/* * Copyright (c) 2007-2011 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include #include #include #include #include #include #include #include #include /* * At the time of the machine-check exception, all hardware-threads panic. * Each thread saves the state of its MCA registers to its per-cpu data area. * * State reporting is serialized so one thread dumps all valid state for all * threads to the panic log. This may entail spinning waiting for other * threads to complete saving state to memory. A timeout applies to this wait * -- in particular, a 3-strikes timeout may prevent a thread from taking * part is the affair. */ #define IF(bool,str) ((bool) ? (str) : "") static boolean_t mca_initialized = FALSE; static boolean_t mca_MCE_present = FALSE; static boolean_t mca_MCA_present = FALSE; static uint32_t mca_family = 0; static unsigned int mca_error_bank_count = 0; static boolean_t mca_control_MSR_present = FALSE; static boolean_t mca_threshold_status_present = FALSE; static boolean_t mca_sw_error_recovery_present = FALSE; static boolean_t mca_extended_MSRs_present = FALSE; static unsigned int mca_extended_MSRs_count = 0; static boolean_t mca_cmci_present = FALSE; static ia32_mcg_cap_t ia32_mcg_cap; decl_simple_lock_data(static, mca_lock); typedef struct { ia32_mci_ctl_t mca_mci_ctl; ia32_mci_status_t mca_mci_status; ia32_mci_misc_t mca_mci_misc; ia32_mci_addr_t mca_mci_addr; } mca_mci_bank_t; typedef struct mca_state { boolean_t mca_is_saved; boolean_t mca_is_valid; /* some state is valid */ ia32_mcg_ctl_t mca_mcg_ctl; ia32_mcg_status_t mca_mcg_status; mca_mci_bank_t mca_error_bank[0]; } mca_state_t; typedef enum { CLEAR, DUMPING, DUMPED } mca_dump_state_t; static volatile mca_dump_state_t mca_dump_state = CLEAR; static void mca_get_availability(void) { uint64_t features = cpuid_info()->cpuid_features; uint32_t family = cpuid_info()->cpuid_family; uint32_t model = cpuid_info()->cpuid_model; uint32_t stepping = cpuid_info()->cpuid_stepping; mca_MCE_present = (features & CPUID_FEATURE_MCE) != 0; mca_MCA_present = (features & CPUID_FEATURE_MCA) != 0; mca_family = family; if ((model == CPUID_MODEL_HASWELL && stepping < 3) || (model == CPUID_MODEL_HASWELL_ULT && stepping < 1) || (model == CPUID_MODEL_CRYSTALWELL && stepping < 1)) panic("Haswell pre-C0 steppings are not supported"); /* * If MCA, the number of banks etc is reported by the IA32_MCG_CAP MSR. */ if (mca_MCA_present) { ia32_mcg_cap.u64 = rdmsr64(IA32_MCG_CAP); mca_error_bank_count = ia32_mcg_cap.bits.count; mca_control_MSR_present = ia32_mcg_cap.bits.mcg_ctl_p; mca_threshold_status_present = ia32_mcg_cap.bits.mcg_tes_p; mca_sw_error_recovery_present = ia32_mcg_cap.bits.mcg_ser_p; mca_cmci_present = ia32_mcg_cap.bits.mcg_ext_corr_err_p; if (family == 0x0F) { mca_extended_MSRs_present = ia32_mcg_cap.bits.mcg_ext_p; mca_extended_MSRs_count = ia32_mcg_cap.bits.mcg_ext_cnt; } } } void mca_cpu_init(void) { unsigned int i; /* * The first (boot) processor is responsible for discovering the * machine check architecture present on this machine. */ if (!mca_initialized) { mca_get_availability(); mca_initialized = TRUE; simple_lock_init(&mca_lock, 0); } if (mca_MCA_present) { /* Enable all MCA features */ if (mca_control_MSR_present) wrmsr64(IA32_MCG_CTL, IA32_MCG_CTL_ENABLE); switch (mca_family) { case 0x06: /* Enable all but mc0 */ for (i = 1; i < mca_error_bank_count; i++) wrmsr64(IA32_MCi_CTL(i),0xFFFFFFFFFFFFFFFFULL); /* Clear all errors */ for (i = 0; i < mca_error_bank_count; i++) wrmsr64(IA32_MCi_STATUS(i), 0ULL); break; case 0x0F: /* Enable all banks */ for (i = 0; i < mca_error_bank_count; i++) wrmsr64(IA32_MCi_CTL(i),0xFFFFFFFFFFFFFFFFULL); /* Clear all errors */ for (i = 0; i < mca_error_bank_count; i++) wrmsr64(IA32_MCi_STATUS(i), 0ULL); break; } } /* Enable machine check exception handling if available */ if (mca_MCE_present) { set_cr4(get_cr4()|CR4_MCE); } } boolean_t mca_is_cmci_present(void) { if (!mca_initialized) mca_cpu_init(); return mca_cmci_present; } void mca_cpu_alloc(cpu_data_t *cdp) { vm_size_t mca_state_size; /* * Allocate space for an array of error banks. */ mca_state_size = sizeof(mca_state_t) + sizeof(mca_mci_bank_t) * mca_error_bank_count; cdp->cpu_mca_state = kalloc(mca_state_size); if (cdp->cpu_mca_state == NULL) { printf("mca_cpu_alloc() failed for cpu %d\n", cdp->cpu_number); return; } bzero((void *) cdp->cpu_mca_state, mca_state_size); /* * If the boot processor is yet have its allocation made, * do this now. */ if (cpu_datap(master_cpu)->cpu_mca_state == NULL) mca_cpu_alloc(cpu_datap(master_cpu)); } static void mca_save_state(mca_state_t *mca_state) { mca_mci_bank_t *bank; unsigned int i; assert(!ml_get_interrupts_enabled() || get_preemption_level() > 0); if (mca_state == NULL) return; mca_state->mca_mcg_ctl = mca_control_MSR_present ? rdmsr64(IA32_MCG_CTL) : 0ULL; mca_state->mca_mcg_status.u64 = rdmsr64(IA32_MCG_STATUS); bank = (mca_mci_bank_t *) &mca_state->mca_error_bank[0]; for (i = 0; i < mca_error_bank_count; i++, bank++) { bank->mca_mci_ctl = rdmsr64(IA32_MCi_CTL(i)); bank->mca_mci_status.u64 = rdmsr64(IA32_MCi_STATUS(i)); if (!bank->mca_mci_status.bits.val) continue; bank->mca_mci_misc = (bank->mca_mci_status.bits.miscv)? rdmsr64(IA32_MCi_MISC(i)) : 0ULL; bank->mca_mci_addr = (bank->mca_mci_status.bits.addrv)? rdmsr64(IA32_MCi_ADDR(i)) : 0ULL; mca_state->mca_is_valid = TRUE; } /* * If we're the first thread with MCA state, point our package to it * and don't care about races */ if (x86_package()->mca_state == NULL) x86_package()->mca_state = mca_state; mca_state->mca_is_saved = TRUE; } void mca_check_save(void) { if (mca_dump_state > CLEAR) mca_save_state(current_cpu_datap()->cpu_mca_state); } static void mca_dump_64bit_state(void) { kdb_printf("Extended Machine Check State:\n"); kdb_printf(" IA32_MCG_RAX: 0x%016qx\n", rdmsr64(IA32_MCG_RAX)); kdb_printf(" IA32_MCG_RBX: 0x%016qx\n", rdmsr64(IA32_MCG_RBX)); kdb_printf(" IA32_MCG_RCX: 0x%016qx\n", rdmsr64(IA32_MCG_RCX)); kdb_printf(" IA32_MCG_RDX: 0x%016qx\n", rdmsr64(IA32_MCG_RDX)); kdb_printf(" IA32_MCG_RSI: 0x%016qx\n", rdmsr64(IA32_MCG_RSI)); kdb_printf(" IA32_MCG_RDI: 0x%016qx\n", rdmsr64(IA32_MCG_RDI)); kdb_printf(" IA32_MCG_RBP: 0x%016qx\n", rdmsr64(IA32_MCG_RBP)); kdb_printf(" IA32_MCG_RSP: 0x%016qx\n", rdmsr64(IA32_MCG_RSP)); kdb_printf(" IA32_MCG_RFLAGS: 0x%016qx\n", rdmsr64(IA32_MCG_RFLAGS)); kdb_printf(" IA32_MCG_RIP: 0x%016qx\n", rdmsr64(IA32_MCG_RIP)); kdb_printf(" IA32_MCG_MISC: 0x%016qx\n", rdmsr64(IA32_MCG_MISC)); kdb_printf(" IA32_MCG_R8: 0x%016qx\n", rdmsr64(IA32_MCG_R8)); kdb_printf(" IA32_MCG_R9: 0x%016qx\n", rdmsr64(IA32_MCG_R9)); kdb_printf(" IA32_MCG_R10: 0x%016qx\n", rdmsr64(IA32_MCG_R10)); kdb_printf(" IA32_MCG_R11: 0x%016qx\n", rdmsr64(IA32_MCG_R11)); kdb_printf(" IA32_MCG_R12: 0x%016qx\n", rdmsr64(IA32_MCG_R12)); kdb_printf(" IA32_MCG_R13: 0x%016qx\n", rdmsr64(IA32_MCG_R13)); kdb_printf(" IA32_MCG_R14: 0x%016qx\n", rdmsr64(IA32_MCG_R14)); kdb_printf(" IA32_MCG_R15: 0x%016qx\n", rdmsr64(IA32_MCG_R15)); } static uint32_t rdmsr32(uint32_t msr) { return (uint32_t) rdmsr64(msr); } static void mca_dump_32bit_state(void) { kdb_printf("Extended Machine Check State:\n"); kdb_printf(" IA32_MCG_EAX: 0x%08x\n", rdmsr32(IA32_MCG_EAX)); kdb_printf(" IA32_MCG_EBX: 0x%08x\n", rdmsr32(IA32_MCG_EBX)); kdb_printf(" IA32_MCG_ECX: 0x%08x\n", rdmsr32(IA32_MCG_ECX)); kdb_printf(" IA32_MCG_EDX: 0x%08x\n", rdmsr32(IA32_MCG_EDX)); kdb_printf(" IA32_MCG_ESI: 0x%08x\n", rdmsr32(IA32_MCG_ESI)); kdb_printf(" IA32_MCG_EDI: 0x%08x\n", rdmsr32(IA32_MCG_EDI)); kdb_printf(" IA32_MCG_EBP: 0x%08x\n", rdmsr32(IA32_MCG_EBP)); kdb_printf(" IA32_MCG_ESP: 0x%08x\n", rdmsr32(IA32_MCG_ESP)); kdb_printf(" IA32_MCG_EFLAGS: 0x%08x\n", rdmsr32(IA32_MCG_EFLAGS)); kdb_printf(" IA32_MCG_EIP: 0x%08x\n", rdmsr32(IA32_MCG_EIP)); kdb_printf(" IA32_MCG_MISC: 0x%08x\n", rdmsr32(IA32_MCG_MISC)); } static void mca_report_cpu_info(void) { i386_cpu_info_t *infop = cpuid_info(); kdb_printf(" family: %d model: %d stepping: %d microcode: %d\n", infop->cpuid_family, infop->cpuid_model, infop->cpuid_stepping, infop->cpuid_microcode_version); kdb_printf(" %s\n", infop->cpuid_brand_string); } static const char *mc8_memory_operation[] = { [MC8_MMM_GENERIC] = "generic", [MC8_MMM_READ] = "read", [MC8_MMM_WRITE] = "write", [MC8_MMM_ADDRESS_COMMAND] = "address/command", [MC8_MMM_RESERVED] = "reserved" }; static void mca_dump_bank_mc8(mca_state_t *state, int i) { mca_mci_bank_t *bank; ia32_mci_status_t status; struct ia32_mc8_specific mc8; int mmm; bank = &state->mca_error_bank[i]; status = bank->mca_mci_status; mc8 = status.bits_mc8; mmm = MIN(mc8.memory_operation, MC8_MMM_RESERVED); kdb_printf( " IA32_MC%d_STATUS(0x%x): 0x%016qx %svalid\n", i, IA32_MCi_STATUS(i), status.u64, IF(!status.bits.val, "in")); if (!status.bits.val) return; kdb_printf( " Channel number: %d%s\n" " Memory Operation: %s\n" " Machine-specific error: %s%s%s%s%s%s%s%s%s\n" " COR_ERR_CNT: %d\n", mc8.channel_number, IF(mc8.channel_number == 15, " (unknown)"), mc8_memory_operation[mmm], IF(mc8.read_ecc, "Read ECC "), IF(mc8.ecc_on_a_scrub, "ECC on scrub "), IF(mc8.write_parity, "Write parity "), IF(mc8.redundant_memory, "Redundant memory "), IF(mc8.sparing, "Sparing/Resilvering "), IF(mc8.access_out_of_range, "Access out of Range "), IF(mc8.rtid_out_of_range, "RTID out of Range "), IF(mc8.address_parity, "Address Parity "), IF(mc8.byte_enable_parity, "Byte Enable Parity "), mc8.cor_err_cnt); kdb_printf( " Status bits:\n%s%s%s%s%s%s", IF(status.bits.pcc, " Processor context corrupt\n"), IF(status.bits.addrv, " ADDR register valid\n"), IF(status.bits.miscv, " MISC register valid\n"), IF(status.bits.en, " Error enabled\n"), IF(status.bits.uc, " Uncorrected error\n"), IF(status.bits.over, " Error overflow\n")); if (status.bits.addrv) kdb_printf( " IA32_MC%d_ADDR(0x%x): 0x%016qx\n", i, IA32_MCi_ADDR(i), bank->mca_mci_addr); if (status.bits.miscv) { ia32_mc8_misc_t mc8_misc; mc8_misc.u64 = bank->mca_mci_misc; kdb_printf( " IA32_MC%d_MISC(0x%x): 0x%016qx\n" " RTID: %d\n" " DIMM: %d\n" " Channel: %d\n" " Syndrome: 0x%x\n", i, IA32_MCi_MISC(i), mc8_misc.u64, mc8_misc.bits.rtid, mc8_misc.bits.dimm, mc8_misc.bits.channel, (int) mc8_misc.bits.syndrome); } } static const char *mca_threshold_status[] = { [THRESHOLD_STATUS_NO_TRACKING] = "No tracking", [THRESHOLD_STATUS_GREEN] = "Green", [THRESHOLD_STATUS_YELLOW] = "Yellow", [THRESHOLD_STATUS_RESERVED] = "Reserved" }; static void mca_dump_bank(mca_state_t *state, int i) { mca_mci_bank_t *bank; ia32_mci_status_t status; bank = &state->mca_error_bank[i]; status = bank->mca_mci_status; kdb_printf( " IA32_MC%d_STATUS(0x%x): 0x%016qx %svalid\n", i, IA32_MCi_STATUS(i), status.u64, IF(!status.bits.val, "in")); if (!status.bits.val) return; kdb_printf( " MCA error code: 0x%04x\n", status.bits.mca_error); kdb_printf( " Model specific error code: 0x%04x\n", status.bits.model_specific_error); if (!mca_threshold_status_present) { kdb_printf( " Other information: 0x%08x\n", status.bits.other_information); } else { int threshold = status.bits_tes_p.threshold; kdb_printf( " Other information: 0x%08x\n" " Threshold-based status: %s\n", status.bits_tes_p.other_information, (status.bits_tes_p.uc == 0) ? mca_threshold_status[threshold] : "Undefined"); } if (mca_threshold_status_present && mca_sw_error_recovery_present) { kdb_printf( " Software Error Recovery:\n%s%s", IF(status.bits_tes_p.ar, " Recovery action reqd\n"), IF(status.bits_tes_p.s, " Signaling UCR error\n")); } kdb_printf( " Status bits:\n%s%s%s%s%s%s", IF(status.bits.pcc, " Processor context corrupt\n"), IF(status.bits.addrv, " ADDR register valid\n"), IF(status.bits.miscv, " MISC register valid\n"), IF(status.bits.en, " Error enabled\n"), IF(status.bits.uc, " Uncorrected error\n"), IF(status.bits.over, " Error overflow\n")); if (status.bits.addrv) kdb_printf( " IA32_MC%d_ADDR(0x%x): 0x%016qx\n", i, IA32_MCi_ADDR(i), bank->mca_mci_addr); if (status.bits.miscv) kdb_printf( " IA32_MC%d_MISC(0x%x): 0x%016qx\n", i, IA32_MCi_MISC(i), bank->mca_mci_misc); } static void mca_cpu_dump_error_banks(mca_state_t *state) { unsigned int i; if (!state->mca_is_valid) return; kdb_printf("MCA error-reporting registers:\n"); for (i = 0; i < mca_error_bank_count; i++ ) { if (i == 8 && state == x86_package()->mca_state) { /* * Fatal Memory Error */ /* Dump MC8 for this package */ kdb_printf(" Package %d logged:\n", x86_package()->ppkg_num); mca_dump_bank_mc8(state, 8); continue; } mca_dump_bank(state, i); } } void mca_dump(void) { mca_state_t *mca_state = current_cpu_datap()->cpu_mca_state; uint64_t deadline; unsigned int i = 0; /* * Capture local MCA registers to per-cpu data. */ mca_save_state(mca_state); /* * Serialize: the first caller controls dumping MCA registers, * other threads spin meantime. */ simple_lock(&mca_lock); if (mca_dump_state > CLEAR) { simple_unlock(&mca_lock); while (mca_dump_state == DUMPING) cpu_pause(); return; } mca_dump_state = DUMPING; simple_unlock(&mca_lock); /* * Wait for all other hardware threads to save their state. * Or timeout. */ deadline = mach_absolute_time() + LockTimeOut; while (mach_absolute_time() < deadline && i < real_ncpus) { if (!cpu_datap(i)->cpu_mca_state->mca_is_saved) { cpu_pause(); continue; } i += 1; } /* * Report machine-check capabilities: */ kdb_printf( "Machine-check capabilities 0x%016qx:\n", ia32_mcg_cap.u64); mca_report_cpu_info(); kdb_printf( " %d error-reporting banks\n%s%s%s", mca_error_bank_count, IF(mca_control_MSR_present, " control MSR present\n"), IF(mca_threshold_status_present, " threshold-based error status present\n"), IF(mca_cmci_present, " extended corrected memory error handling present\n")); if (mca_extended_MSRs_present) kdb_printf( " %d extended MSRs present\n", mca_extended_MSRs_count); /* * Dump all processor state: */ for (i = 0; i < real_ncpus; i++) { mca_state_t *mcsp = cpu_datap(i)->cpu_mca_state; ia32_mcg_status_t status; kdb_printf("Processor %d: ", i); if (mcsp == NULL || mcsp->mca_is_saved == FALSE || mcsp->mca_mcg_status.u64 == 0) { kdb_printf("no machine-check status reported\n"); continue; } if (!mcsp->mca_is_valid) { kdb_printf("no valid machine-check state\n"); continue; } status = mcsp->mca_mcg_status; kdb_printf( "machine-check status 0x%016qx:\n%s%s%s", status.u64, IF(status.bits.ripv, " restart IP valid\n"), IF(status.bits.eipv, " error IP valid\n"), IF(status.bits.mcip, " machine-check in progress\n")); mca_cpu_dump_error_banks(mcsp); } /* * Dump any extended machine state: */ if (mca_extended_MSRs_present) { if (cpu_mode_is64bit()) mca_dump_64bit_state(); else mca_dump_32bit_state(); } /* Update state to release any other threads. */ mca_dump_state = DUMPED; } extern void mca_exception_panic(void); extern void mtrr_lapic_cached(void); void mca_exception_panic(void) { #if DEBUG mtrr_lapic_cached(); #else kprintf("mca_exception_panic() requires DEBUG build\n"); #endif }