/* Subroutines for insn-output.c for Sun SPARC. Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@cygnus.com) 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, at Cygnus Support. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "tree.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "output.h" #include "insn-attr.h" #include "flags.h" #include "function.h" #include "expr.h" #include "optabs.h" #include "libfuncs.h" #include "recog.h" #include "toplev.h" #include "ggc.h" #include "tm_p.h" #include "debug.h" #include "target.h" #include "target-def.h" /* 1 if the caller has placed an "unimp" insn immediately after the call. This is used in v8 code when calling a function that returns a structure. v9 doesn't have this. Be careful to have this test be the same as that used on the call. */ #define SKIP_CALLERS_UNIMP_P \ (!TARGET_ARCH64 && current_function_returns_struct \ && ! integer_zerop (DECL_SIZE (DECL_RESULT (current_function_decl))) \ && (TREE_CODE (DECL_SIZE (DECL_RESULT (current_function_decl))) \ == INTEGER_CST)) /* Global variables for machine-dependent things. */ /* Size of frame. Need to know this to emit return insns from leaf procedures. ACTUAL_FSIZE is set by compute_frame_size() which is called during the reload pass. This is important as the value is later used in insn scheduling (to see what can go in a delay slot). APPARENT_FSIZE is the size of the stack less the register save area and less the outgoing argument area. It is used when saving call preserved regs. */ static int apparent_fsize; static int actual_fsize; /* Number of live general or floating point registers needed to be saved (as 4-byte quantities). */ static int num_gfregs; /* Save the operands last given to a compare for use when we generate a scc or bcc insn. */ rtx sparc_compare_op0, sparc_compare_op1; /* Coordinate with the md file wrt special insns created by sparc_nonflat_function_epilogue. */ bool sparc_emitting_epilogue; #ifdef LEAF_REGISTERS /* Vector to say how input registers are mapped to output registers. HARD_FRAME_POINTER_REGNUM cannot be remapped by this function to eliminate it. You must use -fomit-frame-pointer to get that. */ char leaf_reg_remap[] = { 0, 1, 2, 3, 4, 5, 6, 7, -1, -1, -1, -1, -1, -1, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1, 8, 9, 10, 11, 12, 13, -1, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100}; /* Vector, indexed by hard register number, which contains 1 for a register that is allowable in a candidate for leaf function treatment. */ char sparc_leaf_regs[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; #endif /* Name of where we pretend to think the frame pointer points. Normally, this is "%fp", but if we are in a leaf procedure, this is "%sp+something". We record "something" separately as it may be too big for reg+constant addressing. */ static const char *frame_base_name; static int frame_base_offset; static void sparc_init_modes PARAMS ((void)); static int save_regs PARAMS ((FILE *, int, int, const char *, int, int, int)); static int restore_regs PARAMS ((FILE *, int, int, const char *, int, int)); static void build_big_number PARAMS ((FILE *, int, const char *)); static int function_arg_slotno PARAMS ((const CUMULATIVE_ARGS *, enum machine_mode, tree, int, int, int *, int *)); static int supersparc_adjust_cost PARAMS ((rtx, rtx, rtx, int)); static int hypersparc_adjust_cost PARAMS ((rtx, rtx, rtx, int)); static int ultrasparc_adjust_cost PARAMS ((rtx, rtx, rtx, int)); static void sparc_output_addr_vec PARAMS ((rtx)); static void sparc_output_addr_diff_vec PARAMS ((rtx)); static void sparc_output_deferred_case_vectors PARAMS ((void)); static void sparc_add_gc_roots PARAMS ((void)); static void mark_ultrasparc_pipeline_state PARAMS ((void *)); static int check_return_regs PARAMS ((rtx)); static int epilogue_renumber PARAMS ((rtx *, int)); static bool sparc_assemble_integer PARAMS ((rtx, unsigned int, int)); static int ultra_cmove_results_ready_p PARAMS ((rtx)); static int ultra_fpmode_conflict_exists PARAMS ((enum machine_mode)); static rtx *ultra_find_type PARAMS ((int, rtx *, int)); static void ultra_build_types_avail PARAMS ((rtx *, int)); static void ultra_flush_pipeline PARAMS ((void)); static void ultra_rescan_pipeline_state PARAMS ((rtx *, int)); static int set_extends PARAMS ((rtx)); static void output_restore_regs PARAMS ((FILE *, int)); static void sparc_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT)); static void sparc_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT)); static void sparc_flat_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT)); static void sparc_flat_function_prologue PARAMS ((FILE *, HOST_WIDE_INT)); static void sparc_nonflat_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT, int)); static void sparc_nonflat_function_prologue PARAMS ((FILE *, HOST_WIDE_INT, int)); #ifdef OBJECT_FORMAT_ELF static void sparc_elf_asm_named_section PARAMS ((const char *, unsigned int)); #endif static void ultrasparc_sched_reorder PARAMS ((FILE *, int, rtx *, int)); static int ultrasparc_variable_issue PARAMS ((rtx)); static void ultrasparc_sched_init PARAMS ((void)); static int sparc_adjust_cost PARAMS ((rtx, rtx, rtx, int)); static int sparc_issue_rate PARAMS ((void)); static int sparc_variable_issue PARAMS ((FILE *, int, rtx, int)); static void sparc_sched_init PARAMS ((FILE *, int, int)); static int sparc_sched_reorder PARAMS ((FILE *, int, rtx *, int *, int)); static void emit_soft_tfmode_libcall PARAMS ((const char *, int, rtx *)); static void emit_soft_tfmode_binop PARAMS ((enum rtx_code, rtx *)); static void emit_soft_tfmode_unop PARAMS ((enum rtx_code, rtx *)); static void emit_soft_tfmode_cvt PARAMS ((enum rtx_code, rtx *)); static void emit_hard_tfmode_operation PARAMS ((enum rtx_code, rtx *)); /* Option handling. */ /* Code model option as passed by user. */ const char *sparc_cmodel_string; /* Parsed value. */ enum cmodel sparc_cmodel; char sparc_hard_reg_printed[8]; struct sparc_cpu_select sparc_select[] = { /* switch name, tune arch */ { (char *)0, "default", 1, 1 }, { (char *)0, "-mcpu=", 1, 1 }, { (char *)0, "-mtune=", 1, 0 }, { 0, 0, 0, 0 } }; /* CPU type. This is set from TARGET_CPU_DEFAULT and -m{cpu,tune}=xxx. */ enum processor_type sparc_cpu; /* Initialize the GCC target structure. */ /* The sparc default is to use .half rather than .short for aligned HI objects. Use .word instead of .long on non-ELF systems. */ #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t" #ifndef OBJECT_FORMAT_ELF #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t" #endif #undef TARGET_ASM_UNALIGNED_HI_OP #define TARGET_ASM_UNALIGNED_HI_OP "\t.uahalf\t" #undef TARGET_ASM_UNALIGNED_SI_OP #define TARGET_ASM_UNALIGNED_SI_OP "\t.uaword\t" #undef TARGET_ASM_UNALIGNED_DI_OP #define TARGET_ASM_UNALIGNED_DI_OP "\t.uaxword\t" /* The target hook has to handle DI-mode values. */ #undef TARGET_ASM_INTEGER #define TARGET_ASM_INTEGER sparc_assemble_integer #undef TARGET_ASM_FUNCTION_PROLOGUE #define TARGET_ASM_FUNCTION_PROLOGUE sparc_output_function_prologue #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE sparc_output_function_epilogue #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST sparc_adjust_cost #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE sparc_issue_rate #undef TARGET_SCHED_VARIABLE_ISSUE #define TARGET_SCHED_VARIABLE_ISSUE sparc_variable_issue #undef TARGET_SCHED_INIT #define TARGET_SCHED_INIT sparc_sched_init #undef TARGET_SCHED_REORDER #define TARGET_SCHED_REORDER sparc_sched_reorder struct gcc_target targetm = TARGET_INITIALIZER; /* Validate and override various options, and do some machine dependent initialization. */ void sparc_override_options () { static struct code_model { const char *const name; const int value; } const cmodels[] = { { "32", CM_32 }, { "medlow", CM_MEDLOW }, { "medmid", CM_MEDMID }, { "medany", CM_MEDANY }, { "embmedany", CM_EMBMEDANY }, { 0, 0 } }; const struct code_model *cmodel; /* Map TARGET_CPU_DEFAULT to value for -m{arch,tune}=. */ static struct cpu_default { const int cpu; const char *const name; } const cpu_default[] = { /* There must be one entry here for each TARGET_CPU value. */ { TARGET_CPU_sparc, "cypress" }, { TARGET_CPU_sparclet, "tsc701" }, { TARGET_CPU_sparclite, "f930" }, { TARGET_CPU_v8, "v8" }, { TARGET_CPU_hypersparc, "hypersparc" }, { TARGET_CPU_sparclite86x, "sparclite86x" }, { TARGET_CPU_supersparc, "supersparc" }, { TARGET_CPU_v9, "v9" }, { TARGET_CPU_ultrasparc, "ultrasparc" }, { 0, 0 } }; const struct cpu_default *def; /* Table of values for -m{cpu,tune}=. */ static struct cpu_table { const char *const name; const enum processor_type processor; const int disable; const int enable; } const cpu_table[] = { { "v7", PROCESSOR_V7, MASK_ISA, 0 }, { "cypress", PROCESSOR_CYPRESS, MASK_ISA, 0 }, { "v8", PROCESSOR_V8, MASK_ISA, MASK_V8 }, /* TI TMS390Z55 supersparc */ { "supersparc", PROCESSOR_SUPERSPARC, MASK_ISA, MASK_V8 }, { "sparclite", PROCESSOR_SPARCLITE, MASK_ISA, MASK_SPARCLITE }, /* The Fujitsu MB86930 is the original sparclite chip, with no fpu. The Fujitsu MB86934 is the recent sparclite chip, with an fpu. */ { "f930", PROCESSOR_F930, MASK_ISA|MASK_FPU, MASK_SPARCLITE }, { "f934", PROCESSOR_F934, MASK_ISA, MASK_SPARCLITE|MASK_FPU }, { "hypersparc", PROCESSOR_HYPERSPARC, MASK_ISA, MASK_V8|MASK_FPU }, { "sparclite86x", PROCESSOR_SPARCLITE86X, MASK_ISA|MASK_FPU, MASK_SPARCLITE }, { "sparclet", PROCESSOR_SPARCLET, MASK_ISA, MASK_SPARCLET }, /* TEMIC sparclet */ { "tsc701", PROCESSOR_TSC701, MASK_ISA, MASK_SPARCLET }, { "v9", PROCESSOR_V9, MASK_ISA, MASK_V9 }, /* TI ultrasparc I, II, IIi */ { "ultrasparc", PROCESSOR_ULTRASPARC, MASK_ISA, MASK_V9 /* Although insns using %y are deprecated, it is a clear win on current ultrasparcs. */ |MASK_DEPRECATED_V8_INSNS}, { 0, 0, 0, 0 } }; const struct cpu_table *cpu; const struct sparc_cpu_select *sel; int fpu; #ifndef SPARC_BI_ARCH /* Check for unsupported architecture size. */ if (! TARGET_64BIT != DEFAULT_ARCH32_P) error ("%s is not supported by this configuration", DEFAULT_ARCH32_P ? "-m64" : "-m32"); #endif /* We force all 64bit archs to use 128 bit long double */ if (TARGET_64BIT && ! TARGET_LONG_DOUBLE_128) { error ("-mlong-double-64 not allowed with -m64"); target_flags |= MASK_LONG_DOUBLE_128; } /* Code model selection. */ sparc_cmodel = SPARC_DEFAULT_CMODEL; #ifdef SPARC_BI_ARCH if (TARGET_ARCH32) sparc_cmodel = CM_32; #endif if (sparc_cmodel_string != NULL) { if (TARGET_ARCH64) { for (cmodel = &cmodels[0]; cmodel->name; cmodel++) if (strcmp (sparc_cmodel_string, cmodel->name) == 0) break; if (cmodel->name == NULL) error ("bad value (%s) for -mcmodel= switch", sparc_cmodel_string); else sparc_cmodel = cmodel->value; } else error ("-mcmodel= is not supported on 32 bit systems"); } fpu = TARGET_FPU; /* save current -mfpu status */ /* Set the default CPU. */ for (def = &cpu_default[0]; def->name; ++def) if (def->cpu == TARGET_CPU_DEFAULT) break; if (! def->name) abort (); sparc_select[0].string = def->name; for (sel = &sparc_select[0]; sel->name; ++sel) { if (sel->string) { for (cpu = &cpu_table[0]; cpu->name; ++cpu) if (! strcmp (sel->string, cpu->name)) { if (sel->set_tune_p) sparc_cpu = cpu->processor; if (sel->set_arch_p) { target_flags &= ~cpu->disable; target_flags |= cpu->enable; } break; } if (! cpu->name) error ("bad value (%s) for %s switch", sel->string, sel->name); } } /* If -mfpu or -mno-fpu was explicitly used, don't override with the processor default. Clear MASK_FPU_SET to avoid confusing the reverse mapping from switch values to names. */ if (TARGET_FPU_SET) { target_flags = (target_flags & ~MASK_FPU) | fpu; target_flags &= ~MASK_FPU_SET; } /* Don't allow -mvis if FPU is disabled. */ if (! TARGET_FPU) target_flags &= ~MASK_VIS; /* -mvis assumes UltraSPARC+, so we are sure v9 instructions are available. -m64 also implies v9. */ if (TARGET_VIS || TARGET_ARCH64) { target_flags |= MASK_V9; target_flags &= ~(MASK_V8 | MASK_SPARCLET | MASK_SPARCLITE); } /* Use the deprecated v8 insns for sparc64 in 32 bit mode. */ if (TARGET_V9 && TARGET_ARCH32) target_flags |= MASK_DEPRECATED_V8_INSNS; /* V8PLUS requires V9, makes no sense in 64 bit mode. */ if (! TARGET_V9 || TARGET_ARCH64) target_flags &= ~MASK_V8PLUS; /* Don't use stack biasing in 32 bit mode. */ if (TARGET_ARCH32) target_flags &= ~MASK_STACK_BIAS; /* Supply a default value for align_functions. */ if (align_functions == 0 && sparc_cpu == PROCESSOR_ULTRASPARC) align_functions = 32; /* Validate PCC_STRUCT_RETURN. */ if (flag_pcc_struct_return == DEFAULT_PCC_STRUCT_RETURN) flag_pcc_struct_return = (TARGET_ARCH64 ? 0 : 1); /* Only use .uaxword when compiling for a 64-bit target. */ if (!TARGET_ARCH64) targetm.asm_out.unaligned_op.di = NULL; /* Do various machine dependent initializations. */ sparc_init_modes (); /* Register global variables with the garbage collector. */ sparc_add_gc_roots (); } /* Miscellaneous utilities. */ /* Nonzero if CODE, a comparison, is suitable for use in v9 conditional move or branch on register contents instructions. */ int v9_regcmp_p (code) enum rtx_code code; { return (code == EQ || code == NE || code == GE || code == LT || code == LE || code == GT); } /* Operand constraints. */ /* Return non-zero only if OP is a register of mode MODE, or const0_rtx. */ int reg_or_0_operand (op, mode) rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (op == const0_rtx) return 1; if (GET_MODE (op) == VOIDmode && GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0 && CONST_DOUBLE_LOW (op) == 0) return 1; if (fp_zero_operand (op, mode)) return 1; return 0; } /* Nonzero if OP is a floating point value with value 0.0. */ int fp_zero_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_MODE_CLASS (GET_MODE (op)) != MODE_FLOAT) return 0; return op == CONST0_RTX (mode); } /* Nonzero if OP is a register operand in floating point register. */ int fp_register_operand (op, mode) rtx op; enum machine_mode mode; { if (! register_operand (op, mode)) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); return GET_CODE (op) == REG && SPARC_FP_REG_P (REGNO (op)); } /* Nonzero if OP is a floating point constant which can be loaded into an integer register using a single sethi instruction. */ int fp_sethi_p (op) rtx op; { if (GET_CODE (op) == CONST_DOUBLE) { REAL_VALUE_TYPE r; long i; REAL_VALUE_FROM_CONST_DOUBLE (r, op); if (REAL_VALUES_EQUAL (r, dconst0) && ! REAL_VALUE_MINUS_ZERO (r)) return 0; REAL_VALUE_TO_TARGET_SINGLE (r, i); if (SPARC_SETHI_P (i)) return 1; } return 0; } /* Nonzero if OP is a floating point constant which can be loaded into an integer register using a single mov instruction. */ int fp_mov_p (op) rtx op; { if (GET_CODE (op) == CONST_DOUBLE) { REAL_VALUE_TYPE r; long i; REAL_VALUE_FROM_CONST_DOUBLE (r, op); if (REAL_VALUES_EQUAL (r, dconst0) && ! REAL_VALUE_MINUS_ZERO (r)) return 0; REAL_VALUE_TO_TARGET_SINGLE (r, i); if (SPARC_SIMM13_P (i)) return 1; } return 0; } /* Nonzero if OP is a floating point constant which can be loaded into an integer register using a high/losum instruction sequence. */ int fp_high_losum_p (op) rtx op; { /* The constraints calling this should only be in SFmode move insns, so any constant which cannot be moved using a single insn will do. */ if (GET_CODE (op) == CONST_DOUBLE) { REAL_VALUE_TYPE r; long i; REAL_VALUE_FROM_CONST_DOUBLE (r, op); if (REAL_VALUES_EQUAL (r, dconst0) && ! REAL_VALUE_MINUS_ZERO (r)) return 0; REAL_VALUE_TO_TARGET_SINGLE (r, i); if (! SPARC_SETHI_P (i) && ! SPARC_SIMM13_P (i)) return 1; } return 0; } /* Nonzero if OP is an integer register. */ int intreg_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (register_operand (op, SImode) || (TARGET_ARCH64 && register_operand (op, DImode))); } /* Nonzero if OP is a floating point condition code register. */ int fcc_reg_operand (op, mode) rtx op; enum machine_mode mode; { /* This can happen when recog is called from combine. Op may be a MEM. Fail instead of calling abort in this case. */ if (GET_CODE (op) != REG) return 0; if (mode != VOIDmode && mode != GET_MODE (op)) return 0; if (mode == VOIDmode && (GET_MODE (op) != CCFPmode && GET_MODE (op) != CCFPEmode)) return 0; #if 0 /* ??? ==> 1 when %fcc0-3 are pseudos first. See gen_compare_reg(). */ if (reg_renumber == 0) return REGNO (op) >= FIRST_PSEUDO_REGISTER; return REGNO_OK_FOR_CCFP_P (REGNO (op)); #else return (unsigned) REGNO (op) - SPARC_FIRST_V9_FCC_REG < 4; #endif } /* Nonzero if OP is a floating point condition code fcc0 register. */ int fcc0_reg_operand (op, mode) rtx op; enum machine_mode mode; { /* This can happen when recog is called from combine. Op may be a MEM. Fail instead of calling abort in this case. */ if (GET_CODE (op) != REG) return 0; if (mode != VOIDmode && mode != GET_MODE (op)) return 0; if (mode == VOIDmode && (GET_MODE (op) != CCFPmode && GET_MODE (op) != CCFPEmode)) return 0; return REGNO (op) == SPARC_FCC_REG; } /* Nonzero if OP is an integer or floating point condition code register. */ int icc_or_fcc_reg_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == REG && REGNO (op) == SPARC_ICC_REG) { if (mode != VOIDmode && mode != GET_MODE (op)) return 0; if (mode == VOIDmode && GET_MODE (op) != CCmode && GET_MODE (op) != CCXmode) return 0; return 1; } return fcc_reg_operand (op, mode); } /* Nonzero if OP can appear as the dest of a RESTORE insn. */ int restore_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == REG && GET_MODE (op) == mode && (REGNO (op) < 8 || (REGNO (op) >= 24 && REGNO (op) < 32))); } /* Call insn on SPARC can take a PC-relative constant address, or any regular memory address. */ int call_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) != MEM) abort (); op = XEXP (op, 0); return (symbolic_operand (op, mode) || memory_address_p (Pmode, op)); } int call_operand_address (op, mode) rtx op; enum machine_mode mode; { return (symbolic_operand (op, mode) || memory_address_p (Pmode, op)); } /* Returns 1 if OP is either a symbol reference or a sum of a symbol reference and a constant. */ int symbolic_operand (op, mode) register rtx op; enum machine_mode mode; { enum machine_mode omode = GET_MODE (op); if (omode != mode && omode != VOIDmode && mode != VOIDmode) return 0; switch (GET_CODE (op)) { case SYMBOL_REF: case LABEL_REF: return 1; case CONST: op = XEXP (op, 0); return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF || GET_CODE (XEXP (op, 0)) == LABEL_REF) && GET_CODE (XEXP (op, 1)) == CONST_INT); default: return 0; } } /* Return truth value of statement that OP is a symbolic memory operand of mode MODE. */ int symbolic_memory_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; op = XEXP (op, 0); return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST || GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF); } /* Return truth value of statement that OP is a LABEL_REF of mode MODE. */ int label_ref_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) != LABEL_REF) return 0; if (GET_MODE (op) != mode) return 0; return 1; } /* Return 1 if the operand is an argument used in generating pic references in either the medium/low or medium/anywhere code models of sparc64. */ int sp64_medium_pic_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { /* Check for (const (minus (symbol_ref:GOT) (const (minus (label) (pc))))). */ if (GET_CODE (op) != CONST) return 0; op = XEXP (op, 0); if (GET_CODE (op) != MINUS) return 0; if (GET_CODE (XEXP (op, 0)) != SYMBOL_REF) return 0; /* ??? Ensure symbol is GOT. */ if (GET_CODE (XEXP (op, 1)) != CONST) return 0; if (GET_CODE (XEXP (XEXP (op, 1), 0)) != MINUS) return 0; return 1; } /* Return 1 if the operand is a data segment reference. This includes the readonly data segment, or in other words anything but the text segment. This is needed in the medium/anywhere code model on v9. These values are accessed with EMBMEDANY_BASE_REG. */ int data_segment_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { switch (GET_CODE (op)) { case SYMBOL_REF : return ! SYMBOL_REF_FLAG (op); case PLUS : /* Assume canonical format of symbol + constant. Fall through. */ case CONST : return data_segment_operand (XEXP (op, 0), VOIDmode); default : return 0; } } /* Return 1 if the operand is a text segment reference. This is needed in the medium/anywhere code model on v9. */ int text_segment_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { switch (GET_CODE (op)) { case LABEL_REF : return 1; case SYMBOL_REF : return SYMBOL_REF_FLAG (op); case PLUS : /* Assume canonical format of symbol + constant. Fall through. */ case CONST : return text_segment_operand (XEXP (op, 0), VOIDmode); default : return 0; } } /* Return 1 if the operand is either a register or a memory operand that is not symbolic. */ int reg_or_nonsymb_mem_operand (op, mode) register rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode)) return 1; return 0; } int splittable_symbolic_memory_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) != MEM) return 0; if (! symbolic_operand (XEXP (op, 0), Pmode)) return 0; return 1; } int splittable_immediate_memory_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) != MEM) return 0; if (! immediate_operand (XEXP (op, 0), Pmode)) return 0; return 1; } /* Return truth value of whether OP is EQ or NE. */ int eq_or_neq (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == EQ || GET_CODE (op) == NE); } /* Return 1 if this is a comparison operator, but not an EQ, NE, GEU, or LTU for non-floating-point. We handle those specially. */ int normal_comp_operator (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (op); if (GET_RTX_CLASS (code) != '<') return 0; if (GET_MODE (XEXP (op, 0)) == CCFPmode || GET_MODE (XEXP (op, 0)) == CCFPEmode) return 1; return (code != NE && code != EQ && code != GEU && code != LTU); } /* Return 1 if this is a comparison operator. This allows the use of MATCH_OPERATOR to recognize all the branch insns. */ int noov_compare_op (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (op); if (GET_RTX_CLASS (code) != '<') return 0; if (GET_MODE (XEXP (op, 0)) == CC_NOOVmode || GET_MODE (XEXP (op, 0)) == CCX_NOOVmode) /* These are the only branches which work with CC_NOOVmode. */ return (code == EQ || code == NE || code == GE || code == LT); return 1; } /* Return 1 if this is a 64-bit comparison operator. This allows the use of MATCH_OPERATOR to recognize all the branch insns. */ int noov_compare64_op (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (op); if (! TARGET_V9) return 0; if (GET_RTX_CLASS (code) != '<') return 0; if (GET_MODE (XEXP (op, 0)) == CCX_NOOVmode) /* These are the only branches which work with CCX_NOOVmode. */ return (code == EQ || code == NE || code == GE || code == LT); return (GET_MODE (XEXP (op, 0)) == CCXmode); } /* Nonzero if OP is a comparison operator suitable for use in v9 conditional move or branch on register contents instructions. */ int v9_regcmp_op (op, mode) register rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (op); if (GET_RTX_CLASS (code) != '<') return 0; return v9_regcmp_p (code); } /* Return 1 if this is a SIGN_EXTEND or ZERO_EXTEND operation. */ int extend_op (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND; } /* Return nonzero if OP is an operator of mode MODE which can set the condition codes explicitly. We do not include PLUS and MINUS because these require CC_NOOVmode, which we handle explicitly. */ int cc_arithop (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) == AND || GET_CODE (op) == IOR || GET_CODE (op) == XOR) return 1; return 0; } /* Return nonzero if OP is an operator of mode MODE which can bitwise complement its second operand and set the condition codes explicitly. */ int cc_arithopn (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { /* XOR is not here because combine canonicalizes (xor (not ...) ...) and (xor ... (not ...)) to (not (xor ...)). */ return (GET_CODE (op) == AND || GET_CODE (op) == IOR); } /* Return true if OP is a register, or is a CONST_INT that can fit in a signed 13 bit immediate field. This is an acceptable SImode operand for most 3 address instructions. */ int arith_operand (op, mode) rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (GET_CODE (op) != CONST_INT) return 0; return SMALL_INT32 (op); } /* Return true if OP is a constant 4096 */ int arith_4096_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { if (GET_CODE (op) != CONST_INT) return 0; else return INTVAL (op) == 4096; } /* Return true if OP is suitable as second operand for add/sub */ int arith_add_operand (op, mode) rtx op; enum machine_mode mode; { return arith_operand (op, mode) || arith_4096_operand (op, mode); } /* Return true if OP is a CONST_INT or a CONST_DOUBLE which can fit in the immediate field of OR and XOR instructions. Used for 64-bit constant formation patterns. */ int const64_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return ((GET_CODE (op) == CONST_INT && SPARC_SIMM13_P (INTVAL (op))) #if HOST_BITS_PER_WIDE_INT != 64 || (GET_CODE (op) == CONST_DOUBLE && SPARC_SIMM13_P (CONST_DOUBLE_LOW (op)) && (CONST_DOUBLE_HIGH (op) == ((CONST_DOUBLE_LOW (op) & 0x80000000) != 0 ? (HOST_WIDE_INT)-1 : 0))) #endif ); } /* The same, but only for sethi instructions. */ int const64_high_operand (op, mode) rtx op; enum machine_mode mode; { return ((GET_CODE (op) == CONST_INT && (INTVAL (op) & ~(HOST_WIDE_INT)0x3ff) != 0 && SPARC_SETHI_P (INTVAL (op) & GET_MODE_MASK (mode)) ) || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0 && (CONST_DOUBLE_LOW (op) & ~(HOST_WIDE_INT)0x3ff) != 0 && SPARC_SETHI_P (CONST_DOUBLE_LOW (op)))); } /* Return true if OP is a register, or is a CONST_INT that can fit in a signed 11 bit immediate field. This is an acceptable SImode operand for the movcc instructions. */ int arith11_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && SPARC_SIMM11_P (INTVAL (op)))); } /* Return true if OP is a register, or is a CONST_INT that can fit in a signed 10 bit immediate field. This is an acceptable SImode operand for the movrcc instructions. */ int arith10_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && SPARC_SIMM10_P (INTVAL (op)))); } /* Return true if OP is a register, is a CONST_INT that fits in a 13 bit immediate field, or is a CONST_DOUBLE whose both parts fit in a 13 bit immediate field. v9: Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that can fit in a 13 bit immediate field. This is an acceptable DImode operand for most 3 address instructions. */ int arith_double_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && SMALL_INT (op)) || (! TARGET_ARCH64 && GET_CODE (op) == CONST_DOUBLE && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000 && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_HIGH (op) + 0x1000) < 0x2000) || (TARGET_ARCH64 && GET_CODE (op) == CONST_DOUBLE && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000 && ((CONST_DOUBLE_HIGH (op) == -1 && (CONST_DOUBLE_LOW (op) & 0x1000) == 0x1000) || (CONST_DOUBLE_HIGH (op) == 0 && (CONST_DOUBLE_LOW (op) & 0x1000) == 0)))); } /* Return true if OP is a constant 4096 for DImode on ARCH64 */ int arith_double_4096_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (TARGET_ARCH64 && ((GET_CODE (op) == CONST_INT && INTVAL (op) == 4096) || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_LOW (op) == 4096 && CONST_DOUBLE_HIGH (op) == 0))); } /* Return true if OP is suitable as second operand for add/sub in DImode */ int arith_double_add_operand (op, mode) rtx op; enum machine_mode mode; { return arith_double_operand (op, mode) || arith_double_4096_operand (op, mode); } /* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that can fit in an 11 bit immediate field. This is an acceptable DImode operand for the movcc instructions. */ /* ??? Replace with arith11_operand? */ int arith11_double_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_DOUBLE && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x400) < 0x800 && ((CONST_DOUBLE_HIGH (op) == -1 && (CONST_DOUBLE_LOW (op) & 0x400) == 0x400) || (CONST_DOUBLE_HIGH (op) == 0 && (CONST_DOUBLE_LOW (op) & 0x400) == 0))) || (GET_CODE (op) == CONST_INT && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) && (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x400) < 0x800)); } /* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that can fit in an 10 bit immediate field. This is an acceptable DImode operand for the movrcc instructions. */ /* ??? Replace with arith10_operand? */ int arith10_double_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_DOUBLE && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) && (unsigned) (CONST_DOUBLE_LOW (op) + 0x200) < 0x400 && ((CONST_DOUBLE_HIGH (op) == -1 && (CONST_DOUBLE_LOW (op) & 0x200) == 0x200) || (CONST_DOUBLE_HIGH (op) == 0 && (CONST_DOUBLE_LOW (op) & 0x200) == 0))) || (GET_CODE (op) == CONST_INT && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) && (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x200) < 0x400)); } /* Return truth value of whether OP is an integer which fits the range constraining immediate operands in most three-address insns, which have a 13 bit immediate field. */ int small_int (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == CONST_INT && SMALL_INT (op)); } int small_int_or_double (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return ((GET_CODE (op) == CONST_INT && SMALL_INT (op)) || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0 && SPARC_SIMM13_P (CONST_DOUBLE_LOW (op)))); } /* Recognize operand values for the umul instruction. That instruction sign extends immediate values just like all other sparc instructions, but interprets the extended result as an unsigned number. */ int uns_small_int (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { #if HOST_BITS_PER_WIDE_INT > 32 /* All allowed constants will fit a CONST_INT. */ return (GET_CODE (op) == CONST_INT && ((INTVAL (op) >= 0 && INTVAL (op) < 0x1000) || (INTVAL (op) >= 0xFFFFF000 && INTVAL (op) <= 0xFFFFFFFF))); #else return ((GET_CODE (op) == CONST_INT && (unsigned) INTVAL (op) < 0x1000) || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0 && (unsigned) CONST_DOUBLE_LOW (op) - 0xFFFFF000 < 0x1000)); #endif } int uns_arith_operand (op, mode) rtx op; enum machine_mode mode; { return register_operand (op, mode) || uns_small_int (op, mode); } /* Return truth value of statement that OP is a call-clobbered register. */ int clobbered_register (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == REG && call_used_regs[REGNO (op)]); } /* Return 1 if OP is a valid operand for the source of a move insn. */ int input_operand (op, mode) rtx op; enum machine_mode mode; { /* If both modes are non-void they must be the same. */ if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op)) return 0; /* Only a tiny bit of handling for CONSTANT_P_RTX is necessary. */ if (GET_CODE (op) == CONST && GET_CODE (XEXP (op, 0)) == CONSTANT_P_RTX) return 1; /* Allow any one instruction integer constant, and all CONST_INT variants when we are working in DImode and !arch64. */ if (GET_MODE_CLASS (mode) == MODE_INT && ((GET_CODE (op) == CONST_INT && (SPARC_SETHI_P (INTVAL (op) & GET_MODE_MASK (mode)) || SPARC_SIMM13_P (INTVAL (op)) || (mode == DImode && ! TARGET_ARCH64))) || (TARGET_ARCH64 && GET_CODE (op) == CONST_DOUBLE && ((CONST_DOUBLE_HIGH (op) == 0 && SPARC_SETHI_P (CONST_DOUBLE_LOW (op))) || #if HOST_BITS_PER_WIDE_INT == 64 (CONST_DOUBLE_HIGH (op) == 0 && SPARC_SIMM13_P (CONST_DOUBLE_LOW (op))) #else (SPARC_SIMM13_P (CONST_DOUBLE_LOW (op)) && (((CONST_DOUBLE_LOW (op) & 0x80000000) == 0 && CONST_DOUBLE_HIGH (op) == 0) || (CONST_DOUBLE_HIGH (op) == -1 && CONST_DOUBLE_LOW (op) & 0x80000000) != 0)) #endif )))) return 1; /* If !arch64 and this is a DImode const, allow it so that the splits can be generated. */ if (! TARGET_ARCH64 && mode == DImode && GET_CODE (op) == CONST_DOUBLE) return 1; if (register_operand (op, mode)) return 1; if (GET_MODE_CLASS (mode) == MODE_FLOAT && GET_CODE (op) == CONST_DOUBLE) return 1; /* If this is a SUBREG, look inside so that we handle paradoxical ones. */ if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); /* Check for valid MEM forms. */ if (GET_CODE (op) == MEM) { rtx inside = XEXP (op, 0); if (GET_CODE (inside) == LO_SUM) { /* We can't allow these because all of the splits (eventually as they trickle down into DFmode splits) require offsettable memory references. */ if (! TARGET_V9 && GET_MODE (op) == TFmode) return 0; return (register_operand (XEXP (inside, 0), Pmode) && CONSTANT_P (XEXP (inside, 1))); } return memory_address_p (mode, inside); } return 0; } /* We know it can't be done in one insn when we get here, the movsi expander guarentees this. */ void sparc_emit_set_const32 (op0, op1) rtx op0; rtx op1; { enum machine_mode mode = GET_MODE (op0); rtx temp; if (GET_CODE (op1) == CONST_INT) { HOST_WIDE_INT value = INTVAL (op1); if (SPARC_SETHI_P (value & GET_MODE_MASK (mode)) || SPARC_SIMM13_P (value)) abort (); } /* Full 2-insn decomposition is needed. */ if (reload_in_progress || reload_completed) temp = op0; else temp = gen_reg_rtx (mode); if (GET_CODE (op1) == CONST_INT) { /* Emit them as real moves instead of a HIGH/LO_SUM, this way CSE can see everything and reuse intermediate values if it wants. */ if (TARGET_ARCH64 && HOST_BITS_PER_WIDE_INT != 64 && (INTVAL (op1) & 0x80000000) != 0) emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_CONST_DOUBLE (VOIDmode, INTVAL (op1) & ~(HOST_WIDE_INT)0x3ff, 0))); else emit_insn (gen_rtx_SET (VOIDmode, temp, GEN_INT (INTVAL (op1) & ~(HOST_WIDE_INT)0x3ff))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_IOR (mode, temp, GEN_INT (INTVAL (op1) & 0x3ff)))); } else { /* A symbol, emit in the traditional way. */ emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_HIGH (mode, op1))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_LO_SUM (mode, temp, op1))); } } /* Sparc-v9 code-model support. */ void sparc_emit_set_symbolic_const64 (op0, op1, temp1) rtx op0; rtx op1; rtx temp1; { rtx ti_temp1 = 0; if (temp1 && GET_MODE (temp1) == TImode) { ti_temp1 = temp1; temp1 = gen_rtx_REG (DImode, REGNO (temp1)); } switch (sparc_cmodel) { case CM_MEDLOW: /* The range spanned by all instructions in the object is less than 2^31 bytes (2GB) and the distance from any instruction to the location of the label _GLOBAL_OFFSET_TABLE_ is less than 2^31 bytes (2GB). The executable must be in the low 4TB of the virtual address space. sethi %hi(symbol), %temp or %temp, %lo(symbol), %reg */ emit_insn (gen_rtx_SET (VOIDmode, temp1, gen_rtx_HIGH (DImode, op1))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_LO_SUM (DImode, temp1, op1))); break; case CM_MEDMID: /* The range spanned by all instructions in the object is less than 2^31 bytes (2GB) and the distance from any instruction to the location of the label _GLOBAL_OFFSET_TABLE_ is less than 2^31 bytes (2GB). The executable must be in the low 16TB of the virtual address space. sethi %h44(symbol), %temp1 or %temp1, %m44(symbol), %temp2 sllx %temp2, 12, %temp3 or %temp3, %l44(symbol), %reg */ emit_insn (gen_seth44 (op0, op1)); emit_insn (gen_setm44 (op0, op0, op1)); emit_insn (gen_rtx_SET (VOIDmode, temp1, gen_rtx_ASHIFT (DImode, op0, GEN_INT (12)))); emit_insn (gen_setl44 (op0, temp1, op1)); break; case CM_MEDANY: /* The range spanned by all instructions in the object is less than 2^31 bytes (2GB) and the distance from any instruction to the location of the label _GLOBAL_OFFSET_TABLE_ is less than 2^31 bytes (2GB). The executable can be placed anywhere in the virtual address space. sethi %hh(symbol), %temp1 sethi %lm(symbol), %temp2 or %temp1, %hm(symbol), %temp3 or %temp2, %lo(symbol), %temp4 sllx %temp3, 32, %temp5 or %temp4, %temp5, %reg */ /* It is possible that one of the registers we got for operands[2] might coincide with that of operands[0] (which is why we made it TImode). Pick the other one to use as our scratch. */ if (rtx_equal_p (temp1, op0)) { if (ti_temp1) temp1 = gen_rtx_REG (DImode, REGNO (temp1) + 1); else abort(); } emit_insn (gen_sethh (op0, op1)); emit_insn (gen_setlm (temp1, op1)); emit_insn (gen_sethm (op0, op0, op1)); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, op0, GEN_INT (32)))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_PLUS (DImode, op0, temp1))); emit_insn (gen_setlo (op0, op0, op1)); break; case CM_EMBMEDANY: /* Old old old backwards compatibility kruft here. Essentially it is MEDLOW with a fixed 64-bit virtual base added to all data segment addresses. Text-segment stuff is computed like MEDANY, we can't reuse the code above because the relocation knobs look different. Data segment: sethi %hi(symbol), %temp1 or %temp1, %lo(symbol), %temp2 add %temp2, EMBMEDANY_BASE_REG, %reg Text segment: sethi %uhi(symbol), %temp1 sethi %hi(symbol), %temp2 or %temp1, %ulo(symbol), %temp3 or %temp2, %lo(symbol), %temp4 sllx %temp3, 32, %temp5 or %temp4, %temp5, %reg */ if (data_segment_operand (op1, GET_MODE (op1))) { emit_insn (gen_embmedany_sethi (temp1, op1)); emit_insn (gen_embmedany_brsum (op0, temp1)); emit_insn (gen_embmedany_losum (op0, op0, op1)); } else { /* It is possible that one of the registers we got for operands[2] might coincide with that of operands[0] (which is why we made it TImode). Pick the other one to use as our scratch. */ if (rtx_equal_p (temp1, op0)) { if (ti_temp1) temp1 = gen_rtx_REG (DImode, REGNO (temp1) + 1); else abort(); } emit_insn (gen_embmedany_textuhi (op0, op1)); emit_insn (gen_embmedany_texthi (temp1, op1)); emit_insn (gen_embmedany_textulo (op0, op0, op1)); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, op0, GEN_INT (32)))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_PLUS (DImode, op0, temp1))); emit_insn (gen_embmedany_textlo (op0, op0, op1)); } break; default: abort(); } } /* These avoid problems when cross compiling. If we do not go through all this hair then the optimizer will see invalid REG_EQUAL notes or in some cases none at all. */ static void sparc_emit_set_safe_HIGH64 PARAMS ((rtx, HOST_WIDE_INT)); static rtx gen_safe_SET64 PARAMS ((rtx, HOST_WIDE_INT)); static rtx gen_safe_OR64 PARAMS ((rtx, HOST_WIDE_INT)); static rtx gen_safe_XOR64 PARAMS ((rtx, HOST_WIDE_INT)); #if HOST_BITS_PER_WIDE_INT == 64 #define GEN_HIGHINT64(__x) GEN_INT ((__x) & ~(HOST_WIDE_INT)0x3ff) #define GEN_INT64(__x) GEN_INT (__x) #else #define GEN_HIGHINT64(__x) \ gen_rtx_CONST_DOUBLE (VOIDmode, (__x) & ~(HOST_WIDE_INT)0x3ff, 0) #define GEN_INT64(__x) \ gen_rtx_CONST_DOUBLE (VOIDmode, (__x) & 0xffffffff, \ ((__x) & 0x80000000 \ ? -1 : 0)) #endif /* The optimizer is not to assume anything about exactly which bits are set for a HIGH, they are unspecified. Unfortunately this leads to many missed optimizations during CSE. We mask out the non-HIGH bits, and matches a plain movdi, to alleviate this problem. */ static void sparc_emit_set_safe_HIGH64 (dest, val) rtx dest; HOST_WIDE_INT val; { emit_insn (gen_rtx_SET (VOIDmode, dest, GEN_HIGHINT64 (val))); } static rtx gen_safe_SET64 (dest, val) rtx dest; HOST_WIDE_INT val; { return gen_rtx_SET (VOIDmode, dest, GEN_INT64 (val)); } static rtx gen_safe_OR64 (src, val) rtx src; HOST_WIDE_INT val; { return gen_rtx_IOR (DImode, src, GEN_INT64 (val)); } static rtx gen_safe_XOR64 (src, val) rtx src; HOST_WIDE_INT val; { return gen_rtx_XOR (DImode, src, GEN_INT64 (val)); } /* Worker routines for 64-bit constant formation on arch64. One of the key things to be doing in these emissions is to create as many temp REGs as possible. This makes it possible for half-built constants to be used later when such values are similar to something required later on. Without doing this, the optimizer cannot see such opportunities. */ static void sparc_emit_set_const64_quick1 PARAMS ((rtx, rtx, unsigned HOST_WIDE_INT, int)); static void sparc_emit_set_const64_quick1 (op0, temp, low_bits, is_neg) rtx op0; rtx temp; unsigned HOST_WIDE_INT low_bits; int is_neg; { unsigned HOST_WIDE_INT high_bits; if (is_neg) high_bits = (~low_bits) & 0xffffffff; else high_bits = low_bits; sparc_emit_set_safe_HIGH64 (temp, high_bits); if (!is_neg) { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_safe_OR64 (temp, (high_bits & 0x3ff)))); } else { /* If we are XOR'ing with -1, then we should emit a one's complement instead. This way the combiner will notice logical operations such as ANDN later on and substitute. */ if ((low_bits & 0x3ff) == 0x3ff) { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_NOT (DImode, temp))); } else { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_safe_XOR64 (temp, (-(HOST_WIDE_INT)0x400 | (low_bits & 0x3ff))))); } } } static void sparc_emit_set_const64_quick2 PARAMS ((rtx, rtx, unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, int)); static void sparc_emit_set_const64_quick2 (op0, temp, high_bits, low_immediate, shift_count) rtx op0; rtx temp; unsigned HOST_WIDE_INT high_bits; unsigned HOST_WIDE_INT low_immediate; int shift_count; { rtx temp2 = op0; if ((high_bits & 0xfffffc00) != 0) { sparc_emit_set_safe_HIGH64 (temp, high_bits); if ((high_bits & ~0xfffffc00) != 0) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_safe_OR64 (temp, (high_bits & 0x3ff)))); else temp2 = temp; } else { emit_insn (gen_safe_SET64 (temp, high_bits)); temp2 = temp; } /* Now shift it up into place. */ emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, temp2, GEN_INT (shift_count)))); /* If there is a low immediate part piece, finish up by putting that in as well. */ if (low_immediate != 0) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_safe_OR64 (op0, low_immediate))); } static void sparc_emit_set_const64_longway PARAMS ((rtx, rtx, unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT)); /* Full 64-bit constant decomposition. Even though this is the 'worst' case, we still optimize a few things away. */ static void sparc_emit_set_const64_longway (op0, temp, high_bits, low_bits) rtx op0; rtx temp; unsigned HOST_WIDE_INT high_bits; unsigned HOST_WIDE_INT low_bits; { rtx sub_temp; if (reload_in_progress || reload_completed) sub_temp = op0; else sub_temp = gen_reg_rtx (DImode); if ((high_bits & 0xfffffc00) != 0) { sparc_emit_set_safe_HIGH64 (temp, high_bits); if ((high_bits & ~0xfffffc00) != 0) emit_insn (gen_rtx_SET (VOIDmode, sub_temp, gen_safe_OR64 (temp, (high_bits & 0x3ff)))); else sub_temp = temp; } else { emit_insn (gen_safe_SET64 (temp, high_bits)); sub_temp = temp; } if (!reload_in_progress && !reload_completed) { rtx temp2 = gen_reg_rtx (DImode); rtx temp3 = gen_reg_rtx (DImode); rtx temp4 = gen_reg_rtx (DImode); emit_insn (gen_rtx_SET (VOIDmode, temp4, gen_rtx_ASHIFT (DImode, sub_temp, GEN_INT (32)))); sparc_emit_set_safe_HIGH64 (temp2, low_bits); if ((low_bits & ~0xfffffc00) != 0) { emit_insn (gen_rtx_SET (VOIDmode, temp3, gen_safe_OR64 (temp2, (low_bits & 0x3ff)))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_PLUS (DImode, temp4, temp3))); } else { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_PLUS (DImode, temp4, temp2))); } } else { rtx low1 = GEN_INT ((low_bits >> (32 - 12)) & 0xfff); rtx low2 = GEN_INT ((low_bits >> (32 - 12 - 12)) & 0xfff); rtx low3 = GEN_INT ((low_bits >> (32 - 12 - 12 - 8)) & 0x0ff); int to_shift = 12; /* We are in the middle of reload, so this is really painful. However we do still make an attempt to avoid emitting truly stupid code. */ if (low1 != const0_rtx) { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, sub_temp, GEN_INT (to_shift)))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_IOR (DImode, op0, low1))); sub_temp = op0; to_shift = 12; } else { to_shift += 12; } if (low2 != const0_rtx) { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, sub_temp, GEN_INT (to_shift)))); emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_IOR (DImode, op0, low2))); sub_temp = op0; to_shift = 8; } else { to_shift += 8; } emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, sub_temp, GEN_INT (to_shift)))); if (low3 != const0_rtx) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_IOR (DImode, op0, low3))); /* phew... */ } } /* Analyze a 64-bit constant for certain properties. */ static void analyze_64bit_constant PARAMS ((unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, int *, int *, int *)); static void analyze_64bit_constant (high_bits, low_bits, hbsp, lbsp, abbasp) unsigned HOST_WIDE_INT high_bits, low_bits; int *hbsp, *lbsp, *abbasp; { int lowest_bit_set, highest_bit_set, all_bits_between_are_set; int i; lowest_bit_set = highest_bit_set = -1; i = 0; do { if ((lowest_bit_set == -1) && ((low_bits >> i) & 1)) lowest_bit_set = i; if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1)) highest_bit_set = (64 - i - 1); } while (++i < 32 && ((highest_bit_set == -1) || (lowest_bit_set == -1))); if (i == 32) { i = 0; do { if ((lowest_bit_set == -1) && ((high_bits >> i) & 1)) lowest_bit_set = i + 32; if ((highest_bit_set == -1) && ((low_bits >> (32 - i - 1)) & 1)) highest_bit_set = 32 - i - 1; } while (++i < 32 && ((highest_bit_set == -1) || (lowest_bit_set == -1))); } /* If there are no bits set this should have gone out as one instruction! */ if (lowest_bit_set == -1 || highest_bit_set == -1) abort (); all_bits_between_are_set = 1; for (i = lowest_bit_set; i <= highest_bit_set; i++) { if (i < 32) { if ((low_bits & (1 << i)) != 0) continue; } else { if ((high_bits & (1 << (i - 32))) != 0) continue; } all_bits_between_are_set = 0; break; } *hbsp = highest_bit_set; *lbsp = lowest_bit_set; *abbasp = all_bits_between_are_set; } static int const64_is_2insns PARAMS ((unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT)); static int const64_is_2insns (high_bits, low_bits) unsigned HOST_WIDE_INT high_bits, low_bits; { int highest_bit_set, lowest_bit_set, all_bits_between_are_set; if (high_bits == 0 || high_bits == 0xffffffff) return 1; analyze_64bit_constant (high_bits, low_bits, &highest_bit_set, &lowest_bit_set, &all_bits_between_are_set); if ((highest_bit_set == 63 || lowest_bit_set == 0) && all_bits_between_are_set != 0) return 1; if ((highest_bit_set - lowest_bit_set) < 21) return 1; return 0; } static unsigned HOST_WIDE_INT create_simple_focus_bits PARAMS ((unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, int, int)); static unsigned HOST_WIDE_INT create_simple_focus_bits (high_bits, low_bits, lowest_bit_set, shift) unsigned HOST_WIDE_INT high_bits, low_bits; int lowest_bit_set, shift; { HOST_WIDE_INT hi, lo; if (lowest_bit_set < 32) { lo = (low_bits >> lowest_bit_set) << shift; hi = ((high_bits << (32 - lowest_bit_set)) << shift); } else { lo = 0; hi = ((high_bits >> (lowest_bit_set - 32)) << shift); } if (hi & lo) abort (); return (hi | lo); } /* Here we are sure to be arch64 and this is an integer constant being loaded into a register. Emit the most efficient insn sequence possible. Detection of all the 1-insn cases has been done already. */ void sparc_emit_set_const64 (op0, op1) rtx op0; rtx op1; { unsigned HOST_WIDE_INT high_bits, low_bits; int lowest_bit_set, highest_bit_set; int all_bits_between_are_set; rtx temp; /* Sanity check that we know what we are working with. */ if (! TARGET_ARCH64) abort (); if (GET_CODE (op0) != SUBREG) { if (GET_CODE (op0) != REG || (REGNO (op0) >= SPARC_FIRST_FP_REG && REGNO (op0) <= SPARC_LAST_V9_FP_REG)) abort (); } if (reload_in_progress || reload_completed) temp = op0; else temp = gen_reg_rtx (DImode); if (GET_CODE (op1) != CONST_DOUBLE && GET_CODE (op1) != CONST_INT) { sparc_emit_set_symbolic_const64 (op0, op1, temp); return; } if (GET_CODE (op1) == CONST_DOUBLE) { #if HOST_BITS_PER_WIDE_INT == 64 high_bits = (CONST_DOUBLE_LOW (op1) >> 32) & 0xffffffff; low_bits = CONST_DOUBLE_LOW (op1) & 0xffffffff; #else high_bits = CONST_DOUBLE_HIGH (op1); low_bits = CONST_DOUBLE_LOW (op1); #endif } else { #if HOST_BITS_PER_WIDE_INT == 64 high_bits = ((INTVAL (op1) >> 32) & 0xffffffff); low_bits = (INTVAL (op1) & 0xffffffff); #else high_bits = ((INTVAL (op1) < 0) ? 0xffffffff : 0x00000000); low_bits = INTVAL (op1); #endif } /* low_bits bits 0 --> 31 high_bits bits 32 --> 63 */ analyze_64bit_constant (high_bits, low_bits, &highest_bit_set, &lowest_bit_set, &all_bits_between_are_set); /* First try for a 2-insn sequence. */ /* These situations are preferred because the optimizer can * do more things with them: * 1) mov -1, %reg * sllx %reg, shift, %reg * 2) mov -1, %reg * srlx %reg, shift, %reg * 3) mov some_small_const, %reg * sllx %reg, shift, %reg */ if (((highest_bit_set == 63 || lowest_bit_set == 0) && all_bits_between_are_set != 0) || ((highest_bit_set - lowest_bit_set) < 12)) { HOST_WIDE_INT the_const = -1; int shift = lowest_bit_set; if ((highest_bit_set != 63 && lowest_bit_set != 0) || all_bits_between_are_set == 0) { the_const = create_simple_focus_bits (high_bits, low_bits, lowest_bit_set, 0); } else if (lowest_bit_set == 0) shift = -(63 - highest_bit_set); if (! SPARC_SIMM13_P (the_const)) abort (); emit_insn (gen_safe_SET64 (temp, the_const)); if (shift > 0) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, temp, GEN_INT (shift)))); else if (shift < 0) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_LSHIFTRT (DImode, temp, GEN_INT (-shift)))); else abort (); return; } /* Now a range of 22 or less bits set somewhere. * 1) sethi %hi(focus_bits), %reg * sllx %reg, shift, %reg * 2) sethi %hi(focus_bits), %reg * srlx %reg, shift, %reg */ if ((highest_bit_set - lowest_bit_set) < 21) { unsigned HOST_WIDE_INT focus_bits = create_simple_focus_bits (high_bits, low_bits, lowest_bit_set, 10); if (! SPARC_SETHI_P (focus_bits)) abort (); sparc_emit_set_safe_HIGH64 (temp, focus_bits); /* If lowest_bit_set == 10 then a sethi alone could have done it. */ if (lowest_bit_set < 10) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_LSHIFTRT (DImode, temp, GEN_INT (10 - lowest_bit_set)))); else if (lowest_bit_set > 10) emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_ASHIFT (DImode, temp, GEN_INT (lowest_bit_set - 10)))); else abort (); return; } /* 1) sethi %hi(low_bits), %reg * or %reg, %lo(low_bits), %reg * 2) sethi %hi(~low_bits), %reg * xor %reg, %lo(-0x400 | (low_bits & 0x3ff)), %reg */ if (high_bits == 0 || high_bits == 0xffffffff) { sparc_emit_set_const64_quick1 (op0, temp, low_bits, (high_bits == 0xffffffff)); return; } /* Now, try 3-insn sequences. */ /* 1) sethi %hi(high_bits), %reg * or %reg, %lo(high_bits), %reg * sllx %reg, 32, %reg */ if (low_bits == 0) { sparc_emit_set_const64_quick2 (op0, temp, high_bits, 0, 32); return; } /* We may be able to do something quick when the constant is negated, so try that. */ if (const64_is_2insns ((~high_bits) & 0xffffffff, (~low_bits) & 0xfffffc00)) { /* NOTE: The trailing bits get XOR'd so we need the non-negated bits, not the negated ones. */ unsigned HOST_WIDE_INT trailing_bits = low_bits & 0x3ff; if ((((~high_bits) & 0xffffffff) == 0 && ((~low_bits) & 0x80000000) == 0) || (((~high_bits) & 0xffffffff) == 0xffffffff && ((~low_bits) & 0x80000000) != 0)) { int fast_int = (~low_bits & 0xffffffff); if ((SPARC_SETHI_P (fast_int) && (~high_bits & 0xffffffff) == 0) || SPARC_SIMM13_P (fast_int)) emit_insn (gen_safe_SET64 (temp, fast_int)); else sparc_emit_set_const64 (temp, GEN_INT64 (fast_int)); } else { rtx negated_const; #if HOST_BITS_PER_WIDE_INT == 64 negated_const = GEN_INT (((~low_bits) & 0xfffffc00) | (((HOST_WIDE_INT)((~high_bits) & 0xffffffff))<<32)); #else negated_const = gen_rtx_CONST_DOUBLE (DImode, (~low_bits) & 0xfffffc00, (~high_bits) & 0xffffffff); #endif sparc_emit_set_const64 (temp, negated_const); } /* If we are XOR'ing with -1, then we should emit a one's complement instead. This way the combiner will notice logical operations such as ANDN later on and substitute. */ if (trailing_bits == 0x3ff) { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_NOT (DImode, temp))); } else { emit_insn (gen_rtx_SET (VOIDmode, op0, gen_safe_XOR64 (temp, (-0x400 | trailing_bits)))); } return; } /* 1) sethi %hi(xxx), %reg * or %reg, %lo(xxx), %reg * sllx %reg, yyy, %reg * * ??? This is just a generalized version of the low_bits==0 * thing above, FIXME... */ if ((highest_bit_set - lowest_bit_set) < 32) { unsigned HOST_WIDE_INT focus_bits = create_simple_focus_bits (high_bits, low_bits, lowest_bit_set, 0); /* We can't get here in this state. */ if (highest_bit_set < 32 || lowest_bit_set >= 32) abort (); /* So what we know is that the set bits straddle the middle of the 64-bit word. */ sparc_emit_set_const64_quick2 (op0, temp, focus_bits, 0, lowest_bit_set); return; } /* 1) sethi %hi(high_bits), %reg * or %reg, %lo(high_bits), %reg * sllx %reg, 32, %reg * or %reg, low_bits, %reg */ if (SPARC_SIMM13_P(low_bits) && ((int)low_bits > 0)) { sparc_emit_set_const64_quick2 (op0, temp, high_bits, low_bits, 32); return; } /* The easiest way when all else fails, is full decomposition. */ #if 0 printf ("sparc_emit_set_const64: Hard constant [%08lx%08lx] neg[%08lx%08lx]\n", high_bits, low_bits, ~high_bits, ~low_bits); #endif sparc_emit_set_const64_longway (op0, temp, high_bits, low_bits); } /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, return the mode to be used for the comparison. For floating-point, CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special processing is needed. */ enum machine_mode select_cc_mode (op, x, y) enum rtx_code op; rtx x; rtx y ATTRIBUTE_UNUSED; { if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) { switch (op) { case EQ: case NE: case UNORDERED: case ORDERED: case UNLT: case UNLE: case UNGT: case UNGE: case UNEQ: case LTGT: return CCFPmode; case LT: case LE: case GT: case GE: return CCFPEmode; default: abort (); } } else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS || GET_CODE (x) == NEG || GET_CODE (x) == ASHIFT) { if (TARGET_ARCH64 && GET_MODE (x) == DImode) return CCX_NOOVmode; else return CC_NOOVmode; } else { if (TARGET_ARCH64 && GET_MODE (x) == DImode) return CCXmode; else return CCmode; } } /* X and Y are two things to compare using CODE. Emit the compare insn and return the rtx for the cc reg in the proper mode. */ rtx gen_compare_reg (code, x, y) enum rtx_code code; rtx x, y; { enum machine_mode mode = SELECT_CC_MODE (code, x, y); rtx cc_reg; /* ??? We don't have movcc patterns so we cannot generate pseudo regs for the fcc regs (cse can't tell they're really call clobbered regs and will remove a duplicate comparison even if there is an intervening function call - it will then try to reload the cc reg via an int reg which is why we need the movcc patterns). It is possible to provide the movcc patterns by using the ldxfsr/stxfsr v9 insns. I tried it: you need two registers (say %g1,%g5) and it takes about 6 insns. A better fix would be to tell cse that CCFPE mode registers (even pseudos) are call clobbered. */ /* ??? This is an experiment. Rather than making changes to cse which may or may not be easy/clean, we do our own cse. This is possible because we will generate hard registers. Cse knows they're call clobbered (it doesn't know the same thing about pseudos). If we guess wrong, no big deal, but if we win, great! */ if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) #if 1 /* experiment */ { int reg; /* We cycle through the registers to ensure they're all exercised. */ static int next_fcc_reg = 0; /* Previous x,y for each fcc reg. */ static rtx prev_args[4][2]; /* Scan prev_args for x,y. */ for (reg = 0; reg < 4; reg++) if (prev_args[reg][0] == x && prev_args[reg][1] == y) break; if (reg == 4) { reg = next_fcc_reg; prev_args[reg][0] = x; prev_args[reg][1] = y; next_fcc_reg = (next_fcc_reg + 1) & 3; } cc_reg = gen_rtx_REG (mode, reg + SPARC_FIRST_V9_FCC_REG); } #else cc_reg = gen_reg_rtx (mode); #endif /* ! experiment */ else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) cc_reg = gen_rtx_REG (mode, SPARC_FCC_REG); else cc_reg = gen_rtx_REG (mode, SPARC_ICC_REG); emit_insn (gen_rtx_SET (VOIDmode, cc_reg, gen_rtx_COMPARE (mode, x, y))); return cc_reg; } /* This function is used for v9 only. CODE is the code for an Scc's comparison. OPERANDS[0] is the target of the Scc insn. OPERANDS[1] is the value we compare against const0_rtx (which hasn't been generated yet). This function is needed to turn (set (reg:SI 110) (gt (reg:CCX 100 %icc) (const_int 0))) into (set (reg:SI 110) (gt:DI (reg:CCX 100 %icc) (const_int 0))) IE: The instruction recognizer needs to see the mode of the comparison to find the right instruction. We could use "gt:DI" right in the define_expand, but leaving it out allows us to handle DI, SI, etc. We refer to the global sparc compare operands sparc_compare_op0 and sparc_compare_op1. */ int gen_v9_scc (compare_code, operands) enum rtx_code compare_code; register rtx *operands; { rtx temp, op0, op1; if (! TARGET_ARCH64 && (GET_MODE (sparc_compare_op0) == DImode || GET_MODE (operands[0]) == DImode)) return 0; op0 = sparc_compare_op0; op1 = sparc_compare_op1; /* Try to use the movrCC insns. */ if (TARGET_ARCH64 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT && op1 == const0_rtx && v9_regcmp_p (compare_code)) { /* Special case for op0 != 0. This can be done with one instruction if operands[0] == sparc_compare_op0. */ if (compare_code == NE && GET_MODE (operands[0]) == DImode && rtx_equal_p (op0, operands[0])) { emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (DImode, gen_rtx_fmt_ee (compare_code, DImode, op0, const0_rtx), const1_rtx, operands[0]))); return 1; } if (reg_overlap_mentioned_p (operands[0], op0)) { /* Handle the case where operands[0] == sparc_compare_op0. We "early clobber" the result. */ op0 = gen_reg_rtx (GET_MODE (sparc_compare_op0)); emit_move_insn (op0, sparc_compare_op0); } emit_insn (gen_rtx_SET (VOIDmode, operands[0], const0_rtx)); if (GET_MODE (op0) != DImode) { temp = gen_reg_rtx (DImode); convert_move (temp, op0, 0); } else temp = op0; emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), gen_rtx_fmt_ee (compare_code, DImode, temp, const0_rtx), const1_rtx, operands[0]))); return 1; } else { operands[1] = gen_compare_reg (compare_code, op0, op1); switch (GET_MODE (operands[1])) { case CCmode : case CCXmode : case CCFPEmode : case CCFPmode : break; default : abort (); } emit_insn (gen_rtx_SET (VOIDmode, operands[0], const0_rtx)); emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), gen_rtx_fmt_ee (compare_code, GET_MODE (operands[1]), operands[1], const0_rtx), const1_rtx, operands[0]))); return 1; } } /* Emit a conditional jump insn for the v9 architecture using comparison code CODE and jump target LABEL. This function exists to take advantage of the v9 brxx insns. */ void emit_v9_brxx_insn (code, op0, label) enum rtx_code code; rtx op0, label; { emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, gen_rtx_fmt_ee (code, GET_MODE (op0), op0, const0_rtx), gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx))); } /* Generate a DFmode part of a hard TFmode register. REG is the TFmode hard register, LOW is 1 for the low 64bit of the register and 0 otherwise. */ rtx gen_df_reg (reg, low) rtx reg; int low; { int regno = REGNO (reg); if ((WORDS_BIG_ENDIAN == 0) ^ (low != 0)) regno += (TARGET_ARCH64 && regno < 32) ? 1 : 2; return gen_rtx_REG (DFmode, regno); } /* Generate a call to FUNC with OPERANDS. Operand 0 is the return value. Unlike normal calls, TFmode operands are passed by reference. It is assumed that no more than 3 operands are required. */ static void emit_soft_tfmode_libcall (func_name, nargs, operands) const char *func_name; int nargs; rtx *operands; { rtx ret_slot = NULL, arg[3], func_sym; int i; /* We only expect to be called for conversions, unary, and binary ops. */ if (nargs < 2 || nargs > 3) abort (); for (i = 0; i < nargs; ++i) { rtx this_arg = operands[i]; rtx this_slot; /* TFmode arguments and return values are passed by reference. */ if (GET_MODE (this_arg) == TFmode) { int force_stack_temp; force_stack_temp = 0; if (TARGET_BUGGY_QP_LIB && i == 0) force_stack_temp = 1; if (GET_CODE (this_arg) == MEM && ! force_stack_temp) this_arg = XEXP (this_arg, 0); else if (CONSTANT_P (this_arg) && ! force_stack_temp) { this_slot = force_const_mem (TFmode, this_arg); this_arg = XEXP (this_slot, 0); } else { this_slot = assign_stack_temp (TFmode, GET_MODE_SIZE (TFmode), 0); /* Operand 0 is the return value. We'll copy it out later. */ if (i > 0) emit_move_insn (this_slot, this_arg); else ret_slot = this_slot; this_arg = XEXP (this_slot, 0); } } arg[i] = this_arg; } func_sym = gen_rtx_SYMBOL_REF (Pmode, func_name); if (GET_MODE (operands[0]) == TFmode) { if (nargs == 2) emit_library_call (func_sym, LCT_NORMAL, VOIDmode, 2, arg[0], GET_MODE (arg[0]), arg[1], GET_MODE (arg[1])); else emit_library_call (func_sym, LCT_NORMAL, VOIDmode, 3, arg[0], GET_MODE (arg[0]), arg[1], GET_MODE (arg[1]), arg[2], GET_MODE (arg[2])); if (ret_slot) emit_move_insn (operands[0], ret_slot); } else { rtx ret; if (nargs != 2) abort (); ret = emit_library_call_value (func_sym, operands[0], LCT_NORMAL, GET_MODE (operands[0]), 1, arg[1], GET_MODE (arg[1])); if (ret != operands[0]) emit_move_insn (operands[0], ret); } } /* Expand soft-float TFmode calls to sparc abi routines. */ static void emit_soft_tfmode_binop (code, operands) enum rtx_code code; rtx *operands; { const char *func; switch (code) { case PLUS: func = "_Qp_add"; break; case MINUS: func = "_Qp_sub"; break; case MULT: func = "_Qp_mul"; break; case DIV: func = "_Qp_div"; break; default: abort (); } emit_soft_tfmode_libcall (func, 3, operands); } static void emit_soft_tfmode_unop (code, operands) enum rtx_code code; rtx *operands; { const char *func; switch (code) { case SQRT: func = "_Qp_sqrt"; break; default: abort (); } emit_soft_tfmode_libcall (func, 2, operands); } static void emit_soft_tfmode_cvt (code, operands) enum rtx_code code; rtx *operands; { const char *func; switch (code) { case FLOAT_EXTEND: switch (GET_MODE (operands[1])) { case SFmode: func = "_Qp_stoq"; break; case DFmode: func = "_Qp_dtoq"; break; default: abort (); } break; case FLOAT_TRUNCATE: switch (GET_MODE (operands[0])) { case SFmode: func = "_Qp_qtos"; break; case DFmode: func = "_Qp_qtod"; break; default: abort (); } break; case FLOAT: switch (GET_MODE (operands[1])) { case SImode: func = "_Qp_itoq"; break; case DImode: func = "_Qp_xtoq"; break; default: abort (); } break; case UNSIGNED_FLOAT: switch (GET_MODE (operands[1])) { case SImode: func = "_Qp_uitoq"; break; case DImode: func = "_Qp_uxtoq"; break; default: abort (); } break; case FIX: switch (GET_MODE (operands[0])) { case SImode: func = "_Qp_qtoi"; break; case DImode: func = "_Qp_qtox"; break; default: abort (); } break; case UNSIGNED_FIX: switch (GET_MODE (operands[0])) { case SImode: func = "_Qp_qtoui"; break; case DImode: func = "_Qp_qtoux"; break; default: abort (); } break; default: abort (); } emit_soft_tfmode_libcall (func, 2, operands); } /* Expand a hard-float tfmode operation. All arguments must be in registers. */ static void emit_hard_tfmode_operation (code, operands) enum rtx_code code; rtx *operands; { rtx op, dest; if (GET_RTX_CLASS (code) == '1') { operands[1] = force_reg (GET_MODE (operands[1]), operands[1]); op = gen_rtx_fmt_e (code, GET_MODE (operands[0]), operands[1]); } else { operands[1] = force_reg (GET_MODE (operands[1]), operands[1]); operands[2] = force_reg (GET_MODE (operands[2]), operands[2]); op = gen_rtx_fmt_ee (code, GET_MODE (operands[0]), operands[1], operands[2]); } if (register_operand (operands[0], VOIDmode)) dest = operands[0]; else dest = gen_reg_rtx (GET_MODE (operands[0])); emit_insn (gen_rtx_SET (VOIDmode, dest, op)); if (dest != operands[0]) emit_move_insn (operands[0], dest); } void emit_tfmode_binop (code, operands) enum rtx_code code; rtx *operands; { if (TARGET_HARD_QUAD) emit_hard_tfmode_operation (code, operands); else emit_soft_tfmode_binop (code, operands); } void emit_tfmode_unop (code, operands) enum rtx_code code; rtx *operands; { if (TARGET_HARD_QUAD) emit_hard_tfmode_operation (code, operands); else emit_soft_tfmode_unop (code, operands); } void emit_tfmode_cvt (code, operands) enum rtx_code code; rtx *operands; { if (TARGET_HARD_QUAD) emit_hard_tfmode_operation (code, operands); else emit_soft_tfmode_cvt (code, operands); } /* Return nonzero if a return peephole merging return with setting of output register is ok. */ int leaf_return_peephole_ok () { return (actual_fsize == 0); } /* Return nonzero if a branch/jump/call instruction will be emitting nop into its delay slot. */ int empty_delay_slot (insn) rtx insn; { rtx seq; /* If no previous instruction (should not happen), return true. */ if (PREV_INSN (insn) == NULL) return 1; seq = NEXT_INSN (PREV_INSN (insn)); if (GET_CODE (PATTERN (seq)) == SEQUENCE) return 0; return 1; } /* Return nonzero if TRIAL can go into the function epilogue's delay slot. SLOT is the slot we are trying to fill. */ int eligible_for_epilogue_delay (trial, slot) rtx trial; int slot; { rtx pat, src; if (slot >= 1) return 0; if (GET_CODE (trial) != INSN || GET_CODE (PATTERN (trial)) != SET) return 0; if (get_attr_length (trial) != 1) return 0; /* If there are any call-saved registers, we should scan TRIAL if it does not reference them. For now just make it easy. */ if (num_gfregs) return 0; /* If the function uses __builtin_eh_return, the eh_return machinery occupies the delay slot. */ if (current_function_calls_eh_return) return 0; /* In the case of a true leaf function, anything can go into the delay slot. A delay slot only exists however if the frame size is zero, otherwise we will put an insn to adjust the stack after the return. */ if (current_function_uses_only_leaf_regs) { if (leaf_return_peephole_ok ()) return ((get_attr_in_uncond_branch_delay (trial) == IN_BRANCH_DELAY_TRUE)); return 0; } pat = PATTERN (trial); /* Otherwise, only operations which can be done in tandem with a `restore' or `return' insn can go into the delay slot. */ if (GET_CODE (SET_DEST (pat)) != REG || REGNO (SET_DEST (pat)) < 24) return 0; /* If this instruction sets up floating point register and we have a return instruction, it can probably go in. But restore will not work with FP_REGS. */ if (REGNO (SET_DEST (pat)) >= 32) { if (TARGET_V9 && ! epilogue_renumber (&pat, 1) && (get_attr_in_uncond_branch_delay (trial) == IN_BRANCH_DELAY_TRUE)) return 1; return 0; } /* The set of insns matched here must agree precisely with the set of patterns paired with a RETURN in sparc.md. */ src = SET_SRC (pat); /* This matches "*return_[qhs]i" or even "*return_di" on TARGET_ARCH64. */ if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT && arith_operand (src, GET_MODE (src))) { if (TARGET_ARCH64) return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); else return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode); } /* This matches "*return_di". */ else if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT && arith_double_operand (src, GET_MODE (src))) return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); /* This matches "*return_sf_no_fpu". */ else if (! TARGET_FPU && restore_operand (SET_DEST (pat), SFmode) && register_operand (src, SFmode)) return 1; /* If we have return instruction, anything that does not use local or output registers and can go into a delay slot wins. */ else if (TARGET_V9 && ! epilogue_renumber (&pat, 1) && (get_attr_in_uncond_branch_delay (trial) == IN_BRANCH_DELAY_TRUE)) return 1; /* This matches "*return_addsi". */ else if (GET_CODE (src) == PLUS && arith_operand (XEXP (src, 0), SImode) && arith_operand (XEXP (src, 1), SImode) && (register_operand (XEXP (src, 0), SImode) || register_operand (XEXP (src, 1), SImode))) return 1; /* This matches "*return_adddi". */ else if (GET_CODE (src) == PLUS && arith_double_operand (XEXP (src, 0), DImode) && arith_double_operand (XEXP (src, 1), DImode) && (register_operand (XEXP (src, 0), DImode) || register_operand (XEXP (src, 1), DImode))) return 1; /* This can match "*return_losum_[sd]i". Catch only some cases, so that return_losum* don't have to be too big. */ else if (GET_CODE (src) == LO_SUM && ! TARGET_CM_MEDMID && ((register_operand (XEXP (src, 0), SImode) && immediate_operand (XEXP (src, 1), SImode)) || (TARGET_ARCH64 && register_operand (XEXP (src, 0), DImode) && immediate_operand (XEXP (src, 1), DImode)))) return 1; /* sll{,x} reg,1,reg2 is add reg,reg,reg2 as well. */ else if (GET_CODE (src) == ASHIFT && (register_operand (XEXP (src, 0), SImode) || register_operand (XEXP (src, 0), DImode)) && XEXP (src, 1) == const1_rtx) return 1; return 0; } /* Return nonzero if TRIAL can go into the sibling call delay slot. */ int eligible_for_sibcall_delay (trial) rtx trial; { rtx pat, src; if (GET_CODE (trial) != INSN || GET_CODE (PATTERN (trial)) != SET) return 0; if (get_attr_length (trial) != 1) return 0; pat = PATTERN (trial); if (current_function_uses_only_leaf_regs) { /* If the tail call is done using the call instruction, we have to restore %o7 in the delay slot. */ if ((TARGET_ARCH64 && ! TARGET_CM_MEDLOW) || flag_pic) return 0; /* %g1 is used to build the function address */ if (reg_mentioned_p (gen_rtx_REG (Pmode, 1), pat)) return 0; return 1; } /* Otherwise, only operations which can be done in tandem with a `restore' insn can go into the delay slot. */ if (GET_CODE (SET_DEST (pat)) != REG || REGNO (SET_DEST (pat)) < 24 || REGNO (SET_DEST (pat)) >= 32) return 0; /* If it mentions %o7, it can't go in, because sibcall will clobber it in most cases. */ if (reg_mentioned_p (gen_rtx_REG (Pmode, 15), pat)) return 0; src = SET_SRC (pat); if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT && arith_operand (src, GET_MODE (src))) { if (TARGET_ARCH64) return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); else return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode); } else if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT && arith_double_operand (src, GET_MODE (src))) return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); else if (! TARGET_FPU && restore_operand (SET_DEST (pat), SFmode) && register_operand (src, SFmode)) return 1; else if (GET_CODE (src) == PLUS && arith_operand (XEXP (src, 0), SImode) && arith_operand (XEXP (src, 1), SImode) && (register_operand (XEXP (src, 0), SImode) || register_operand (XEXP (src, 1), SImode))) return 1; else if (GET_CODE (src) == PLUS && arith_double_operand (XEXP (src, 0), DImode) && arith_double_operand (XEXP (src, 1), DImode) && (register_operand (XEXP (src, 0), DImode) || register_operand (XEXP (src, 1), DImode))) return 1; else if (GET_CODE (src) == LO_SUM && ! TARGET_CM_MEDMID && ((register_operand (XEXP (src, 0), SImode) && immediate_operand (XEXP (src, 1), SImode)) || (TARGET_ARCH64 && register_operand (XEXP (src, 0), DImode) && immediate_operand (XEXP (src, 1), DImode)))) return 1; else if (GET_CODE (src) == ASHIFT && (register_operand (XEXP (src, 0), SImode) || register_operand (XEXP (src, 0), DImode)) && XEXP (src, 1) == const1_rtx) return 1; return 0; } static int check_return_regs (x) rtx x; { switch (GET_CODE (x)) { case REG: return IN_OR_GLOBAL_P (x); case CONST_INT: case CONST_DOUBLE: case CONST: case SYMBOL_REF: case LABEL_REF: return 1; case SET: case IOR: case AND: case XOR: case PLUS: case MINUS: if (check_return_regs (XEXP (x, 1)) == 0) return 0; case NOT: case NEG: case MEM: return check_return_regs (XEXP (x, 0)); default: return 0; } } /* Return 1 if TRIAL references only in and global registers. */ int eligible_for_return_delay (trial) rtx trial; { if (GET_CODE (PATTERN (trial)) != SET) return 0; return check_return_regs (PATTERN (trial)); } int short_branch (uid1, uid2) int uid1, uid2; { int delta = INSN_ADDRESSES (uid1) - INSN_ADDRESSES (uid2); /* Leave a few words of "slop". */ if (delta >= -1023 && delta <= 1022) return 1; return 0; } /* Return non-zero if REG is not used after INSN. We assume REG is a reload reg, and therefore does not live past labels or calls or jumps. */ int reg_unused_after (reg, insn) rtx reg; rtx insn; { enum rtx_code code, prev_code = UNKNOWN; while ((insn = NEXT_INSN (insn))) { if (prev_code == CALL_INSN && call_used_regs[REGNO (reg)]) return 1; code = GET_CODE (insn); if (GET_CODE (insn) == CODE_LABEL) return 1; if (GET_RTX_CLASS (code) == 'i') { rtx set = single_set (insn); int in_src = set && reg_overlap_mentioned_p (reg, SET_SRC (set)); if (set && in_src) return 0; if (set && reg_overlap_mentioned_p (reg, SET_DEST (set))) return 1; if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn))) return 0; } prev_code = code; } return 1; } /* The table we use to reference PIC data. */ static rtx global_offset_table; /* The function we use to get at it. */ static rtx get_pc_symbol; static char get_pc_symbol_name[256]; /* Ensure that we are not using patterns that are not OK with PIC. */ int check_pic (i) int i; { switch (flag_pic) { case 1: if (GET_CODE (recog_data.operand[i]) == SYMBOL_REF || (GET_CODE (recog_data.operand[i]) == CONST && ! (GET_CODE (XEXP (recog_data.operand[i], 0)) == MINUS && (XEXP (XEXP (recog_data.operand[i], 0), 0) == global_offset_table) && (GET_CODE (XEXP (XEXP (recog_data.operand[i], 0), 1)) == CONST)))) abort (); case 2: default: return 1; } } /* Return true if X is an address which needs a temporary register when reloaded while generating PIC code. */ int pic_address_needs_scratch (x) rtx x; { /* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */ if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && ! SMALL_INT (XEXP (XEXP (x, 0), 1))) return 1; return 0; } /* Legitimize PIC addresses. If the address is already position-independent, we return ORIG. Newly generated position-independent addresses go into a reg. This is REG if non zero, otherwise we allocate register(s) as necessary. */ rtx legitimize_pic_address (orig, mode, reg) rtx orig; enum machine_mode mode ATTRIBUTE_UNUSED; rtx reg; { if (GET_CODE (orig) == SYMBOL_REF) { rtx pic_ref, address; rtx insn; if (reg == 0) { if (reload_in_progress || reload_completed) abort (); else reg = gen_reg_rtx (Pmode); } if (flag_pic == 2) { /* If not during reload, allocate another temp reg here for loading in the address, so that these instructions can be optimized properly. */ rtx temp_reg = ((reload_in_progress || reload_completed) ? reg : gen_reg_rtx (Pmode)); /* Must put the SYMBOL_REF inside an UNSPEC here so that cse won't get confused into thinking that these two instructions are loading in the true address of the symbol. If in the future a PIC rtx exists, that should be used instead. */ if (Pmode == SImode) { emit_insn (gen_movsi_high_pic (temp_reg, orig)); emit_insn (gen_movsi_lo_sum_pic (temp_reg, temp_reg, orig)); } else { emit_insn (gen_movdi_high_pic (temp_reg, orig)); emit_insn (gen_movdi_lo_sum_pic (temp_reg, temp_reg, orig)); } address = temp_reg; } else address = orig; pic_ref = gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, pic_offset_table_rtx, address)); current_function_uses_pic_offset_table = 1; RTX_UNCHANGING_P (pic_ref) = 1; insn = emit_move_insn (reg, pic_ref); /* Put a REG_EQUAL note on this insn, so that it can be optimized by loop. */ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, orig, REG_NOTES (insn)); return reg; } else if (GET_CODE (orig) == CONST) { rtx base, offset; if (GET_CODE (XEXP (orig, 0)) == PLUS && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx) return orig; if (reg == 0) { if (reload_in_progress || reload_completed) abort (); else reg = gen_reg_rtx (Pmode); } if (GET_CODE (XEXP (orig, 0)) == PLUS) { base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg); offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode, base == reg ? 0 : reg); } else abort (); if (GET_CODE (offset) == CONST_INT) { if (SMALL_INT (offset)) return plus_constant (base, INTVAL (offset)); else if (! reload_in_progress && ! reload_completed) offset = force_reg (Pmode, offset); else /* If we reach here, then something is seriously wrong. */ abort (); } return gen_rtx_PLUS (Pmode, base, offset); } else if (GET_CODE (orig) == LABEL_REF) /* ??? Why do we do this? */ /* Now movsi_pic_label_ref uses it, but we ought to be checking that the register is live instead, in case it is eliminated. */ current_function_uses_pic_offset_table = 1; return orig; } /* Emit special PIC prologues. */ void load_pic_register () { /* Labels to get the PC in the prologue of this function. */ int orig_flag_pic = flag_pic; if (! flag_pic) abort (); /* If we haven't emitted the special get_pc helper function, do so now. */ if (get_pc_symbol_name[0] == 0) { int align; ASM_GENERATE_INTERNAL_LABEL (get_pc_symbol_name, "LGETPC", 0); text_section (); align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT); if (align > 0) ASM_OUTPUT_ALIGN (asm_out_file, align); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LGETPC", 0); fputs ("\tretl\n\tadd\t%o7, %l7, %l7\n", asm_out_file); } /* Initialize every time through, since we can't easily know this to be permanent. */ global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); get_pc_symbol = gen_rtx_SYMBOL_REF (Pmode, get_pc_symbol_name); flag_pic = 0; emit_insn (gen_get_pc (pic_offset_table_rtx, global_offset_table, get_pc_symbol)); flag_pic = orig_flag_pic; /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp can cause life info to screw up. ??? In the case where we don't obey regdecls, this is not sufficient since we may not fall out the bottom. */ emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx)); } /* Return 1 if RTX is a MEM which is known to be aligned to at least a DESIRED byte boundary. */ int mem_min_alignment (mem, desired) rtx mem; int desired; { rtx addr, base, offset; /* If it's not a MEM we can't accept it. */ if (GET_CODE (mem) != MEM) return 0; addr = XEXP (mem, 0); base = offset = NULL_RTX; if (GET_CODE (addr) == PLUS) { if (GET_CODE (XEXP (addr, 0)) == REG) { base = XEXP (addr, 0); /* What we are saying here is that if the base REG is aligned properly, the compiler will make sure any REG based index upon it will be so as well. */ if (GET_CODE (XEXP (addr, 1)) == CONST_INT) offset = XEXP (addr, 1); else offset = const0_rtx; } } else if (GET_CODE (addr) == REG) { base = addr; offset = const0_rtx; } if (base != NULL_RTX) { int regno = REGNO (base); if (regno != HARD_FRAME_POINTER_REGNUM && regno != STACK_POINTER_REGNUM) { /* Check if the compiler has recorded some information about the alignment of the base REG. If reload has completed, we already matched with proper alignments. If not running global_alloc, reload might give us unaligned pointer to local stack though. */ if (((cfun != 0 && REGNO_POINTER_ALIGN (regno) >= desired * BITS_PER_UNIT) || (optimize && reload_completed)) && (INTVAL (offset) & (desired - 1)) == 0) return 1; } else { if (((INTVAL (offset) - SPARC_STACK_BIAS) & (desired - 1)) == 0) return 1; } } else if (! TARGET_UNALIGNED_DOUBLES || CONSTANT_P (addr) || GET_CODE (addr) == LO_SUM) { /* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES is true, in which case we can only assume that an access is aligned if it is to a constant address, or the address involves a LO_SUM. */ return 1; } /* An obviously unaligned address. */ return 0; } /* Vectors to keep interesting information about registers where it can easily be got. We use to use the actual mode value as the bit number, but there are more than 32 modes now. Instead we use two tables: one indexed by hard register number, and one indexed by mode. */ /* The purpose of sparc_mode_class is to shrink the range of modes so that they all fit (as bit numbers) in a 32 bit word (again). Each real mode is mapped into one sparc_mode_class mode. */ enum sparc_mode_class { S_MODE, D_MODE, T_MODE, O_MODE, SF_MODE, DF_MODE, TF_MODE, OF_MODE, CC_MODE, CCFP_MODE }; /* Modes for single-word and smaller quantities. */ #define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE)) /* Modes for double-word and smaller quantities. */ #define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE)) /* Modes for quad-word and smaller quantities. */ #define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE)) /* Modes for 8-word and smaller quantities. */ #define O_MODES (T_MODES | (1 << (int) O_MODE) | (1 << (int) OF_MODE)) /* Modes for single-float quantities. We must allow any single word or smaller quantity. This is because the fix/float conversion instructions take integer inputs/outputs from the float registers. */ #define SF_MODES (S_MODES) /* Modes for double-float and smaller quantities. */ #define DF_MODES (S_MODES | D_MODES) /* Modes for double-float only quantities. */ #define DF_MODES_NO_S ((1 << (int) D_MODE) | (1 << (int) DF_MODE)) /* Modes for quad-float only quantities. */ #define TF_ONLY_MODES (1 << (int) TF_MODE) /* Modes for quad-float and smaller quantities. */ #define TF_MODES (DF_MODES | TF_ONLY_MODES) /* Modes for quad-float and double-float quantities. */ #define TF_MODES_NO_S (DF_MODES_NO_S | TF_ONLY_MODES) /* Modes for quad-float pair only quantities. */ #define OF_ONLY_MODES (1 << (int) OF_MODE) /* Modes for quad-float pairs and smaller quantities. */ #define OF_MODES (TF_MODES | OF_ONLY_MODES) #define OF_MODES_NO_S (TF_MODES_NO_S | OF_ONLY_MODES) /* Modes for condition codes. */ #define CC_MODES (1 << (int) CC_MODE) #define CCFP_MODES (1 << (int) CCFP_MODE) /* Value is 1 if register/mode pair is acceptable on sparc. The funny mixture of D and T modes is because integer operations do not specially operate on tetra quantities, so non-quad-aligned registers can hold quadword quantities (except %o4 and %i4 because they cross fixed registers). */ /* This points to either the 32 bit or the 64 bit version. */ const int *hard_regno_mode_classes; static const int hard_32bit_mode_classes[] = { S_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, /* FP regs f32 to f63. Only the even numbered registers actually exist, and none can hold SFmode/SImode values. */ OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0, /* %fcc[0123] */ CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES, /* %icc */ CC_MODES }; static const int hard_64bit_mode_classes[] = { D_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, /* FP regs f32 to f63. Only the even numbered registers actually exist, and none can hold SFmode/SImode values. */ OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0, /* %fcc[0123] */ CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES, /* %icc */ CC_MODES }; int sparc_mode_class [NUM_MACHINE_MODES]; enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER]; static void sparc_init_modes () { int i; for (i = 0; i < NUM_MACHINE_MODES; i++) { switch (GET_MODE_CLASS (i)) { case MODE_INT: case MODE_PARTIAL_INT: case MODE_COMPLEX_INT: if (GET_MODE_SIZE (i) <= 4) sparc_mode_class[i] = 1 << (int) S_MODE; else if (GET_MODE_SIZE (i) == 8) sparc_mode_class[i] = 1 << (int) D_MODE; else if (GET_MODE_SIZE (i) == 16) sparc_mode_class[i] = 1 << (int) T_MODE; else if (GET_MODE_SIZE (i) == 32) sparc_mode_class[i] = 1 << (int) O_MODE; else sparc_mode_class[i] = 0; break; case MODE_FLOAT: case MODE_COMPLEX_FLOAT: if (GET_MODE_SIZE (i) <= 4) sparc_mode_class[i] = 1 << (int) SF_MODE; else if (GET_MODE_SIZE (i) == 8) sparc_mode_class[i] = 1 << (int) DF_MODE; else if (GET_MODE_SIZE (i) == 16) sparc_mode_class[i] = 1 << (int) TF_MODE; else if (GET_MODE_SIZE (i) == 32) sparc_mode_class[i] = 1 << (int) OF_MODE; else sparc_mode_class[i] = 0; break; case MODE_CC: default: /* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so we must explicitly check for them here. */ if (i == (int) CCFPmode || i == (int) CCFPEmode) sparc_mode_class[i] = 1 << (int) CCFP_MODE; else if (i == (int) CCmode || i == (int) CC_NOOVmode || i == (int) CCXmode || i == (int) CCX_NOOVmode) sparc_mode_class[i] = 1 << (int) CC_MODE; else sparc_mode_class[i] = 0; break; } } if (TARGET_ARCH64) hard_regno_mode_classes = hard_64bit_mode_classes; else hard_regno_mode_classes = hard_32bit_mode_classes; /* Initialize the array used by REGNO_REG_CLASS. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (i < 16 && TARGET_V8PLUS) sparc_regno_reg_class[i] = I64_REGS; else if (i < 32 || i == FRAME_POINTER_REGNUM) sparc_regno_reg_class[i] = GENERAL_REGS; else if (i < 64) sparc_regno_reg_class[i] = FP_REGS; else if (i < 96) sparc_regno_reg_class[i] = EXTRA_FP_REGS; else if (i < 100) sparc_regno_reg_class[i] = FPCC_REGS; else sparc_regno_reg_class[i] = NO_REGS; } } /* Save non call used registers from LOW to HIGH at BASE+OFFSET. N_REGS is the number of 4-byte regs saved thus far. This applies even to v9 int regs as it simplifies the code. */ static int save_regs (file, low, high, base, offset, n_regs, real_offset) FILE *file; int low, high; const char *base; int offset; int n_regs; int real_offset; { int i; if (TARGET_ARCH64 && high <= 32) { for (i = low; i < high; i++) { if (regs_ever_live[i] && ! call_used_regs[i]) { fprintf (file, "\tstx\t%s, [%s+%d]\n", reg_names[i], base, offset + 4 * n_regs); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", i, real_offset + 4 * n_regs); n_regs += 2; } } } else { for (i = low; i < high; i += 2) { if (regs_ever_live[i] && ! call_used_regs[i]) { if (regs_ever_live[i+1] && ! call_used_regs[i+1]) { fprintf (file, "\tstd\t%s, [%s+%d]\n", reg_names[i], base, offset + 4 * n_regs); if (dwarf2out_do_frame ()) { char *l = dwarf2out_cfi_label (); dwarf2out_reg_save (l, i, real_offset + 4 * n_regs); dwarf2out_reg_save (l, i+1, real_offset + 4 * n_regs + 4); } n_regs += 2; } else { fprintf (file, "\tst\t%s, [%s+%d]\n", reg_names[i], base, offset + 4 * n_regs); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", i, real_offset + 4 * n_regs); n_regs += 2; } } else { if (regs_ever_live[i+1] && ! call_used_regs[i+1]) { fprintf (file, "\tst\t%s, [%s+%d]\n", reg_names[i+1], base, offset + 4 * n_regs + 4); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", i + 1, real_offset + 4 * n_regs + 4); n_regs += 2; } } } } return n_regs; } /* Restore non call used registers from LOW to HIGH at BASE+OFFSET. N_REGS is the number of 4-byte regs saved thus far. This applies even to v9 int regs as it simplifies the code. */ static int restore_regs (file, low, high, base, offset, n_regs) FILE *file; int low, high; const char *base; int offset; int n_regs; { int i; if (TARGET_ARCH64 && high <= 32) { for (i = low; i < high; i++) { if (regs_ever_live[i] && ! call_used_regs[i]) fprintf (file, "\tldx\t[%s+%d], %s\n", base, offset + 4 * n_regs, reg_names[i]), n_regs += 2; } } else { for (i = low; i < high; i += 2) { if (regs_ever_live[i] && ! call_used_regs[i]) if (regs_ever_live[i+1] && ! call_used_regs[i+1]) fprintf (file, "\tldd\t[%s+%d], %s\n", base, offset + 4 * n_regs, reg_names[i]), n_regs += 2; else fprintf (file, "\tld\t[%s+%d], %s\n", base, offset + 4 * n_regs, reg_names[i]), n_regs += 2; else if (regs_ever_live[i+1] && ! call_used_regs[i+1]) fprintf (file, "\tld\t[%s+%d], %s\n", base, offset + 4 * n_regs + 4, reg_names[i+1]), n_regs += 2; } } return n_regs; } /* Compute the frame size required by the function. This function is called during the reload pass and also by output_function_prologue(). */ int compute_frame_size (size, leaf_function) int size; int leaf_function; { int n_regs = 0, i; int outgoing_args_size = (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (current_function_decl)); /* N_REGS is the number of 4-byte regs saved thus far. This applies even to v9 int regs to be consistent with save_regs/restore_regs. */ if (TARGET_ARCH64) { for (i = 0; i < 8; i++) if (regs_ever_live[i] && ! call_used_regs[i]) n_regs += 2; } else { for (i = 0; i < 8; i += 2) if ((regs_ever_live[i] && ! call_used_regs[i]) || (regs_ever_live[i+1] && ! call_used_regs[i+1])) n_regs += 2; } for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2) if ((regs_ever_live[i] && ! call_used_regs[i]) || (regs_ever_live[i+1] && ! call_used_regs[i+1])) n_regs += 2; /* Set up values for use in `function_epilogue'. */ num_gfregs = n_regs; if (leaf_function && n_regs == 0 && size == 0 && current_function_outgoing_args_size == 0) { actual_fsize = apparent_fsize = 0; } else { /* We subtract STARTING_FRAME_OFFSET, remember it's negative. */ apparent_fsize = (size - STARTING_FRAME_OFFSET + 7) & -8; apparent_fsize += n_regs * 4; actual_fsize = apparent_fsize + ((outgoing_args_size + 7) & -8); } /* Make sure nothing can clobber our register windows. If a SAVE must be done, or there is a stack-local variable, the register window area must be allocated. ??? For v8 we apparently need an additional 8 bytes of reserved space. */ if (leaf_function == 0 || size > 0) actual_fsize += (16 * UNITS_PER_WORD) + (TARGET_ARCH64 ? 0 : 8); return SPARC_STACK_ALIGN (actual_fsize); } /* Build a (32 bit) big number in a register. */ /* ??? We may be able to use the set macro here too. */ static void build_big_number (file, num, reg) FILE *file; int num; const char *reg; { if (num >= 0 || ! TARGET_ARCH64) { fprintf (file, "\tsethi\t%%hi(%d), %s\n", num, reg); if ((num & 0x3ff) != 0) fprintf (file, "\tor\t%s, %%lo(%d), %s\n", reg, num, reg); } else /* num < 0 && TARGET_ARCH64 */ { /* Sethi does not sign extend, so we must use a little trickery to use it for negative numbers. Invert the constant before loading it in, then use xor immediate to invert the loaded bits (along with the upper 32 bits) to the desired constant. This works because the sethi and immediate fields overlap. */ int asize = num; int inv = ~asize; int low = -0x400 + (asize & 0x3FF); fprintf (file, "\tsethi\t%%hi(%d), %s\n\txor\t%s, %d, %s\n", inv, reg, reg, low, reg); } } /* Output any necessary .register pseudo-ops. */ void sparc_output_scratch_registers (file) FILE *file ATTRIBUTE_UNUSED; { #ifdef HAVE_AS_REGISTER_PSEUDO_OP int i; if (TARGET_ARCH32) return; /* Check if %g[2367] were used without .register being printed for them already. */ for (i = 2; i < 8; i++) { if (regs_ever_live [i] && ! sparc_hard_reg_printed [i]) { sparc_hard_reg_printed [i] = 1; fprintf (file, "\t.register\t%%g%d, #scratch\n", i); } if (i == 3) i = 5; } #endif } /* This function generates the assembly code for function entry. FILE is a stdio stream to output the code to. SIZE is an int: how many units of temporary storage to allocate. Refer to the array `regs_ever_live' to determine which registers to save; `regs_ever_live[I]' is nonzero if register number I is ever used in the function. This macro is responsible for knowing which registers should not be saved even if used. */ /* On SPARC, move-double insns between fpu and cpu need an 8-byte block of memory. If any fpu reg is used in the function, we allocate such a block here, at the bottom of the frame, just in case it's needed. If this function is a leaf procedure, then we may choose not to do a "save" insn. The decision about whether or not to do this is made in regclass.c. */ static void sparc_output_function_prologue (file, size) FILE *file; HOST_WIDE_INT size; { if (TARGET_FLAT) sparc_flat_function_prologue (file, size); else sparc_nonflat_function_prologue (file, size, current_function_uses_only_leaf_regs); } /* Output code for the function prologue. */ static void sparc_nonflat_function_prologue (file, size, leaf_function) FILE *file; HOST_WIDE_INT size; int leaf_function; { sparc_output_scratch_registers (file); /* Need to use actual_fsize, since we are also allocating space for our callee (and our own register save area). */ actual_fsize = compute_frame_size (size, leaf_function); if (leaf_function) { frame_base_name = "%sp"; frame_base_offset = actual_fsize + SPARC_STACK_BIAS; } else { frame_base_name = "%fp"; frame_base_offset = SPARC_STACK_BIAS; } /* This is only for the human reader. */ fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START); if (actual_fsize == 0) /* do nothing. */ ; else if (! leaf_function) { if (actual_fsize <= 4096) fprintf (file, "\tsave\t%%sp, -%d, %%sp\n", actual_fsize); else if (actual_fsize <= 8192) { fprintf (file, "\tsave\t%%sp, -4096, %%sp\n"); fprintf (file, "\tadd\t%%sp, -%d, %%sp\n", actual_fsize - 4096); } else { build_big_number (file, -actual_fsize, "%g1"); fprintf (file, "\tsave\t%%sp, %%g1, %%sp\n"); } } else /* leaf function */ { if (actual_fsize <= 4096) fprintf (file, "\tadd\t%%sp, -%d, %%sp\n", actual_fsize); else if (actual_fsize <= 8192) { fprintf (file, "\tadd\t%%sp, -4096, %%sp\n"); fprintf (file, "\tadd\t%%sp, -%d, %%sp\n", actual_fsize - 4096); } else { build_big_number (file, -actual_fsize, "%g1"); fprintf (file, "\tadd\t%%sp, %%g1, %%sp\n"); } } if (dwarf2out_do_frame () && actual_fsize) { char *label = dwarf2out_cfi_label (); /* The canonical frame address refers to the top of the frame. */ dwarf2out_def_cfa (label, (leaf_function ? STACK_POINTER_REGNUM : HARD_FRAME_POINTER_REGNUM), frame_base_offset); if (! leaf_function) { /* Note the register window save. This tells the unwinder that it needs to restore the window registers from the previous frame's window save area at 0(cfa). */ dwarf2out_window_save (label); /* The return address (-8) is now in %i7. */ dwarf2out_return_reg (label, 31); } } /* If doing anything with PIC, do it now. */ if (! flag_pic) fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START); /* Call saved registers are saved just above the outgoing argument area. */ if (num_gfregs) { int offset, real_offset, n_regs; const char *base; real_offset = -apparent_fsize; offset = -apparent_fsize + frame_base_offset; if (offset < -4096 || offset + num_gfregs * 4 > 4096) { /* ??? This might be optimized a little as %g1 might already have a value close enough that a single add insn will do. */ /* ??? Although, all of this is probably only a temporary fix because if %g1 can hold a function result, then output_function_epilogue will lose (the result will get clobbered). */ build_big_number (file, offset, "%g1"); fprintf (file, "\tadd\t%s, %%g1, %%g1\n", frame_base_name); base = "%g1"; offset = 0; } else { base = frame_base_name; } n_regs = save_regs (file, 0, 8, base, offset, 0, real_offset); save_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs, real_offset); } } /* Output code to restore any call saved registers. */ static void output_restore_regs (file, leaf_function) FILE *file; int leaf_function ATTRIBUTE_UNUSED; { int offset, n_regs; const char *base; offset = -apparent_fsize + frame_base_offset; if (offset < -4096 || offset + num_gfregs * 4 > 4096 - 8 /*double*/) { build_big_number (file, offset, "%g1"); fprintf (file, "\tadd\t%s, %%g1, %%g1\n", frame_base_name); base = "%g1"; offset = 0; } else { base = frame_base_name; } n_regs = restore_regs (file, 0, 8, base, offset, 0); restore_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs); } /* This function generates the assembly code for function exit, on machines that need it. The function epilogue should not depend on the current stack pointer! It should use the frame pointer only. This is mandatory because of alloca; we also take advantage of it to omit stack adjustments before returning. */ static void sparc_output_function_epilogue (file, size) FILE *file; HOST_WIDE_INT size; { if (TARGET_FLAT) sparc_flat_function_epilogue (file, size); else sparc_nonflat_function_epilogue (file, size, current_function_uses_only_leaf_regs); } /* Output code for the function epilogue. */ static void sparc_nonflat_function_epilogue (file, size, leaf_function) FILE *file; HOST_WIDE_INT size ATTRIBUTE_UNUSED; int leaf_function; { const char *ret; if (current_function_epilogue_delay_list == 0) { /* If code does not drop into the epilogue, we need do nothing except output pending case vectors. We have to still output a dummy nop for the sake of sane backtraces. Otherwise, if the last two instructions of a function were call foo; dslot; this can make the return PC of foo (ie. address of call instruction plus 8) point to the first instruction in the next function. */ rtx insn; fputs("\tnop\n", file); insn = get_last_insn (); if (GET_CODE (insn) == NOTE) insn = prev_nonnote_insn (insn); if (insn && GET_CODE (insn) == BARRIER) goto output_vectors; } if (num_gfregs) output_restore_regs (file, leaf_function); /* Work out how to skip the caller's unimp instruction if required. */ if (leaf_function) ret = (SKIP_CALLERS_UNIMP_P ? "jmp\t%o7+12" : "retl"); else ret = (SKIP_CALLERS_UNIMP_P ? "jmp\t%i7+12" : "ret"); if (! leaf_function) { if (current_function_calls_eh_return) { if (current_function_epilogue_delay_list) abort (); if (SKIP_CALLERS_UNIMP_P) abort (); fputs ("\trestore\n\tretl\n\tadd\t%sp, %g1, %sp\n", file); } /* If we wound up with things in our delay slot, flush them here. */ else if (current_function_epilogue_delay_list) { rtx delay = PATTERN (XEXP (current_function_epilogue_delay_list, 0)); if (TARGET_V9 && ! epilogue_renumber (&delay, 1)) { epilogue_renumber (&delay, 0); fputs (SKIP_CALLERS_UNIMP_P ? "\treturn\t%i7+12\n" : "\treturn\t%i7+8\n", file); final_scan_insn (XEXP (current_function_epilogue_delay_list, 0), file, 1, 0, 0); } else { rtx insn, src; if (GET_CODE (delay) != SET) abort(); src = SET_SRC (delay); if (GET_CODE (src) == ASHIFT) { if (XEXP (src, 1) != const1_rtx) abort(); SET_SRC (delay) = gen_rtx_PLUS (GET_MODE (src), XEXP (src, 0), XEXP (src, 0)); } insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, delay, gen_rtx_RETURN (VOIDmode))); insn = emit_jump_insn (insn); sparc_emitting_epilogue = true; final_scan_insn (insn, file, 1, 0, 1); sparc_emitting_epilogue = false; } } else if (TARGET_V9 && ! SKIP_CALLERS_UNIMP_P) fputs ("\treturn\t%i7+8\n\tnop\n", file); else fprintf (file, "\t%s\n\trestore\n", ret); } /* All of the following cases are for leaf functions. */ else if (current_function_calls_eh_return) abort (); else if (current_function_epilogue_delay_list) { /* eligible_for_epilogue_delay_slot ensures that if this is a leaf function, then we will only have insn in the delay slot if the frame size is zero, thus no adjust for the stack is needed here. */ if (actual_fsize != 0) abort (); fprintf (file, "\t%s\n", ret); final_scan_insn (XEXP (current_function_epilogue_delay_list, 0), file, 1, 0, 1); } /* Output 'nop' instead of 'sub %sp,-0,%sp' when no frame, so as to avoid generating confusing assembly language output. */ else if (actual_fsize == 0) fprintf (file, "\t%s\n\tnop\n", ret); else if (actual_fsize <= 4096) fprintf (file, "\t%s\n\tsub\t%%sp, -%d, %%sp\n", ret, actual_fsize); else if (actual_fsize <= 8192) fprintf (file, "\tsub\t%%sp, -4096, %%sp\n\t%s\n\tsub\t%%sp, -%d, %%sp\n", ret, actual_fsize - 4096); else if ((actual_fsize & 0x3ff) == 0) fprintf (file, "\tsethi\t%%hi(%d), %%g1\n\t%s\n\tadd\t%%sp, %%g1, %%sp\n", actual_fsize, ret); else fprintf (file, "\tsethi\t%%hi(%d), %%g1\n\tor\t%%g1, %%lo(%d), %%g1\n\t%s\n\tadd\t%%sp, %%g1, %%sp\n", actual_fsize, actual_fsize, ret); output_vectors: sparc_output_deferred_case_vectors (); } /* Output a sibling call. */ const char * output_sibcall (insn, call_operand) rtx insn, call_operand; { int leaf_regs = current_function_uses_only_leaf_regs; rtx operands[3]; int delay_slot = dbr_sequence_length () > 0; if (num_gfregs) { /* Call to restore global regs might clobber the delay slot. Instead of checking for this output the delay slot now. */ if (delay_slot) { rtx delay = NEXT_INSN (insn); if (! delay) abort (); final_scan_insn (delay, asm_out_file, 1, 0, 1); PATTERN (delay) = gen_blockage (); INSN_CODE (delay) = -1; delay_slot = 0; } output_restore_regs (asm_out_file, leaf_regs); } operands[0] = call_operand; if (leaf_regs) { #ifdef HAVE_AS_RELAX_OPTION /* If as and ld are relaxing tail call insns into branch always, use or %o7,%g0,X; call Y; or X,%g0,%o7 always, so that it can be optimized. With sethi/jmpl as nor ld has no easy way how to find out if somebody does not branch between the sethi and jmpl. */ int spare_slot = 0; #else int spare_slot = ((TARGET_ARCH32 || TARGET_CM_MEDLOW) && ! flag_pic); #endif int size = 0; if ((actual_fsize || ! spare_slot) && delay_slot) { rtx delay = NEXT_INSN (insn); if (! delay) abort (); final_scan_insn (delay, asm_out_file, 1, 0, 1); PATTERN (delay) = gen_blockage (); INSN_CODE (delay) = -1; delay_slot = 0; } if (actual_fsize) { if (actual_fsize <= 4096) size = actual_fsize; else if (actual_fsize <= 8192) { fputs ("\tsub\t%sp, -4096, %sp\n", asm_out_file); size = actual_fsize - 4096; } else if ((actual_fsize & 0x3ff) == 0) fprintf (asm_out_file, "\tsethi\t%%hi(%d), %%g1\n\tadd\t%%sp, %%g1, %%sp\n", actual_fsize); else { fprintf (asm_out_file, "\tsethi\t%%hi(%d), %%g1\n\tor\t%%g1, %%lo(%d), %%g1\n", actual_fsize, actual_fsize); fputs ("\tadd\t%%sp, %%g1, %%sp\n", asm_out_file); } } if (spare_slot) { output_asm_insn ("sethi\t%%hi(%a0), %%g1", operands); output_asm_insn ("jmpl\t%%g1 + %%lo(%a0), %%g0", operands); if (size) fprintf (asm_out_file, "\t sub\t%%sp, -%d, %%sp\n", size); else if (! delay_slot) fputs ("\t nop\n", asm_out_file); } else { if (size) fprintf (asm_out_file, "\tsub\t%%sp, -%d, %%sp\n", size); /* Use or with rs2 %%g0 instead of mov, so that as/ld can optimize it into branch if possible. */ output_asm_insn ("or\t%%o7, %%g0, %%g1", operands); output_asm_insn ("call\t%a0, 0", operands); output_asm_insn (" or\t%%g1, %%g0, %%o7", operands); } return ""; } output_asm_insn ("call\t%a0, 0", operands); if (delay_slot) { rtx delay = NEXT_INSN (insn), pat; if (! delay) abort (); pat = PATTERN (delay); if (GET_CODE (pat) != SET) abort (); operands[0] = SET_DEST (pat); pat = SET_SRC (pat); switch (GET_CODE (pat)) { case PLUS: operands[1] = XEXP (pat, 0); operands[2] = XEXP (pat, 1); output_asm_insn (" restore %r1, %2, %Y0", operands); break; case LO_SUM: operands[1] = XEXP (pat, 0); operands[2] = XEXP (pat, 1); output_asm_insn (" restore %r1, %%lo(%a2), %Y0", operands); break; case ASHIFT: operands[1] = XEXP (pat, 0); output_asm_insn (" restore %r1, %r1, %Y0", operands); break; default: operands[1] = pat; output_asm_insn (" restore %%g0, %1, %Y0", operands); break; } PATTERN (delay) = gen_blockage (); INSN_CODE (delay) = -1; } else fputs ("\t restore\n", asm_out_file); return ""; } /* Functions for handling argument passing. For v8 the first six args are normally in registers and the rest are pushed. Any arg that starts within the first 6 words is at least partially passed in a register unless its data type forbids. For v9, the argument registers are laid out as an array of 16 elements and arguments are added sequentially. The first 6 int args and up to the first 16 fp args (depending on size) are passed in regs. Slot Stack Integral Float Float in structure Double Long Double ---- ----- -------- ----- ------------------ ------ ----------- 15 [SP+248] %f31 %f30,%f31 %d30 14 [SP+240] %f29 %f28,%f29 %d28 %q28 13 [SP+232] %f27 %f26,%f27 %d26 12 [SP+224] %f25 %f24,%f25 %d24 %q24 11 [SP+216] %f23 %f22,%f23 %d22 10 [SP+208] %f21 %f20,%f21 %d20 %q20 9 [SP+200] %f19 %f18,%f19 %d18 8 [SP+192] %f17 %f16,%f17 %d16 %q16 7 [SP+184] %f15 %f14,%f15 %d14 6 [SP+176] %f13 %f12,%f13 %d12 %q12 5 [SP+168] %o5 %f11 %f10,%f11 %d10 4 [SP+160] %o4 %f9 %f8,%f9 %d8 %q8 3 [SP+152] %o3 %f7 %f6,%f7 %d6 2 [SP+144] %o2 %f5 %f4,%f5 %d4 %q4 1 [SP+136] %o1 %f3 %f2,%f3 %d2 0 [SP+128] %o0 %f1 %f0,%f1 %d0 %q0 Here SP = %sp if -mno-stack-bias or %sp+stack_bias otherwise. Integral arguments are always passed as 64 bit quantities appropriately extended. Passing of floating point values is handled as follows. If a prototype is in scope: If the value is in a named argument (i.e. not a stdarg function or a value not part of the `...') then the value is passed in the appropriate fp reg. If the value is part of the `...' and is passed in one of the first 6 slots then the value is passed in the appropriate int reg. If the value is part of the `...' and is not passed in one of the first 6 slots then the value is passed in memory. If a prototype is not in scope: If the value is one of the first 6 arguments the value is passed in the appropriate integer reg and the appropriate fp reg. If the value is not one of the first 6 arguments the value is passed in the appropriate fp reg and in memory. */ /* Maximum number of int regs for args. */ #define SPARC_INT_ARG_MAX 6 /* Maximum number of fp regs for args. */ #define SPARC_FP_ARG_MAX 16 #define ROUND_ADVANCE(SIZE) (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) /* Handle the INIT_CUMULATIVE_ARGS macro. Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ void init_cumulative_args (cum, fntype, libname, indirect) CUMULATIVE_ARGS *cum; tree fntype; rtx libname ATTRIBUTE_UNUSED; int indirect ATTRIBUTE_UNUSED; { cum->words = 0; cum->prototype_p = fntype && TYPE_ARG_TYPES (fntype); cum->libcall_p = fntype == 0; } /* Compute the slot number to pass an argument in. Returns the slot number or -1 if passing on the stack. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG. *PREGNO records the register number to use if scalar type. *PPADDING records the amount of padding needed in words. */ static int function_arg_slotno (cum, mode, type, named, incoming_p, pregno, ppadding) const CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; int incoming_p; int *pregno; int *ppadding; { int regbase = (incoming_p ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST); int slotno = cum->words; int regno; *ppadding = 0; if (type != 0 && TREE_ADDRESSABLE (type)) return -1; if (TARGET_ARCH32 && type != 0 && mode == BLKmode && TYPE_ALIGN (type) % PARM_BOUNDARY != 0) return -1; switch (mode) { case VOIDmode : /* MODE is VOIDmode when generating the actual call. See emit_call_1. */ return -1; case QImode : case CQImode : case HImode : case CHImode : case SImode : case CSImode : case DImode : case CDImode : case TImode : case CTImode : if (slotno >= SPARC_INT_ARG_MAX) return -1; regno = regbase + slotno; break; case SFmode : case SCmode : case DFmode : case DCmode : case TFmode : case TCmode : if (TARGET_ARCH32) { if (slotno >= SPARC_INT_ARG_MAX) return -1; regno = regbase + slotno; } else { if ((mode == TFmode || mode == TCmode) && (slotno & 1) != 0) slotno++, *ppadding = 1; if (TARGET_FPU && named) { if (slotno >= SPARC_FP_ARG_MAX) return -1; regno = SPARC_FP_ARG_FIRST + slotno * 2; if (mode == SFmode) regno++; } else { if (slotno >= SPARC_INT_ARG_MAX) return -1; regno = regbase + slotno; } } break; case BLKmode : /* For sparc64, objects requiring 16 byte alignment get it. */ if (TARGET_ARCH64) { if (type && TYPE_ALIGN (type) == 128 && (slotno & 1) != 0) slotno++, *ppadding = 1; } if (TARGET_ARCH32 || (type && TREE_CODE (type) == UNION_TYPE)) { if (slotno >= SPARC_INT_ARG_MAX) return -1; regno = regbase + slotno; } else { tree field; int intregs_p = 0, fpregs_p = 0; /* The ABI obviously doesn't specify how packed structures are passed. These are defined to be passed in int regs if possible, otherwise memory. */ int packed_p = 0; /* First see what kinds of registers we need. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE && TARGET_FPU) fpregs_p = 1; else intregs_p = 1; if (DECL_PACKED (field)) packed_p = 1; } } if (packed_p || !named) fpregs_p = 0, intregs_p = 1; /* If all arg slots are filled, then must pass on stack. */ if (fpregs_p && slotno >= SPARC_FP_ARG_MAX) return -1; /* If there are only int args and all int arg slots are filled, then must pass on stack. */ if (!fpregs_p && intregs_p && slotno >= SPARC_INT_ARG_MAX) return -1; /* Note that even if all int arg slots are filled, fp members may still be passed in regs if such regs are available. *PREGNO isn't set because there may be more than one, it's up to the caller to compute them. */ return slotno; } break; default : abort (); } *pregno = regno; return slotno; } /* Handle recursive register counting for structure field layout. */ struct function_arg_record_value_parms { rtx ret; int slotno, named, regbase; unsigned int nregs; int intoffset; }; static void function_arg_record_value_3 PARAMS ((HOST_WIDE_INT, struct function_arg_record_value_parms *)); static void function_arg_record_value_2 PARAMS ((tree, HOST_WIDE_INT, struct function_arg_record_value_parms *)); static void function_arg_record_value_1 PARAMS ((tree, HOST_WIDE_INT, struct function_arg_record_value_parms *)); static rtx function_arg_record_value PARAMS ((tree, enum machine_mode, int, int, int)); /* A subroutine of function_arg_record_value. Traverse the structure recusively and determine how many registers will be required. */ static void function_arg_record_value_1 (type, startbitpos, parms) tree type; HOST_WIDE_INT startbitpos; struct function_arg_record_value_parms *parms; { tree field; /* The ABI obviously doesn't specify how packed structures are passed. These are defined to be passed in int regs if possible, otherwise memory. */ int packed_p = 0; /* We need to compute how many registers are needed so we can allocate the PARALLEL but before we can do that we need to know whether there are any packed fields. If there are, int regs are used regardless of whether there are fp values present. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field)) { packed_p = 1; break; } } /* Compute how many registers we need. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { HOST_WIDE_INT bitpos = startbitpos; if (DECL_SIZE (field) != 0 && host_integerp (bit_position (field), 1)) bitpos += int_bit_position (field); /* ??? FIXME: else assume zero offset. */ if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE) function_arg_record_value_1 (TREE_TYPE (field), bitpos, parms); else if ((TREE_CODE (TREE_TYPE (field)) == REAL_TYPE || (TREE_CODE (TREE_TYPE (field)) == COMPLEX_TYPE && (TREE_CODE (TREE_TYPE (TREE_TYPE (field))) == REAL_TYPE))) && TARGET_FPU && ! packed_p && parms->named) { if (parms->intoffset != -1) { int intslots, this_slotno; intslots = (bitpos - parms->intoffset + BITS_PER_WORD - 1) / BITS_PER_WORD; this_slotno = parms->slotno + parms->intoffset / BITS_PER_WORD; intslots = MIN (intslots, SPARC_INT_ARG_MAX - this_slotno); intslots = MAX (intslots, 0); parms->nregs += intslots; parms->intoffset = -1; } /* There's no need to check this_slotno < SPARC_FP_ARG MAX. If it wasn't true we wouldn't be here. */ parms->nregs += 1; if (TREE_CODE (TREE_TYPE (field)) == COMPLEX_TYPE) parms->nregs += 1; } else { if (parms->intoffset == -1) parms->intoffset = bitpos; } } } } /* A subroutine of function_arg_record_value. Assign the bits of the structure between parms->intoffset and bitpos to integer registers. */ static void function_arg_record_value_3 (bitpos, parms) HOST_WIDE_INT bitpos; struct function_arg_record_value_parms *parms; { enum machine_mode mode; unsigned int regno; unsigned int startbit, endbit; int this_slotno, intslots, intoffset; rtx reg; if (parms->intoffset == -1) return; intoffset = parms->intoffset; parms->intoffset = -1; startbit = intoffset & -BITS_PER_WORD; endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD; intslots = (endbit - startbit) / BITS_PER_WORD; this_slotno = parms->slotno + intoffset / BITS_PER_WORD; intslots = MIN (intslots, SPARC_INT_ARG_MAX - this_slotno); if (intslots <= 0) return; /* If this is the trailing part of a word, only load that much into the register. Otherwise load the whole register. Note that in the latter case we may pick up unwanted bits. It's not a problem at the moment but may wish to revisit. */ if (intoffset % BITS_PER_WORD != 0) mode = mode_for_size (BITS_PER_WORD - intoffset % BITS_PER_WORD, MODE_INT, 0); else mode = word_mode; intoffset /= BITS_PER_UNIT; do { regno = parms->regbase + this_slotno; reg = gen_rtx_REG (mode, regno); XVECEXP (parms->ret, 0, parms->nregs) = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset)); this_slotno += 1; intoffset = (intoffset | (UNITS_PER_WORD-1)) + 1; parms->nregs += 1; intslots -= 1; } while (intslots > 0); } /* A subroutine of function_arg_record_value. Traverse the structure recursively and assign bits to floating point registers. Track which bits in between need integer registers; invoke function_arg_record_value_3 to make that happen. */ static void function_arg_record_value_2 (type, startbitpos, parms) tree type; HOST_WIDE_INT startbitpos; struct function_arg_record_value_parms *parms; { tree field; int packed_p = 0; for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field)) { packed_p = 1; break; } } for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { HOST_WIDE_INT bitpos = startbitpos; if (DECL_SIZE (field) != 0 && host_integerp (bit_position (field), 1)) bitpos += int_bit_position (field); /* ??? FIXME: else assume zero offset. */ if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE) function_arg_record_value_2 (TREE_TYPE (field), bitpos, parms); else if ((TREE_CODE (TREE_TYPE (field)) == REAL_TYPE || (TREE_CODE (TREE_TYPE (field)) == COMPLEX_TYPE && (TREE_CODE (TREE_TYPE (TREE_TYPE (field))) == REAL_TYPE))) && TARGET_FPU && ! packed_p && parms->named) { int this_slotno = parms->slotno + bitpos / BITS_PER_WORD; int regno; enum machine_mode mode = DECL_MODE (field); rtx reg; function_arg_record_value_3 (bitpos, parms); regno = SPARC_FP_ARG_FIRST + this_slotno * 2 + ((mode == SFmode || mode == SCmode) && (bitpos & 32) != 0); switch (mode) { case SCmode: mode = SFmode; break; case DCmode: mode = DFmode; break; case TCmode: mode = TFmode; break; default: break; } reg = gen_rtx_REG (mode, regno); XVECEXP (parms->ret, 0, parms->nregs) = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (bitpos / BITS_PER_UNIT)); parms->nregs += 1; if (TREE_CODE (TREE_TYPE (field)) == COMPLEX_TYPE) { regno += GET_MODE_SIZE (mode) / 4; reg = gen_rtx_REG (mode, regno); XVECEXP (parms->ret, 0, parms->nregs) = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT ((bitpos + GET_MODE_BITSIZE (mode)) / BITS_PER_UNIT)); parms->nregs += 1; } } else { if (parms->intoffset == -1) parms->intoffset = bitpos; } } } } /* Used by function_arg and function_value to implement the complex Sparc64 structure calling conventions. */ static rtx function_arg_record_value (type, mode, slotno, named, regbase) tree type; enum machine_mode mode; int slotno, named, regbase; { HOST_WIDE_INT typesize = int_size_in_bytes (type); struct function_arg_record_value_parms parms; unsigned int nregs; parms.ret = NULL_RTX; parms.slotno = slotno; parms.named = named; parms.regbase = regbase; /* Compute how many registers we need. */ parms.nregs = 0; parms.intoffset = 0; function_arg_record_value_1 (type, 0, &parms); if (parms.intoffset != -1) { unsigned int startbit, endbit; int intslots, this_slotno; startbit = parms.intoffset & -BITS_PER_WORD; endbit = (typesize*BITS_PER_UNIT + BITS_PER_WORD - 1) & -BITS_PER_WORD; intslots = (endbit - startbit) / BITS_PER_WORD; this_slotno = slotno + parms.intoffset / BITS_PER_WORD; intslots = MIN (intslots, SPARC_INT_ARG_MAX - this_slotno); intslots = MAX (intslots, 0); parms.nregs += intslots; } nregs = parms.nregs; /* Allocate the vector and handle some annoying special cases. */ if (nregs == 0) { /* ??? Empty structure has no value? Duh? */ if (typesize <= 0) { /* Though there's nothing really to store, return a word register anyway so the rest of gcc doesn't go nuts. Returning a PARALLEL leads to breakage due to the fact that there are zero bytes to load. */ return gen_rtx_REG (mode, regbase); } else { /* ??? C++ has structures with no fields, and yet a size. Give up for now and pass everything back in integer registers. */ nregs = (typesize + UNITS_PER_WORD - 1) / UNITS_PER_WORD; } if (nregs + slotno > SPARC_INT_ARG_MAX) nregs = SPARC_INT_ARG_MAX - slotno; } if (nregs == 0) abort (); parms.ret = gen_rtx_PARALLEL (mode, rtvec_alloc (nregs)); /* Fill in the entries. */ parms.nregs = 0; parms.intoffset = 0; function_arg_record_value_2 (type, 0, &parms); function_arg_record_value_3 (typesize * BITS_PER_UNIT, &parms); if (parms.nregs != nregs) abort (); return parms.ret; } /* Handle the FUNCTION_ARG macro. Determine where to put an argument to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG. */ rtx function_arg (cum, mode, type, named, incoming_p) const CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; int incoming_p; { int regbase = (incoming_p ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST); int slotno, regno, padding; rtx reg; slotno = function_arg_slotno (cum, mode, type, named, incoming_p, ®no, &padding); if (slotno == -1) return 0; if (TARGET_ARCH32) { reg = gen_rtx_REG (mode, regno); return reg; } /* v9 fp args in reg slots beyond the int reg slots get passed in regs but also have the slot allocated for them. If no prototype is in scope fp values in register slots get passed in two places, either fp regs and int regs or fp regs and memory. */ if ((GET_MODE_CLASS (mode) == MODE_FLOAT || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) && SPARC_FP_REG_P (regno)) { reg = gen_rtx_REG (mode, regno); if (cum->prototype_p || cum->libcall_p) { /* "* 2" because fp reg numbers are recorded in 4 byte quantities. */ #if 0 /* ??? This will cause the value to be passed in the fp reg and in the stack. When a prototype exists we want to pass the value in the reg but reserve space on the stack. That's an optimization, and is deferred [for a bit]. */ if ((regno - SPARC_FP_ARG_FIRST) >= SPARC_INT_ARG_MAX * 2) return gen_rtx_PARALLEL (mode, gen_rtvec (2, gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx), gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx))); else #else /* ??? It seems that passing back a register even when past the area declared by REG_PARM_STACK_SPACE will allocate space appropriately, and will not copy the data onto the stack, exactly as we desire. This is due to locate_and_pad_parm being called in expand_call whenever reg_parm_stack_space > 0, which while benefical to our example here, would seem to be in error from what had been intended. Ho hum... -- r~ */ #endif return reg; } else { rtx v0, v1; if ((regno - SPARC_FP_ARG_FIRST) < SPARC_INT_ARG_MAX * 2) { int intreg; /* On incoming, we don't need to know that the value is passed in %f0 and %i0, and it confuses other parts causing needless spillage even on the simplest cases. */ if (incoming_p) return reg; intreg = (SPARC_OUTGOING_INT_ARG_FIRST + (regno - SPARC_FP_ARG_FIRST) / 2); v0 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx); v1 = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, intreg), const0_rtx); return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1)); } else { v0 = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx); v1 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx); return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1)); } } } else if (type && TREE_CODE (type) == RECORD_TYPE) { /* Structures up to 16 bytes in size are passed in arg slots on the stack and are promoted to registers where possible. */ if (int_size_in_bytes (type) > 16) abort (); /* shouldn't get here */ return function_arg_record_value (type, mode, slotno, named, regbase); } else if (type && TREE_CODE (type) == UNION_TYPE) { enum machine_mode mode; int bytes = int_size_in_bytes (type); if (bytes > 16) abort (); mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 0); reg = gen_rtx_REG (mode, regno); } else { /* Scalar or complex int. */ reg = gen_rtx_REG (mode, regno); } return reg; } /* Handle the FUNCTION_ARG_PARTIAL_NREGS macro. For an arg passed partly in registers and partly in memory, this is the number of registers used. For args passed entirely in registers or entirely in memory, zero. Any arg that starts in the first 6 regs but won't entirely fit in them needs partial registers on v8. On v9, structures with integer values in arg slots 5,6 will be passed in %o5 and SP+176, and complex fp values that begin in the last fp reg [where "last fp reg" varies with the mode] will be split between that reg and memory. */ int function_arg_partial_nregs (cum, mode, type, named) const CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; { int slotno, regno, padding; /* We pass 0 for incoming_p here, it doesn't matter. */ slotno = function_arg_slotno (cum, mode, type, named, 0, ®no, &padding); if (slotno == -1) return 0; if (TARGET_ARCH32) { if ((slotno + (mode == BLKmode ? ROUND_ADVANCE (int_size_in_bytes (type)) : ROUND_ADVANCE (GET_MODE_SIZE (mode)))) > NPARM_REGS (SImode)) return NPARM_REGS (SImode) - slotno; return 0; } else { if (type && AGGREGATE_TYPE_P (type)) { int size = int_size_in_bytes (type); int align = TYPE_ALIGN (type); if (align == 16) slotno += slotno & 1; if (size > 8 && size <= 16 && slotno == SPARC_INT_ARG_MAX - 1) return 1; } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT || (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT && ! TARGET_FPU)) { if (GET_MODE_ALIGNMENT (mode) == 128) { slotno += slotno & 1; if (slotno == SPARC_INT_ARG_MAX - 2) return 1; } else { if (slotno == SPARC_INT_ARG_MAX - 1) return 1; } } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) { if (GET_MODE_ALIGNMENT (mode) == 128) slotno += slotno & 1; if ((slotno + GET_MODE_SIZE (mode) / UNITS_PER_WORD) > SPARC_FP_ARG_MAX) return 1; } return 0; } } /* Handle the FUNCTION_ARG_PASS_BY_REFERENCE macro. !v9: The SPARC ABI stipulates passing struct arguments (of any size) and quad-precision floats by invisible reference. v9: Aggregates greater than 16 bytes are passed by reference. For Pascal, also pass arrays by reference. */ int function_arg_pass_by_reference (cum, mode, type, named) const CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED; enum machine_mode mode; tree type; int named ATTRIBUTE_UNUSED; { if (TARGET_ARCH32) { return ((type && AGGREGATE_TYPE_P (type)) || mode == TFmode || mode == TCmode); } else { return ((type && TREE_CODE (type) == ARRAY_TYPE) /* Consider complex values as aggregates, so care for TCmode. */ || GET_MODE_SIZE (mode) > 16 || (type && AGGREGATE_TYPE_P (type) && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 16)); } } /* Handle the FUNCTION_ARG_ADVANCE macro. Update the data in CUM to advance over an argument of mode MODE and data type TYPE. TYPE is null for libcalls where that information may not be available. */ void function_arg_advance (cum, mode, type, named) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; { int slotno, regno, padding; /* We pass 0 for incoming_p here, it doesn't matter. */ slotno = function_arg_slotno (cum, mode, type, named, 0, ®no, &padding); /* If register required leading padding, add it. */ if (slotno != -1) cum->words += padding; if (TARGET_ARCH32) { cum->words += (mode != BLKmode ? ROUND_ADVANCE (GET_MODE_SIZE (mode)) : ROUND_ADVANCE (int_size_in_bytes (type))); } else { if (type && AGGREGATE_TYPE_P (type)) { int size = int_size_in_bytes (type); if (size <= 8) ++cum->words; else if (size <= 16) cum->words += 2; else /* passed by reference */ ++cum->words; } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT) { cum->words += 2; } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) { cum->words += GET_MODE_SIZE (mode) / UNITS_PER_WORD; } else { cum->words += (mode != BLKmode ? ROUND_ADVANCE (GET_MODE_SIZE (mode)) : ROUND_ADVANCE (int_size_in_bytes (type))); } } } /* Handle the FUNCTION_ARG_PADDING macro. For the 64 bit ABI structs are always stored left shifted in their argument slot. */ enum direction function_arg_padding (mode, type) enum machine_mode mode; tree type; { if (TARGET_ARCH64 && type != 0 && AGGREGATE_TYPE_P (type)) return upward; /* This is the default definition. */ return (! BYTES_BIG_ENDIAN ? upward : ((mode == BLKmode ? (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && int_size_in_bytes (type) < (PARM_BOUNDARY / BITS_PER_UNIT)) : GET_MODE_BITSIZE (mode) < PARM_BOUNDARY) ? downward : upward)); } /* Handle FUNCTION_VALUE, FUNCTION_OUTGOING_VALUE, and LIBCALL_VALUE macros. For v9, function return values are subject to the same rules as arguments, except that up to 32-bytes may be returned in registers. */ rtx function_value (type, mode, incoming_p) tree type; enum machine_mode mode; int incoming_p; { int regno; int regbase = (incoming_p ? SPARC_OUTGOING_INT_ARG_FIRST : SPARC_INCOMING_INT_ARG_FIRST); if (TARGET_ARCH64 && type) { if (TREE_CODE (type) == RECORD_TYPE) { /* Structures up to 32 bytes in size are passed in registers, promoted to fp registers where possible. */ if (int_size_in_bytes (type) > 32) abort (); /* shouldn't get here */ return function_arg_record_value (type, mode, 0, 1, regbase); } else if (AGGREGATE_TYPE_P (type)) { /* All other aggregate types are passed in an integer register in a mode corresponding to the size of the type. */ HOST_WIDE_INT bytes = int_size_in_bytes (type); if (bytes > 32) abort (); mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 0); } } if (TARGET_ARCH64 && GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) < UNITS_PER_WORD && type && ! AGGREGATE_TYPE_P (type)) mode = DImode; if (incoming_p) regno = BASE_RETURN_VALUE_REG (mode); else regno = BASE_OUTGOING_VALUE_REG (mode); return gen_rtx_REG (mode, regno); } /* Do what is necessary for `va_start'. We look at the current function to determine if stdarg or varargs is used and return the address of the first unnamed parameter. */ rtx sparc_builtin_saveregs () { int first_reg = current_function_args_info.words; rtx address; int regno; for (regno = first_reg; regno < NPARM_REGS (word_mode); regno++) emit_move_insn (gen_rtx_MEM (word_mode, gen_rtx_PLUS (Pmode, frame_pointer_rtx, GEN_INT (FIRST_PARM_OFFSET (0) + (UNITS_PER_WORD * regno)))), gen_rtx_REG (word_mode, BASE_INCOMING_ARG_REG (word_mode) + regno)); address = gen_rtx_PLUS (Pmode, frame_pointer_rtx, GEN_INT (FIRST_PARM_OFFSET (0) + UNITS_PER_WORD * first_reg)); return address; } /* Implement `va_start' for varargs and stdarg. */ void sparc_va_start (stdarg_p, valist, nextarg) int stdarg_p ATTRIBUTE_UNUSED; tree valist; rtx nextarg; { nextarg = expand_builtin_saveregs (); std_expand_builtin_va_start (1, valist, nextarg); } /* Implement `va_arg'. */ rtx sparc_va_arg (valist, type) tree valist, type; { HOST_WIDE_INT size, rsize, align; tree addr, incr; rtx addr_rtx; int indirect = 0; /* Round up sizeof(type) to a word. */ size = int_size_in_bytes (type); rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD; align = 0; if (TARGET_ARCH64) { if (TYPE_ALIGN (type) >= 2 * (unsigned) BITS_PER_WORD) align = 2 * UNITS_PER_WORD; if (AGGREGATE_TYPE_P (type)) { if ((unsigned HOST_WIDE_INT) size > 16) { indirect = 1; size = rsize = UNITS_PER_WORD; } /* SPARC v9 ABI states that structures up to 8 bytes in size are given one 8 byte slot. */ else if (size == 0) size = rsize = UNITS_PER_WORD; else size = rsize; } } else { if (AGGREGATE_TYPE_P (type) || TYPE_MODE (type) == TFmode || TYPE_MODE (type) == TCmode) { indirect = 1; size = rsize = UNITS_PER_WORD; } } incr = valist; if (align) { incr = fold (build (PLUS_EXPR, ptr_type_node, incr, build_int_2 (align - 1, 0))); incr = fold (build (BIT_AND_EXPR, ptr_type_node, incr, build_int_2 (-align, -1))); } addr = incr = save_expr (incr); if (BYTES_BIG_ENDIAN && size < rsize) { addr = fold (build (PLUS_EXPR, ptr_type_node, incr, build_int_2 (rsize - size, 0))); } incr = fold (build (PLUS_EXPR, ptr_type_node, incr, build_int_2 (rsize, 0))); incr = build (MODIFY_EXPR, ptr_type_node, valist, incr); TREE_SIDE_EFFECTS (incr) = 1; expand_expr (incr, const0_rtx, VOIDmode, EXPAND_NORMAL); addr_rtx = expand_expr (addr, NULL, Pmode, EXPAND_NORMAL); /* If the address isn't aligned properly for the type, we may need to copy to a temporary. FIXME: This is inefficient. Usually we can do this in registers. */ if (align == 0 && TYPE_ALIGN (type) > BITS_PER_WORD && !indirect) { /* FIXME: We really need to specify that the temporary is live for the whole function because expand_builtin_va_arg wants the alias set to be get_varargs_alias_set (), but in this case the alias set is that for TYPE and if the memory gets reused it will be reused with alias set TYPE. */ rtx tmp = assign_temp (type, 0, 1, 0); rtx dest_addr; addr_rtx = force_reg (Pmode, addr_rtx); addr_rtx = gen_rtx_MEM (BLKmode, addr_rtx); set_mem_alias_set (addr_rtx, get_varargs_alias_set ()); set_mem_align (addr_rtx, BITS_PER_WORD); tmp = shallow_copy_rtx (tmp); PUT_MODE (tmp, BLKmode); set_mem_alias_set (tmp, 0); dest_addr = emit_block_move (tmp, addr_rtx, GEN_INT (rsize)); if (dest_addr != NULL_RTX) addr_rtx = dest_addr; else addr_rtx = XCEXP (tmp, 0, MEM); } if (indirect) { addr_rtx = force_reg (Pmode, addr_rtx); addr_rtx = gen_rtx_MEM (Pmode, addr_rtx); set_mem_alias_set (addr_rtx, get_varargs_alias_set ()); } return addr_rtx; } /* Return the string to output a conditional branch to LABEL, which is the operand number of the label. OP is the conditional expression. XEXP (OP, 0) is assumed to be a condition code register (integer or floating point) and its mode specifies what kind of comparison we made. REVERSED is non-zero if we should reverse the sense of the comparison. ANNUL is non-zero if we should generate an annulling branch. NOOP is non-zero if we have to follow this branch by a noop. INSN, if set, is the insn. */ char * output_cbranch (op, dest, label, reversed, annul, noop, insn) rtx op, dest; int label; int reversed, annul, noop; rtx insn; { static char string[50]; enum rtx_code code = GET_CODE (op); rtx cc_reg = XEXP (op, 0); enum machine_mode mode = GET_MODE (cc_reg); const char *labelno, *branch; int spaces = 8, far; char *p; /* v9 branches are limited to +-1MB. If it is too far away, change bne,pt %xcc, .LC30 to be,pn %xcc, .+12 nop ba .LC30 and fbne,a,pn %fcc2, .LC29 to fbe,pt %fcc2, .+16 nop ba .LC29 */ far = get_attr_length (insn) >= 3; if (reversed ^ far) { /* Reversal of FP compares takes care -- an ordered compare becomes an unordered compare and vice versa. */ if (mode == CCFPmode || mode == CCFPEmode) code = reverse_condition_maybe_unordered (code); else code = reverse_condition (code); } /* Start by writing the branch condition. */ if (mode == CCFPmode || mode == CCFPEmode) { switch (code) { case NE: branch = "fbne"; break; case EQ: branch = "fbe"; break; case GE: branch = "fbge"; break; case GT: branch = "fbg"; break; case LE: branch = "fble"; break; case LT: branch = "fbl"; break; case UNORDERED: branch = "fbu"; break; case ORDERED: branch = "fbo"; break; case UNGT: branch = "fbug"; break; case UNLT: branch = "fbul"; break; case UNEQ: branch = "fbue"; break; case UNGE: branch = "fbuge"; break; case UNLE: branch = "fbule"; break; case LTGT: branch = "fblg"; break; default: abort (); } /* ??? !v9: FP branches cannot be preceded by another floating point insn. Because there is currently no concept of pre-delay slots, we can fix this only by always emitting a nop before a floating point branch. */ string[0] = '\0'; if (! TARGET_V9) strcpy (string, "nop\n\t"); strcat (string, branch); } else { switch (code) { case NE: branch = "bne"; break; case EQ: branch = "be"; break; case GE: if (mode == CC_NOOVmode || mode == CCX_NOOVmode) branch = "bpos"; else branch = "bge"; break; case GT: branch = "bg"; break; case LE: branch = "ble"; break; case LT: if (mode == CC_NOOVmode || mode == CCX_NOOVmode) branch = "bneg"; else branch = "bl"; break; case GEU: branch = "bgeu"; break; case GTU: branch = "bgu"; break; case LEU: branch = "bleu"; break; case LTU: branch = "blu"; break; default: abort (); } strcpy (string, branch); } spaces -= strlen (branch); p = strchr (string, '\0'); /* Now add the annulling, the label, and a possible noop. */ if (annul && ! far) { strcpy (p, ",a"); p += 2; spaces -= 2; } if (! TARGET_V9) labelno = ""; else { rtx note; int v8 = 0; if (! far && insn && INSN_ADDRESSES_SET_P ()) { int delta = (INSN_ADDRESSES (INSN_UID (dest)) - INSN_ADDRESSES (INSN_UID (insn))); /* Leave some instructions for "slop". */ if (delta < -260000 || delta >= 260000) v8 = 1; } if (mode == CCFPmode || mode == CCFPEmode) { static char v9_fcc_labelno[] = "%%fccX, "; /* Set the char indicating the number of the fcc reg to use. */ v9_fcc_labelno[5] = REGNO (cc_reg) - SPARC_FIRST_V9_FCC_REG + '0'; labelno = v9_fcc_labelno; if (v8) { if (REGNO (cc_reg) == SPARC_FCC_REG) labelno = ""; else abort (); } } else if (mode == CCXmode || mode == CCX_NOOVmode) { labelno = "%%xcc, "; if (v8) abort (); } else { labelno = "%%icc, "; if (v8) labelno = ""; } if (*labelno && insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX))) { strcpy (p, ((INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2) ^ far) ? ",pt" : ",pn"); p += 3; spaces -= 3; } } if (spaces > 0) *p++ = '\t'; else *p++ = ' '; strcpy (p, labelno); p = strchr (p, '\0'); if (far) { strcpy (p, ".+12\n\tnop\n\tb\t"); if (annul || noop) p[3] = '6'; p += 13; } *p++ = '%'; *p++ = 'l'; /* Set the char indicating the number of the operand containing the label_ref. */ *p++ = label + '0'; *p = '\0'; if (noop) strcpy (p, "\n\tnop"); return string; } /* Emit a library call comparison between floating point X and Y. COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). TARGET_ARCH64 uses _Qp_* functions, which use pointers to TFmode values as arguments instead of the TFmode registers themselves, that's why we cannot call emit_float_lib_cmp. */ void sparc_emit_float_lib_cmp (x, y, comparison) rtx x, y; enum rtx_code comparison; { const char *qpfunc; rtx slot0, slot1, result, tem, tem2; enum machine_mode mode; switch (comparison) { case EQ: qpfunc = (TARGET_ARCH64) ? "_Qp_feq" : "_Q_feq"; break; case NE: qpfunc = (TARGET_ARCH64) ? "_Qp_fne" : "_Q_fne"; break; case GT: qpfunc = (TARGET_ARCH64) ? "_Qp_fgt" : "_Q_fgt"; break; case GE: qpfunc = (TARGET_ARCH64) ? "_Qp_fge" : "_Q_fge"; break; case LT: qpfunc = (TARGET_ARCH64) ? "_Qp_flt" : "_Q_flt"; break; case LE: qpfunc = (TARGET_ARCH64) ? "_Qp_fle" : "_Q_fle"; break; case ORDERED: case UNORDERED: case UNGT: case UNLT: case UNEQ: case UNGE: case UNLE: case LTGT: qpfunc = (TARGET_ARCH64) ? "_Qp_cmp" : "_Q_cmp"; break; default: abort(); break; } if (TARGET_ARCH64) { if (GET_CODE (x) != MEM) { slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0); emit_insn (gen_rtx_SET (VOIDmode, slot0, x)); } else slot0 = x; if (GET_CODE (y) != MEM) { slot1 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0); emit_insn (gen_rtx_SET (VOIDmode, slot1, y)); } else slot1 = y; emit_library_call (gen_rtx_SYMBOL_REF (Pmode, qpfunc), LCT_NORMAL, DImode, 2, XEXP (slot0, 0), Pmode, XEXP (slot1, 0), Pmode); mode = DImode; } else { emit_library_call (gen_rtx_SYMBOL_REF (Pmode, qpfunc), LCT_NORMAL, SImode, 2, x, TFmode, y, TFmode); mode = SImode; } /* Immediately move the result of the libcall into a pseudo register so reload doesn't clobber the value if it needs the return register for a spill reg. */ result = gen_reg_rtx (mode); emit_move_insn (result, hard_libcall_value (mode)); switch (comparison) { default: emit_cmp_insn (result, const0_rtx, NE, NULL_RTX, mode, 0); break; case ORDERED: case UNORDERED: emit_cmp_insn (result, GEN_INT(3), comparison == UNORDERED ? EQ : NE, NULL_RTX, mode, 0); break; case UNGT: case UNGE: emit_cmp_insn (result, const1_rtx, comparison == UNGT ? GT : NE, NULL_RTX, mode, 0); break; case UNLE: emit_cmp_insn (result, const2_rtx, NE, NULL_RTX, mode, 0); break; case UNLT: tem = gen_reg_rtx (mode); if (TARGET_ARCH32) emit_insn (gen_andsi3 (tem, result, const1_rtx)); else emit_insn (gen_anddi3 (tem, result, const1_rtx)); emit_cmp_insn (tem, const0_rtx, NE, NULL_RTX, mode, 0); break; case UNEQ: case LTGT: tem = gen_reg_rtx (mode); if (TARGET_ARCH32) emit_insn (gen_addsi3 (tem, result, const1_rtx)); else emit_insn (gen_adddi3 (tem, result, const1_rtx)); tem2 = gen_reg_rtx (mode); if (TARGET_ARCH32) emit_insn (gen_andsi3 (tem2, tem, const2_rtx)); else emit_insn (gen_anddi3 (tem2, tem, const2_rtx)); emit_cmp_insn (tem2, const0_rtx, comparison == UNEQ ? EQ : NE, NULL_RTX, mode, 0); break; } } /* Generate an unsigned DImode to FP conversion. This is the same code optabs would emit if we didn't have TFmode patterns. */ void sparc_emit_floatunsdi (operands) rtx operands[2]; { rtx neglab, donelab, i0, i1, f0, in, out; enum machine_mode mode; out = operands[0]; in = force_reg (DImode, operands[1]); mode = GET_MODE (out); neglab = gen_label_rtx (); donelab = gen_label_rtx (); i0 = gen_reg_rtx (DImode); i1 = gen_reg_rtx (DImode); f0 = gen_reg_rtx (mode); emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab); emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_FLOAT (mode, in))); emit_jump_insn (gen_jump (donelab)); emit_barrier (); emit_label (neglab); emit_insn (gen_lshrdi3 (i0, in, const1_rtx)); emit_insn (gen_anddi3 (i1, in, const1_rtx)); emit_insn (gen_iordi3 (i0, i0, i1)); emit_insn (gen_rtx_SET (VOIDmode, f0, gen_rtx_FLOAT (mode, i0))); emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0))); emit_label (donelab); } /* Return the string to output a conditional branch to LABEL, testing register REG. LABEL is the operand number of the label; REG is the operand number of the reg. OP is the conditional expression. The mode of REG says what kind of comparison we made. REVERSED is non-zero if we should reverse the sense of the comparison. ANNUL is non-zero if we should generate an annulling branch. NOOP is non-zero if we have to follow this branch by a noop. */ char * output_v9branch (op, dest, reg, label, reversed, annul, noop, insn) rtx op, dest; int reg, label; int reversed, annul, noop; rtx insn; { static char string[50]; enum rtx_code code = GET_CODE (op); enum machine_mode mode = GET_MODE (XEXP (op, 0)); rtx note; int far; char *p; /* branch on register are limited to +-128KB. If it is too far away, change brnz,pt %g1, .LC30 to brz,pn %g1, .+12 nop ba,pt %xcc, .LC30 and brgez,a,pn %o1, .LC29 to brlz,pt %o1, .+16 nop ba,pt %xcc, .LC29 */ far = get_attr_length (insn) >= 3; /* If not floating-point or if EQ or NE, we can just reverse the code. */ if (reversed ^ far) code = reverse_condition (code); /* Only 64 bit versions of these instructions exist. */ if (mode != DImode) abort (); /* Start by writing the branch condition. */ switch (code) { case NE: strcpy (string, "brnz"); break; case EQ: strcpy (string, "brz"); break; case GE: strcpy (string, "brgez"); break; case LT: strcpy (string, "brlz"); break; case LE: strcpy (string, "brlez"); break; case GT: strcpy (string, "brgz"); break; default: abort (); } p = strchr (string, '\0'); /* Now add the annulling, reg, label, and nop. */ if (annul && ! far) { strcpy (p, ",a"); p += 2; } if (insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX))) { strcpy (p, ((INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2) ^ far) ? ",pt" : ",pn"); p += 3; } *p = p < string + 8 ? '\t' : ' '; p++; *p++ = '%'; *p++ = '0' + reg; *p++ = ','; *p++ = ' '; if (far) { int veryfar = 1, delta; if (INSN_ADDRESSES_SET_P ()) { delta = (INSN_ADDRESSES (INSN_UID (dest)) - INSN_ADDRESSES (INSN_UID (insn))); /* Leave some instructions for "slop". */ if (delta >= -260000 && delta < 260000) veryfar = 0; } strcpy (p, ".+12\n\tnop\n\t"); if (annul || noop) p[3] = '6'; p += 11; if (veryfar) { strcpy (p, "b\t"); p += 2; } else { strcpy (p, "ba,pt\t%%xcc, "); p += 13; } } *p++ = '%'; *p++ = 'l'; *p++ = '0' + label; *p = '\0'; if (noop) strcpy (p, "\n\tnop"); return string; } /* Return 1, if any of the registers of the instruction are %l[0-7] or %o[0-7]. Such instructions cannot be used in the delay slot of return insn on v9. If TEST is 0, also rename all %i[0-7] registers to their %o[0-7] counterparts. */ static int epilogue_renumber (where, test) register rtx *where; int test; { register const char *fmt; register int i; register enum rtx_code code; if (*where == 0) return 0; code = GET_CODE (*where); switch (code) { case REG: if (REGNO (*where) >= 8 && REGNO (*where) < 24) /* oX or lX */ return 1; if (! test && REGNO (*where) >= 24 && REGNO (*where) < 32) *where = gen_rtx (REG, GET_MODE (*where), OUTGOING_REGNO (REGNO(*where))); case SCRATCH: case CC0: case PC: case CONST_INT: case CONST_DOUBLE: return 0; /* Do not replace the frame pointer with the stack pointer because it can cause the delayed instruction to load below the stack. This occurs when instructions like: (set (reg/i:SI 24 %i0) (mem/f:SI (plus:SI (reg/f:SI 30 %fp) (const_int -20 [0xffffffec])) 0)) are in the return delayed slot. */ case PLUS: if (GET_CODE (XEXP (*where, 0)) == REG && REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM && (GET_CODE (XEXP (*where, 1)) != CONST_INT || INTVAL (XEXP (*where, 1)) < SPARC_STACK_BIAS)) return 1; break; case MEM: if (SPARC_STACK_BIAS && GET_CODE (XEXP (*where, 0)) == REG && REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM) return 1; break; default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'E') { register int j; for (j = XVECLEN (*where, i) - 1; j >= 0; j--) if (epilogue_renumber (&(XVECEXP (*where, i, j)), test)) return 1; } else if (fmt[i] == 'e' && epilogue_renumber (&(XEXP (*where, i)), test)) return 1; } return 0; } /* Leaf functions and non-leaf functions have different needs. */ static const int reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER; static const int reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER; static const int *const reg_alloc_orders[] = { reg_leaf_alloc_order, reg_nonleaf_alloc_order}; void order_regs_for_local_alloc () { static int last_order_nonleaf = 1; if (regs_ever_live[15] != last_order_nonleaf) { last_order_nonleaf = !last_order_nonleaf; memcpy ((char *) reg_alloc_order, (const char *) reg_alloc_orders[last_order_nonleaf], FIRST_PSEUDO_REGISTER * sizeof (int)); } } /* Return 1 if REG and MEM are legitimate enough to allow the various mem<-->reg splits to be run. */ int sparc_splitdi_legitimate (reg, mem) rtx reg; rtx mem; { /* Punt if we are here by mistake. */ if (! reload_completed) abort (); /* We must have an offsettable memory reference. */ if (! offsettable_memref_p (mem)) return 0; /* If we have legitimate args for ldd/std, we do not want the split to happen. */ if ((REGNO (reg) % 2) == 0 && mem_min_alignment (mem, 8)) return 0; /* Success. */ return 1; } /* Return 1 if x and y are some kind of REG and they refer to different hard registers. This test is guarenteed to be run after reload. */ int sparc_absnegfloat_split_legitimate (x, y) rtx x, y; { if (GET_CODE (x) != REG) return 0; if (GET_CODE (y) != REG) return 0; if (REGNO (x) == REGNO (y)) return 0; return 1; } /* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1. This makes them candidates for using ldd and std insns. Note reg1 and reg2 *must* be hard registers. */ int registers_ok_for_ldd_peep (reg1, reg2) rtx reg1, reg2; { /* We might have been passed a SUBREG. */ if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG) return 0; if (REGNO (reg1) % 2 != 0) return 0; /* Integer ldd is deprecated in SPARC V9 */ if (TARGET_V9 && REGNO (reg1) < 32) return 0; return (REGNO (reg1) == REGNO (reg2) - 1); } /* Return 1 if the addresses in mem1 and mem2 are suitable for use in an ldd or std insn. This can only happen when addr1 and addr2, the addresses in mem1 and mem2, are consecutive memory locations (addr1 + 4 == addr2). addr1 must also be aligned on a 64-bit boundary. Also iff dependent_reg_rtx is not null it should not be used to compute the address for mem1, i.e. we cannot optimize a sequence like: ld [%o0], %o0 ld [%o0 + 4], %o1 to ldd [%o0], %o0 nor: ld [%g3 + 4], %g3 ld [%g3], %g2 to ldd [%g3], %g2 But, note that the transformation from: ld [%g2 + 4], %g3 ld [%g2], %g2 to ldd [%g2], %g2 is perfectly fine. Thus, the peephole2 patterns always pass us the destination register of the first load, never the second one. For stores we don't have a similar problem, so dependent_reg_rtx is NULL_RTX. */ int mems_ok_for_ldd_peep (mem1, mem2, dependent_reg_rtx) rtx mem1, mem2, dependent_reg_rtx; { rtx addr1, addr2; unsigned int reg1; int offset1; /* The mems cannot be volatile. */ if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2)) return 0; /* MEM1 should be aligned on a 64-bit boundary. */ if (MEM_ALIGN (mem1) < 64) return 0; addr1 = XEXP (mem1, 0); addr2 = XEXP (mem2, 0); /* Extract a register number and offset (if used) from the first addr. */ if (GET_CODE (addr1) == PLUS) { /* If not a REG, return zero. */ if (GET_CODE (XEXP (addr1, 0)) != REG) return 0; else { reg1 = REGNO (XEXP (addr1, 0)); /* The offset must be constant! */ if (GET_CODE (XEXP (addr1, 1)) != CONST_INT) return 0; offset1 = INTVAL (XEXP (addr1, 1)); } } else if (GET_CODE (addr1) != REG) return 0; else { reg1 = REGNO (addr1); /* This was a simple (mem (reg)) expression. Offset is 0. */ offset1 = 0; } /* Make sure the second address is a (mem (plus (reg) (const_int). */ if (GET_CODE (addr2) != PLUS) return 0; if (GET_CODE (XEXP (addr2, 0)) != REG || GET_CODE (XEXP (addr2, 1)) != CONST_INT) return 0; if (reg1 != REGNO (XEXP (addr2, 0))) return 0; if (dependent_reg_rtx != NULL_RTX && reg1 == REGNO (dependent_reg_rtx)) return 0; /* The first offset must be evenly divisible by 8 to ensure the address is 64 bit aligned. */ if (offset1 % 8 != 0) return 0; /* The offset for the second addr must be 4 more than the first addr. */ if (INTVAL (XEXP (addr2, 1)) != offset1 + 4) return 0; /* All the tests passed. addr1 and addr2 are valid for ldd and std instructions. */ return 1; } /* Return 1 if reg is a pseudo, or is the first register in a hard register pair. This makes it a candidate for use in ldd and std insns. */ int register_ok_for_ldd (reg) rtx reg; { /* We might have been passed a SUBREG. */ if (GET_CODE (reg) != REG) return 0; if (REGNO (reg) < FIRST_PSEUDO_REGISTER) return (REGNO (reg) % 2 == 0); else return 1; } /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. */ void print_operand (file, x, code) FILE *file; rtx x; int code; { switch (code) { case '#': /* Output a 'nop' if there's nothing for the delay slot. */ if (dbr_sequence_length () == 0) fputs ("\n\t nop", file); return; case '*': /* Output an annul flag if there's nothing for the delay slot and we are optimizing. This is always used with '(' below. */ /* Sun OS 4.1.1 dbx can't handle an annulled unconditional branch; this is a dbx bug. So, we only do this when optimizing. */ /* On UltraSPARC, a branch in a delay slot causes a pipeline flush. Always emit a nop in case the next instruction is a branch. */ if (dbr_sequence_length () == 0 && (optimize && (int)sparc_cpu < PROCESSOR_V9)) fputs (",a", file); return; case '(': /* Output a 'nop' if there's nothing for the delay slot and we are not optimizing. This is always used with '*' above. */ if (dbr_sequence_length () == 0 && ! (optimize && (int)sparc_cpu < PROCESSOR_V9)) fputs ("\n\t nop", file); return; case '_': /* Output the Embedded Medium/Anywhere code model base register. */ fputs (EMBMEDANY_BASE_REG, file); return; case '@': /* Print out what we are using as the frame pointer. This might be %fp, or might be %sp+offset. */ /* ??? What if offset is too big? Perhaps the caller knows it isn't? */ fprintf (file, "%s+%d", frame_base_name, frame_base_offset); return; case 'Y': /* Adjust the operand to take into account a RESTORE operation. */ if (GET_CODE (x) == CONST_INT) break; else if (GET_CODE (x) != REG) output_operand_lossage ("invalid %%Y operand"); else if (REGNO (x) < 8) fputs (reg_names[REGNO (x)], file); else if (REGNO (x) >= 24 && REGNO (x) < 32) fputs (reg_names[REGNO (x)-16], file); else output_operand_lossage ("invalid %%Y operand"); return; case 'L': /* Print out the low order register name of a register pair. */ if (WORDS_BIG_ENDIAN) fputs (reg_names[REGNO (x)+1], file); else fputs (reg_names[REGNO (x)], file); return; case 'H': /* Print out the high order register name of a register pair. */ if (WORDS_BIG_ENDIAN) fputs (reg_names[REGNO (x)], file); else fputs (reg_names[REGNO (x)+1], file); return; case 'R': /* Print out the second register name of a register pair or quad. I.e., R (%o0) => %o1. */ fputs (reg_names[REGNO (x)+1], file); return; case 'S': /* Print out the third register name of a register quad. I.e., S (%o0) => %o2. */ fputs (reg_names[REGNO (x)+2], file); return; case 'T': /* Print out the fourth register name of a register quad. I.e., T (%o0) => %o3. */ fputs (reg_names[REGNO (x)+3], file); return; case 'x': /* Print a condition code register. */ if (REGNO (x) == SPARC_ICC_REG) { /* We don't handle CC[X]_NOOVmode because they're not supposed to occur here. */ if (GET_MODE (x) == CCmode) fputs ("%icc", file); else if (GET_MODE (x) == CCXmode) fputs ("%xcc", file); else abort (); } else /* %fccN register */ fputs (reg_names[REGNO (x)], file); return; case 'm': /* Print the operand's address only. */ output_address (XEXP (x, 0)); return; case 'r': /* In this case we need a register. Use %g0 if the operand is const0_rtx. */ if (x == const0_rtx || (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x)))) { fputs ("%g0", file); return; } else break; case 'A': switch (GET_CODE (x)) { case IOR: fputs ("or", file); break; case AND: fputs ("and", file); break; case XOR: fputs ("xor", file); break; default: output_operand_lossage ("invalid %%A operand"); } return; case 'B': switch (GET_CODE (x)) { case IOR: fputs ("orn", file); break; case AND: fputs ("andn", file); break; case XOR: fputs ("xnor", file); break; default: output_operand_lossage ("invalid %%B operand"); } return; /* These are used by the conditional move instructions. */ case 'c' : case 'C': { enum rtx_code rc = GET_CODE (x); if (code == 'c') { enum machine_mode mode = GET_MODE (XEXP (x, 0)); if (mode == CCFPmode || mode == CCFPEmode) rc = reverse_condition_maybe_unordered (GET_CODE (x)); else rc = reverse_condition (GET_CODE (x)); } switch (rc) { case NE: fputs ("ne", file); break; case EQ: fputs ("e", file); break; case GE: fputs ("ge", file); break; case GT: fputs ("g", file); break; case LE: fputs ("le", file); break; case LT: fputs ("l", file); break; case GEU: fputs ("geu", file); break; case GTU: fputs ("gu", file); break; case LEU: fputs ("leu", file); break; case LTU: fputs ("lu", file); break; case LTGT: fputs ("lg", file); break; case UNORDERED: fputs ("u", file); break; case ORDERED: fputs ("o", file); break; case UNLT: fputs ("ul", file); break; case UNLE: fputs ("ule", file); break; case UNGT: fputs ("ug", file); break; case UNGE: fputs ("uge", file); break; case UNEQ: fputs ("ue", file); break; default: output_operand_lossage (code == 'c' ? "invalid %%c operand" : "invalid %%C operand"); } return; } /* These are used by the movr instruction pattern. */ case 'd': case 'D': { enum rtx_code rc = (code == 'd' ? reverse_condition (GET_CODE (x)) : GET_CODE (x)); switch (rc) { case NE: fputs ("ne", file); break; case EQ: fputs ("e", file); break; case GE: fputs ("gez", file); break; case LT: fputs ("lz", file); break; case LE: fputs ("lez", file); break; case GT: fputs ("gz", file); break; default: output_operand_lossage (code == 'd' ? "invalid %%d operand" : "invalid %%D operand"); } return; } case 'b': { /* Print a sign-extended character. */ int i = trunc_int_for_mode (INTVAL (x), QImode); fprintf (file, "%d", i); return; } case 'f': /* Operand must be a MEM; write its address. */ if (GET_CODE (x) != MEM) output_operand_lossage ("invalid %%f operand"); output_address (XEXP (x, 0)); return; case 0: /* Do nothing special. */ break; default: /* Undocumented flag. */ output_operand_lossage ("invalid operand output code"); } if (GET_CODE (x) == REG) fputs (reg_names[REGNO (x)], file); else if (GET_CODE (x) == MEM) { fputc ('[', file); /* Poor Sun assembler doesn't understand absolute addressing. */ if (CONSTANT_P (XEXP (x, 0))) fputs ("%g0+", file); output_address (XEXP (x, 0)); fputc (']', file); } else if (GET_CODE (x) == HIGH) { fputs ("%hi(", file); output_addr_const (file, XEXP (x, 0)); fputc (')', file); } else if (GET_CODE (x) == LO_SUM) { print_operand (file, XEXP (x, 0), 0); if (TARGET_CM_MEDMID) fputs ("+%l44(", file); else fputs ("+%lo(", file); output_addr_const (file, XEXP (x, 1)); fputc (')', file); } else if (GET_CODE (x) == CONST_DOUBLE && (GET_MODE (x) == VOIDmode || GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)) { if (CONST_DOUBLE_HIGH (x) == 0) fprintf (file, "%u", (unsigned int) CONST_DOUBLE_LOW (x)); else if (CONST_DOUBLE_HIGH (x) == -1 && CONST_DOUBLE_LOW (x) < 0) fprintf (file, "%d", (int) CONST_DOUBLE_LOW (x)); else output_operand_lossage ("long long constant not a valid immediate operand"); } else if (GET_CODE (x) == CONST_DOUBLE) output_operand_lossage ("floating point constant not a valid immediate operand"); else { output_addr_const (file, x); } } /* Target hook for assembling integer objects. The sparc version has special handling for aligned DI-mode objects. */ static bool sparc_assemble_integer (x, size, aligned_p) rtx x; unsigned int size; int aligned_p; { /* ??? We only output .xword's for symbols and only then in environments where the assembler can handle them. */ if (aligned_p && size == 8 && (GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_DOUBLE)) { if (TARGET_V9) { assemble_integer_with_op ("\t.xword\t", x); return true; } else { assemble_aligned_integer (4, const0_rtx); assemble_aligned_integer (4, x); return true; } } return default_assemble_integer (x, size, aligned_p); } /* Return the value of a code used in the .proc pseudo-op that says what kind of result this function returns. For non-C types, we pick the closest C type. */ #ifndef CHAR_TYPE_SIZE #define CHAR_TYPE_SIZE BITS_PER_UNIT #endif #ifndef SHORT_TYPE_SIZE #define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2) #endif #ifndef INT_TYPE_SIZE #define INT_TYPE_SIZE BITS_PER_WORD #endif #ifndef LONG_TYPE_SIZE #define LONG_TYPE_SIZE BITS_PER_WORD #endif #ifndef LONG_LONG_TYPE_SIZE #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2) #endif #ifndef FLOAT_TYPE_SIZE #define FLOAT_TYPE_SIZE BITS_PER_WORD #endif #ifndef DOUBLE_TYPE_SIZE #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) #endif #ifndef LONG_DOUBLE_TYPE_SIZE #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) #endif unsigned long sparc_type_code (type) register tree type; { register unsigned long qualifiers = 0; register unsigned shift; /* Only the first 30 bits of the qualifier are valid. We must refrain from setting more, since some assemblers will give an error for this. Also, we must be careful to avoid shifts of 32 bits or more to avoid getting unpredictable results. */ for (shift = 6; shift < 30; shift += 2, type = TREE_TYPE (type)) { switch (TREE_CODE (type)) { case ERROR_MARK: return qualifiers; case ARRAY_TYPE: qualifiers |= (3 << shift); break; case FUNCTION_TYPE: case METHOD_TYPE: qualifiers |= (2 << shift); break; case POINTER_TYPE: case REFERENCE_TYPE: case OFFSET_TYPE: qualifiers |= (1 << shift); break; case RECORD_TYPE: return (qualifiers | 8); case UNION_TYPE: case QUAL_UNION_TYPE: return (qualifiers | 9); case ENUMERAL_TYPE: return (qualifiers | 10); case VOID_TYPE: return (qualifiers | 16); case INTEGER_TYPE: /* If this is a range type, consider it to be the underlying type. */ if (TREE_TYPE (type) != 0) break; /* Carefully distinguish all the standard types of C, without messing up if the language is not C. We do this by testing TYPE_PRECISION and TREE_UNSIGNED. The old code used to look at both the names and the above fields, but that's redundant. Any type whose size is between two C types will be considered to be the wider of the two types. Also, we do not have a special code to use for "long long", so anything wider than long is treated the same. Note that we can't distinguish between "int" and "long" in this code if they are the same size, but that's fine, since neither can the assembler. */ if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE) return (qualifiers | (TREE_UNSIGNED (type) ? 12 : 2)); else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE) return (qualifiers | (TREE_UNSIGNED (type) ? 13 : 3)); else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE) return (qualifiers | (TREE_UNSIGNED (type) ? 14 : 4)); else return (qualifiers | (TREE_UNSIGNED (type) ? 15 : 5)); case REAL_TYPE: /* If this is a range type, consider it to be the underlying type. */ if (TREE_TYPE (type) != 0) break; /* Carefully distinguish all the standard types of C, without messing up if the language is not C. */ if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE) return (qualifiers | 6); else return (qualifiers | 7); case COMPLEX_TYPE: /* GNU Fortran COMPLEX type. */ /* ??? We need to distinguish between double and float complex types, but I don't know how yet because I can't reach this code from existing front-ends. */ return (qualifiers | 7); /* Who knows? */ case CHAR_TYPE: /* GNU Pascal CHAR type. Not used in C. */ case BOOLEAN_TYPE: /* GNU Fortran BOOLEAN type. */ case FILE_TYPE: /* GNU Pascal FILE type. */ case SET_TYPE: /* GNU Pascal SET type. */ case LANG_TYPE: /* ? */ return qualifiers; default: abort (); /* Not a type! */ } } return qualifiers; } /* Nested function support. */ /* Emit RTL insns to initialize the variable parts of a trampoline. FNADDR is an RTX for the address of the function's pure code. CXT is an RTX for the static chain value for the function. This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes (to store insns). This is a bit excessive. Perhaps a different mechanism would be better here. Emit enough FLUSH insns to synchronize the data and instruction caches. */ void sparc_initialize_trampoline (tramp, fnaddr, cxt) rtx tramp, fnaddr, cxt; { /* SPARC 32 bit trampoline: sethi %hi(fn), %g1 sethi %hi(static), %g2 jmp %g1+%lo(fn) or %g2, %lo(static), %g2 SETHI i,r = 00rr rrr1 00ii iiii iiii iiii iiii iiii JMPL r+i,d = 10dd ddd1 1100 0rrr rr1i iiii iiii iiii */ #ifdef TRANSFER_FROM_TRAMPOLINE emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__enable_execute_stack"), LCT_NORMAL, VOIDmode, 1, tramp, Pmode); #endif emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 0)), expand_binop (SImode, ior_optab, expand_shift (RSHIFT_EXPR, SImode, fnaddr, size_int (10), 0, 1), GEN_INT (trunc_int_for_mode (0x03000000, SImode)), NULL_RTX, 1, OPTAB_DIRECT)); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 4)), expand_binop (SImode, ior_optab, expand_shift (RSHIFT_EXPR, SImode, cxt, size_int (10), 0, 1), GEN_INT (trunc_int_for_mode (0x05000000, SImode)), NULL_RTX, 1, OPTAB_DIRECT)); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 8)), expand_binop (SImode, ior_optab, expand_and (SImode, fnaddr, GEN_INT (0x3ff), NULL_RTX), GEN_INT (trunc_int_for_mode (0x81c06000, SImode)), NULL_RTX, 1, OPTAB_DIRECT)); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 12)), expand_binop (SImode, ior_optab, expand_and (SImode, cxt, GEN_INT (0x3ff), NULL_RTX), GEN_INT (trunc_int_for_mode (0x8410a000, SImode)), NULL_RTX, 1, OPTAB_DIRECT)); /* On UltraSPARC a flush flushes an entire cache line. The trampoline is aligned on a 16 byte boundary so one flush clears it all. */ emit_insn (gen_flush (validize_mem (gen_rtx_MEM (SImode, tramp)))); if (sparc_cpu != PROCESSOR_ULTRASPARC) emit_insn (gen_flush (validize_mem (gen_rtx_MEM (SImode, plus_constant (tramp, 8))))); } /* The 64 bit version is simpler because it makes more sense to load the values as "immediate" data out of the trampoline. It's also easier since we can read the PC without clobbering a register. */ void sparc64_initialize_trampoline (tramp, fnaddr, cxt) rtx tramp, fnaddr, cxt; { #ifdef TRANSFER_FROM_TRAMPOLINE emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__enable_execute_stack"), LCT_NORMAL, VOIDmode, 1, tramp, Pmode); #endif /* rd %pc, %g1 ldx [%g1+24], %g5 jmp %g5 ldx [%g1+16], %g5 +16 bytes data */ emit_move_insn (gen_rtx_MEM (SImode, tramp), GEN_INT (trunc_int_for_mode (0x83414000, SImode))); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 4)), GEN_INT (trunc_int_for_mode (0xca586018, SImode))); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 8)), GEN_INT (trunc_int_for_mode (0x81c14000, SImode))); emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 12)), GEN_INT (trunc_int_for_mode (0xca586010, SImode))); emit_move_insn (gen_rtx_MEM (DImode, plus_constant (tramp, 16)), cxt); emit_move_insn (gen_rtx_MEM (DImode, plus_constant (tramp, 24)), fnaddr); emit_insn (gen_flushdi (validize_mem (gen_rtx_MEM (DImode, tramp)))); if (sparc_cpu != PROCESSOR_ULTRASPARC) emit_insn (gen_flushdi (validize_mem (gen_rtx_MEM (DImode, plus_constant (tramp, 8))))); } /* Subroutines to support a flat (single) register window calling convention. */ /* Single-register window sparc stack frames look like: Before call After call +-----------------------+ +-----------------------+ high | | | | mem | caller's temps. | | caller's temps. | | | | | +-----------------------+ +-----------------------+ | | | | | arguments on stack. | | arguments on stack. | | | | | +-----------------------+FP+92->+-----------------------+ | 6 words to save | | 6 words to save | | arguments passed | | arguments passed | | in registers, even | | in registers, even | | if not passed. | | if not passed. | SP+68->+-----------------------+FP+68->+-----------------------+ | 1 word struct addr | | 1 word struct addr | +-----------------------+FP+64->+-----------------------+ | | | | | 16 word reg save area | | 16 word reg save area | | | | | SP->+-----------------------+ FP->+-----------------------+ | 4 word area for | | fp/alu reg moves | FP-16->+-----------------------+ | | | local variables | | | +-----------------------+ | | | fp register save | | | +-----------------------+ | | | gp register save | | | +-----------------------+ | | | alloca allocations | | | +-----------------------+ | | | arguments on stack | | | SP+92->+-----------------------+ | 6 words to save | | arguments passed | | in registers, even | low | if not passed. | memory SP+68->+-----------------------+ | 1 word struct addr | SP+64->+-----------------------+ | | I 16 word reg save area | | | SP->+-----------------------+ */ /* Structure to be filled in by sparc_flat_compute_frame_size with register save masks, and offsets for the current function. */ struct sparc_frame_info { unsigned long total_size; /* # bytes that the entire frame takes up. */ unsigned long var_size; /* # bytes that variables take up. */ unsigned long args_size; /* # bytes that outgoing arguments take up. */ unsigned long extra_size; /* # bytes of extra gunk. */ unsigned int gp_reg_size; /* # bytes needed to store gp regs. */ unsigned int fp_reg_size; /* # bytes needed to store fp regs. */ unsigned long gmask; /* Mask of saved gp registers. */ unsigned long fmask; /* Mask of saved fp registers. */ unsigned long reg_offset; /* Offset from new sp to store regs. */ int initialized; /* Nonzero if frame size already calculated. */ }; /* Current frame information calculated by sparc_flat_compute_frame_size. */ struct sparc_frame_info current_frame_info; /* Zero structure to initialize current_frame_info. */ struct sparc_frame_info zero_frame_info; /* Tell prologue and epilogue if register REGNO should be saved / restored. */ #define RETURN_ADDR_REGNUM 15 #define HARD_FRAME_POINTER_MASK (1 << (HARD_FRAME_POINTER_REGNUM)) #define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM)) #define MUST_SAVE_REGISTER(regno) \ ((regs_ever_live[regno] && !call_used_regs[regno]) \ || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \ || (regno == RETURN_ADDR_REGNUM && regs_ever_live[RETURN_ADDR_REGNUM])) /* Return the bytes needed to compute the frame pointer from the current stack pointer. */ unsigned long sparc_flat_compute_frame_size (size) int size; /* # of var. bytes allocated. */ { int regno; unsigned long total_size; /* # bytes that the entire frame takes up. */ unsigned long var_size; /* # bytes that variables take up. */ unsigned long args_size; /* # bytes that outgoing arguments take up. */ unsigned long extra_size; /* # extra bytes. */ unsigned int gp_reg_size; /* # bytes needed to store gp regs. */ unsigned int fp_reg_size; /* # bytes needed to store fp regs. */ unsigned long gmask; /* Mask of saved gp registers. */ unsigned long fmask; /* Mask of saved fp registers. */ unsigned long reg_offset; /* Offset to register save area. */ int need_aligned_p; /* 1 if need the save area 8 byte aligned. */ /* This is the size of the 16 word reg save area, 1 word struct addr area, and 4 word fp/alu register copy area. */ extra_size = -STARTING_FRAME_OFFSET + FIRST_PARM_OFFSET(0); var_size = size; gp_reg_size = 0; fp_reg_size = 0; gmask = 0; fmask = 0; reg_offset = 0; need_aligned_p = 0; args_size = 0; if (!leaf_function_p ()) { /* Also include the size needed for the 6 parameter registers. */ args_size = current_function_outgoing_args_size + 24; } total_size = var_size + args_size; /* Calculate space needed for gp registers. */ for (regno = 1; regno <= 31; regno++) { if (MUST_SAVE_REGISTER (regno)) { /* If we need to save two regs in a row, ensure there's room to bump up the address to align it to a doubleword boundary. */ if ((regno & 0x1) == 0 && MUST_SAVE_REGISTER (regno+1)) { if (gp_reg_size % 8 != 0) gp_reg_size += 4; gp_reg_size += 2 * UNITS_PER_WORD; gmask |= 3 << regno; regno++; need_aligned_p = 1; } else { gp_reg_size += UNITS_PER_WORD; gmask |= 1 << regno; } } } /* Calculate space needed for fp registers. */ for (regno = 32; regno <= 63; regno++) { if (regs_ever_live[regno] && !call_used_regs[regno]) { fp_reg_size += UNITS_PER_WORD; fmask |= 1 << (regno - 32); } } if (gmask || fmask) { int n; reg_offset = FIRST_PARM_OFFSET(0) + args_size; /* Ensure save area is 8 byte aligned if we need it. */ n = reg_offset % 8; if (need_aligned_p && n != 0) { total_size += 8 - n; reg_offset += 8 - n; } total_size += gp_reg_size + fp_reg_size; } /* If we must allocate a stack frame at all, we must also allocate room for register window spillage, so as to be binary compatible with libraries and operating systems that do not use -mflat. */ if (total_size > 0) total_size += extra_size; else extra_size = 0; total_size = SPARC_STACK_ALIGN (total_size); /* Save other computed information. */ current_frame_info.total_size = total_size; current_frame_info.var_size = var_size; current_frame_info.args_size = args_size; current_frame_info.extra_size = extra_size; current_frame_info.gp_reg_size = gp_reg_size; current_frame_info.fp_reg_size = fp_reg_size; current_frame_info.gmask = gmask; current_frame_info.fmask = fmask; current_frame_info.reg_offset = reg_offset; current_frame_info.initialized = reload_completed; /* Ok, we're done. */ return total_size; } /* Save/restore registers in GMASK and FMASK at register BASE_REG plus offset OFFSET. BASE_REG must be 8 byte aligned. This allows us to test OFFSET for appropriate alignment and use DOUBLEWORD_OP when we can. We assume [BASE_REG+OFFSET] will always be a valid address. WORD_OP is either "st" for save, "ld" for restore. DOUBLEWORD_OP is either "std" for save, "ldd" for restore. */ void sparc_flat_save_restore (file, base_reg, offset, gmask, fmask, word_op, doubleword_op, base_offset) FILE *file; const char *base_reg; unsigned int offset; unsigned long gmask; unsigned long fmask; const char *word_op; const char *doubleword_op; unsigned long base_offset; { int regno; if (gmask == 0 && fmask == 0) return; /* Save registers starting from high to low. We've already saved the previous frame pointer and previous return address for the debugger's sake. The debugger allows us to not need a nop in the epilog if at least one register is reloaded in addition to return address. */ if (gmask) { for (regno = 1; regno <= 31; regno++) { if ((gmask & (1L << regno)) != 0) { if ((regno & 0x1) == 0 && ((gmask & (1L << (regno+1))) != 0)) { /* We can save two registers in a row. If we're not at a double word boundary, move to one. sparc_flat_compute_frame_size ensures there's room to do this. */ if (offset % 8 != 0) offset += UNITS_PER_WORD; if (word_op[0] == 's') { fprintf (file, "\t%s\t%s, [%s+%d]\n", doubleword_op, reg_names[regno], base_reg, offset); if (dwarf2out_do_frame ()) { char *l = dwarf2out_cfi_label (); dwarf2out_reg_save (l, regno, offset + base_offset); dwarf2out_reg_save (l, regno+1, offset+base_offset + UNITS_PER_WORD); } } else fprintf (file, "\t%s\t[%s+%d], %s\n", doubleword_op, base_reg, offset, reg_names[regno]); offset += 2 * UNITS_PER_WORD; regno++; } else { if (word_op[0] == 's') { fprintf (file, "\t%s\t%s, [%s+%d]\n", word_op, reg_names[regno], base_reg, offset); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", regno, offset + base_offset); } else fprintf (file, "\t%s\t[%s+%d], %s\n", word_op, base_reg, offset, reg_names[regno]); offset += UNITS_PER_WORD; } } } } if (fmask) { for (regno = 32; regno <= 63; regno++) { if ((fmask & (1L << (regno - 32))) != 0) { if (word_op[0] == 's') { fprintf (file, "\t%s\t%s, [%s+%d]\n", word_op, reg_names[regno], base_reg, offset); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", regno, offset + base_offset); } else fprintf (file, "\t%s\t[%s+%d], %s\n", word_op, base_reg, offset, reg_names[regno]); offset += UNITS_PER_WORD; } } } } /* Set up the stack and frame (if desired) for the function. */ static void sparc_flat_function_prologue (file, size) FILE *file; HOST_WIDE_INT size; { const char *sp_str = reg_names[STACK_POINTER_REGNUM]; unsigned long gmask = current_frame_info.gmask; sparc_output_scratch_registers (file); /* This is only for the human reader. */ fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START); fprintf (file, "\t%s# vars= %ld, regs= %d/%d, args= %d, extra= %ld\n", ASM_COMMENT_START, current_frame_info.var_size, current_frame_info.gp_reg_size / 4, current_frame_info.fp_reg_size / 4, current_function_outgoing_args_size, current_frame_info.extra_size); size = SPARC_STACK_ALIGN (size); size = (! current_frame_info.initialized ? sparc_flat_compute_frame_size (size) : current_frame_info.total_size); /* These cases shouldn't happen. Catch them now. */ if (size == 0 && (gmask || current_frame_info.fmask)) abort (); /* Allocate our stack frame by decrementing %sp. At present, the only algorithm gdb can use to determine if this is a flat frame is if we always set %i7 if we set %sp. This can be optimized in the future by putting in some sort of debugging information that says this is a `flat' function. However, there is still the case of debugging code without such debugging information (including cases where most fns have such info, but there is one that doesn't). So, always do this now so we don't get a lot of code out there that gdb can't handle. If the frame pointer isn't needn't then that's ok - gdb won't be able to distinguish us from a non-flat function but there won't (and shouldn't) be any differences anyway. The return pc is saved (if necessary) right after %i7 so gdb won't have to look too far to find it. */ if (size > 0) { unsigned int reg_offset = current_frame_info.reg_offset; const char *const fp_str = reg_names[HARD_FRAME_POINTER_REGNUM]; static const char *const t1_str = "%g1"; /* Things get a little tricky if local variables take up more than ~4096 bytes and outgoing arguments take up more than ~4096 bytes. When that happens, the register save area can't be accessed from either end of the frame. Handle this by decrementing %sp to the start of the gp register save area, save the regs, update %i7, and then set %sp to its final value. Given that we only have one scratch register to play with it is the cheapest solution, and it helps gdb out as it won't slow down recognition of flat functions. Don't change the order of insns emitted here without checking with the gdb folk first. */ /* Is the entire register save area offsettable from %sp? */ if (reg_offset < 4096 - 64 * (unsigned) UNITS_PER_WORD) { if (size <= 4096) { fprintf (file, "\tadd\t%s, %d, %s\n", sp_str, (int) -size, sp_str); if (gmask & HARD_FRAME_POINTER_MASK) { fprintf (file, "\tst\t%s, [%s+%d]\n", fp_str, sp_str, reg_offset); fprintf (file, "\tsub\t%s, %d, %s\t%s# set up frame pointer\n", sp_str, (int) -size, fp_str, ASM_COMMENT_START); reg_offset += 4; } } else { fprintf (file, "\tset\t"); fprintf (file, HOST_WIDE_INT_PRINT_DEC, size); fprintf (file, ", %s\n\tsub\t%s, %s, %s\n", t1_str, sp_str, t1_str, sp_str); if (gmask & HARD_FRAME_POINTER_MASK) { fprintf (file, "\tst\t%s, [%s+%d]\n", fp_str, sp_str, reg_offset); fprintf (file, "\tadd\t%s, %s, %s\t%s# set up frame pointer\n", sp_str, t1_str, fp_str, ASM_COMMENT_START); reg_offset += 4; } } if (dwarf2out_do_frame ()) { char *l = dwarf2out_cfi_label (); if (gmask & HARD_FRAME_POINTER_MASK) { dwarf2out_reg_save (l, HARD_FRAME_POINTER_REGNUM, reg_offset - 4 - size); dwarf2out_def_cfa (l, HARD_FRAME_POINTER_REGNUM, 0); } else dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size); } if (gmask & RETURN_ADDR_MASK) { fprintf (file, "\tst\t%s, [%s+%d]\n", reg_names[RETURN_ADDR_REGNUM], sp_str, reg_offset); if (dwarf2out_do_frame ()) dwarf2out_return_save ("", reg_offset - size); reg_offset += 4; } sparc_flat_save_restore (file, sp_str, reg_offset, gmask & ~(HARD_FRAME_POINTER_MASK | RETURN_ADDR_MASK), current_frame_info.fmask, "st", "std", -size); } else { /* Subtract %sp in two steps, but make sure there is always a 64 byte register save area, and %sp is properly aligned. */ /* Amount to decrement %sp by, the first time. */ unsigned HOST_WIDE_INT size1 = ((size - reg_offset + 64) + 15) & -16; /* Offset to register save area from %sp. */ unsigned HOST_WIDE_INT offset = size1 - (size - reg_offset); if (size1 <= 4096) { fprintf (file, "\tadd\t%s, %d, %s\n", sp_str, (int) -size1, sp_str); if (gmask & HARD_FRAME_POINTER_MASK) { fprintf (file, "\tst\t%s, [%s+%d]\n\tsub\t%s, %d, %s\t%s# set up frame pointer\n", fp_str, sp_str, (int) offset, sp_str, (int) -size1, fp_str, ASM_COMMENT_START); offset += 4; } } else { fprintf (file, "\tset\t"); fprintf (file, HOST_WIDE_INT_PRINT_DEC, size1); fprintf (file, ", %s\n\tsub\t%s, %s, %s\n", t1_str, sp_str, t1_str, sp_str); if (gmask & HARD_FRAME_POINTER_MASK) { fprintf (file, "\tst\t%s, [%s+%d]\n\tadd\t%s, %s, %s\t%s# set up frame pointer\n", fp_str, sp_str, (int) offset, sp_str, t1_str, fp_str, ASM_COMMENT_START); offset += 4; } } if (dwarf2out_do_frame ()) { char *l = dwarf2out_cfi_label (); if (gmask & HARD_FRAME_POINTER_MASK) { dwarf2out_reg_save (l, HARD_FRAME_POINTER_REGNUM, offset - 4 - size1); dwarf2out_def_cfa (l, HARD_FRAME_POINTER_REGNUM, 0); } else dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size1); } if (gmask & RETURN_ADDR_MASK) { fprintf (file, "\tst\t%s, [%s+%d]\n", reg_names[RETURN_ADDR_REGNUM], sp_str, (int) offset); if (dwarf2out_do_frame ()) /* offset - size1 == reg_offset - size if reg_offset were updated above like offset. */ dwarf2out_return_save ("", offset - size1); offset += 4; } sparc_flat_save_restore (file, sp_str, offset, gmask & ~(HARD_FRAME_POINTER_MASK | RETURN_ADDR_MASK), current_frame_info.fmask, "st", "std", -size1); fprintf (file, "\tset\t"); fprintf (file, HOST_WIDE_INT_PRINT_DEC, size - size1); fprintf (file, ", %s\n\tsub\t%s, %s, %s\n", t1_str, sp_str, t1_str, sp_str); if (dwarf2out_do_frame ()) if (! (gmask & HARD_FRAME_POINTER_MASK)) dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, size); } } fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START); } /* Do any necessary cleanup after a function to restore stack, frame, and regs. */ static void sparc_flat_function_epilogue (file, size) FILE *file; HOST_WIDE_INT size; { rtx epilogue_delay = current_function_epilogue_delay_list; int noepilogue = FALSE; /* This is only for the human reader. */ fprintf (file, "\t%s#EPILOGUE#\n", ASM_COMMENT_START); /* The epilogue does not depend on any registers, but the stack registers, so we assume that if we have 1 pending nop, it can be ignored, and 2 it must be filled (2 nops occur for integer multiply and divide). */ size = SPARC_STACK_ALIGN (size); size = (!current_frame_info.initialized ? sparc_flat_compute_frame_size (size) : current_frame_info.total_size); if (size == 0 && epilogue_delay == 0) { rtx insn = get_last_insn (); /* If the last insn was a BARRIER, we don't have to write any code because a jump (aka return) was put there. */ if (GET_CODE (insn) == NOTE) insn = prev_nonnote_insn (insn); if (insn && GET_CODE (insn) == BARRIER) noepilogue = TRUE; } if (!noepilogue) { unsigned HOST_WIDE_INT reg_offset = current_frame_info.reg_offset; unsigned HOST_WIDE_INT size1; const char *const sp_str = reg_names[STACK_POINTER_REGNUM]; const char *const fp_str = reg_names[HARD_FRAME_POINTER_REGNUM]; static const char *const t1_str = "%g1"; /* In the reload sequence, we don't need to fill the load delay slots for most of the loads, also see if we can fill the final delay slot if not otherwise filled by the reload sequence. */ if (size > 4095) { fprintf (file, "\tset\t"); fprintf (file, HOST_WIDE_INT_PRINT_DEC, size); fprintf (file, ", %s\n", t1_str); } if (frame_pointer_needed) { if (size > 4095) fprintf (file,"\tsub\t%s, %s, %s\t\t%s# sp not trusted here\n", fp_str, t1_str, sp_str, ASM_COMMENT_START); else fprintf (file,"\tsub\t%s, %d, %s\t\t%s# sp not trusted here\n", fp_str, (int) size, sp_str, ASM_COMMENT_START); } /* Is the entire register save area offsettable from %sp? */ if (reg_offset < 4096 - 64 * (unsigned) UNITS_PER_WORD) { size1 = 0; } else { /* Restore %sp in two steps, but make sure there is always a 64 byte register save area, and %sp is properly aligned. */ /* Amount to increment %sp by, the first time. */ size1 = ((reg_offset - 64 - 16) + 15) & -16; /* Offset to register save area from %sp. */ reg_offset = size1 - reg_offset; fprintf (file, "\tset\t"); fprintf (file, HOST_WIDE_INT_PRINT_DEC, size1); fprintf (file, ", %s\n\tadd\t%s, %s, %s\n", t1_str, sp_str, t1_str, sp_str); } /* We must restore the frame pointer and return address reg first because they are treated specially by the prologue output code. */ if (current_frame_info.gmask & HARD_FRAME_POINTER_MASK) { fprintf (file, "\tld\t[%s+%d], %s\n", sp_str, (int) reg_offset, fp_str); reg_offset += 4; } if (current_frame_info.gmask & RETURN_ADDR_MASK) { fprintf (file, "\tld\t[%s+%d], %s\n", sp_str, (int) reg_offset, reg_names[RETURN_ADDR_REGNUM]); reg_offset += 4; } /* Restore any remaining saved registers. */ sparc_flat_save_restore (file, sp_str, reg_offset, current_frame_info.gmask & ~(HARD_FRAME_POINTER_MASK | RETURN_ADDR_MASK), current_frame_info.fmask, "ld", "ldd", 0); /* If we had to increment %sp in two steps, record it so the second restoration in the epilogue finishes up. */ if (size1 > 0) { size -= size1; if (size > 4095) { fprintf (file, "\tset\t"); fprintf (file, HOST_WIDE_INT_PRINT_DEC, size); fprintf (file, ", %s\n", t1_str); } } if (current_function_returns_struct) fprintf (file, "\tjmp\t%%o7+12\n"); else fprintf (file, "\tretl\n"); /* If the only register saved is the return address, we need a nop, unless we have an instruction to put into it. Otherwise we don't since reloading multiple registers doesn't reference the register being loaded. */ if (epilogue_delay) { if (size) abort (); final_scan_insn (XEXP (epilogue_delay, 0), file, 1, -2, 1); } else if (size > 4095) fprintf (file, "\tadd\t%s, %s, %s\n", sp_str, t1_str, sp_str); else if (size > 0) fprintf (file, "\tadd\t%s, %d, %s\n", sp_str, (int) size, sp_str); else fprintf (file, "\tnop\n"); } /* Reset state info for each function. */ current_frame_info = zero_frame_info; sparc_output_deferred_case_vectors (); } /* Define the number of delay slots needed for the function epilogue. On the sparc, we need a slot if either no stack has been allocated, or the only register saved is the return register. */ int sparc_flat_epilogue_delay_slots () { if (!current_frame_info.initialized) (void) sparc_flat_compute_frame_size (get_frame_size ()); if (current_frame_info.total_size == 0) return 1; return 0; } /* Return true if TRIAL is a valid insn for the epilogue delay slot. Any single length instruction which doesn't reference the stack or frame pointer is OK. */ int sparc_flat_eligible_for_epilogue_delay (trial, slot) rtx trial; int slot ATTRIBUTE_UNUSED; { rtx pat = PATTERN (trial); if (get_attr_length (trial) != 1) return 0; if (! reg_mentioned_p (stack_pointer_rtx, pat) && ! reg_mentioned_p (frame_pointer_rtx, pat)) return 1; return 0; } /* Adjust the cost of a scheduling dependency. Return the new cost of a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ static int supersparc_adjust_cost (insn, link, dep_insn, cost) rtx insn; rtx link; rtx dep_insn; int cost; { enum attr_type insn_type; if (! recog_memoized (insn)) return 0; insn_type = get_attr_type (insn); if (REG_NOTE_KIND (link) == 0) { /* Data dependency; DEP_INSN writes a register that INSN reads some cycles later. */ /* if a load, then the dependence must be on the memory address; add an extra "cycle". Note that the cost could be two cycles if the reg was written late in an instruction group; we ca not tell here. */ if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD) return cost + 3; /* Get the delay only if the address of the store is the dependence. */ if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE) { rtx pat = PATTERN(insn); rtx dep_pat = PATTERN (dep_insn); if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) return cost; /* This should not happen! */ /* The dependency between the two instructions was on the data that is being stored. Assume that this implies that the address of the store is not dependent. */ if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) return cost; return cost + 3; /* An approximation. */ } /* A shift instruction cannot receive its data from an instruction in the same cycle; add a one cycle penalty. */ if (insn_type == TYPE_SHIFT) return cost + 3; /* Split before cascade into shift. */ } else { /* Anti- or output- dependency; DEP_INSN reads/writes a register that INSN writes some cycles later. */ /* These are only significant for the fpu unit; writing a fp reg before the fpu has finished with it stalls the processor. */ /* Reusing an integer register causes no problems. */ if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT) return 0; } return cost; } static int hypersparc_adjust_cost (insn, link, dep_insn, cost) rtx insn; rtx link; rtx dep_insn; int cost; { enum attr_type insn_type, dep_type; rtx pat = PATTERN(insn); rtx dep_pat = PATTERN (dep_insn); if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0) return cost; insn_type = get_attr_type (insn); dep_type = get_attr_type (dep_insn); switch (REG_NOTE_KIND (link)) { case 0: /* Data dependency; DEP_INSN writes a register that INSN reads some cycles later. */ switch (insn_type) { case TYPE_STORE: case TYPE_FPSTORE: /* Get the delay iff the address of the store is the dependence. */ if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) return cost; if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) return cost; return cost + 3; case TYPE_LOAD: case TYPE_SLOAD: case TYPE_FPLOAD: /* If a load, then the dependence must be on the memory address. If the addresses aren't equal, then it might be a false dependency */ if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE) { if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET || GET_CODE (SET_DEST (dep_pat)) != MEM || GET_CODE (SET_SRC (pat)) != MEM || ! rtx_equal_p (XEXP (SET_DEST (dep_pat), 0), XEXP (SET_SRC (pat), 0))) return cost + 2; return cost + 8; } break; case TYPE_BRANCH: /* Compare to branch latency is 0. There is no benefit from separating compare and branch. */ if (dep_type == TYPE_COMPARE) return 0; /* Floating point compare to branch latency is less than compare to conditional move. */ if (dep_type == TYPE_FPCMP) return cost - 1; break; default: break; } break; case REG_DEP_ANTI: /* Anti-dependencies only penalize the fpu unit. */ if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT) return 0; break; default: break; } return cost; } static int ultrasparc_adjust_cost (insn, link, dep_insn, cost) rtx insn; rtx link; rtx dep_insn; int cost; { enum attr_type insn_type, dep_type; rtx pat = PATTERN(insn); rtx dep_pat = PATTERN (dep_insn); if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0) return cost; insn_type = get_attr_type (insn); dep_type = get_attr_type (dep_insn); /* Nothing issues in parallel with integer multiplies, so mark as zero cost since the scheduler can not do anything about it. */ if (insn_type == TYPE_IMUL || insn_type == TYPE_IDIV) return 0; #define SLOW_FP(dep_type) \ (dep_type == TYPE_FPSQRTS || dep_type == TYPE_FPSQRTD || \ dep_type == TYPE_FPDIVS || dep_type == TYPE_FPDIVD) switch (REG_NOTE_KIND (link)) { case 0: /* Data dependency; DEP_INSN writes a register that INSN reads some cycles later. */ if (dep_type == TYPE_CMOVE) { /* Instructions that read the result of conditional moves cannot be in the same group or the following group. */ return cost + 1; } switch (insn_type) { /* UltraSPARC can dual issue a store and an instruction setting the value stored, except for divide and square root. */ case TYPE_FPSTORE: if (! SLOW_FP (dep_type)) return 0; return cost; case TYPE_STORE: if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) return cost; if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) /* The dependency between the two instructions is on the data that is being stored. Assume that the address of the store is not also dependent. */ return 0; return cost; case TYPE_LOAD: case TYPE_SLOAD: case TYPE_FPLOAD: /* A load does not return data until at least 11 cycles after a store to the same location. 3 cycles are accounted for in the load latency; add the other 8 here. */ if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE) { /* If the addresses are not equal this may be a false dependency because pointer aliasing could not be determined. Add only 2 cycles in that case. 2 is an arbitrary compromise between 8, which would cause the scheduler to generate worse code elsewhere to compensate for a dependency which might not really exist, and 0. */ if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET || GET_CODE (SET_SRC (pat)) != MEM || GET_CODE (SET_DEST (dep_pat)) != MEM || ! rtx_equal_p (XEXP (SET_SRC (pat), 0), XEXP (SET_DEST (dep_pat), 0))) return cost + 2; return cost + 8; } return cost; case TYPE_BRANCH: /* Compare to branch latency is 0. There is no benefit from separating compare and branch. */ if (dep_type == TYPE_COMPARE) return 0; /* Floating point compare to branch latency is less than compare to conditional move. */ if (dep_type == TYPE_FPCMP) return cost - 1; return cost; case TYPE_FPCMOVE: /* FMOVR class instructions can not issue in the same cycle or the cycle after an instruction which writes any integer register. Model this as cost 2 for dependent instructions. */ if (dep_type == TYPE_IALU && cost < 2) return 2; /* Otherwise check as for integer conditional moves. */ case TYPE_CMOVE: /* Conditional moves involving integer registers wait until 3 cycles after loads return data. The interlock applies to all loads, not just dependent loads, but that is hard to model. */ if (dep_type == TYPE_LOAD || dep_type == TYPE_SLOAD) return cost + 3; return cost; default: break; } break; case REG_DEP_ANTI: /* Divide and square root lock destination registers for full latency. */ if (! SLOW_FP (dep_type)) return 0; break; case REG_DEP_OUTPUT: /* IEU and FPU instruction that have the same destination register cannot be grouped together. */ return cost + 1; default: break; } /* Other costs not accounted for: - Single precision floating point loads lock the other half of the even/odd register pair. - Several hazards associated with ldd/std are ignored because these instructions are rarely generated for V9. - The floating point pipeline can not have both a single and double precision operation active at the same time. Format conversions and graphics instructions are given honorary double precision status. - call and jmpl are always the first instruction in a group. */ return cost; #undef SLOW_FP } static int sparc_adjust_cost(insn, link, dep, cost) rtx insn; rtx link; rtx dep; int cost; { switch (sparc_cpu) { case PROCESSOR_SUPERSPARC: cost = supersparc_adjust_cost (insn, link, dep, cost); break; case PROCESSOR_HYPERSPARC: case PROCESSOR_SPARCLITE86X: cost = hypersparc_adjust_cost (insn, link, dep, cost); break; case PROCESSOR_ULTRASPARC: cost = ultrasparc_adjust_cost (insn, link, dep, cost); break; default: break; } return cost; } /* This describes the state of the UltraSPARC pipeline during instruction scheduling. */ #define TMASK(__x) ((unsigned)1 << ((int)(__x))) #define UMASK(__x) ((unsigned)1 << ((int)(__x))) enum ultra_code { NONE=0, /* no insn at all */ IEU0, /* shifts and conditional moves */ IEU1, /* condition code setting insns, calls+jumps */ IEUN, /* all other single cycle ieu insns */ LSU, /* loads and stores */ CTI, /* branches */ FPM, /* FPU pipeline 1, multiplies and divides */ FPA, /* FPU pipeline 2, all other operations */ SINGLE, /* single issue instructions */ NUM_ULTRA_CODES }; static enum ultra_code ultra_code_from_mask PARAMS ((int)); static void ultra_schedule_insn PARAMS ((rtx *, rtx *, int, enum ultra_code)); static const char *const ultra_code_names[NUM_ULTRA_CODES] = { "NONE", "IEU0", "IEU1", "IEUN", "LSU", "CTI", "FPM", "FPA", "SINGLE" }; struct ultrasparc_pipeline_state { /* The insns in this group. */ rtx group[4]; /* The code for each insn. */ enum ultra_code codes[4]; /* Which insns in this group have been committed by the scheduler. This is how we determine how many more can issue this cycle. */ char commit[4]; /* How many insns in this group. */ char group_size; /* Mask of free slots still in this group. */ char free_slot_mask; /* The slotter uses the following to determine what other insn types can still make their way into this group. */ char contents [NUM_ULTRA_CODES]; char num_ieu_insns; }; #define ULTRA_NUM_HIST 8 static struct ultrasparc_pipeline_state ultra_pipe_hist[ULTRA_NUM_HIST]; static int ultra_cur_hist; static int ultra_cycles_elapsed; #define ultra_pipe (ultra_pipe_hist[ultra_cur_hist]) /* Given TYPE_MASK compute the ultra_code it has. */ static enum ultra_code ultra_code_from_mask (type_mask) int type_mask; { if (type_mask & (TMASK (TYPE_SHIFT) | TMASK (TYPE_CMOVE))) return IEU0; else if (type_mask & (TMASK (TYPE_COMPARE) | TMASK (TYPE_CALL) | TMASK (TYPE_SIBCALL) | TMASK (TYPE_UNCOND_BRANCH))) return IEU1; else if (type_mask & TMASK (TYPE_IALU)) return IEUN; else if (type_mask & (TMASK (TYPE_LOAD) | TMASK (TYPE_SLOAD) | TMASK (TYPE_STORE) | TMASK (TYPE_FPLOAD) | TMASK (TYPE_FPSTORE))) return LSU; else if (type_mask & (TMASK (TYPE_FPMUL) | TMASK (TYPE_FPDIVS) | TMASK (TYPE_FPDIVD) | TMASK (TYPE_FPSQRTS) | TMASK (TYPE_FPSQRTD))) return FPM; else if (type_mask & (TMASK (TYPE_FPMOVE) | TMASK (TYPE_FPCMOVE) | TMASK (TYPE_FP) | TMASK (TYPE_FPCMP))) return FPA; else if (type_mask & TMASK (TYPE_BRANCH)) return CTI; return SINGLE; } /* Check INSN (a conditional move) and make sure that it's results are available at this cycle. Return 1 if the results are in fact ready. */ static int ultra_cmove_results_ready_p (insn) rtx insn; { struct ultrasparc_pipeline_state *up; int entry, slot; /* If this got dispatched in the previous group, the results are not ready. */ entry = (ultra_cur_hist - 1) & (ULTRA_NUM_HIST - 1); up = &ultra_pipe_hist[entry]; slot = 4; while (--slot >= 0) if (up->group[slot] == insn) return 0; return 1; } /* Walk backwards in pipeline history looking for FPU operations which use a mode different than FPMODE and will create a stall if an insn using FPMODE were to be dispatched this cycle. */ static int ultra_fpmode_conflict_exists (fpmode) enum machine_mode fpmode; { int hist_ent; int hist_lim; hist_ent = (ultra_cur_hist - 1) & (ULTRA_NUM_HIST - 1); if (ultra_cycles_elapsed < 4) hist_lim = ultra_cycles_elapsed; else hist_lim = 4; while (hist_lim > 0) { struct ultrasparc_pipeline_state *up = &ultra_pipe_hist[hist_ent]; int slot = 4; while (--slot >= 0) { rtx insn = up->group[slot]; enum machine_mode this_mode; rtx pat; if (! insn || GET_CODE (insn) != INSN || (pat = PATTERN (insn)) == 0 || GET_CODE (pat) != SET) continue; this_mode = GET_MODE (SET_DEST (pat)); if ((this_mode != SFmode && this_mode != DFmode) || this_mode == fpmode) continue; /* If it is not FMOV, FABS, FNEG, FDIV, or FSQRT then we will get a stall. Loads and stores are independent of these rules. */ if (GET_CODE (SET_SRC (pat)) != ABS && GET_CODE (SET_SRC (pat)) != NEG && ((TMASK (get_attr_type (insn)) & (TMASK (TYPE_FPDIVS) | TMASK (TYPE_FPDIVD) | TMASK (TYPE_FPMOVE) | TMASK (TYPE_FPSQRTS) | TMASK (TYPE_FPSQRTD) | TMASK (TYPE_LOAD) | TMASK (TYPE_STORE))) == 0)) return 1; } hist_lim--; hist_ent = (hist_ent - 1) & (ULTRA_NUM_HIST - 1); } /* No conflicts, safe to dispatch. */ return 0; } /* Find an instruction in LIST which has one of the type attributes enumerated in TYPE_MASK. START says where to begin the search. NOTE: This scheme depends upon the fact that we have less than 32 distinct type attributes. */ static int ultra_types_avail; static rtx * ultra_find_type (type_mask, list, start) int type_mask; rtx *list; int start; { int i; /* Short circuit if no such insn exists in the ready at the moment. */ if ((type_mask & ultra_types_avail) == 0) return 0; for (i = start; i >= 0; i--) { rtx insn = list[i]; if (recog_memoized (insn) >= 0 && (TMASK(get_attr_type (insn)) & type_mask)) { enum machine_mode fpmode = SFmode; rtx pat = 0; int slot; int check_depend = 0; int check_fpmode_conflict = 0; if (GET_CODE (insn) == INSN && (pat = PATTERN(insn)) != 0 && GET_CODE (pat) == SET && !(type_mask & (TMASK (TYPE_STORE) | TMASK (TYPE_FPSTORE)))) { check_depend = 1; if (GET_MODE (SET_DEST (pat)) == SFmode || GET_MODE (SET_DEST (pat)) == DFmode) { fpmode = GET_MODE (SET_DEST (pat)); check_fpmode_conflict = 1; } } slot = 4; while(--slot >= 0) { rtx slot_insn = ultra_pipe.group[slot]; rtx slot_pat; /* Already issued, bad dependency, or FPU mode conflict. */ if (slot_insn != 0 && (slot_pat = PATTERN (slot_insn)) != 0 && ((insn == slot_insn) || (check_depend == 1 && GET_CODE (slot_insn) == INSN && GET_CODE (slot_pat) == SET && ((GET_CODE (SET_DEST (slot_pat)) == REG && GET_CODE (SET_SRC (pat)) == REG && REGNO (SET_DEST (slot_pat)) == REGNO (SET_SRC (pat))) || (GET_CODE (SET_DEST (slot_pat)) == SUBREG && GET_CODE (SET_SRC (pat)) == SUBREG && REGNO (SUBREG_REG (SET_DEST (slot_pat))) == REGNO (SUBREG_REG (SET_SRC (pat))) && SUBREG_BYTE (SET_DEST (slot_pat)) == SUBREG_BYTE (SET_SRC (pat))))) || (check_fpmode_conflict == 1 && GET_CODE (slot_insn) == INSN && GET_CODE (slot_pat) == SET && (GET_MODE (SET_DEST (slot_pat)) == SFmode || GET_MODE (SET_DEST (slot_pat)) == DFmode) && GET_MODE (SET_DEST (slot_pat)) != fpmode))) goto next; } /* Check for peculiar result availability and dispatch interference situations. */ if (pat != 0 && ultra_cycles_elapsed > 0) { rtx link; for (link = LOG_LINKS (insn); link; link = XEXP (link, 1)) { rtx link_insn = XEXP (link, 0); if (GET_CODE (link_insn) == INSN && recog_memoized (link_insn) >= 0 && (TMASK (get_attr_type (link_insn)) & (TMASK (TYPE_CMOVE) | TMASK (TYPE_FPCMOVE))) && ! ultra_cmove_results_ready_p (link_insn)) goto next; } if (check_fpmode_conflict && ultra_fpmode_conflict_exists (fpmode)) goto next; } return &list[i]; } next: ; } return 0; } static void ultra_build_types_avail (ready, n_ready) rtx *ready; int n_ready; { int i = n_ready - 1; ultra_types_avail = 0; while(i >= 0) { rtx insn = ready[i]; if (recog_memoized (insn) >= 0) ultra_types_avail |= TMASK (get_attr_type (insn)); i -= 1; } } /* Place insn pointed to my IP into the pipeline. Make element THIS of READY be that insn if it is not already. TYPE indicates the pipeline class this insn falls into. */ static void ultra_schedule_insn (ip, ready, this, type) rtx *ip; rtx *ready; int this; enum ultra_code type; { int pipe_slot; char mask = ultra_pipe.free_slot_mask; rtx temp; /* Obtain free slot. */ for (pipe_slot = 0; pipe_slot < 4; pipe_slot++) if ((mask & (1 << pipe_slot)) != 0) break; if (pipe_slot == 4) abort (); /* In it goes, and it hasn't been committed yet. */ ultra_pipe.group[pipe_slot] = *ip; ultra_pipe.codes[pipe_slot] = type; ultra_pipe.contents[type] = 1; if (UMASK (type) & (UMASK (IEUN) | UMASK (IEU0) | UMASK (IEU1))) ultra_pipe.num_ieu_insns += 1; ultra_pipe.free_slot_mask = (mask & ~(1 << pipe_slot)); ultra_pipe.group_size += 1; ultra_pipe.commit[pipe_slot] = 0; /* Update ready list. */ temp = *ip; while (ip != &ready[this]) { ip[0] = ip[1]; ++ip; } *ip = temp; } /* Advance to the next pipeline group. */ static void ultra_flush_pipeline () { ultra_cur_hist = (ultra_cur_hist + 1) & (ULTRA_NUM_HIST - 1); ultra_cycles_elapsed += 1; memset ((char *) &ultra_pipe, 0, sizeof ultra_pipe); ultra_pipe.free_slot_mask = 0xf; } /* Init our data structures for this current block. */ static void ultrasparc_sched_init () { memset ((char *) ultra_pipe_hist, 0, sizeof ultra_pipe_hist); ultra_cur_hist = 0; ultra_cycles_elapsed = 0; ultra_pipe.free_slot_mask = 0xf; } static void sparc_sched_init (dump, sched_verbose, max_ready) FILE *dump ATTRIBUTE_UNUSED; int sched_verbose ATTRIBUTE_UNUSED; int max_ready ATTRIBUTE_UNUSED; { if (sparc_cpu == PROCESSOR_ULTRASPARC) ultrasparc_sched_init (); } /* INSN has been scheduled, update pipeline commit state and return how many instructions are still to be scheduled in this group. */ static int ultrasparc_variable_issue (insn) rtx insn; { struct ultrasparc_pipeline_state *up = &ultra_pipe; int i, left_to_fire; left_to_fire = 0; for (i = 0; i < 4; i++) { if (up->group[i] == 0) continue; if (up->group[i] == insn) { up->commit[i] = 1; } else if (! up->commit[i]) left_to_fire++; } return left_to_fire; } static int sparc_variable_issue (dump, sched_verbose, insn, cim) FILE *dump ATTRIBUTE_UNUSED; int sched_verbose ATTRIBUTE_UNUSED; rtx insn; int cim; { if (sparc_cpu == PROCESSOR_ULTRASPARC) return ultrasparc_variable_issue (insn); else return cim - 1; } /* In actual_hazard_this_instance, we may have yanked some instructions from the ready list due to conflict cost adjustments. If so, and such an insn was in our pipeline group, remove it and update state. */ static void ultra_rescan_pipeline_state (ready, n_ready) rtx *ready; int n_ready; { struct ultrasparc_pipeline_state *up = &ultra_pipe; int i; for (i = 0; i < 4; i++) { rtx insn = up->group[i]; int j; if (! insn) continue; /* If it has been committed, then it was removed from the ready list because it was actually scheduled, and that is not the case we are searching for here. */ if (up->commit[i] != 0) continue; for (j = n_ready - 1; j >= 0; j--) if (ready[j] == insn) break; /* If we didn't find it, toss it. */ if (j < 0) { enum ultra_code ucode = up->codes[i]; up->group[i] = 0; up->codes[i] = NONE; up->contents[ucode] = 0; if (UMASK (ucode) & (UMASK (IEUN) | UMASK (IEU0) | UMASK (IEU1))) up->num_ieu_insns -= 1; up->free_slot_mask |= (1 << i); up->group_size -= 1; up->commit[i] = 0; } } } static void ultrasparc_sched_reorder (dump, sched_verbose, ready, n_ready) FILE *dump; int sched_verbose; rtx *ready; int n_ready; { struct ultrasparc_pipeline_state *up = &ultra_pipe; int i, this_insn; if (sched_verbose) { int n; fprintf (dump, "\n;;\tUltraSPARC Looking at ["); for (n = n_ready - 1; n >= 0; n--) { rtx insn = ready[n]; enum ultra_code ucode; if (recog_memoized (insn) < 0) continue; ucode = ultra_code_from_mask (TMASK (get_attr_type (insn))); if (n != 0) fprintf (dump, "%s(%d) ", ultra_code_names[ucode], INSN_UID (insn)); else fprintf (dump, "%s(%d)", ultra_code_names[ucode], INSN_UID (insn)); } fprintf (dump, "]\n"); } this_insn = n_ready - 1; /* Skip over junk we don't understand. */ while ((this_insn >= 0) && recog_memoized (ready[this_insn]) < 0) this_insn--; ultra_build_types_avail (ready, this_insn + 1); while (this_insn >= 0) { int old_group_size = up->group_size; if (up->group_size != 0) { int num_committed; num_committed = (up->commit[0] + up->commit[1] + up->commit[2] + up->commit[3]); /* If nothing has been commited from our group, or all of them have. Clear out the (current cycle's) pipeline state and start afresh. */ if (num_committed == 0 || num_committed == up->group_size) { ultra_flush_pipeline (); up = &ultra_pipe; old_group_size = 0; } else { /* OK, some ready list insns got requeued and thus removed from the ready list. Account for this fact. */ ultra_rescan_pipeline_state (ready, n_ready); /* Something "changed", make this look like a newly formed group so the code at the end of the loop knows that progress was in fact made. */ if (up->group_size != old_group_size) old_group_size = 0; } } if (up->group_size == 0) { /* If the pipeline is (still) empty and we have any single group insns, get them out now as this is a good time. */ rtx *ip = ultra_find_type ((TMASK (TYPE_RETURN) | TMASK (TYPE_IDIV) | TMASK (TYPE_IMUL) | TMASK (TYPE_CMOVE) | TMASK (TYPE_MULTI) | TMASK (TYPE_MISC)), ready, this_insn); if (ip) { ultra_schedule_insn (ip, ready, this_insn, SINGLE); break; } /* If we are not in the process of emptying out the pipe, try to obtain an instruction which must be the first in it's group. */ ip = ultra_find_type ((TMASK (TYPE_CALL) | TMASK (TYPE_SIBCALL) | TMASK (TYPE_CALL_NO_DELAY_SLOT) | TMASK (TYPE_UNCOND_BRANCH)), ready, this_insn); if (ip) { ultra_schedule_insn (ip, ready, this_insn, IEU1); this_insn--; } else if ((ip = ultra_find_type ((TMASK (TYPE_FPDIVS) | TMASK (TYPE_FPDIVD) | TMASK (TYPE_FPSQRTS) | TMASK (TYPE_FPSQRTD)), ready, this_insn)) != 0) { ultra_schedule_insn (ip, ready, this_insn, FPM); this_insn--; } } /* Try to fill the integer pipeline. First, look for an IEU0 specific operation. We can't do more IEU operations if the first 3 slots are all full or we have dispatched two IEU insns already. */ if ((up->free_slot_mask & 0x7) != 0 && up->num_ieu_insns < 2 && up->contents[IEU0] == 0 && up->contents[IEUN] == 0) { rtx *ip = ultra_find_type (TMASK(TYPE_SHIFT), ready, this_insn); if (ip) { ultra_schedule_insn (ip, ready, this_insn, IEU0); this_insn--; } } /* If we can, try to find an IEU1 specific or an unnamed IEU instruction. */ if ((up->free_slot_mask & 0x7) != 0 && up->num_ieu_insns < 2) { rtx *ip = ultra_find_type ((TMASK (TYPE_IALU) | (up->contents[IEU1] == 0 ? TMASK (TYPE_COMPARE) : 0)), ready, this_insn); if (ip) { rtx insn = *ip; ultra_schedule_insn (ip, ready, this_insn, (!up->contents[IEU1] && get_attr_type (insn) == TYPE_COMPARE) ? IEU1 : IEUN); this_insn--; } } /* If only one IEU insn has been found, try to find another unnamed IEU operation or an IEU1 specific one. */ if ((up->free_slot_mask & 0x7) != 0 && up->num_ieu_insns < 2) { rtx *ip; int tmask = TMASK (TYPE_IALU); if (!up->contents[IEU1]) tmask |= TMASK (TYPE_COMPARE); ip = ultra_find_type (tmask, ready, this_insn); if (ip) { rtx insn = *ip; ultra_schedule_insn (ip, ready, this_insn, (!up->contents[IEU1] && get_attr_type (insn) == TYPE_COMPARE) ? IEU1 : IEUN); this_insn--; } } /* Try for a load or store, but such an insn can only be issued if it is within' one of the first 3 slots. */ if ((up->free_slot_mask & 0x7) != 0 && up->contents[LSU] == 0) { rtx *ip = ultra_find_type ((TMASK (TYPE_LOAD) | TMASK (TYPE_SLOAD) | TMASK (TYPE_STORE) | TMASK (TYPE_FPLOAD) | TMASK (TYPE_FPSTORE)), ready, this_insn); if (ip) { ultra_schedule_insn (ip, ready, this_insn, LSU); this_insn--; } } /* Now find FPU operations, first FPM class. But not divisions or square-roots because those will break the group up. Unlike all the previous types, these can go in any slot. */ if (up->free_slot_mask != 0 && up->contents[FPM] == 0) { rtx *ip = ultra_find_type (TMASK (TYPE_FPMUL), ready, this_insn); if (ip) { ultra_schedule_insn (ip, ready, this_insn, FPM); this_insn--; } } /* Continue on with FPA class if we have not filled the group already. */ if (up->free_slot_mask != 0 && up->contents[FPA] == 0) { rtx *ip = ultra_find_type ((TMASK (TYPE_FPMOVE) | TMASK (TYPE_FPCMOVE) | TMASK (TYPE_FP) | TMASK (TYPE_FPCMP)), ready, this_insn); if (ip) { ultra_schedule_insn (ip, ready, this_insn, FPA); this_insn--; } } /* Finally, maybe stick a branch in here. */ if (up->free_slot_mask != 0 && up->contents[CTI] == 0) { rtx *ip = ultra_find_type (TMASK (TYPE_BRANCH), ready, this_insn); /* Try to slip in a branch only if it is one of the next 2 in the ready list. */ if (ip && ((&ready[this_insn] - ip) < 2)) { ultra_schedule_insn (ip, ready, this_insn, CTI); this_insn--; } } up->group_size = 0; for (i = 0; i < 4; i++) if ((up->free_slot_mask & (1 << i)) == 0) up->group_size++; /* See if we made any progress... */ if (old_group_size != up->group_size) break; /* Clean out the (current cycle's) pipeline state and try once more. If we placed no instructions into the pipeline at all, it means a real hard conflict exists with some earlier issued instruction so we must advance to the next cycle to clear it up. */ if (up->group_size == 0) { ultra_flush_pipeline (); up = &ultra_pipe; } else { memset ((char *) &ultra_pipe, 0, sizeof ultra_pipe); ultra_pipe.free_slot_mask = 0xf; } } if (sched_verbose) { int n, gsize; fprintf (dump, ";;\tUltraSPARC Launched ["); gsize = up->group_size; for (n = 0; n < 4; n++) { rtx insn = up->group[n]; if (! insn) continue; gsize -= 1; if (gsize != 0) fprintf (dump, "%s(%d) ", ultra_code_names[up->codes[n]], INSN_UID (insn)); else fprintf (dump, "%s(%d)", ultra_code_names[up->codes[n]], INSN_UID (insn)); } fprintf (dump, "]\n"); } } static int sparc_sched_reorder (dump, sched_verbose, ready, n_readyp, clock) FILE *dump; int sched_verbose; rtx *ready; int *n_readyp; int clock ATTRIBUTE_UNUSED; { if (sparc_cpu == PROCESSOR_ULTRASPARC) ultrasparc_sched_reorder (dump, sched_verbose, ready, *n_readyp); return sparc_issue_rate (); } static int sparc_issue_rate () { switch (sparc_cpu) { default: return 1; case PROCESSOR_V9: /* Assume V9 processors are capable of at least dual-issue. */ return 2; case PROCESSOR_SUPERSPARC: return 3; case PROCESSOR_HYPERSPARC: case PROCESSOR_SPARCLITE86X: return 2; case PROCESSOR_ULTRASPARC: return 4; } } static int set_extends (insn) rtx insn; { register rtx pat = PATTERN (insn); switch (GET_CODE (SET_SRC (pat))) { /* Load and some shift instructions zero extend. */ case MEM: case ZERO_EXTEND: /* sethi clears the high bits */ case HIGH: /* LO_SUM is used with sethi. sethi cleared the high bits and the values used with lo_sum are positive */ case LO_SUM: /* Store flag stores 0 or 1 */ case LT: case LTU: case GT: case GTU: case LE: case LEU: case GE: case GEU: case EQ: case NE: return 1; case AND: { rtx op0 = XEXP (SET_SRC (pat), 0); rtx op1 = XEXP (SET_SRC (pat), 1); if (GET_CODE (op1) == CONST_INT) return INTVAL (op1) >= 0; if (GET_CODE (op0) != REG) return 0; if (sparc_check_64 (op0, insn) == 1) return 1; return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1); } case IOR: case XOR: { rtx op0 = XEXP (SET_SRC (pat), 0); rtx op1 = XEXP (SET_SRC (pat), 1); if (GET_CODE (op0) != REG || sparc_check_64 (op0, insn) <= 0) return 0; if (GET_CODE (op1) == CONST_INT) return INTVAL (op1) >= 0; return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1); } case ASHIFT: case LSHIFTRT: return GET_MODE (SET_SRC (pat)) == SImode; /* Positive integers leave the high bits zero. */ case CONST_DOUBLE: return ! (CONST_DOUBLE_LOW (SET_SRC (pat)) & 0x80000000); case CONST_INT: return ! (INTVAL (SET_SRC (pat)) & 0x80000000); case ASHIFTRT: case SIGN_EXTEND: return - (GET_MODE (SET_SRC (pat)) == SImode); case REG: return sparc_check_64 (SET_SRC (pat), insn); default: return 0; } } /* We _ought_ to have only one kind per function, but... */ static rtx sparc_addr_diff_list; static rtx sparc_addr_list; void sparc_defer_case_vector (lab, vec, diff) rtx lab, vec; int diff; { vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec); if (diff) sparc_addr_diff_list = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_diff_list); else sparc_addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_list); } static void sparc_output_addr_vec (vec) rtx vec; { rtx lab = XEXP (vec, 0), body = XEXP (vec, 1); int idx, vlen = XVECLEN (body, 0); #ifdef ASM_OUTPUT_ADDR_VEC_START ASM_OUTPUT_ADDR_VEC_START (asm_out_file); #endif #ifdef ASM_OUTPUT_CASE_LABEL ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab), NEXT_INSN (lab)); #else ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab)); #endif for (idx = 0; idx < vlen; idx++) { ASM_OUTPUT_ADDR_VEC_ELT (asm_out_file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0))); } #ifdef ASM_OUTPUT_ADDR_VEC_END ASM_OUTPUT_ADDR_VEC_END (asm_out_file); #endif } static void sparc_output_addr_diff_vec (vec) rtx vec; { rtx lab = XEXP (vec, 0), body = XEXP (vec, 1); rtx base = XEXP (XEXP (body, 0), 0); int idx, vlen = XVECLEN (body, 1); #ifdef ASM_OUTPUT_ADDR_VEC_START ASM_OUTPUT_ADDR_VEC_START (asm_out_file); #endif #ifdef ASM_OUTPUT_CASE_LABEL ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab), NEXT_INSN (lab)); #else ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab)); #endif for (idx = 0; idx < vlen; idx++) { ASM_OUTPUT_ADDR_DIFF_ELT (asm_out_file, body, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)), CODE_LABEL_NUMBER (base)); } #ifdef ASM_OUTPUT_ADDR_VEC_END ASM_OUTPUT_ADDR_VEC_END (asm_out_file); #endif } static void sparc_output_deferred_case_vectors () { rtx t; int align; if (sparc_addr_list == NULL_RTX && sparc_addr_diff_list == NULL_RTX) return; /* Align to cache line in the function's code section. */ function_section (current_function_decl); align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT); if (align > 0) ASM_OUTPUT_ALIGN (asm_out_file, align); for (t = sparc_addr_list; t ; t = XEXP (t, 1)) sparc_output_addr_vec (XEXP (t, 0)); for (t = sparc_addr_diff_list; t ; t = XEXP (t, 1)) sparc_output_addr_diff_vec (XEXP (t, 0)); sparc_addr_list = sparc_addr_diff_list = NULL_RTX; } /* Return 0 if the high 32 bits of X (the low word of X, if DImode) are unknown. Return 1 if the high bits are zero, -1 if the register is sign extended. */ int sparc_check_64 (x, insn) rtx x, insn; { /* If a register is set only once it is safe to ignore insns this code does not know how to handle. The loop will either recognize the single set and return the correct value or fail to recognize it and return 0. */ int set_once = 0; rtx y = x; if (GET_CODE (x) != REG) abort (); if (GET_MODE (x) == DImode) y = gen_rtx_REG (SImode, REGNO (x) + WORDS_BIG_ENDIAN); if (flag_expensive_optimizations && REG_N_SETS (REGNO (y)) == 1) set_once = 1; if (insn == 0) { if (set_once) insn = get_last_insn_anywhere (); else return 0; } while ((insn = PREV_INSN (insn))) { switch (GET_CODE (insn)) { case JUMP_INSN: case NOTE: break; case CODE_LABEL: case CALL_INSN: default: if (! set_once) return 0; break; case INSN: { rtx pat = PATTERN (insn); if (GET_CODE (pat) != SET) return 0; if (rtx_equal_p (x, SET_DEST (pat))) return set_extends (insn); if (y && rtx_equal_p (y, SET_DEST (pat))) return set_extends (insn); if (reg_overlap_mentioned_p (SET_DEST (pat), y)) return 0; } } } return 0; } char * sparc_v8plus_shift (operands, insn, opcode) rtx *operands; rtx insn; const char *opcode; { static char asm_code[60]; if (GET_CODE (operands[3]) == SCRATCH) operands[3] = operands[0]; if (GET_CODE (operands[1]) == CONST_INT) { output_asm_insn ("mov\t%1, %3", operands); } else { output_asm_insn ("sllx\t%H1, 32, %3", operands); if (sparc_check_64 (operands[1], insn) <= 0) output_asm_insn ("srl\t%L1, 0, %L1", operands); output_asm_insn ("or\t%L1, %3, %3", operands); } strcpy(asm_code, opcode); if (which_alternative != 2) return strcat (asm_code, "\t%0, %2, %L0\n\tsrlx\t%L0, 32, %H0"); else return strcat (asm_code, "\t%3, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"); } /* Output rtl to increment the profiler label LABELNO for profiling a function entry. */ void sparc_profile_hook (labelno) int labelno; { char buf[32]; rtx lab, fun; ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno); lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)); fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_FUNCTION); emit_library_call (fun, LCT_NORMAL, VOIDmode, 1, lab, Pmode); } /* Mark ARG, which is really a struct ultrasparc_pipline_state *, for GC. */ static void mark_ultrasparc_pipeline_state (arg) void *arg; { struct ultrasparc_pipeline_state *ups; size_t i; ups = (struct ultrasparc_pipeline_state *) arg; for (i = 0; i < sizeof (ups->group) / sizeof (rtx); ++i) ggc_mark_rtx (ups->group[i]); } /* Called to register all of our global variables with the garbage collector. */ static void sparc_add_gc_roots () { ggc_add_rtx_root (&sparc_compare_op0, 1); ggc_add_rtx_root (&sparc_compare_op1, 1); ggc_add_rtx_root (&global_offset_table, 1); ggc_add_rtx_root (&get_pc_symbol, 1); ggc_add_rtx_root (&sparc_addr_diff_list, 1); ggc_add_rtx_root (&sparc_addr_list, 1); ggc_add_root (ultra_pipe_hist, ARRAY_SIZE (ultra_pipe_hist), sizeof (ultra_pipe_hist[0]), &mark_ultrasparc_pipeline_state); } #ifdef OBJECT_FORMAT_ELF static void sparc_elf_asm_named_section (name, flags) const char *name; unsigned int flags; { if (flags & SECTION_MERGE) { /* entsize cannot be expressed in this section attributes encoding style. */ default_elf_asm_named_section (name, flags); return; } fprintf (asm_out_file, "\t.section\t\"%s\"", name); if (!(flags & SECTION_DEBUG)) fputs (",#alloc", asm_out_file); if (flags & SECTION_WRITE) fputs (",#write", asm_out_file); if (flags & SECTION_CODE) fputs (",#execinstr", asm_out_file); /* ??? Handle SECTION_BSS. */ fputc ('\n', asm_out_file); } #endif /* OBJECT_FORMAT_ELF */ int sparc_extra_constraint_check (op, c, strict) rtx op; int c; int strict; { int reload_ok_mem; if (TARGET_ARCH64 && (c == 'T' || c == 'U')) return 0; switch (c) { case 'Q': return fp_sethi_p (op); case 'R': return fp_mov_p (op); case 'S': return fp_high_losum_p (op); case 'U': if (! strict || (GET_CODE (op) == REG && (REGNO (op) < FIRST_PSEUDO_REGISTER || reg_renumber[REGNO (op)] >= 0))) return register_ok_for_ldd (op); return 0; case 'W': case 'T': break; default: return 0; } /* Our memory extra constraints have to emulate the behavior of 'm' and 'o' in order for reload to work correctly. */ if (GET_CODE (op) == MEM) { reload_ok_mem = 0; if ((TARGET_ARCH64 || mem_min_alignment (op, 8)) && (! strict || strict_memory_address_p (Pmode, XEXP (op, 0)))) reload_ok_mem = 1; } else { reload_ok_mem = (reload_in_progress && GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER && reg_renumber [REGNO (op)] < 0); } return reload_ok_mem; } /* Output code to add DELTA to the first argument, and then jump to FUNCTION. Used for C++ multiple inheritance. */ void sparc_output_mi_thunk (file, thunk_fndecl, delta, function) FILE *file; tree thunk_fndecl ATTRIBUTE_UNUSED; HOST_WIDE_INT delta; tree function; { rtx this, insn, funexp, delta_rtx, tmp; reload_completed = 1; no_new_pseudos = 1; current_function_uses_only_leaf_regs = 1; emit_note (NULL, NOTE_INSN_PROLOGUE_END); /* Find the "this" pointer. Normally in %o0, but in ARCH64 if the function returns a structure, the structure return pointer is there instead. */ if (TARGET_ARCH64 && aggregate_value_p (TREE_TYPE (TREE_TYPE (function)))) this = gen_rtx_REG (Pmode, SPARC_INCOMING_INT_ARG_FIRST + 1); else this = gen_rtx_REG (Pmode, SPARC_INCOMING_INT_ARG_FIRST); /* Add DELTA. When possible use a plain add, otherwise load it into a register first. */ delta_rtx = GEN_INT (delta); if (!SPARC_SIMM13_P (delta)) { rtx scratch = gen_rtx_REG (Pmode, 1); if (TARGET_ARCH64) sparc_emit_set_const64 (scratch, delta_rtx); else sparc_emit_set_const32 (scratch, delta_rtx); delta_rtx = scratch; } tmp = gen_rtx_PLUS (Pmode, this, delta_rtx); emit_insn (gen_rtx_SET (VOIDmode, this, tmp)); /* Generate a tail call to the target function. */ if (! TREE_USED (function)) { assemble_external (function); TREE_USED (function) = 1; } funexp = XEXP (DECL_RTL (function), 0); funexp = gen_rtx_MEM (FUNCTION_MODE, funexp); insn = emit_call_insn (gen_sibcall (funexp)); SIBLING_CALL_P (insn) = 1; emit_barrier (); /* Run just enough of rest_of_compilation to get the insns emitted. There's not really enough bulk here to make other passes such as instruction scheduling worth while. Note that use_thunk calls assemble_start_function and assemble_end_function. */ insn = get_insns (); shorten_branches (insn); final_start_function (insn, file, 1); final (insn, file, 1, 0); final_end_function (); reload_completed = 0; no_new_pseudos = 0; }