frame_size (size) : current_frame_info.total_size); /* These cases shouldn't happen. Catch them now. */ if (size == 0 && (gmask || current_frame_info.fmask)) abort (); /* Allocate our stack frame by decrementing %sp. At present, the only algorithm gdb can use to determine if this is a flat frame is if we always set %i7 if we set %sp. This can be optimized in the future by putting in some sort of debugging information that says this is a `flat' function. However, there is still the case of debugging code without such debugging information (including cases where most fns have such info, but there is one that doesn't). So, always do this now so we don't get a lot of code out there that gdb can't handle. If the frame pointer isn't needn't then that's ok - gdb won't be able to distinguish us from a non-flat function but there won't (and shouldn't) be any differences anyway. The return pc is saved (if necessary) right after %i7 so gdb won't have to look too far to find it. */ if (size > 0) { unsigned int reg_offset = current_frame_info.reg_offset; char *fp_str = reg_names[FRAME_POINTER_REGNUM]; const char *t1_str = "%g1"; /* Things get a little tricky if local variables take up more than ~4096 bytes and outgoing arguments take up more than ~4096 bytes. When that happens, the register save area can't be accessed from either end of the frame. Handle this by decrementing %sp to the start of the gp register save area, save the regs, update %i7, and then set %sp to its final value. Given that we only have one scratch register to play with it is the cheapest solution, and it helps gdb out as it won't slow down recognition of flat functions. Don't change the order of insns emitted here without checking with the gdb folk first. */ /* Is the entire register save area offsettable from %sp? */ if (reg_offset < 4096 - 64 * UNITS_PER_WORD) { if (size <= 4096) { fprintf (file, "\tadd\t%s, %d, %s\n", sp_str, -size, sp_str); if (gmask & FRAME_POINTER_MASK) { fprintf (file, "\tst\t%s, [%s+%d]\n", fp_str, sp_str, reg_offset); fprintf (file, "\tsub\t%s, %d, %s\t%s# set up frame pointer\n", sp_str, -size, fp_str, ASM_COMMENT_START); reg_offset += 4; } } else { fprintf (file, "\tset\t%d, %s\n\tsub\t%s, %s, %s\n", size, t1_str, sp_str, t1_str, sp_str); if (gmask & FRAME_POINTER_MASK) { fprintf (file, "\tst\t%s, [%s+%d]\n", fp_str, sp_str, reg_offset); fprintf (file, "\tadd\t%s, %s, %s\t%s# set up frame pointer\n", sp_str, t1_str, fp_str, ASM_COMMENT_START); reg_offset += 4; } } if (dwarf2out_do_frame ()) { char *l = dwarf2out_cfi_label (); if (gmask & FRAME_POINTER_MASK) { dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, reg_offset - 4 - size); dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, 0); } else dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size); } if (gmask & RETURN_ADDR_MASK) { fprintf (file, "\tst\t%s, [%s+%d]\n", reg_names[RETURN_ADDR_REGNUM], sp_str, reg_offset); if (dwarf2out_do_frame ()) dwarf2out_return_save ("", reg_offset - size); reg_offset += 4; } sparc_flat_save_restore (file, sp_str, reg_offset, gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK), current_frame_info.fmask, "st", "std", -size); } else { /* Subtract %sp in two steps, but make sure there is always a 64 byte register save area, and %sp is properly aligned. */ /* Amount to decrement %sp by, the first time. */ unsigned int size1 = ((size - reg_offset + 64) + 15) & -16; /* Offset to register save area from %sp. */ unsigned int offset = size1 - (size - reg_offset); if (size1 <= 4096) { fprintf (file, "\tadd\t%s, %d, %s\n", sp_str, -size1, sp_str); if (gmask & FRAME_POINTER_MASK) { fprintf (file, "\tst\t%s, [%s+%d]\n\tsub\t%s, %d, %s\t%s# set up frame pointer\n", fp_str, sp_str, offset, sp_str, -size1, fp_str, ASM_COMMENT_START); offset += 4; } } else { fprintf (file, "\tset\t%d, %s\n\tsub\t%s, %s, %s\n", size1, t1_str, sp_str, t1_str, sp_str); if (gmask & FRAME_POINTER_MASK) { fprintf (file, "\tst\t%s, [%s+%d]\n\tadd\t%s, %s, %s\t%s# set up frame pointer\n", fp_str, sp_str, offset, sp_str, t1_str, fp_str, ASM_COMMENT_START); offset += 4; } } if (dwarf2out_do_frame ()) { char *l = dwarf2out_cfi_label (); if (gmask & FRAME_POINTER_MASK) { dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, offset - 4 - size1); dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, 0); } else dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size1); } if (gmask & RETURN_ADDR_MASK) { fprintf (file, "\tst\t%s, [%s+%d]\n", reg_names[RETURN_ADDR_REGNUM], sp_str, offset); if (dwarf2out_do_frame ()) /* offset - size1 == reg_offset - size if reg_offset were updated above like offset. */ dwarf2out_return_save ("", offset - size1); offset += 4; } sparc_flat_save_restore (file, sp_str, offset, gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK), current_frame_info.fmask, "st", "std", -size1); fprintf (file, "\tset\t%d, %s\n\tsub\t%s, %s, %s\n", size - size1, t1_str, sp_str, t1_str, sp_str); if (dwarf2out_do_frame ()) if (! (gmask & FRAME_POINTER_MASK)) dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, size); } } fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START); } /* Do any necessary cleanup after a function to restore stack, frame, and regs. */ void sparc_flat_output_function_epilogue (file, size) FILE *file; int size; { rtx epilogue_delay = current_function_epilogue_delay_list; int noepilogue = FALSE; /* This is only for the human reader. */ fprintf (file, "\t%s#EPILOGUE#\n", ASM_COMMENT_START); /* The epilogue does not depend on any registers, but the stack registers, so we assume that if we have 1 pending nop, it can be ignored, and 2 it must be filled (2 nops occur for integer multiply and divide). */ size = SPARC_STACK_ALIGN (size); size = (!current_frame_info.initialized ? sparc_flat_compute_frame_size (size) : current_frame_info.total_size); if (size == 0 && epilogue_delay == 0) { rtx insn = get_last_insn (); /* If the last insn was a BARRIER, we don't have to write any code because a jump (aka return) was put there. */ if (GET_CODE (insn) == NOTE) insn = prev_nonnote_insn (insn); if (insn && GET_CODE (insn) == BARRIER) noepilogue = TRUE; } if (!noepilogue) { unsigned int reg_offset = current_frame_info.reg_offset; unsigned int size1; char *sp_str = reg_names[STACK_POINTER_REGNUM]; char *fp_str = reg_names[FRAME_POINTER_REGNUM]; const char *t1_str = "%g1"; /* In the reload sequence, we don't need to fill the load delay slots for most of the loads, also see if we can fill the final delay slot if not otherwise filled by the reload sequence. */ if (size > 4095) fprintf (file, "\tset\t%d, %s\n", size, t1_str); if (frame_pointer_needed) { if (size > 4095) fprintf (file,"\tsub\t%s, %s, %s\t\t%s# sp not trusted here\n", fp_str, t1_str, sp_str, ASM_COMMENT_START); else fprintf (file,"\tsub\t%s, %d, %s\t\t%s# sp not trusted here\n", fp_str, size, sp_str, ASM_COMMENT_START); } /* Is the entire register save area offsettable from %sp? */ if (reg_offset < 4096 - 64 * UNITS_PER_WORD) { size1 = 0; } else { /* Restore %sp in two steps, but make sure there is always a 64 byte register save area, and %sp is properly aligned. */ /* Amount to increment %sp by, the first time. */ size1 = ((reg_offset - 64 - 16) + 15) & -16; /* Offset to register save area from %sp. */ reg_offset = size1 - reg_offset; fprintf (file, "\tset\t%d, %s\n\tadd\t%s, %s, %s\n", size1, t1_str, sp_str, t1_str, sp_str); } /* We must restore the frame pointer and return address reg first because they are treated specially by the prologue output code. */ if (current_frame_info.gmask & FRAME_POINTER_MASK) { fprintf (file, "\tld\t[%s+%d], %s\n", sp_str, reg_offset, fp_str); reg_offset += 4; } if (current_frame_info.gmask & RETURN_ADDR_MASK) { fprintf (file, "\tld\t[%s+%d], %s\n", sp_str, reg_offset, reg_names[RETURN_ADDR_REGNUM]); reg_offset += 4; } /* Restore any remaining saved registers. */ sparc_flat_save_restore (file, sp_str, reg_offset, current_frame_info.gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK), current_frame_info.fmask, "ld", "ldd", 0); /* If we had to increment %sp in two steps, record it so the second restoration in the epilogue finishes up. */ if (size1 > 0) { size -= size1; if (size > 4095) fprintf (file, "\tset\t%d, %s\n", size, t1_str); } if (current_function_returns_struct) fprintf (file, "\tjmp\t%%o7+12\n"); else fprintf (file, "\tretl\n"); /* If the only register saved is the return address, we need a nop, unless we have an instruction to put into it. Otherwise we don't since reloading multiple registers doesn't reference the register being loaded. */ if (epilogue_delay) { if (size) abort (); final_scan_insn (XEXP (epilogue_delay, 0), file, 1, -2, 1); } else if (size > 4095) fprintf (file, "\tadd\t%s, %s, %s\n", sp_str, t1_str, sp_str); else if (size > 0) fprintf (file, "\tadd\t%s, %d, %s\n", sp_str, size, sp_str); else fprintf (file, "\tnop\n"); } /* Reset state info for each function. */ current_frame_info = zero_frame_info; sparc_output_deferred_case_vectors (); } /* Define the number of delay slots needed for the function epilogue. On the sparc, we need a slot if either no stack has been allocated, or the only register saved is the return register. */ int sparc_flat_epilogue_delay_slots () { if (!current_frame_info.initialized) (void) sparc_flat_compute_frame_size (get_frame_size ()); if (current_frame_info.total_size == 0) return 1; return 0; } /* Return true is TRIAL is a valid insn for the epilogue delay slot. Any single length instruction which doesn't reference the stack or frame pointer is OK. */ int sparc_flat_eligible_for_epilogue_delay (trial, slot) rtx trial; int slot ATTRIBUTE_UNUSED; { rtx pat = PATTERN (trial); if (get_attr_length (trial) != 1) return 0; /* If %g0 is live, there are lots of things we can't handle. Rather than trying to find them all now, let's punt and only optimize things as necessary. */ if (TARGET_LIVE_G0) return 0; if (! reg_mentioned_p (stack_pointer_rtx, pat) && ! reg_mentioned_p (frame_pointer_rtx, pat)) return 1; return 0; } /* Adjust the cost of a scheduling dependency. Return the new cost of a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ static int supersparc_adjust_cost (insn, link, dep_insn, cost) rtx insn; rtx link; rtx dep_insn; int cost; { enum attr_type insn_type; if (! recog_memoized (insn)) return 0; insn_type = get_attr_type (insn); if (REG_NOTE_KIND (link) == 0) { /* Data dependency; DEP_INSN writes a register that INSN reads some cycles later. */ /* if a load, then the dependence must be on the memory address; add an extra "cycle". Note that the cost could be two cycles if the reg was written late in an instruction group; we ca not tell here. */ if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD) return cost + 3; /* Get the delay only if the address of the store is the dependence. */ if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE) { rtx pat = PATTERN(insn); rtx dep_pat = PATTERN (dep_insn); if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) return cost; /* This should not happen! */ /* The dependency between the two instructions was on the data that is being stored. Assume that this implies that the address of the store is not dependent. */ if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) return cost; return cost + 3; /* An approximation. */ } /* A shift instruction cannot receive its data from an instruction in the same cycle; add a one cycle penalty. */ if (insn_type == TYPE_SHIFT) return cost + 3; /* Split before cascade into shift. */ } else { /* Anti- or output- dependency; DEP_INSN reads/writes a register that INSN writes some cycles later. */ /* These are only significant for the fpu unit; writing a fp reg before the fpu has finished with it stalls the processor. */ /* Reusing an integer register causes no problems. */ if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT) return 0; } return cost; } static int hypersparc_adjust_cost (insn, link, dep_insn, cost) rtx insn; rtx link; rtx dep_insn; int cost; { enum attr_type insn_type, dep_type; rtx pat = PATTERN(insn); rtx dep_pat = PATTERN (dep_insn); if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0) return cost; insn_type = get_attr_type (insn); dep_type = get_attr_type (dep_insn); switch (REG_NOTE_KIND (link)) { case 0: /* Data dependency; DEP_INSN writes a register that INSN reads some cycles later. */ switch (insn_type) { case TYPE_STORE: case TYPE_FPSTORE: /* Get the delay iff the address of the store is the dependence. */ if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) return cost; if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) return cost; return cost + 3; case TYPE_LOAD: case TYPE_SLOAD: case TYPE_FPLOAD: /* If a load, then the dependence must be on the memory address. If the addresses aren't equal, then it might be a false dependency */ if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE) { if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET || GET_CODE (SET_DEST (dep_pat)) != MEM || GET_CODE (SET_SRC (pat)) != MEM || ! rtx_equal_p (XEXP (SET_DEST (dep_pat), 0), XEXP (SET_SRC (pat), 0))) return cost + 2; return cost + 8; } break; case TYPE_BRANCH: /* Compare to branch latency is 0. There is no benefit from separating compare and branch. */ if (dep_type == TYPE_COMPARE) return 0; /* Floating point compare to branch latency is less than compare to conditional move. */ if (dep_type == TYPE_FPCMP) return cost - 1; break; default: break; } break; case REG_DEP_ANTI: /* Anti-dependencies only penalize the fpu unit. */ if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT) return 0; break; default: break; } return cost; } static int ultrasparc_adjust_cost (insn, link, dep_insn, cost) rtx insn; rtx link; rtx dep_insn; int cost; { enum attr_type insn_type, dep_type; rtx pat = PATTERN(insn); rtx dep_pat = PATTERN (dep_insn); if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0) return cost; insn_type = get_attr_type (insn); dep_type = get_attr_type (dep_insn); /* Nothing issues in parallel with integer multiplies, so mark as zero cost since the scheduler can not do anything about it. */ if (insn_type == TYPE_IMUL) return 0; #define SLOW_FP(dep_type) \ (dep_type == TYPE_FPSQRT || dep_type == TYPE_FPDIVS || dep_type == TYPE_FPDIVD) switch (REG_NOTE_KIND (link)) { case 0: /* Data dependency; DEP_INSN writes a register that INSN reads some cycles later. */ if (dep_type == TYPE_CMOVE) { /* Instructions that read the result of conditional moves cannot be in the same group or the following group. */ return cost + 1; } switch (insn_type) { /* UltraSPARC can dual issue a store and an instruction setting the value stored, except for divide and square root. */ case TYPE_FPSTORE: if (! SLOW_FP (dep_type)) return 0; return cost; case TYPE_STORE: if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) return cost; if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) /* The dependency between the two instructions is on the data that is being stored. Assume that the address of the store is not also dependent. */ return 0; return cost; case TYPE_LOAD: case TYPE_SLOAD: case TYPE_FPLOAD: /* A load does not return data until at least 11 cycles after a store to the same location. 3 cycles are accounted for in the load latency; add the other 8 here. */ if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE) { /* If the addresses are not equal this may be a false dependency because pointer aliasing could not be determined. Add only 2 cycles in that case. 2 is an arbitrary compromise between 8, which would cause the scheduler to generate worse code elsewhere to compensate for a dependency which might not really exist, and 0. */ if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET || GET_CODE (SET_SRC (pat)) != MEM || GET_CODE (SET_DEST (dep_pat)) != MEM || ! rtx_equal_p (XEXP (SET_SRC (pat), 0), XEXP (SET_DEST (dep_pat), 0))) return cost + 2; return cost + 8; } return cost; case TYPE_BRANCH: /* Compare to branch latency is 0. There is no benefit from separating compare and branch. */ if (dep_type == TYPE_COMPARE) return 0; /* Floating point compare to branch latency is less than compare to conditional move. */ if (dep_type == TYPE_FPCMP) return cost - 1; return cost; case TYPE_FPCMOVE: /* FMOVR class instructions can not issue in the same cycle or the cycle after an instruction which writes any integer register. Model this as cost 2 for dependent instructions. */ if ((dep_type == TYPE_IALU || dep_type == TYPE_UNARY || dep_type == TYPE_BINARY) && cost < 2) return 2; /* Otherwise check as for integer conditional moves. */ case TYPE_CMOVE: /* Conditional moves involving integer registers wait until 3 cycles after loads return data. The interlock applies to all loads, not just dependent loads, but that is hard to model. */ if (dep_type == TYPE_LOAD || dep_type == TYPE_SLOAD) return cost + 3; return cost; default: break; } break; case REG_DEP_ANTI: /* Divide and square root lock destination registers for full latency. */ if (! SLOW_FP (dep_type)) return 0; break; case REG_DEP_OUTPUT: /* IEU and FPU instruction that have the same destination register cannot be grouped together. */ return cost + 1; default: break; } /* Other costs not accounted for: - Single precision floating point loads lock the other half of the even/odd register pair. - Several hazards associated with ldd/std are ignored because these instructions are rarely generated for V9. - The floating point pipeline can not have both a single and double precision operation active at the same time. Format conversions and graphics instructions are given honorary double precision status. - call and jmpl are always the first instruction in a group. */ return cost; #undef SLOW_FP } int sparc_adjust_cost(insn, link, dep, cost) rtx insn; rtx link; rtx dep; int cost; { switch (sparc_cpu) { case PROCESSOR_SUPERSPARC: cost = supersparc_adjust_cost (insn, link, dep, cost); break; case PROCESSOR_HYPERSPARC: case PROCESSOR_SPARCLITE86X: cost = hypersparc_adjust_cost (insn, link, dep, cost); break; case PROCESSOR_ULTRASPARC: cost = ultrasparc_adjust_cost (insn, link, dep, cost); break; default: break; } return cost; } /* This describes the state of the UltraSPARC pipeline during instruction scheduling. */ #define TMASK(__x) ((unsigned)1 << ((int)(__x))) #define UMASK(__x) ((unsigned)1 << ((int)(__x))) enum ultra_code { NONE=0, /* no insn at all */ IEU0, /* shifts and conditional moves */ IEU1, /* condition code setting insns, calls+jumps */ IEUN, /* all other single cycle ieu insns */ LSU, /* loads and stores */ CTI, /* branches */ FPM, /* FPU pipeline 1, multiplies and divides */ FPA, /* FPU pipeline 2, all other operations */ SINGLE, /* single issue instructions */ NUM_ULTRA_CODES }; static const char *ultra_code_names[NUM_ULTRA_CODES] = { "NONE", "IEU0", "IEU1", "IEUN", "LSU", "CTI", "FPM", "FPA", "SINGLE" }; struct ultrasparc_pipeline_state { /* The insns in this group. */ rtx group[4]; /* The code for each insn. */ enum ultra_code codes[4]; /* Which insns in this group have been committed by the scheduler. This is how we determine how many more can issue this cycle. */ char commit[4]; /* How many insns in this group. */ char group_size; /* Mask of free slots still in this group. */ char free_slot_mask; /* The slotter uses the following to determine what other insn types can still make their way into this group. */ char contents [NUM_ULTRA_CODES]; char num_ieu_insns; }; #define ULTRA_NUM_HIST 8 static struct ultrasparc_pipeline_state ultra_pipe_hist[ULTRA_NUM_HIST]; static int ultra_cur_hist; static int ultra_cycles_elapsed; #define ultra_pipe (ultra_pipe_hist[ultra_cur_hist]) /* Given TYPE_MASK compute the ultra_code it has. */ static enum ultra_code ultra_code_from_mask (type_mask) int type_mask; { if (type_mask & (TMASK (TYPE_SHIFT) | TMASK (TYPE_CMOVE))) return IEU0; else if (type_mask & (TMASK (TYPE_COMPARE) | TMASK (TYPE_CALL) | TMASK (TYPE_UNCOND_BRANCH))) return IEU1; else if (type_mask & (TMASK (TYPE_IALU) | TMASK (TYPE_BINARY) | TMASK (TYPE_MOVE) | TMASK (TYPE_UNARY))) return IEUN; else if (type_mask & (TMASK (TYPE_LOAD) | TMASK (TYPE_SLOAD) | TMASK (TYPE_STORE) | TMASK (TYPE_FPLOAD) | TMASK (TYPE_FPSTORE))) return LSU; else if (type_mask & (TMASK (TYPE_FPMUL) | TMASK (TYPE_FPDIVS) | TMASK (TYPE_FPDIVD) | TMASK (TYPE_FPSQRT))) return FPM; else if (type_mask & (TMASK (TYPE_FPMOVE) | TMASK (TYPE_FPCMOVE) | TMASK (TYPE_FP) | TMASK (TYPE_FPCMP))) return FPA; else if (type_mask & TMASK (TYPE_BRANCH)) return CTI; return SINGLE; } /* Check INSN (a conditional move) and make sure that it's results are available at this cycle. Return 1 if the results are in fact ready. */ static int ultra_cmove_results_ready_p (insn) rtx insn; { struct ultrasparc_pipeline_state *up; int entry, slot; /* If this got dispatched in the previous group, the results are not ready. */ entry = (ultra_cur_hist - 1) % (ULTRA_NUM_HIST - 1); up = &ultra_pipe_hist[entry]; slot = 4; while (--slot >= 0) if (up->group[slot] == insn) return 0; return 1; } /* Walk backwards in pipeline history looking for FPU operations which use a mode different than FPMODE and will create a stall if an insn using FPMODE were to be dispatched this cycle. */ static int ultra_fpmode_conflict_exists (fpmode) enum machine_mode fpmode; { int hist_ent; int hist_lim; hist_ent = (ultra_cur_hist - 1) % (ULTRA_NUM_HIST - 1); if (ultra_cycles_elapsed < 4) hist_lim = ultra_cycles_elapsed; else hist_lim = 4; while (hist_lim > 0) { struct ultrasparc_pipeline_state *up = &ultra_pipe_hist[hist_ent]; int slot = 4; while (--slot >= 0) { rtx insn = up->group[slot]; enum machine_mode this_mode; rtx pat; if (! insn || GET_CODE (insn) != INSN || (pat = PATTERN (insn)) == 0 || GET_CODE (pat) != SET) continue; this_mode = GET_MODE (SET_DEST (pat)); if ((this_mode != SFmode && this_mode != DFmode) || this_mode == fpmode) continue; /* If it is not FMOV, FABS, FNEG, FDIV, or FSQRT then we will get a stall. Loads and stores are independant of these rules. */ if (GET_CODE (SET_SRC (pat)) != ABS && GET_CODE (SET_SRC (pat)) != NEG && ((TMASK (get_attr_type (insn)) & (TMASK (TYPE_FPDIVS) | TMASK (TYPE_FPDIVD) | TMASK (TYPE_FPMOVE) | TMASK (TYPE_FPSQRT) | TMASK (TYPE_LOAD) | TMASK (TYPE_STORE))) == 0)) return 1; } hist_lim--; hist_ent = (hist_ent - 1) % (ULTRA_NUM_HIST - 1); } /* No conflicts, safe to dispatch. */ return 0; } /* Find an instruction in LIST which has one of the type attributes enumerated in TYPE_MASK. START says where to begin the search. NOTE: This scheme depends upon the fact that we have less than 32 distinct type attributes. */ static int ultra_types_avail; static rtx * ultra_find_type (type_mask, list, start) int type_mask; rtx *list; int start; { int i; /* Short circuit if no such insn exists in the ready at the moment. */ if ((type_mask & ultra_types_avail) == 0) return 0; for (i = start; i >= 0; i--) { rtx insn = list[i]; if (recog_memoized (insn) >= 0 && (TMASK(get_attr_type (insn)) & type_mask)) { enum machine_mode fpmode = SFmode; rtx pat = 0; int slot; int check_depend = 0; int check_fpmode_conflict = 0; if (GET_CODE (insn) == INSN && (pat = PATTERN(insn)) != 0 && GET_CODE (pat) == SET && !(type_mask & (TMASK (TYPE_STORE) | TMASK (TYPE_FPSTORE)))) { check_depend = 1; if (GET_MODE (SET_DEST (pat)) == SFmode || GET_MODE (SET_DEST (pat)) == DFmode) { fpmode = GET_MODE (SET_DEST (pat)); check_fpmode_conflict = 1; } } slot = 4; while(--slot >= 0) { rtx slot_insn = ultra_pipe.group[slot]; rtx slot_pat; /* Already issued, bad dependency, or FPU mode conflict. */ if (slot_insn != 0 && (slot_pat = PATTERN (slot_insn)) != 0 && ((insn == slot_insn) || (check_depend == 1 && GET_CODE (slot_insn) == INSN && GET_CODE (slot_pat) == SET && ((GET_CODE (SET_DEST (slot_pat)) == REG && GET_CODE (SET_SRC (pat)) == REG && REGNO (SET_DEST (slot_pat)) == REGNO (SET_SRC (pat))) || (GET_CODE (SET_DEST (slot_pat)) == SUBREG && GET_CODE (SET_SRC (pat)) == SUBREG && REGNO (SUBREG_REG (SET_DEST (slot_pat))) == REGNO (SUBREG_REG (SET_SRC (pat))) && SUBREG_WORD (SET_DEST (slot_pat)) == SUBREG_WORD (SET_SRC (pat))))) || (check_fpmode_conflict == 1 && GET_CODE (slot_insn) == INSN && GET_CODE (slot_pat) == SET && (GET_MODE (SET_DEST (slot_pat)) == SFmode || GET_MODE (SET_DEST (slot_pat)) == DFmode) && GET_MODE (SET_DEST (slot_pat)) != fpmode))) goto next; } /* Check for peculiar result availability and dispatch interference situations. */ if (pat != 0 && ultra_cycles_elapsed > 0) { rtx link; for (link = LOG_LINKS (insn); link; link = XEXP (link, 1)) { rtx link_insn = XEXP (link, 0); if (GET_CODE (link_insn) == INSN && recog_memoized (link_insn) >= 0 && (TMASK (get_attr_type (link_insn)) & (TMASK (TYPE_CMOVE) | TMASK (TYPE_FPCMOVE))) && ! ultra_cmove_results_ready_p (link_insn)) goto next; } if (check_fpmode_conflict && ultra_fpmode_conflict_exists (fpmode)) goto next; } return &list[i]; } next: ; } return 0; } static void ultra_build_types_avail (ready, n_ready) rtx *ready; int n_ready; { int i = n_ready - 1; ultra_types_avail = 0; while(i >= 0) { rtx insn = ready[i]; if (recog_memoized (insn) >= 0) ultra_types_avail |= TMASK (get_attr_type (insn)); i -= 1; } } /* Place insn pointed to my IP into the pipeline. Make element THIS of READY be that insn if it is not already. TYPE indicates the pipeline class this insn falls into. */ static void ultra_schedule_insn (ip, ready, this, type) rtx *ip; rtx *ready; int this; enum ultra_code type; { int pipe_slot; char mask = ultra_pipe.free_slot_mask; /* Obtain free slot. */ for (pipe_slot = 0; pipe_slot < 4; pipe_slot++) if ((mask & (1 << pipe_slot)) != 0) break; if (pipe_slot == 4) abort (); /* In it goes, and it hasn't been committed yet. */ ultra_pipe.group[pipe_slot] = *ip; ultra_pipe.codes[pipe_slot] = type; ultra_pipe.contents[type] = 1; if (UMASK (type) & (UMASK (IEUN) | UMASK (IEU0) | UMASK (IEU1))) ultra_pipe.num_ieu_insns += 1; ultra_pipe.free_slot_mask = (mask & ~(1 << pipe_slot)); ultra_pipe.group_size += 1; ultra_pipe.commit[pipe_slot] = 0; /* Update ready list. */ if (ip != &ready[this]) { rtx temp = *ip; *ip = ready[this]; ready[this] = temp; } } /* Advance to the next pipeline group. */ static void ultra_flush_pipeline () { ultra_cur_hist = (ultra_cur_hist + 1) % (ULTRA_NUM_HIST - 1); ultra_cycles_elapsed += 1; bzero ((char *) &ultra_pipe, sizeof ultra_pipe); ultra_pipe.free_slot_mask = 0xf; } static int ultra_reorder_called_this_block; /* Init our data structures for this current block. */ void ultrasparc_sched_init (dump, sched_verbose) FILE *dump ATTRIBUTE_UNUSED; int sched_verbose ATTRIBUTE_UNUSED; { bzero ((char *) ultra_pipe_hist, sizeof ultra_pipe_hist); ultra_cur_hist = 0; ultra_cycles_elapsed = 0; ultra_reorder_called_this_block = 0; ultra_pipe.free_slot_mask = 0xf; } /* INSN has been scheduled, update pipeline commit state and return how many instructions are still to be scheduled in this group. */ int ultrasparc_variable_issue (insn) rtx insn; { struct ultrasparc_pipeline_state *up = &ultra_pipe; int i, left_to_fire; left_to_fire = 0; for (i = 0; i < 4; i++) { if (up->group[i] == 0) continue; if (up->group[i] == insn) { up->commit[i] = 1; } else if (! up->commit[i]) left_to_fire++; } return left_to_fire; } /* In actual_hazard_this_instance, we may have yanked some instructions from the ready list due to conflict cost adjustments. If so, and such an insn was in our pipeline group, remove it and update state. */ static void ultra_rescan_pipeline_state (ready, n_ready) rtx *ready; int n_ready; { struct ultrasparc_pipeline_state *up = &ultra_pipe; int i; for (i = 0; i < 4; i++) { rtx insn = up->group[i]; int j; if (! insn) continue; /* If it has been committed, then it was removed from the ready list because it was actually scheduled, and that is not the case we are searching for here. */ if (up->commit[i] != 0) continue; for (j = n_ready - 1; j >= 0; j--) if (ready[j] == insn) break; /* If we didn't find it, toss it. */ if (j < 0) { enum ultra_code ucode = up->codes[i]; up->group[i] = 0; up->codes[i] = NONE; up->contents[ucode] = 0; if (UMASK (ucode) & (UMASK (IEUN) | UMASK (IEU0) | UMASK (IEU1))) up->num_ieu_insns -= 1; up->free_slot_mask |= (1 << i); up->group_size -= 1; up->commit[i] = 0; } } } void ultrasparc_sched_reorder (dump, sched_verbose, ready, n_ready) FILE *dump; int sched_verbose; rtx *ready; int n_ready; { struct ultrasparc_pipeline_state *up = &ultra_pipe; int i, this_insn; /* We get called once unnecessarily per block of insns scheduled. */ if (ultra_reorder_called_this_block == 0) { ultra_reorder_called_this_block = 1; return; } if (sched_verbose) { int n; fprintf (dump, "\n;;\tUltraSPARC Looking at ["); for (n = n_ready - 1; n >= 0; n--) { rtx insn = ready[n]; enum ultra_code ucode; if (recog_memoized (insn) < 0) continue; ucode = ultra_code_from_mask (TMASK (get_attr_type (insn))); if (n != 0) fprintf (dump, "%s(%d) ", ultra_code_names[ucode], INSN_UID (insn)); else fprintf (dump, "%s(%d)", ultra_code_names[ucode], INSN_UID (insn)); } fprintf (dump, "]\n"); } this_insn = n_ready - 1; /* Skip over junk we don't understand. */ while ((this_insn >= 0) && recog_memoized (ready[this_insn]) < 0) this_insn--; ultra_build_types_avail (ready, this_insn + 1); while (this_insn >= 0) { int old_group_size = up->group_size; if (up->group_size != 0) { int num_committed; num_committed = (up->commit[0] + up->commit[1] + up->commit[2] + up->commit[3]); /* If nothing has been commited from our group, or all of them have. Clear out the (current cycle's) pipeline state and start afresh. */ if (num_committed == 0 || num_committed == up->group_size) { ultra_flush_pipeline (); up = &ultra_pipe; old_group_size = 0; } else { /* OK, some ready list insns got requeued and thus removed from the ready list. Account for this fact. */ ultra_rescan_pipeline_state (ready, n_ready); /* Something "changed", make this look like a newly formed group so the code at the end of the loop knows that progress was in fact made. */ if (up->group_size != old_group_size) old_group_size = 0; } } if (up->group_size == 0) { /* If the pipeline is (still) empty and we have any single group insns, get them out now as this is a good time. */ rtx *ip = ultra_find_type ((TMASK (TYPE_RETURN) | TMASK (TYPE_ADDRESS) | TMASK (TYPE_IMUL) | TMASK (TYPE_CMOVE) | TMASK (TYPE_MULTI) | TMASK (TYPE_MISC)), ready, this_insn); if (ip) { ultra_schedule_insn (ip, ready, this_insn, SINGLE); break; } /* If we are not in the process of emptying out the pipe, try to obtain an instruction which must be the first in it's group. */ ip = ultra_find_type ((TMASK (TYPE_CALL) | TMASK (TYPE_CALL_NO_DELAY_SLOT) | TMASK (TYPE_UNCOND_BRANCH)), ready, this_insn); if (ip) { ultra_schedule_insn (ip, ready, this_insn, IEU1); this_insn--; } else if ((ip = ultra_find_type ((TMASK (TYPE_FPDIVS) | TMASK (TYPE_FPDIVD) | TMASK (TYPE_FPSQRT)), ready, this_insn)) != 0) { ultra_schedule_insn (ip, ready, this_insn, FPM); this_insn--; } } /* Try to fill the integer pipeline. First, look for an IEU0 specific operation. We can't do more IEU operations if the first 3 slots are all full or we have dispatched two IEU insns already. */ if ((up->free_slot_mask & 0x7) != 0 && up->num_ieu_insns < 2 && up->contents[IEU0] == 0 && up->contents[IEUN] == 0) { rtx *ip = ultra_find_type (TMASK(TYPE_SHIFT), ready, this_insn); if (ip) { ultra_schedule_insn (ip, ready, this_insn, IEU0); this_insn--; } } /* If we can, try to find an IEU1 specific or an unnamed IEU instruction. */ if ((up->free_slot_mask & 0x7) != 0 && up->num_ieu_insns < 2) { rtx *ip = ultra_find_type ((TMASK (TYPE_IALU) | TMASK (TYPE_BINARY) | TMASK (TYPE_MOVE) | TMASK (TYPE_UNARY) | (up->contents[IEU1] == 0 ? TMASK (TYPE_COMPARE) : 0)), ready, this_insn); if (ip) { rtx insn = *ip; ultra_schedule_insn (ip, ready, this_insn, (!up->contents[IEU1] && get_attr_type (insn) == TYPE_COMPARE) ? IEU1 : IEUN); this_insn--; } } /* If only one IEU insn has been found, try to find another unnamed IEU operation or an IEU1 specific one. */ if ((up->free_slot_mask & 0x7) != 0 && up->num_ieu_insns < 2) { rtx *ip; int tmask = (TMASK (TYPE_IALU) | TMASK (TYPE_BINARY) | TMASK (TYPE_MOVE) | TMASK (TYPE_UNARY)); if (!up->contents[IEU1]) tmask |= TMASK (TYPE_COMPARE); ip = ultra_find_type (tmask, ready, this_insn); if (ip) { rtx insn = *ip; ultra_schedule_insn (ip, ready, this_insn, (!up->contents[IEU1] && get_attr_type (insn) == TYPE_COMPARE) ? IEU1 : IEUN); this_insn--; } } /* Try for a load or store, but such an insn can only be issued if it is within' one of the first 3 slots. */ if ((up->free_slot_mask & 0x7) != 0 && up->contents[LSU] == 0) { rtx *ip = ultra_find_type ((TMASK (TYPE_LOAD) | TMASK (TYPE_SLOAD) | TMASK (TYPE_STORE) | TMASK (TYPE_FPLOAD) | TMASK (TYPE_FPSTORE)), ready, this_insn); if (ip) { ultra_schedule_insn (ip, ready, this_insn, LSU); this_insn--; } } /* Now find FPU operations, first FPM class. But not divisions or square-roots because those will break the group up. Unlike all the previous types, these can go in any slot. */ if (up->free_slot_mask != 0 && up->contents[FPM] == 0) { rtx *ip = ultra_find_type (TMASK (TYPE_FPMUL), ready, this_insn); if (ip) { ultra_schedule_insn (ip, ready, this_insn, FPM); this_insn--; } } /* Continue on with FPA class if we have not filled the group already. */ if (up->free_slot_mask != 0 && up->contents[FPA] == 0) { rtx *ip = ultra_find_type ((TMASK (TYPE_FPMOVE) | TMASK (TYPE_FPCMOVE) | TMASK (TYPE_FP) | TMASK (TYPE_FPCMP)), ready, this_insn); if (ip) { ultra_schedule_insn (ip, ready, this_insn, FPA); this_insn--; } } /* Finally, maybe stick a branch in here. */ if (up->free_slot_mask != 0 && up->contents[CTI] == 0) { rtx *ip = ultra_find_type (TMASK (TYPE_BRANCH), ready, this_insn); /* Try to slip in a branch only if it is one of the next 2 in the ready list. */ if (ip && ((&ready[this_insn] - ip) < 2)) { ultra_schedule_insn (ip, ready, this_insn, CTI); this_insn--; } } up->group_size = 0; for (i = 0; i < 4; i++) if ((up->free_slot_mask & (1 << i)) == 0) up->group_size++; /* See if we made any progress... */ if (old_group_size != up->group_size) break; /* Clean out the (current cycle's) pipeline state and try once more. If we placed no instructions into the pipeline at all, it means a real hard conflict exists with some earlier issued instruction so we must advance to the next cycle to clear it up. */ if (up->group_size == 0) { ultra_flush_pipeline (); up = &ultra_pipe; } else { bzero ((char *) &ultra_pipe, sizeof ultra_pipe); ultra_pipe.free_slot_mask = 0xf; } } if (sched_verbose) { int n, gsize; fprintf (dump, ";;\tUltraSPARC Launched ["); gsize = up->group_size; for (n = 0; n < 4; n++) { rtx insn = up->group[n]; if (! insn) continue; gsize -= 1; if (gsize != 0) fprintf (dump, "%s(%d) ", ultra_code_names[up->codes[n]], INSN_UID (insn)); else fprintf (dump, "%s(%d)", ultra_code_names[up->codes[n]], INSN_UID (insn)); } fprintf (dump, "]\n"); } } int sparc_issue_rate () { switch (sparc_cpu) { default: return 1; case PROCESSOR_V9: /* Assume V9 processors are capable of at least dual-issue. */ return 2; case PROCESSOR_SUPERSPARC: return 3; case PROCESSOR_HYPERSPARC: case PROCESSOR_SPARCLITE86X: return 2; case PROCESSOR_ULTRASPARC: return 4; } } static int set_extends(x, insn) rtx x, insn; { register rtx pat = PATTERN (insn); switch (GET_CODE (SET_SRC (pat))) { /* Load and some shift instructions zero extend. */ case MEM: case ZERO_EXTEND: /* sethi clears the high bits */ case HIGH: /* LO_SUM is used with sethi. sethi cleared the high bits and the values used with lo_sum are positive */ case LO_SUM: /* Store flag stores 0 or 1 */ case LT: case LTU: case GT: case GTU: case LE: case LEU: case GE: case GEU: case EQ: case NE: return 1; case AND: { rtx op1 = XEXP (SET_SRC (pat), 1); if (GET_CODE (op1) == CONST_INT) return INTVAL (op1) >= 0; if (GET_CODE (XEXP (SET_SRC (pat), 0)) == REG && sparc_check_64 (XEXP (SET_SRC (pat), 0), insn) == 1) return 1; if (GET_CODE (op1) == REG && sparc_check_64 ((op1), insn) == 1) return 1; } case ASHIFT: case LSHIFTRT: return GET_MODE (SET_SRC (pat)) == SImode; /* Positive integers leave the high bits zero. */ case CONST_DOUBLE: return ! (CONST_DOUBLE_LOW (x) & 0x80000000); case CONST_INT: return ! (INTVAL (x) & 0x80000000); case ASHIFTRT: case SIGN_EXTEND: return - (GET_MODE (SET_SRC (pat)) == SImode); default: return 0; } } /* We _ought_ to have only one kind per function, but... */ static rtx sparc_addr_diff_list; static rtx sparc_addr_list; void sparc_defer_case_vector (lab, vec, diff) rtx lab, vec; int diff; { vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec); if (diff) sparc_addr_diff_list = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_diff_list); else sparc_addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_list); } static void sparc_output_addr_vec (vec) rtx vec; { rtx lab = XEXP (vec, 0), body = XEXP (vec, 1); int idx, vlen = XVECLEN (body, 0); #ifdef ASM_OUTPUT_ADDR_VEC_START ASM_OUTPUT_ADDR_VEC_START (asm_out_file); #endif #ifdef ASM_OUTPUT_CASE_LABEL ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab), NEXT_INSN (lab)); #else ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab)); #endif for (idx = 0; idx < vlen; idx++) { ASM_OUTPUT_ADDR_VEC_ELT (asm_out_file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0))); } #ifdef ASM_OUTPUT_ADDR_VEC_END ASM_OUTPUT_ADDR_VEC_END (asm_out_file); #endif } static void sparc_output_addr_diff_vec (vec) rtx vec; { rtx lab = XEXP (vec, 0), body = XEXP (vec, 1); rtx base = XEXP (XEXP (body, 0), 0); int idx, vlen = XVECLEN (body, 1); #ifdef ASM_OUTPUT_ADDR_VEC_START ASM_OUTPUT_ADDR_VEC_START (asm_out_file); #endif #ifdef ASM_OUTPUT_CASE_LABEL ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab), NEXT_INSN (lab)); #else ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab)); #endif for (idx = 0; idx < vlen; idx++) { ASM_OUTPUT_ADDR_DIFF_ELT (asm_out_file, body, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)), CODE_LABEL_NUMBER (base)); } #ifdef ASM_OUTPUT_ADDR_VEC_END ASM_OUTPUT_ADDR_VEC_END (asm_out_file); #endif } static void sparc_output_deferred_case_vectors () { rtx t; int align; if (sparc_addr_list == NULL_RTX && sparc_addr_diff_list == NULL_RTX) return; /* Align to cache line in the function's code section. */ function_section (current_function_decl); align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT); if (align > 0) ASM_OUTPUT_ALIGN (asm_out_file, align); for (t = sparc_addr_list; t ; t = XEXP (t, 1)) sparc_output_addr_vec (XEXP (t, 0)); for (t = sparc_addr_diff_list; t ; t = XEXP (t, 1)) sparc_output_addr_diff_vec (XEXP (t, 0)); sparc_addr_list = sparc_addr_diff_list = NULL_RTX; } /* Return 0 if the high 32 bits of X (the low word of X, if DImode) are unknown. Return 1 if the high bits are zero, -1 if the register is sign extended. */ int sparc_check_64 (x, insn) rtx x, insn; { /* If a register is set only once it is safe to ignore insns this code does not know how to handle. The loop will either recognize the single set and return the correct value or fail to recognize it and return 0. */ int set_once = 0; if (GET_CODE (x) == REG && flag_expensive_optimizations && REG_N_SETS (REGNO (x)) == 1) set_once = 1; if (insn == 0) { if (set_once) insn = get_last_insn_anywhere (); else return 0; } while ((insn = PREV_INSN (insn))) { switch (GET_CODE (insn)) { case JUMP_INSN: case NOTE: break; case CODE_LABEL: case CALL_INSN: default: if (! set_once) return 0; break; case INSN: { rtx pat = PATTERN (insn); if (GET_CODE (pat) != SET) return 0; if (rtx_equal_p (x, SET_DEST (pat))) return set_extends (x, insn); if (reg_overlap_mentioned_p (SET_DEST (pat), x)) return 0; } } } return 0; } char * sparc_v8plus_shift (operands, insn, opcode) rtx *operands; rtx insn; char *opcode; { static char asm_code[60]; if (GET_CODE (operands[3]) == SCRATCH) operands[3] = operands[0]; if (GET_CODE (operands[1]) == CONST_INT) { output_asm_insn ("mov %1,%3", operands); } else { output_asm_insn ("sllx %H1,32,%3", operands); if (sparc_check_64 (operands[1], insn) <= 0) output_asm_insn ("srl %L1,0,%L1", operands); output_asm_insn ("or %L1,%3,%3", operands); } strcpy(asm_code, opcode); if (which_alternative != 2) return strcat (asm_code, " %0,%2,%L0\n\tsrlx %L0,32,%H0"); else return strcat (asm_code, " %3,%2,%3\n\tsrlx %3,32,%H0\n\tmov %3,%L0"); } /* Return 1 if DEST and SRC reference only global and in registers. */ int sparc_return_peephole_ok (dest, src) rtx dest, src; { if (! TARGET_V9) return 0; if (current_function_uses_only_leaf_regs) return 0; if (GET_CODE (src) != CONST_INT && (GET_CODE (src) != REG || ! IN_OR_GLOBAL_P (src))) return 0; return IN_OR_GLOBAL_P (dest); } /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. 32 bit sparc uses %g2 as the STATIC_CHAIN_REGNUM which gets clobbered during profiling so we need to save/restore it around the call to mcount. We're guaranteed that a save has just been done, and we use the space allocated for intreg/fpreg value passing. */ void sparc_function_profiler (file, labelno) FILE *file; int labelno; { char buf[32]; ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno); if (! TARGET_ARCH64) fputs ("\tst\t%g2,[%fp-4]\n", file); fputs ("\tsethi\t%hi(", file); assemble_name (file, buf); fputs ("),%o0\n", file); fputs ("\tcall\t", file); assemble_name (file, MCOUNT_FUNCTION); putc ('\n', file); fputs ("\t or\t%o0,%lo(", file); assemble_name (file, buf); fputs ("),%o0\n", file); if (! TARGET_ARCH64) fputs ("\tld\t[%fp-4],%g2\n", file); } /* The following macro shall output assembler code to FILE to initialize basic-block profiling. If profile_block_flag == 2 Output code to call the subroutine `__bb_init_trace_func' and pass two parameters to it. The first parameter is the address of a block allocated in the object module. The second parameter is the number of the first basic block of the function. The name of the block is a local symbol made with this statement: ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0); Of course, since you are writing the definition of `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you can take a short cut in the definition of this macro and use the name that you know will result. The number of the first basic block of the function is passed to the macro in BLOCK_OR_LABEL. If described in a virtual assembler language the code to be output looks like: parameter1 <- LPBX0 parameter2 <- BLOCK_OR_LABEL call __bb_init_trace_func else if profile_block_flag != 0 Output code to call the subroutine `__bb_init_func' and pass one single parameter to it, which is the same as the first parameter to `__bb_init_trace_func'. The first word of this parameter is a flag which will be nonzero if the object module has already been initialized. So test this word first, and do not call `__bb_init_func' if the flag is nonzero. Note: When profile_block_flag == 2 the test need not be done but `__bb_init_trace_func' *must* be called. BLOCK_OR_LABEL may be used to generate a label number as a branch destination in case `__bb_init_func' will not be called. If described in a virtual assembler language the code to be output looks like: cmp (LPBX0),0 jne local_label parameter1 <- LPBX0 call __bb_init_func local_label: */ void sparc_function_block_profiler(file, block_or_label) FILE *file; int block_or_label; { char LPBX[32]; ASM_GENERATE_INTERNAL_LABEL (LPBX, "LPBX", 0); if (profile_block_flag == 2) { fputs ("\tsethi\t%hi(", file); assemble_name (file, LPBX); fputs ("),%o0\n", file); fprintf (file, "\tsethi\t%%hi(%d),%%o1\n", block_or_label); fputs ("\tor\t%o0,%lo(", file); assemble_name (file, LPBX); fputs ("),%o0\n", file); fprintf (file, "\tcall\t%s__bb_init_trace_func\n", user_label_prefix); fprintf (file, "\t or\t%%o1,%%lo(%d),%%o1\n", block_or_label); } else if (profile_block_flag != 0) { char LPBY[32]; ASM_GENERATE_INTERNAL_LABEL (LPBY, "LPBY", block_or_label); fputs ("\tsethi\t%hi(", file); assemble_name (file, LPBX); fputs ("),%o0\n", file); fputs ("\tld\t[%lo(", file); assemble_name (file, LPBX); fputs (")+%o0],%o1\n", file); fputs ("\ttst\t%o1\n", file); if (TARGET_V9) { fputs ("\tbne,pn\t%icc,", file); assemble_name (file, LPBY); putc ('\n', file); } else { fputs ("\tbne\t", file); assemble_name (file, LPBY); putc ('\n', file); } fputs ("\t or\t%o0,%lo(", file); assemble_name (file, LPBX); fputs ("),%o0\n", file); fprintf (file, "\tcall\t%s__bb_init_func\n\t nop\n", user_label_prefix); ASM_OUTPUT_INTERNAL_LABEL (file, "LPBY", block_or_label); } } /* The following macro shall output assembler code to FILE to increment a counter associated with basic block number BLOCKNO. If profile_block_flag == 2 Output code to initialize the global structure `__bb' and call the function `__bb_trace_func' which will increment the counter. `__bb' consists of two words. In the first word the number of the basic block has to be stored. In the second word the address of a block allocated in the object module has to be stored. The basic block number is given by BLOCKNO. The address of the block is given by the label created with ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0); by FUNCTION_BLOCK_PROFILER. Of course, since you are writing the definition of `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you can take a short cut in the definition of this macro and use the name that you know will result. If described in a virtual assembler language the code to be output looks like: move BLOCKNO -> (__bb) move LPBX0 -> (__bb+4) call __bb_trace_func Note that function `__bb_trace_func' must not change the machine state, especially the flag register. To grant this, you must output code to save and restore registers either in this macro or in the macros MACHINE_STATE_SAVE and MACHINE_STATE_RESTORE. The last two macros will be used in the function `__bb_trace_func', so you must make sure that the function prologue does not change any register prior to saving it with MACHINE_STATE_SAVE. else if profile_block_flag != 0 Output code to increment the counter directly. Basic blocks are numbered separately from zero within each compiled object module. The count associated with block number BLOCKNO is at index BLOCKNO in an array of words; the name of this array is a local symbol made with this statement: ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2); Of course, since you are writing the definition of `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you can take a short cut in the definition of this macro and use the name that you know will result. If described in a virtual assembler language, the code to be output looks like: inc (LPBX2+4*BLOCKNO) */ void sparc_block_profiler(file, blockno) FILE *file; int blockno; { char LPBX[32]; if (profile_block_flag == 2) { ASM_GENERATE_INTERNAL_LABEL (LPBX, "LPBX", 0); fprintf (file, "\tsethi\t%%hi(%s__bb),%%g1\n", user_label_prefix); fprintf (file, "\tsethi\t%%hi(%d),%%g2\n", blockno); fprintf (file, "\tor\t%%g1,%%lo(%s__bb),%%g1\n", user_label_prefix); fprintf (file, "\tor\t%%g2,%%lo(%d),%%g2\n", blockno); fputs ("\tst\t%g2,[%g1]\n", file); fputs ("\tsethi\t%hi(", file); assemble_name (file, LPBX); fputs ("),%g2\n", file); fputs ("\tor\t%g2,%lo(", file); assemble_name (file, LPBX); fputs ("),%g2\n", file); fputs ("\tst\t%g2,[%g1+4]\n", file); fputs ("\tmov\t%o7,%g2\n", file); fprintf (file, "\tcall\t%s__bb_trace_func\n\t nop\n", user_label_prefix); fputs ("\tmov\t%g2,%o7\n", file); } else if (profile_block_flag != 0) { ASM_GENERATE_INTERNAL_LABEL (LPBX, "LPBX", 2); fputs ("\tsethi\t%hi(", file); assemble_name (file, LPBX); fprintf (file, "+%d),%%g1\n", blockno*4); fputs ("\tld\t[%g1+%lo(", file); assemble_name (file, LPBX); fprintf (file, "+%d)],%%g2\n", blockno*4); fputs ("\tadd\t%g2,1,%g2\n", file); fputs ("\tst\t%g2,[%g1+%lo(", file); assemble_name (file, LPBX); fprintf (file, "+%d)]\n", blockno*4); } } /* The following macro shall output assembler code to FILE to indicate a return from function during basic-block profiling. If profile_block_flag == 2: Output assembler code to call function `__bb_trace_ret'. Note that function `__bb_trace_ret' must not change the machine state, especially the flag register. To grant this, you must output code to save and restore registers either in this macro or in the macros MACHINE_STATE_SAVE_RET and MACHINE_STATE_RESTORE_RET. The last two macros will be used in the function `__bb_trace_ret', so you must make sure that the function prologue does not change any register prior to saving it with MACHINE_STATE_SAVE_RET. else if profile_block_flag != 0: The macro will not be used, so it need not distinguish these cases. */ void sparc_function_block_profiler_exit(file) FILE *file; { if (profile_block_flag == 2) fprintf (file, "\tcall\t%s__bb_trace_ret\n\t nop\n", user_label_prefix); else abort (); }