/* * Copyright (c) 2000-2012 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* $FreeBSD: src/sys/netinet6/nd6.c,v 1.20 2002/08/02 20:49:14 rwatson Exp $ */ /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * XXX * KAME 970409 note: * BSD/OS version heavily modifies this code, related to llinfo. * Since we don't have BSD/OS version of net/route.c in our hand, * I left the code mostly as it was in 970310. -- itojun */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DONT_WARN_OBSOLETE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "loop.h" #include #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0) /* timer values */ int nd6_prune = 1; /* walk list every 1 seconds */ int nd6_delay = 5; /* delay first probe time 5 second */ int nd6_umaxtries = 3; /* maximum unicast query */ int nd6_mmaxtries = 3; /* maximum multicast query */ int nd6_useloopback = 1; /* use loopback interface for local traffic */ int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ /* preventing too many loops in ND option parsing */ int nd6_maxndopt = 10; /* max # of ND options allowed */ int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ #if ND6_DEBUG int nd6_debug = 1; #else int nd6_debug = 0; #endif int nd6_optimistic_dad = (ND6_OPTIMISTIC_DAD_LINKLOCAL|ND6_OPTIMISTIC_DAD_AUTOCONF| ND6_OPTIMISTIC_DAD_TEMPORARY|ND6_OPTIMISTIC_DAD_DYNAMIC); static int nd6_is_new_addr_neighbor (struct sockaddr_in6 *, struct ifnet *); /* for debugging? */ static int nd6_inuse, nd6_allocated; /* * Synchronization notes: * * The global list of ND entries are stored in llinfo_nd6; an entry * gets inserted into the list when the route is created and gets * removed from the list when it is deleted; this is done as part * of RTM_ADD/RTM_RESOLVE/RTM_DELETE in nd6_rtrequest(). * * Because rnh_lock and rt_lock for the entry are held during those * operations, the same locks (and thus lock ordering) must be used * elsewhere to access the relevant data structure fields: * * ln_next, ln_prev, ln_rt * * - Routing lock (rnh_lock) * * ln_hold, ln_asked, ln_expire, ln_state, ln_router, ln_byhint, ln_flags, * ln_llreach, ln_lastused * * - Routing entry lock (rt_lock) * * Due to the dependency on rt_lock, llinfo_nd6 has the same lifetime * as the route entry itself. When a route is deleted (RTM_DELETE), * it is simply removed from the global list but the memory is not * freed until the route itself is freed. */ struct llinfo_nd6 llinfo_nd6 = { &llinfo_nd6, &llinfo_nd6, NULL, NULL, 0, 0, 0, 0, 0, 0, NULL, 0 }; /* Protected by nd_if_rwlock */ size_t nd_ifinfo_indexlim = 32; /* increased for 5589193 */ struct nd_ifinfo *nd_ifinfo = NULL; static lck_grp_attr_t *nd_if_lock_grp_attr; static lck_grp_t *nd_if_lock_grp; static lck_attr_t *nd_if_lock_attr; decl_lck_rw_data(, nd_if_rwlock_data); lck_rw_t *nd_if_rwlock = &nd_if_rwlock_data; /* Protected by nd6_mutex */ struct nd_drhead nd_defrouter; struct nd_prhead nd_prefix = { 0 }; /* Serialization variables for nd6_drain() */ static boolean_t nd6_drain_busy; static void *nd6_drain_waitchan = &nd6_drain_busy; static int nd6_drain_waiters = 0; int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; static struct sockaddr_in6 all1_sa; static int regen_tmpaddr(struct in6_ifaddr *); extern lck_mtx_t *nd6_mutex; static void nd6_slowtimo(void *ignored_arg); static struct llinfo_nd6 *nd6_llinfo_alloc(void); static void nd6_llinfo_free(void *); static void nd6_llinfo_purge(struct rtentry *); static void nd6_llinfo_get_ri(struct rtentry *, struct rt_reach_info *); static void nd6_llinfo_get_iflri(struct rtentry *, struct ifnet_llreach_info *); static int nd6_siocgdrlst(void *, int); static int nd6_siocgprlst(void *, int); /* * Insertion and removal from llinfo_nd6 must be done with rnh_lock held. */ #define LN_DEQUEUE(_ln) do { \ lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED); \ RT_LOCK_ASSERT_HELD((_ln)->ln_rt); \ (_ln)->ln_next->ln_prev = (_ln)->ln_prev; \ (_ln)->ln_prev->ln_next = (_ln)->ln_next; \ (_ln)->ln_prev = (_ln)->ln_next = NULL; \ (_ln)->ln_flags &= ~ND6_LNF_IN_USE; \ } while (0) #define LN_INSERTHEAD(_ln) do { \ lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED); \ RT_LOCK_ASSERT_HELD((_ln)->ln_rt); \ (_ln)->ln_next = llinfo_nd6.ln_next; \ llinfo_nd6.ln_next = (_ln); \ (_ln)->ln_prev = &llinfo_nd6; \ (_ln)->ln_next->ln_prev = (_ln); \ (_ln)->ln_flags |= ND6_LNF_IN_USE; \ } while (0) static struct zone *llinfo_nd6_zone; #define LLINFO_ND6_ZONE_MAX 256 /* maximum elements in zone */ #define LLINFO_ND6_ZONE_NAME "llinfo_nd6" /* name for zone */ void nd6_init() { static int nd6_init_done = 0; int i; if (nd6_init_done) { log(LOG_NOTICE, "nd6_init called more than once (ignored)\n"); return; } all1_sa.sin6_family = AF_INET6; all1_sa.sin6_len = sizeof(struct sockaddr_in6); for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) all1_sa.sin6_addr.s6_addr[i] = 0xff; /* initialization of the default router list */ TAILQ_INIT(&nd_defrouter); nd_if_lock_grp_attr = lck_grp_attr_alloc_init(); nd_if_lock_grp = lck_grp_alloc_init("nd_if_lock", nd_if_lock_grp_attr); nd_if_lock_attr = lck_attr_alloc_init(); lck_rw_init(nd_if_rwlock, nd_if_lock_grp, nd_if_lock_attr); llinfo_nd6_zone = zinit(sizeof (struct llinfo_nd6), LLINFO_ND6_ZONE_MAX * sizeof (struct llinfo_nd6), 0, LLINFO_ND6_ZONE_NAME); if (llinfo_nd6_zone == NULL) panic("%s: failed allocating llinfo_nd6_zone", __func__); zone_change(llinfo_nd6_zone, Z_EXPAND, TRUE); zone_change(llinfo_nd6_zone, Z_CALLERACCT, FALSE); nd6_nbr_init(); nd6_rtr_init(); nd6_prproxy_init(); nd6_init_done = 1; /* start timer */ timeout(nd6_slowtimo, (caddr_t)0, ND6_SLOWTIMER_INTERVAL * hz); } static struct llinfo_nd6 * nd6_llinfo_alloc(void) { return (zalloc(llinfo_nd6_zone)); } static void nd6_llinfo_free(void *arg) { struct llinfo_nd6 *ln = arg; if (ln->ln_next != NULL || ln->ln_prev != NULL) { panic("%s: trying to free %p when it is in use", __func__, ln); /* NOTREACHED */ } /* Just in case there's anything there, free it */ if (ln->ln_hold != NULL) { m_freem(ln->ln_hold); ln->ln_hold = NULL; } /* Purge any link-layer info caching */ VERIFY(ln->ln_rt->rt_llinfo == ln); if (ln->ln_rt->rt_llinfo_purge != NULL) ln->ln_rt->rt_llinfo_purge(ln->ln_rt); zfree(llinfo_nd6_zone, ln); } static void nd6_llinfo_purge(struct rtentry *rt) { struct llinfo_nd6 *ln = rt->rt_llinfo; RT_LOCK_ASSERT_HELD(rt); VERIFY(rt->rt_llinfo_purge == nd6_llinfo_purge && ln != NULL); if (ln->ln_llreach != NULL) { RT_CONVERT_LOCK(rt); ifnet_llreach_free(ln->ln_llreach); ln->ln_llreach = NULL; } ln->ln_lastused = 0; } static void nd6_llinfo_get_ri(struct rtentry *rt, struct rt_reach_info *ri) { struct llinfo_nd6 *ln = rt->rt_llinfo; struct if_llreach *lr = ln->ln_llreach; if (lr == NULL) { bzero(ri, sizeof (*ri)); ri->ri_rssi = IFNET_RSSI_UNKNOWN; ri->ri_lqm = IFNET_LQM_THRESH_OFF; ri->ri_npm = IFNET_NPM_THRESH_UNKNOWN; } else { IFLR_LOCK(lr); /* Export to rt_reach_info structure */ ifnet_lr2ri(lr, ri); /* Export ND6 send expiration (calendar) time */ ri->ri_snd_expire = ifnet_llreach_up2calexp(lr, ln->ln_lastused); IFLR_UNLOCK(lr); } } static void nd6_llinfo_get_iflri(struct rtentry *rt, struct ifnet_llreach_info *iflri) { struct llinfo_nd6 *ln = rt->rt_llinfo; struct if_llreach *lr = ln->ln_llreach; if (lr == NULL) { bzero(iflri, sizeof (*iflri)); iflri->iflri_rssi = IFNET_RSSI_UNKNOWN; iflri->iflri_lqm = IFNET_LQM_THRESH_OFF; iflri->iflri_npm = IFNET_NPM_THRESH_UNKNOWN; } else { IFLR_LOCK(lr); /* Export to ifnet_llreach_info structure */ ifnet_lr2iflri(lr, iflri); /* Export ND6 send expiration (uptime) time */ iflri->iflri_snd_expire = ifnet_llreach_up2upexp(lr, ln->ln_lastused); IFLR_UNLOCK(lr); } } int nd6_ifattach(struct ifnet *ifp) { /* * We have some arrays that should be indexed by if_index. * since if_index will grow dynamically, they should grow too. */ lck_rw_lock_exclusive(nd_if_rwlock); if (nd_ifinfo == NULL || if_index >= nd_ifinfo_indexlim) { size_t n; caddr_t q; size_t newlim = nd_ifinfo_indexlim; while (if_index >= newlim) newlim <<= 1; /* grow nd_ifinfo */ n = newlim * sizeof(struct nd_ifinfo); q = (caddr_t)_MALLOC(n, M_IP6NDP, M_WAITOK); if (q == NULL) { lck_rw_done(nd_if_rwlock); return (ENOBUFS); } bzero(q, n); nd_ifinfo_indexlim = newlim; if (nd_ifinfo) { bcopy((caddr_t)nd_ifinfo, q, n/2); /* * We might want to pattern fill the old * array to catch use-after-free cases. */ FREE((caddr_t)nd_ifinfo, M_IP6NDP); } nd_ifinfo = (struct nd_ifinfo *)(void *)q; } #define ND nd_ifinfo[ifp->if_index] /* * Don't initialize if called twice. */ if (ND.initialized) { lck_rw_done(nd_if_rwlock); return (0); } lck_mtx_init(&ND.lock, nd_if_lock_grp, nd_if_lock_attr); ND.initialized = TRUE; ND.linkmtu = ifp->if_mtu; ND.chlim = IPV6_DEFHLIM; ND.basereachable = REACHABLE_TIME; ND.reachable = ND_COMPUTE_RTIME(ND.basereachable); ND.retrans = RETRANS_TIMER; ND.flags = ND6_IFF_PERFORMNUD; lck_rw_done(nd_if_rwlock); #undef ND nd6_setmtu(ifp); return (0); } /* * Reset ND level link MTU. This function is called when the physical MTU * changes, which means we might have to adjust the ND level MTU. */ void nd6_setmtu(struct ifnet *ifp) { struct nd_ifinfo *ndi; u_int32_t oldmaxmtu, maxmtu; /* * Make sure IPv6 is enabled for the interface first, * because this can be called directly from SIOCSIFMTU for IPv4 */ lck_rw_lock_shared(nd_if_rwlock); if (ifp->if_index >= nd_ifinfo_indexlim || !nd_ifinfo[ifp->if_index].initialized) { lck_rw_done(nd_if_rwlock); return; /* nd_ifinfo out of bound, or not yet initialized */ } ndi = &nd_ifinfo[ifp->if_index]; VERIFY(ndi->initialized); lck_mtx_lock(&ndi->lock); oldmaxmtu = ndi->maxmtu; /* * The ND level maxmtu is somewhat redundant to the interface MTU * and is an implementation artifact of KAME. Instead of hard- * limiting the maxmtu based on the interface type here, we simply * take the if_mtu value since SIOCSIFMTU would have taken care of * the sanity checks related to the maximum MTU allowed for the * interface (a value that is known only by the interface layer), * by sending the request down via ifnet_ioctl(). The use of the * ND level maxmtu and linkmtu are done via IN6_LINKMTU() which * does further checking against if_mtu. */ maxmtu = ndi->maxmtu = ifp->if_mtu; /* * Decreasing the interface MTU under IPV6 minimum MTU may cause * undesirable situation. We thus notify the operator of the change * explicitly. The check for oldmaxmtu is necessary to restrict the * log to the case of changing the MTU, not initializing it. */ if (oldmaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { log(LOG_NOTICE, "nd6_setmtu: " "new link MTU on %s%d (%u) is too small for IPv6\n", ifp->if_name, ifp->if_unit, (uint32_t)ndi->maxmtu); } ndi->linkmtu = ifp->if_mtu; lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); /* also adjust in6_maxmtu if necessary. */ if (maxmtu > in6_maxmtu) in6_setmaxmtu(); } void nd6_option_init( void *opt, int icmp6len, union nd_opts *ndopts) { bzero(ndopts, sizeof(*ndopts)); ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; ndopts->nd_opts_last = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); if (icmp6len == 0) { ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } } /* * Take one ND option. */ struct nd_opt_hdr * nd6_option( union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int olen; if (!ndopts) panic("ndopts == NULL in nd6_option\n"); if (!ndopts->nd_opts_last) panic("uninitialized ndopts in nd6_option\n"); if (!ndopts->nd_opts_search) return NULL; if (ndopts->nd_opts_done) return NULL; nd_opt = ndopts->nd_opts_search; /* make sure nd_opt_len is inside the buffer */ if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { bzero(ndopts, sizeof(*ndopts)); return NULL; } olen = nd_opt->nd_opt_len << 3; if (olen == 0) { /* * Message validation requires that all included * options have a length that is greater than zero. */ bzero(ndopts, sizeof(*ndopts)); return NULL; } ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); if (ndopts->nd_opts_search > ndopts->nd_opts_last) { /* option overruns the end of buffer, invalid */ bzero(ndopts, sizeof(*ndopts)); return NULL; } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { /* reached the end of options chain */ ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } return nd_opt; } /* * Parse multiple ND options. * This function is much easier to use, for ND routines that do not need * multiple options of the same type. */ int nd6_options( union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int i = 0; if (ndopts == NULL) panic("ndopts == NULL in nd6_options"); if (ndopts->nd_opts_last == NULL) panic("uninitialized ndopts in nd6_options"); if (ndopts->nd_opts_search == NULL) return 0; while (1) { nd_opt = nd6_option(ndopts); if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { /* * Message validation requires that all included * options have a length that is greater than zero. */ icmp6stat.icp6s_nd_badopt++; bzero(ndopts, sizeof(*ndopts)); return -1; } if (nd_opt == NULL) goto skip1; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LINKADDR: case ND_OPT_TARGET_LINKADDR: case ND_OPT_MTU: case ND_OPT_REDIRECTED_HEADER: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { nd6log((LOG_INFO, "duplicated ND6 option found (type=%d)\n", nd_opt->nd_opt_type)); /* XXX bark? */ } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFORMATION: if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } ndopts->nd_opts_pi_end = (struct nd_opt_prefix_info *)nd_opt; break; case ND_OPT_RDNSS: /* ignore */ break; default: /* * Unknown options must be silently ignored, * to accomodate future extension to the protocol. */ nd6log((LOG_DEBUG, "nd6_options: unsupported option %d - " "option ignored\n", nd_opt->nd_opt_type)); } skip1: i++; if (i > nd6_maxndopt) { icmp6stat.icp6s_nd_toomanyopt++; nd6log((LOG_INFO, "too many loop in nd opt\n")); break; } if (ndopts->nd_opts_done) break; } return 0; } void nd6_drain(__unused void *ignored_arg) { struct llinfo_nd6 *ln; struct nd_defrouter *dr; struct nd_prefix *pr; struct ifnet *ifp = NULL; struct in6_ifaddr *ia6, *nia6; struct in6_addrlifetime *lt6; struct timeval timenow; getmicrotime(&timenow); again: /* * The global list llinfo_nd6 is modified by nd6_request() and is * therefore protected by rnh_lock. For obvious reasons, we cannot * hold rnh_lock across calls that might lead to code paths which * attempt to acquire rnh_lock, else we deadlock. Hence for such * cases we drop rt_lock and rnh_lock, make the calls, and repeat the * loop. To ensure that we don't process the same entry more than * once in a single timeout, we mark the "already-seen" entries with * ND6_LNF_TIMER_SKIP flag. At the end of the loop, we do a second * pass thru the entries and clear the flag so they can be processed * during the next timeout. */ lck_mtx_lock(rnh_lock); ln = llinfo_nd6.ln_next; while (ln != NULL && ln != &llinfo_nd6) { struct rtentry *rt; struct sockaddr_in6 *dst; struct llinfo_nd6 *next; struct nd_ifinfo *ndi; u_int32_t retrans, flags; /* ln_next/prev/rt is protected by rnh_lock */ next = ln->ln_next; rt = ln->ln_rt; RT_LOCK(rt); /* We've seen this already; skip it */ if (ln->ln_flags & ND6_LNF_TIMER_SKIP) { RT_UNLOCK(rt); ln = next; continue; } /* rt->rt_ifp should never be NULL */ if ((ifp = rt->rt_ifp) == NULL) { panic("%s: ln(%p) rt(%p) rt_ifp == NULL", __func__, ln, rt); /* NOTREACHED */ } /* rt_llinfo must always be equal to ln */ if ((struct llinfo_nd6 *)rt->rt_llinfo != ln) { panic("%s: rt_llinfo(%p) is not equal to ln(%p)", __func__, rt->rt_llinfo, ln); /* NOTREACHED */ } /* rt_key should never be NULL */ dst = (struct sockaddr_in6 *)(void *)rt_key(rt); if (dst == NULL) { panic("%s: rt(%p) key is NULL ln(%p)", __func__, rt, ln); /* NOTREACHED */ } /* Set the flag in case we jump to "again" */ ln->ln_flags |= ND6_LNF_TIMER_SKIP; if (ln->ln_expire > timenow.tv_sec) { RT_UNLOCK(rt); ln = next; continue; } lck_rw_lock_shared(nd_if_rwlock); if (ifp->if_index >= nd_ifinfo_indexlim) { lck_rw_done(nd_if_rwlock); RT_UNLOCK(rt); ln = next; continue; } ndi = ND_IFINFO(ifp); VERIFY(ndi->initialized); lck_mtx_lock(&ndi->lock); retrans = ndi->retrans; flags = ndi->flags; lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); RT_LOCK_ASSERT_HELD(rt); switch (ln->ln_state) { case ND6_LLINFO_INCOMPLETE: if (ln->ln_asked < nd6_mmaxtries) { ln->ln_asked++; ln->ln_expire = timenow.tv_sec + retrans / 1000; RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); if (ip6_forwarding) { nd6_prproxy_ns_output(ifp, NULL, &dst->sin6_addr, ln); } else { nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); } RT_REMREF(rt); } else { struct mbuf *m = ln->ln_hold; ln->ln_hold = NULL; if (m != NULL) { /* * Fake rcvif to make ICMP error * more helpful in diagnosing * for the receiver. * XXX: should we consider * older rcvif? */ m->m_pkthdr.rcvif = ifp; RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 0); } else { RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); } nd6_free(rt); } lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); goto again; case ND6_LLINFO_REACHABLE: if (ln->ln_expire) { ln->ln_state = ND6_LLINFO_STALE; ln->ln_expire = rt_expiry(rt, timenow.tv_sec, nd6_gctimer); } RT_UNLOCK(rt); break; case ND6_LLINFO_STALE: case ND6_LLINFO_PURGE: /* Garbage Collection(RFC 2461 5.3) */ if (ln->ln_expire) { RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); nd6_free(rt); lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); goto again; } else { RT_UNLOCK(rt); } break; case ND6_LLINFO_DELAY: if ((flags & ND6_IFF_PERFORMNUD) != 0) { /* We need NUD */ ln->ln_asked = 1; ln->ln_state = ND6_LLINFO_PROBE; ln->ln_expire = timenow.tv_sec + retrans / 1000; RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); nd6_ns_output(ifp, &dst->sin6_addr, &dst->sin6_addr, ln, 0); lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); RT_REMREF(rt); goto again; } ln->ln_state = ND6_LLINFO_STALE; /* XXX */ ln->ln_expire = rt_expiry(rt, timenow.tv_sec, nd6_gctimer); RT_UNLOCK(rt); break; case ND6_LLINFO_PROBE: if (ln->ln_asked < nd6_umaxtries) { ln->ln_asked++; ln->ln_expire = timenow.tv_sec + retrans / 1000; RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); nd6_ns_output(ifp, &dst->sin6_addr, &dst->sin6_addr, ln, 0); RT_REMREF(rt); } else { RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); nd6_free(rt); } lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); goto again; default: RT_UNLOCK(rt); break; } ln = next; } lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED); /* Now clear the flag from all entries */ ln = llinfo_nd6.ln_next; while (ln != NULL && ln != &llinfo_nd6) { struct rtentry *rt = ln->ln_rt; struct llinfo_nd6 *next = ln->ln_next; RT_LOCK_SPIN(rt); if (ln->ln_flags & ND6_LNF_TIMER_SKIP) ln->ln_flags &= ~ND6_LNF_TIMER_SKIP; RT_UNLOCK(rt); ln = next; } lck_mtx_unlock(rnh_lock); /* expire default router list */ lck_mtx_lock(nd6_mutex); dr = TAILQ_FIRST(&nd_defrouter); while (dr) { if (dr->expire && dr->expire < timenow.tv_sec) { struct nd_defrouter *t; t = TAILQ_NEXT(dr, dr_entry); defrtrlist_del(dr); dr = t; } else { dr = TAILQ_NEXT(dr, dr_entry); } } lck_mtx_unlock(nd6_mutex); /* * expire interface addresses. * in the past the loop was inside prefix expiry processing. * However, from a stricter speci-confrmance standpoint, we should * rather separate address lifetimes and prefix lifetimes. */ addrloop: lck_rw_lock_exclusive(&in6_ifaddr_rwlock); for (ia6 = in6_ifaddrs; ia6; ia6 = nia6) { nia6 = ia6->ia_next; IFA_LOCK(&ia6->ia_ifa); /* * Extra reference for ourselves; it's no-op if * we don't have to regenerate temporary address, * otherwise it protects the address from going * away since we drop in6_ifaddr_rwlock below. */ IFA_ADDREF_LOCKED(&ia6->ia_ifa); /* check address lifetime */ lt6 = &ia6->ia6_lifetime; if (IFA6_IS_INVALID(ia6)) { /* * If the expiring address is temporary, try * regenerating a new one. This would be useful when * we suspended a laptop PC, then turned it on after a * period that could invalidate all temporary * addresses. Although we may have to restart the * loop (see below), it must be after purging the * address. Otherwise, we'd see an infinite loop of * regeneration. */ if (ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { /* * NOTE: We have to drop the lock here * because regen_tmpaddr() eventually calls * in6_update_ifa(), which must take the lock * and would otherwise cause a hang. This is * safe because the goto addrloop leads to a * re-evaluation of the in6_ifaddrs list */ IFA_UNLOCK(&ia6->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); (void) regen_tmpaddr(ia6); } else { IFA_UNLOCK(&ia6->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); } /* * Purging the address would have caused * in6_ifaddr_rwlock to be dropped and reacquired; * therefore search again from the beginning * of in6_ifaddrs list. */ in6_purgeaddr(&ia6->ia_ifa); /* Release extra reference taken above */ IFA_REMREF(&ia6->ia_ifa); goto addrloop; } IFA_LOCK_ASSERT_HELD(&ia6->ia_ifa); if (IFA6_IS_DEPRECATED(ia6)) { int oldflags = ia6->ia6_flags; ia6->ia6_flags |= IN6_IFF_DEPRECATED; /* * If a temporary address has just become deprecated, * regenerate a new one if possible. */ if (ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && (oldflags & IN6_IFF_DEPRECATED) == 0) { /* see NOTE above */ IFA_UNLOCK(&ia6->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); if (regen_tmpaddr(ia6) == 0) { /* * A new temporary address is * generated. * XXX: this means the address chain * has changed while we are still in * the loop. Although the change * would not cause disaster (because * it's not a deletion, but an * addition,) we'd rather restart the * loop just for safety. Or does this * significantly reduce performance?? */ /* Release extra reference */ IFA_REMREF(&ia6->ia_ifa); goto addrloop; } lck_rw_lock_exclusive(&in6_ifaddr_rwlock); } else { IFA_UNLOCK(&ia6->ia_ifa); } } else { /* * A new RA might have made a deprecated address * preferred. */ ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; IFA_UNLOCK(&ia6->ia_ifa); } lck_rw_assert(&in6_ifaddr_rwlock, LCK_RW_ASSERT_EXCLUSIVE); /* Release extra reference taken above */ IFA_REMREF(&ia6->ia_ifa); } lck_rw_done(&in6_ifaddr_rwlock); lck_mtx_lock(nd6_mutex); /* * Since we drop the nd6_mutex in prelist_remove, we want to run this * section single threaded. */ while (nd6_drain_busy) { nd6_drain_waiters++; msleep(nd6_drain_waitchan, nd6_mutex, (PZERO-1), __func__, NULL); lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_OWNED); } nd6_drain_busy = TRUE; /* expire prefix list */ pr = nd_prefix.lh_first; while (pr) { /* * check prefix lifetime. * since pltime is just for autoconf, pltime processing for * prefix is not necessary. */ NDPR_LOCK(pr); if (pr->ndpr_stateflags & NDPRF_PROCESSED) { NDPR_UNLOCK(pr); pr = pr->ndpr_next; continue; } if (pr->ndpr_expire && pr->ndpr_expire < timenow.tv_sec) { /* * address expiration and prefix expiration are * separate. NEVER perform in6_purgeaddr here. */ pr->ndpr_stateflags |= NDPRF_PROCESSED; NDPR_ADDREF_LOCKED(pr); prelist_remove(pr); NDPR_UNLOCK(pr); NDPR_REMREF(pr); pr = nd_prefix.lh_first; } else { pr->ndpr_stateflags |= NDPRF_PROCESSED; NDPR_UNLOCK(pr); pr = pr->ndpr_next; } } LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { NDPR_LOCK(pr); pr->ndpr_stateflags &= ~NDPRF_PROCESSED; NDPR_UNLOCK(pr); } nd6_drain_busy = FALSE; if (nd6_drain_waiters > 0) { nd6_drain_waiters = 0; wakeup(nd6_drain_waitchan); } lck_mtx_unlock(nd6_mutex); } /* * ND6 router advertisement kernel notification */ void nd6_post_msg(u_int32_t code, struct nd_prefix_list *prefix_list, u_int32_t list_length, u_int32_t mtu, char *dl_addr, u_int32_t dl_addr_len) { struct kev_msg ev_msg; struct kev_nd6_ra_data nd6_ra_msg_data; struct nd_prefix_list *itr = prefix_list; bzero(&ev_msg, sizeof(struct kev_msg)); ev_msg.vendor_code = KEV_VENDOR_APPLE; ev_msg.kev_class = KEV_NETWORK_CLASS; ev_msg.kev_subclass = KEV_ND6_SUBCLASS; ev_msg.event_code = code; bzero(&nd6_ra_msg_data, sizeof(nd6_ra_msg_data)); nd6_ra_msg_data.lladdrlen = (dl_addr_len <= ND6_ROUTER_LL_SIZE) ? dl_addr_len : ND6_ROUTER_LL_SIZE; bcopy(dl_addr, &nd6_ra_msg_data.lladdr, nd6_ra_msg_data.lladdrlen); if (mtu > 0 && mtu >= IPV6_MMTU) { nd6_ra_msg_data.mtu = mtu; nd6_ra_msg_data.flags |= KEV_ND6_DATA_VALID_MTU; } if (list_length > 0 && prefix_list != NULL) { nd6_ra_msg_data.list_length = list_length; nd6_ra_msg_data.flags |= KEV_ND6_DATA_VALID_PREFIX; } while (itr != NULL && nd6_ra_msg_data.list_index < list_length) { bcopy(&itr->pr.ndpr_prefix, &nd6_ra_msg_data.prefix.prefix, sizeof (nd6_ra_msg_data.prefix.prefix)); nd6_ra_msg_data.prefix.raflags = itr->pr.ndpr_raf; nd6_ra_msg_data.prefix.prefixlen = itr->pr.ndpr_plen; nd6_ra_msg_data.prefix.origin = PR_ORIG_RA; nd6_ra_msg_data.prefix.vltime = itr->pr.ndpr_vltime; nd6_ra_msg_data.prefix.pltime = itr->pr.ndpr_pltime; nd6_ra_msg_data.prefix.expire = itr->pr.ndpr_expire; nd6_ra_msg_data.prefix.flags = itr->pr.ndpr_stateflags; nd6_ra_msg_data.prefix.refcnt = itr->pr.ndpr_addrcnt; nd6_ra_msg_data.prefix.if_index = itr->pr.ndpr_ifp->if_index; /* send the message up */ ev_msg.dv[0].data_ptr = &nd6_ra_msg_data; ev_msg.dv[0].data_length = sizeof(nd6_ra_msg_data); ev_msg.dv[1].data_length = 0; kev_post_msg(&ev_msg); /* clean up for the next prefix */ bzero(&nd6_ra_msg_data.prefix, sizeof(nd6_ra_msg_data.prefix)); itr = itr->next; nd6_ra_msg_data.list_index++; } } /* * ND6 timer routine to expire default route list and prefix list */ void nd6_timer(__unused void *ignored_arg) { nd6_drain(NULL); timeout(nd6_timer, (caddr_t)0, nd6_prune * hz); } static int regen_tmpaddr( struct in6_ifaddr *ia6) /* deprecated/invalidated temporary address */ { struct ifaddr *ifa; struct ifnet *ifp; struct in6_ifaddr *public_ifa6 = NULL; struct timeval timenow; getmicrotime(&timenow); ifp = ia6->ia_ifa.ifa_ifp; ifnet_lock_shared(ifp); for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next) { struct in6_ifaddr *it6; IFA_LOCK(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } it6 = (struct in6_ifaddr *)ifa; /* ignore no autoconf addresses. */ if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) { IFA_UNLOCK(ifa); continue; } /* ignore autoconf addresses with different prefixes. */ if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) { IFA_UNLOCK(ifa); continue; } /* * Now we are looking at an autoconf address with the same * prefix as ours. If the address is temporary and is still * preferred, do not create another one. It would be rare, but * could happen, for example, when we resume a laptop PC after * a long period. */ if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && !IFA6_IS_DEPRECATED(it6)) { IFA_UNLOCK(ifa); if (public_ifa6 != NULL) IFA_REMREF(&public_ifa6->ia_ifa); public_ifa6 = NULL; break; } /* * This is a public autoconf address that has the same prefix * as ours. If it is preferred, keep it. We can't break the * loop here, because there may be a still-preferred temporary * address with the prefix. */ if (!IFA6_IS_DEPRECATED(it6)) { IFA_ADDREF_LOCKED(ifa); /* for public_ifa6 */ IFA_UNLOCK(ifa); if (public_ifa6 != NULL) IFA_REMREF(&public_ifa6->ia_ifa); public_ifa6 = it6; } else { IFA_UNLOCK(ifa); } } ifnet_lock_done(ifp); if (public_ifa6 != NULL) { int e; if ((e = in6_tmpifadd(public_ifa6, 0, M_WAITOK)) != 0) { log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" " tmp addr,errno=%d\n", e); IFA_REMREF(&public_ifa6->ia_ifa); return(-1); } IFA_REMREF(&public_ifa6->ia_ifa); return(0); } return(-1); } /* * Nuke neighbor cache/prefix/default router management table, right before * ifp goes away. */ void nd6_purge( struct ifnet *ifp) { struct llinfo_nd6 *ln; struct nd_defrouter *dr, *ndr; struct nd_prefix *pr, *npr; /* Nuke default router list entries toward ifp */ lck_mtx_lock(nd6_mutex); if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { /* * The first entry of the list may be stored in * the routing table, so we'll delete it later. */ for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) { ndr = TAILQ_NEXT(dr, dr_entry); if (dr->stateflags & NDDRF_INSTALLED) continue; if (dr->ifp == ifp) defrtrlist_del(dr); } dr = TAILQ_FIRST(&nd_defrouter); if (dr->ifp == ifp) defrtrlist_del(dr); } for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { ndr = TAILQ_NEXT(dr, dr_entry); if (!(dr->stateflags & NDDRF_INSTALLED)) continue; if (dr->ifp == ifp) defrtrlist_del(dr); } /* Nuke prefix list entries toward ifp */ for (pr = nd_prefix.lh_first; pr; pr = npr) { npr = pr->ndpr_next; NDPR_LOCK(pr); if (pr->ndpr_ifp == ifp) { /* * Because if_detach() does *not* release prefixes * while purging addresses the reference count will * still be above zero. We therefore reset it to * make sure that the prefix really gets purged. */ pr->ndpr_addrcnt = 0; /* * Previously, pr->ndpr_addr is removed as well, * but I strongly believe we don't have to do it. * nd6_purge() is only called from in6_ifdetach(), * which removes all the associated interface addresses * by itself. * (jinmei@kame.net 20010129) */ NDPR_ADDREF_LOCKED(pr); prelist_remove(pr); NDPR_UNLOCK(pr); NDPR_REMREF(pr); } else { NDPR_UNLOCK(pr); } } lck_mtx_unlock(nd6_mutex); /* cancel default outgoing interface setting */ if (nd6_defifindex == ifp->if_index) { nd6_setdefaultiface(0); } /* * Perform default router selection even when we are a router, * if Scoped Routing is enabled. */ if (ip6_doscopedroute || !ip6_forwarding) { lck_mtx_lock(nd6_mutex); /* refresh default router list */ defrouter_select(ifp); lck_mtx_unlock(nd6_mutex); } /* * Nuke neighbor cache entries for the ifp. * Note that rt->rt_ifp may not be the same as ifp, * due to KAME goto ours hack. See RTM_RESOLVE case in * nd6_rtrequest(), and ip6_input(). */ again: lck_mtx_lock(rnh_lock); ln = llinfo_nd6.ln_next; while (ln != NULL && ln != &llinfo_nd6) { struct rtentry *rt; struct llinfo_nd6 *nln; nln = ln->ln_next; rt = ln->ln_rt; RT_LOCK(rt); if (rt->rt_gateway != NULL && rt->rt_gateway->sa_family == AF_LINK && SDL(rt->rt_gateway)->sdl_index == ifp->if_index) { RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); /* * See comments on nd6_timer() for reasons why * this loop is repeated; we bite the costs of * going thru the same llinfo_nd6 more than once * here, since this purge happens during detach, * and that unlike the timer case, it's possible * there's more than one purges happening at the * same time (thus a flag wouldn't buy anything). */ nd6_free(rt); lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); goto again; } else { RT_UNLOCK(rt); } ln = nln; } lck_mtx_unlock(rnh_lock); } /* * Upon success, the returned route will be locked and the caller is * responsible for releasing the reference and doing RT_UNLOCK(rt). * This routine does not require rnh_lock to be held by the caller, * although it needs to be indicated of such a case in order to call * the correct variant of the relevant routing routines. */ struct rtentry * nd6_lookup( struct in6_addr *addr6, int create, struct ifnet *ifp, int rt_locked) { struct rtentry *rt; struct sockaddr_in6 sin6; unsigned int ifscope; bzero(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = *addr6; ifscope = (ifp != NULL) ? ifp->if_index : IFSCOPE_NONE; if (rt_locked) { lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED); rt = rtalloc1_scoped_locked((struct sockaddr *)&sin6, create, 0, ifscope); } else { rt = rtalloc1_scoped((struct sockaddr *)&sin6, create, 0, ifscope); } if (rt != NULL) { RT_LOCK(rt); if ((rt->rt_flags & RTF_LLINFO) == 0) { /* * This is the case for the default route. * If we want to create a neighbor cache for the * address, we should free the route for the * destination and allocate an interface route. */ if (create) { RT_UNLOCK(rt); if (rt_locked) rtfree_locked(rt); else rtfree(rt); rt = NULL; } } } if (rt == NULL) { if (create && ifp) { struct ifaddr *ifa; u_int32_t ifa_flags; int e; /* * If no route is available and create is set, * we allocate a host route for the destination * and treat it like an interface route. * This hack is necessary for a neighbor which can't * be covered by our own prefix. */ ifa = ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); if (ifa == NULL) return(NULL); /* * Create a new route. RTF_LLINFO is necessary * to create a Neighbor Cache entry for the * destination in nd6_rtrequest which will be * called in rtrequest via ifa->ifa_rtrequest. */ if (!rt_locked) lck_mtx_lock(rnh_lock); IFA_LOCK_SPIN(ifa); ifa_flags = ifa->ifa_flags; IFA_UNLOCK(ifa); if ((e = rtrequest_scoped_locked(RTM_ADD, (struct sockaddr *)&sin6, ifa->ifa_addr, (struct sockaddr *)&all1_sa, (ifa_flags | RTF_HOST | RTF_LLINFO) & ~RTF_CLONING, &rt, ifscope)) != 0) { if (e != EEXIST) log(LOG_ERR, "%s: failed to add route " "for a neighbor(%s), errno=%d\n", __func__, ip6_sprintf(addr6), e); } if (!rt_locked) lck_mtx_unlock(rnh_lock); IFA_REMREF(ifa); if (rt == NULL) return(NULL); RT_LOCK(rt); if (rt->rt_llinfo) { struct llinfo_nd6 *ln = rt->rt_llinfo; ln->ln_state = ND6_LLINFO_NOSTATE; } } else { return(NULL); } } RT_LOCK_ASSERT_HELD(rt); /* * Validation for the entry. * Note that the check for rt_llinfo is necessary because a cloned * route from a parent route that has the L flag (e.g. the default * route to a p2p interface) may have the flag, too, while the * destination is not actually a neighbor. * XXX: we can't use rt->rt_ifp to check for the interface, since * it might be the loopback interface if the entry is for our * own address on a non-loopback interface. Instead, we should * use rt->rt_ifa->ifa_ifp, which would specify the REAL * interface. * Note also that ifa_ifp and ifp may differ when we connect two * interfaces to a same link, install a link prefix to an interface, * and try to install a neighbor cache on an interface that does not * have a route to the prefix. * * If the address is from a proxied prefix, the ifa_ifp and ifp might * not match, because nd6_na_input() could have modified the ifp * of the route to point to the interface where the NA arrived on, * hence the test for RTF_PROXY. */ if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || (ifp && rt->rt_ifa->ifa_ifp != ifp && !(rt->rt_flags & RTF_PROXY))) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); if (create) { log(LOG_DEBUG, "%s: failed to lookup %s " "(if = %s)\n", __func__, ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec"); /* xxx more logs... kazu */ } return(NULL); } /* * Caller needs to release reference and call RT_UNLOCK(rt). */ return(rt); } /* * Test whether a given IPv6 address is a neighbor or not, ignoring * the actual neighbor cache. The neighbor cache is ignored in order * to not reenter the routing code from within itself. */ static int nd6_is_new_addr_neighbor( struct sockaddr_in6 *addr, struct ifnet *ifp) { struct nd_prefix *pr; struct ifaddr *dstaddr; lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_OWNED); /* * A link-local address is always a neighbor. * XXX: a link does not necessarily specify a single interface. */ if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { struct sockaddr_in6 sin6_copy; u_int32_t zone; /* * We need sin6_copy since sa6_recoverscope() may modify the * content (XXX). */ sin6_copy = *addr; if (sa6_recoverscope(&sin6_copy, FALSE)) return (0); /* XXX: should be impossible */ if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) return (0); if (sin6_copy.sin6_scope_id == zone) return (1); else return (0); } /* * If the address matches one of our addresses, * it should be a neighbor. * If the address matches one of our on-link prefixes, it should be a * neighbor. */ for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { NDPR_LOCK(pr); if (pr->ndpr_ifp != ifp) { NDPR_UNLOCK(pr); continue; } if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { NDPR_UNLOCK(pr); continue; } if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, &addr->sin6_addr, &pr->ndpr_mask)) { NDPR_UNLOCK(pr); return (1); } NDPR_UNLOCK(pr); } /* * If the address is assigned on the node of the other side of * a p2p interface, the address should be a neighbor. */ dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr); if (dstaddr != NULL) { if (dstaddr->ifa_ifp == ifp) { IFA_REMREF(dstaddr); return (1); } IFA_REMREF(dstaddr); dstaddr = NULL; } /* * If the default router list is empty, all addresses are regarded * as on-link, and thus, as a neighbor. * XXX: we restrict the condition to hosts, because routers usually do * not have the "default router list". * XXX: this block should eventually be removed (it is disabled when * Scoped Routing is in effect); treating all destinations as on-link * in the absence of a router is rather harmful. */ if (!ip6_doscopedroute && !ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL && nd6_defifindex == ifp->if_index) { return (1); } return (0); } /* * Detect if a given IPv6 address identifies a neighbor on a given link. * XXX: should take care of the destination of a p2p link? */ int nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp, int rt_locked) { struct rtentry *rt; lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED); lck_mtx_lock(nd6_mutex); if (nd6_is_new_addr_neighbor(addr, ifp)) { lck_mtx_unlock(nd6_mutex); return (1); } lck_mtx_unlock(nd6_mutex); /* * Even if the address matches none of our addresses, it might be * in the neighbor cache. */ if ((rt = nd6_lookup(&addr->sin6_addr, 0, ifp, rt_locked)) != NULL) { RT_LOCK_ASSERT_HELD(rt); RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); return (1); } return (0); } /* * Free an nd6 llinfo entry. * Since the function would cause significant changes in the kernel, DO NOT * make it global, unless you have a strong reason for the change, and are sure * that the change is safe. */ void nd6_free( struct rtentry *rt) { struct llinfo_nd6 *ln; struct in6_addr in6; struct nd_defrouter *dr; lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); RT_LOCK_ASSERT_NOTHELD(rt); lck_mtx_lock(nd6_mutex); RT_LOCK(rt); RT_ADDREF_LOCKED(rt); /* Extra ref */ ln = rt->rt_llinfo; in6 = ((struct sockaddr_in6 *)(void *)rt_key(rt))->sin6_addr; /* * Prevent another thread from modifying rt_key, rt_gateway * via rt_setgate() after the rt_lock is dropped by marking * the route as defunct. */ rt->rt_flags |= RTF_CONDEMNED; /* * We used to have pfctlinput(PRC_HOSTDEAD) here. Even though it is * not harmful, it was not really necessary. Perform default router * selection even when we are a router, if Scoped Routing is enabled. */ if (ip6_doscopedroute || !ip6_forwarding) { dr = defrouter_lookup(&((struct sockaddr_in6 *)(void *) rt_key(rt))->sin6_addr, rt->rt_ifp); if ((ln && ln->ln_router) || dr) { /* * rt6_flush must be called whether or not the neighbor * is in the Default Router List. * See a corresponding comment in nd6_na_input(). */ RT_UNLOCK(rt); lck_mtx_unlock(nd6_mutex); rt6_flush(&in6, rt->rt_ifp); lck_mtx_lock(nd6_mutex); } else { RT_UNLOCK(rt); } if (dr) { NDDR_REMREF(dr); /* * Unreachablity of a router might affect the default * router selection and on-link detection of advertised * prefixes. */ /* * Temporarily fake the state to choose a new default * router and to perform on-link determination of * prefixes correctly. * Below the state will be set correctly, * or the entry itself will be deleted. */ RT_LOCK_SPIN(rt); ln->ln_state = ND6_LLINFO_INCOMPLETE; /* * Since defrouter_select() does not affect the * on-link determination and MIP6 needs the check * before the default router selection, we perform * the check now. */ RT_UNLOCK(rt); pfxlist_onlink_check(); /* * refresh default router list */ defrouter_select(rt->rt_ifp); } RT_LOCK_ASSERT_NOTHELD(rt); } else { RT_UNLOCK(rt); } lck_mtx_unlock(nd6_mutex); /* * Detach the route from the routing tree and the list of neighbor * caches, and disable the route entry not to be used in already * cached routes. */ (void) rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, rt_mask(rt), 0, (struct rtentry **)0); /* Extra ref held above; now free it */ rtfree(rt); } /* * Upper-layer reachability hint for Neighbor Unreachability Detection. * * XXX cost-effective methods? */ void nd6_nud_hint( struct rtentry *rt, struct in6_addr *dst6, int force) { struct llinfo_nd6 *ln; struct timeval timenow; getmicrotime(&timenow); /* * If the caller specified "rt", use that. Otherwise, resolve the * routing table by supplied "dst6". */ if (!rt) { if (!dst6) return; /* Callee returns a locked route upon success */ if ((rt = nd6_lookup(dst6, 0, NULL, 0)) == NULL) return; RT_LOCK_ASSERT_HELD(rt); } else { RT_LOCK(rt); RT_ADDREF_LOCKED(rt); } if ((rt->rt_flags & RTF_GATEWAY) != 0 || (rt->rt_flags & RTF_LLINFO) == 0 || !rt->rt_llinfo || !rt->rt_gateway || rt->rt_gateway->sa_family != AF_LINK) { /* This is not a host route. */ goto done; } ln = rt->rt_llinfo; if (ln->ln_state < ND6_LLINFO_REACHABLE) goto done; /* * if we get upper-layer reachability confirmation many times, * it is possible we have false information. */ if (!force) { ln->ln_byhint++; if (ln->ln_byhint > nd6_maxnudhint) goto done; } ln->ln_state = ND6_LLINFO_REACHABLE; if (ln->ln_expire) { struct nd_ifinfo *ndi; lck_rw_lock_shared(nd_if_rwlock); ndi = ND_IFINFO(rt->rt_ifp); VERIFY(ndi != NULL && ndi->initialized); lck_mtx_lock(&ndi->lock); ln->ln_expire = timenow.tv_sec + ndi->reachable; lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); } done: RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); } void nd6_rtrequest( int req, struct rtentry *rt, __unused struct sockaddr *sa) { struct sockaddr *gate = rt->rt_gateway; struct llinfo_nd6 *ln = rt->rt_llinfo; static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK, 0, 0, 0, 0, 0, {0,0,0,0,0,0,0,0,0,0,0,0,} }; struct ifnet *ifp = rt->rt_ifp; struct ifaddr *ifa; struct timeval timenow; lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED); RT_LOCK_ASSERT_HELD(rt); if ((rt->rt_flags & RTF_GATEWAY)) return; if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { /* * This is probably an interface direct route for a link * which does not need neighbor caches (e.g. fe80::%lo0/64). * We do not need special treatment below for such a route. * Moreover, the RTF_LLINFO flag which would be set below * would annoy the ndp(8) command. */ return; } if (req == RTM_RESOLVE) { int no_nd_cache; if (!nd6_need_cache(ifp)) { /* stf case */ no_nd_cache = 1; } else { struct sockaddr_in6 sin6; rtkey_to_sa6(rt, &sin6); /* * nd6_is_addr_neighbor() may call nd6_lookup(), * therefore we drop rt_lock to avoid deadlock * during the lookup. */ RT_ADDREF_LOCKED(rt); RT_UNLOCK(rt); no_nd_cache = !nd6_is_addr_neighbor(&sin6, ifp, 1); RT_LOCK(rt); RT_REMREF_LOCKED(rt); } /* * FreeBSD and BSD/OS often make a cloned host route based * on a less-specific route (e.g. the default route). * If the less specific route does not have a "gateway" * (this is the case when the route just goes to a p2p or an * stf interface), we'll mistakenly make a neighbor cache for * the host route, and will see strange neighbor solicitation * for the corresponding destination. In order to avoid the * confusion, we check if the destination of the route is * a neighbor in terms of neighbor discovery, and stop the * process if not. Additionally, we remove the LLINFO flag * so that ndp(8) will not try to get the neighbor information * of the destination. */ if (no_nd_cache) { rt->rt_flags &= ~RTF_LLINFO; return; } } getmicrotime(&timenow); switch (req) { case RTM_ADD: /* * There is no backward compatibility :) * * if ((rt->rt_flags & RTF_HOST) == 0 && * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) * rt->rt_flags |= RTF_CLONING; */ if ((rt->rt_flags & RTF_CLONING) || ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) { /* * Case 1: This route should come from a route to * interface (RTF_CLONING case) or the route should be * treated as on-link but is currently not * (RTF_LLINFO && ln == NULL case). */ if (rt_setgate(rt, rt_key(rt), (struct sockaddr *)&null_sdl) == 0) { gate = rt->rt_gateway; SDL(gate)->sdl_type = ifp->if_type; SDL(gate)->sdl_index = ifp->if_index; /* * In case we're called before 1.0 sec. * has elapsed. */ if (ln != NULL) ln->ln_expire = (ifp->if_eflags & IFEF_IPV6_ND6ALT) ? 0 : MAX(timenow.tv_sec, 1); } if ((rt->rt_flags & RTF_CLONING)) break; } /* * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. * We don't do that here since llinfo is not ready yet. * * There are also couple of other things to be discussed: * - unsolicited NA code needs improvement beforehand * - RFC2461 says we MAY send multicast unsolicited NA * (7.2.6 paragraph 4), however, it also says that we * SHOULD provide a mechanism to prevent multicast NA storm. * we don't have anything like it right now. * note that the mechanism needs a mutual agreement * between proxies, which means that we need to implement * a new protocol, or a new kludge. * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. * we need to check ip6forwarding before sending it. * (or should we allow proxy ND configuration only for * routers? there's no mention about proxy ND from hosts) */ /* FALLTHROUGH */ case RTM_RESOLVE: if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { /* * Address resolution isn't necessary for a point to * point link, so we can skip this test for a p2p link. */ if (gate->sa_family != AF_LINK || gate->sa_len < sizeof(null_sdl)) { /* Don't complain in case of RTM_ADD */ if (req == RTM_RESOLVE) { log(LOG_DEBUG, "nd6_rtrequest: bad gateway " "value: %s\n", if_name(ifp)); } break; } SDL(gate)->sdl_type = ifp->if_type; SDL(gate)->sdl_index = ifp->if_index; } if (ln != NULL) break; /* This happens on a route change */ /* * Case 2: This route may come from cloning, or a manual route * add with a LL address. */ rt->rt_llinfo = ln = nd6_llinfo_alloc(); if (ln == NULL) { log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); break; } rt->rt_llinfo_get_ri = nd6_llinfo_get_ri; rt->rt_llinfo_get_iflri = nd6_llinfo_get_iflri; rt->rt_llinfo_purge = nd6_llinfo_purge; rt->rt_llinfo_free = nd6_llinfo_free; nd6_inuse++; nd6_allocated++; Bzero(ln, sizeof(*ln)); ln->ln_rt = rt; /* this is required for "ndp" command. - shin */ if (req == RTM_ADD) { /* * gate should have some valid AF_LINK entry, * and ln->ln_expire should have some lifetime * which is specified by ndp command. */ ln->ln_state = ND6_LLINFO_REACHABLE; ln->ln_byhint = 0; } else { /* * When req == RTM_RESOLVE, rt is created and * initialized in rtrequest(), so rt_expire is 0. */ ln->ln_state = ND6_LLINFO_NOSTATE; /* In case we're called before 1.0 sec. has elapsed */ ln->ln_expire = (ifp->if_eflags & IFEF_IPV6_ND6ALT) ? 0 : MAX(timenow.tv_sec, 1); } rt->rt_flags |= RTF_LLINFO; LN_INSERTHEAD(ln); /* * If we have too many cache entries, initiate immediate * purging for some "less recently used" entries. Note that * we cannot directly call nd6_free() here because it would * cause re-entering rtable related routines triggering an LOR * problem. */ if (ip6_neighborgcthresh >= 0 && nd6_inuse >= ip6_neighborgcthresh) { int i; for (i = 0; i < 10 && llinfo_nd6.ln_prev != ln; i++) { struct llinfo_nd6 *ln_end = llinfo_nd6.ln_prev; struct rtentry *rt_end = ln_end->ln_rt; /* Move this entry to the head */ RT_LOCK(rt_end); LN_DEQUEUE(ln_end); LN_INSERTHEAD(ln_end); if (ln_end->ln_expire == 0) { RT_UNLOCK(rt_end); continue; } if (ln_end->ln_state > ND6_LLINFO_INCOMPLETE) ln_end->ln_state = ND6_LLINFO_STALE; else ln_end->ln_state = ND6_LLINFO_PURGE; ln_end->ln_expire = timenow.tv_sec; RT_UNLOCK(rt_end); } } /* * check if rt_key(rt) is one of my address assigned * to the interface. */ ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, &SIN6(rt_key(rt))->sin6_addr); if (ifa) { caddr_t macp = nd6_ifptomac(ifp); ln->ln_expire = 0; ln->ln_state = ND6_LLINFO_REACHABLE; ln->ln_byhint = 0; if (macp) { Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); SDL(gate)->sdl_alen = ifp->if_addrlen; } if (nd6_useloopback) { if (rt->rt_ifp != lo_ifp) { /* * Purge any link-layer info caching. */ if (rt->rt_llinfo_purge != NULL) rt->rt_llinfo_purge(rt); /* * Adjust route ref count for the * interfaces. */ if (rt->rt_if_ref_fn != NULL) { rt->rt_if_ref_fn(lo_ifp, 1); rt->rt_if_ref_fn(rt->rt_ifp, -1); } } rt->rt_ifp = lo_ifp; /* XXX */ /* * Make sure rt_ifa be equal to the ifaddr * corresponding to the address. * We need this because when we refer * rt_ifa->ia6_flags in ip6_input, we assume * that the rt_ifa points to the address instead * of the loopback address. */ if (ifa != rt->rt_ifa) { rtsetifa(rt, ifa); } } IFA_REMREF(ifa); } else if (rt->rt_flags & RTF_ANNOUNCE) { ln->ln_expire = 0; ln->ln_state = ND6_LLINFO_REACHABLE; ln->ln_byhint = 0; /* join solicited node multicast for proxy ND */ if (ifp->if_flags & IFF_MULTICAST) { struct in6_addr llsol; struct in6_multi *in6m; int error; llsol = SIN6(rt_key(rt))->sin6_addr; llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; llsol.s6_addr32[1] = 0; llsol.s6_addr32[2] = htonl(1); llsol.s6_addr8[12] = 0xff; if (in6_setscope(&llsol, ifp, NULL)) break; error = in6_mc_join(ifp, &llsol, NULL, &in6m, 0); if (error) { nd6log((LOG_ERR, "%s: failed to join " "%s (errno=%d)\n", if_name(ifp), ip6_sprintf(&llsol), error)); } else { IN6M_REMREF(in6m); } } } break; case RTM_DELETE: if (ln == NULL) break; /* leave from solicited node multicast for proxy ND */ if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && (ifp->if_flags & IFF_MULTICAST) != 0) { struct in6_addr llsol; struct in6_multi *in6m; llsol = SIN6(rt_key(rt))->sin6_addr; llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; llsol.s6_addr32[1] = 0; llsol.s6_addr32[2] = htonl(1); llsol.s6_addr8[12] = 0xff; if (in6_setscope(&llsol, ifp, NULL) == 0) { in6_multihead_lock_shared(); IN6_LOOKUP_MULTI(&llsol, ifp, in6m); in6_multihead_lock_done(); if (in6m != NULL) { in6_mc_leave(in6m, NULL); IN6M_REMREF(in6m); } } } nd6_inuse--; /* * Unchain it but defer the actual freeing until the route * itself is to be freed. rt->rt_llinfo still points to * llinfo_nd6, and likewise, ln->ln_rt stil points to this * route entry, except that RTF_LLINFO is now cleared. */ if (ln->ln_flags & ND6_LNF_IN_USE) LN_DEQUEUE(ln); /* * Purge any link-layer info caching. */ if (rt->rt_llinfo_purge != NULL) rt->rt_llinfo_purge(rt); rt->rt_flags &= ~RTF_LLINFO; if (ln->ln_hold != NULL) { m_freem(ln->ln_hold); ln->ln_hold = NULL; } } } static int nd6_siocgdrlst(void *data, int data_is_64) { struct in6_drlist_32 *drl_32; struct nd_defrouter *dr; int i = 0; lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_OWNED); dr = TAILQ_FIRST(&nd_defrouter); /* For 64-bit process */ if (data_is_64) { struct in6_drlist_64 *drl_64; drl_64 = _MALLOC(sizeof (*drl_64), M_TEMP, M_WAITOK|M_ZERO); if (drl_64 == NULL) return (ENOMEM); /* preserve the interface name */ bcopy(data, drl_64, sizeof (drl_64->ifname)); while (dr && i < DRLSTSIZ) { drl_64->defrouter[i].rtaddr = dr->rtaddr; if (IN6_IS_ADDR_LINKLOCAL(&drl_64->defrouter[i].rtaddr)) { /* XXX: need to this hack for KAME stack */ drl_64->defrouter[i].rtaddr.s6_addr16[1] = 0; } else { log(LOG_ERR, "default router list contains a " "non-linklocal address(%s)\n", ip6_sprintf(&drl_64->defrouter[i].rtaddr)); } drl_64->defrouter[i].flags = dr->flags; drl_64->defrouter[i].rtlifetime = dr->rtlifetime; drl_64->defrouter[i].expire = dr->expire; drl_64->defrouter[i].if_index = dr->ifp->if_index; i++; dr = TAILQ_NEXT(dr, dr_entry); } bcopy(drl_64, data, sizeof (*drl_64)); _FREE(drl_64, M_TEMP); return (0); } /* For 32-bit process */ drl_32 = _MALLOC(sizeof (*drl_32), M_TEMP, M_WAITOK|M_ZERO); if (drl_32 == NULL) return (ENOMEM); /* preserve the interface name */ bcopy(data, drl_32, sizeof (drl_32->ifname)); while (dr && i < DRLSTSIZ) { drl_32->defrouter[i].rtaddr = dr->rtaddr; if (IN6_IS_ADDR_LINKLOCAL(&drl_32->defrouter[i].rtaddr)) { /* XXX: need to this hack for KAME stack */ drl_32->defrouter[i].rtaddr.s6_addr16[1] = 0; } else { log(LOG_ERR, "default router list contains a " "non-linklocal address(%s)\n", ip6_sprintf(&drl_32->defrouter[i].rtaddr)); } drl_32->defrouter[i].flags = dr->flags; drl_32->defrouter[i].rtlifetime = dr->rtlifetime; drl_32->defrouter[i].expire = dr->expire; drl_32->defrouter[i].if_index = dr->ifp->if_index; i++; dr = TAILQ_NEXT(dr, dr_entry); } bcopy(drl_32, data, sizeof (*drl_32)); _FREE(drl_32, M_TEMP); return (0); } /* * XXX meaning of fields, especialy "raflags", is very * differnet between RA prefix list and RR/static prefix list. * how about separating ioctls into two? */ static int nd6_siocgprlst(void *data, int data_is_64) { struct in6_prlist_32 *prl_32; struct nd_prefix *pr; int i = 0; lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_OWNED); pr = nd_prefix.lh_first; /* For 64-bit process */ if (data_is_64) { struct in6_prlist_64 *prl_64; prl_64 = _MALLOC(sizeof (*prl_64), M_TEMP, M_WAITOK|M_ZERO); if (prl_64 == NULL) return (ENOMEM); /* preserve the interface name */ bcopy(data, prl_64, sizeof (prl_64->ifname)); while (pr && i < PRLSTSIZ) { struct nd_pfxrouter *pfr; int j; NDPR_LOCK(pr); (void) in6_embedscope(&prl_64->prefix[i].prefix, &pr->ndpr_prefix, NULL, NULL, NULL); prl_64->prefix[i].raflags = pr->ndpr_raf; prl_64->prefix[i].prefixlen = pr->ndpr_plen; prl_64->prefix[i].vltime = pr->ndpr_vltime; prl_64->prefix[i].pltime = pr->ndpr_pltime; prl_64->prefix[i].if_index = pr->ndpr_ifp->if_index; prl_64->prefix[i].expire = pr->ndpr_expire; pfr = pr->ndpr_advrtrs.lh_first; j = 0; while (pfr) { if (j < DRLSTSIZ) { #define RTRADDR prl_64->prefix[i].advrtr[j] RTRADDR = pfr->router->rtaddr; if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { /* XXX: hack for KAME */ RTRADDR.s6_addr16[1] = 0; } else { log(LOG_ERR, "a router(%s) advertises " "a prefix with " "non-link local address\n", ip6_sprintf(&RTRADDR)); } #undef RTRADDR } j++; pfr = pfr->pfr_next; } prl_64->prefix[i].advrtrs = j; prl_64->prefix[i].origin = PR_ORIG_RA; NDPR_UNLOCK(pr); i++; pr = pr->ndpr_next; } bcopy(prl_64, data, sizeof (*prl_64)); _FREE(prl_64, M_TEMP); return (0); } /* For 32-bit process */ prl_32 = _MALLOC(sizeof (*prl_32), M_TEMP, M_WAITOK|M_ZERO); if (prl_32 == NULL) return (ENOMEM); /* preserve the interface name */ bcopy(data, prl_32, sizeof (prl_32->ifname)); while (pr && i < PRLSTSIZ) { struct nd_pfxrouter *pfr; int j; NDPR_LOCK(pr); (void) in6_embedscope(&prl_32->prefix[i].prefix, &pr->ndpr_prefix, NULL, NULL, NULL); prl_32->prefix[i].raflags = pr->ndpr_raf; prl_32->prefix[i].prefixlen = pr->ndpr_plen; prl_32->prefix[i].vltime = pr->ndpr_vltime; prl_32->prefix[i].pltime = pr->ndpr_pltime; prl_32->prefix[i].if_index = pr->ndpr_ifp->if_index; prl_32->prefix[i].expire = pr->ndpr_expire; pfr = pr->ndpr_advrtrs.lh_first; j = 0; while (pfr) { if (j < DRLSTSIZ) { #define RTRADDR prl_32->prefix[i].advrtr[j] RTRADDR = pfr->router->rtaddr; if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { /* XXX: hack for KAME */ RTRADDR.s6_addr16[1] = 0; } else { log(LOG_ERR, "a router(%s) advertises " "a prefix with " "non-link local address\n", ip6_sprintf(&RTRADDR)); } #undef RTRADDR } j++; pfr = pfr->pfr_next; } prl_32->prefix[i].advrtrs = j; prl_32->prefix[i].origin = PR_ORIG_RA; NDPR_UNLOCK(pr); i++; pr = pr->ndpr_next; } bcopy(prl_32, data, sizeof (*prl_32)); _FREE(prl_32, M_TEMP); return (0); } int nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) { struct nd_defrouter *dr; struct nd_prefix *pr; struct rtentry *rt; int i = ifp->if_index, error = 0; switch (cmd) { case SIOCGDRLST_IN6_32: /* struct in6_drlist_32 */ case SIOCGDRLST_IN6_64: /* struct in6_drlist_64 */ /* * obsolete API, use sysctl under net.inet6.icmp6 */ lck_mtx_lock(nd6_mutex); error = nd6_siocgdrlst(data, cmd == SIOCGDRLST_IN6_64); lck_mtx_unlock(nd6_mutex); break; case SIOCGPRLST_IN6_32: /* struct in6_prlist_32 */ case SIOCGPRLST_IN6_64: /* struct in6_prlist_64 */ /* * obsolete API, use sysctl under net.inet6.icmp6 */ lck_mtx_lock(nd6_mutex); error = nd6_siocgprlst(data, cmd == SIOCGPRLST_IN6_64); lck_mtx_unlock(nd6_mutex); break; case OSIOCGIFINFO_IN6: /* struct in6_ondireq */ case SIOCGIFINFO_IN6: { /* struct in6_ondireq */ u_int32_t linkmtu; struct in6_ondireq *ondi = (struct in6_ondireq *)(void *)data; struct nd_ifinfo *ndi; /* * SIOCGIFINFO_IN6 ioctl is encoded with in6_ondireq * instead of in6_ndireq, so we treat it as such. */ lck_rw_lock_shared(nd_if_rwlock); ndi = ND_IFINFO(ifp); if (!nd_ifinfo || i >= nd_ifinfo_indexlim || !ndi->initialized) { lck_rw_done(nd_if_rwlock); error = EINVAL; break; } lck_mtx_lock(&ndi->lock); linkmtu = IN6_LINKMTU(ifp); bcopy(&linkmtu, &ondi->ndi.linkmtu, sizeof (linkmtu)); bcopy(&nd_ifinfo[i].maxmtu, &ondi->ndi.maxmtu, sizeof (u_int32_t)); bcopy(&nd_ifinfo[i].basereachable, &ondi->ndi.basereachable, sizeof (u_int32_t)); bcopy(&nd_ifinfo[i].reachable, &ondi->ndi.reachable, sizeof (u_int32_t)); bcopy(&nd_ifinfo[i].retrans, &ondi->ndi.retrans, sizeof (u_int32_t)); bcopy(&nd_ifinfo[i].flags, &ondi->ndi.flags, sizeof (u_int32_t)); bcopy(&nd_ifinfo[i].recalctm, &ondi->ndi.recalctm, sizeof (int)); ondi->ndi.chlim = nd_ifinfo[i].chlim; ondi->ndi.receivedra = 0; lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); break; } case SIOCSIFINFO_FLAGS: { /* struct in6_ndireq */ struct in6_ndireq *cndi = (struct in6_ndireq *)(void *)data; u_int32_t oflags, flags; struct nd_ifinfo *ndi; /* XXX: almost all other fields of cndi->ndi is unused */ lck_rw_lock_shared(nd_if_rwlock); ndi = ND_IFINFO(ifp); if (!nd_ifinfo || i >= nd_ifinfo_indexlim || !ndi->initialized) { lck_rw_done(nd_if_rwlock); error = EINVAL; break; } lck_mtx_lock(&ndi->lock); oflags = nd_ifinfo[i].flags; bcopy(&cndi->ndi.flags, &nd_ifinfo[i].flags, sizeof (flags)); flags = nd_ifinfo[i].flags; lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); if (oflags == flags) break; error = nd6_setifinfo(ifp, oflags, flags); break; } case SIOCSNDFLUSH_IN6: /* struct in6_ifreq */ /* flush default router list */ /* * xxx sumikawa: should not delete route if default * route equals to the top of default router list */ lck_mtx_lock(nd6_mutex); defrouter_reset(); defrouter_select(ifp); lck_mtx_unlock(nd6_mutex); /* xxx sumikawa: flush prefix list */ break; case SIOCSPFXFLUSH_IN6: { /* struct in6_ifreq */ /* flush all the prefix advertised by routers */ struct nd_prefix *next; lck_mtx_lock(nd6_mutex); for (pr = nd_prefix.lh_first; pr; pr = next) { struct in6_ifaddr *ia; next = pr->ndpr_next; NDPR_LOCK(pr); if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) { NDPR_UNLOCK(pr); continue; /* XXX */ } if (ifp != lo_ifp && pr->ndpr_ifp != ifp) { NDPR_UNLOCK(pr); continue; } /* do we really have to remove addresses as well? */ NDPR_ADDREF_LOCKED(pr); NDPR_UNLOCK(pr); lck_rw_lock_exclusive(&in6_ifaddr_rwlock); ia = in6_ifaddrs; while (ia != NULL) { IFA_LOCK(&ia->ia_ifa); if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) { IFA_UNLOCK(&ia->ia_ifa); ia = ia->ia_next; continue; } if (ia->ia6_ndpr == pr) { IFA_ADDREF_LOCKED(&ia->ia_ifa); IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); lck_mtx_unlock(nd6_mutex); in6_purgeaddr(&ia->ia_ifa); IFA_REMREF(&ia->ia_ifa); lck_mtx_lock(nd6_mutex); lck_rw_lock_exclusive(&in6_ifaddr_rwlock); /* * Purging the address caused * in6_ifaddr_rwlock to be * dropped and * reacquired; therefore search again * from the beginning of in6_ifaddrs. * The same applies for the prefix list. */ ia = in6_ifaddrs; next = nd_prefix.lh_first; continue; } IFA_UNLOCK(&ia->ia_ifa); ia = ia->ia_next; } lck_rw_done(&in6_ifaddr_rwlock); NDPR_LOCK(pr); prelist_remove(pr); NDPR_UNLOCK(pr); /* * If we were trying to restart this loop * above by changing the value of 'next', we might * end up freeing the only element on the list * when we call NDPR_REMREF(). * When this happens, we also have get out of this * loop because we have nothing else to do. */ if (pr == next) next = NULL; NDPR_REMREF(pr); } lck_mtx_unlock(nd6_mutex); break; } case SIOCSRTRFLUSH_IN6: { /* struct in6_ifreq */ /* flush all the default routers */ struct nd_defrouter *next; lck_mtx_lock(nd6_mutex); if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { /* * The first entry of the list may be stored in * the routing table, so we'll delete it later. */ for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { next = TAILQ_NEXT(dr, dr_entry); if (ifp == lo_ifp || dr->ifp == ifp) defrtrlist_del(dr); } if (ifp == lo_ifp || TAILQ_FIRST(&nd_defrouter)->ifp == ifp) defrtrlist_del(TAILQ_FIRST(&nd_defrouter)); } lck_mtx_unlock(nd6_mutex); break; } case SIOCGNBRINFO_IN6_32: { /* struct in6_nbrinfo_32 */ struct llinfo_nd6 *ln; struct in6_nbrinfo_32 nbi_32; struct in6_addr nb_addr; /* make local for safety */ bcopy(data, &nbi_32, sizeof (nbi_32)); nb_addr = nbi_32.addr; /* * XXX: KAME specific hack for scoped addresses * XXXX: for other scopes than link-local? */ if (IN6_IS_ADDR_LINKLOCAL(&nbi_32.addr) || IN6_IS_ADDR_MC_LINKLOCAL(&nbi_32.addr)) { u_int16_t *idp = (u_int16_t *)(void *)&nb_addr.s6_addr[2]; if (*idp == 0) *idp = htons(ifp->if_index); } /* Callee returns a locked route upon success */ if ((rt = nd6_lookup(&nb_addr, 0, ifp, 0)) == NULL) { error = EINVAL; break; } RT_LOCK_ASSERT_HELD(rt); ln = rt->rt_llinfo; nbi_32.state = ln->ln_state; nbi_32.asked = ln->ln_asked; nbi_32.isrouter = ln->ln_router; nbi_32.expire = ln->ln_expire; RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); bcopy(&nbi_32, data, sizeof (nbi_32)); break; } case SIOCGNBRINFO_IN6_64: { /* struct in6_nbrinfo_64 */ struct llinfo_nd6 *ln; struct in6_nbrinfo_64 nbi_64; struct in6_addr nb_addr; /* make local for safety */ bcopy(data, &nbi_64, sizeof (nbi_64)); nb_addr = nbi_64.addr; /* * XXX: KAME specific hack for scoped addresses * XXXX: for other scopes than link-local? */ if (IN6_IS_ADDR_LINKLOCAL(&nbi_64.addr) || IN6_IS_ADDR_MC_LINKLOCAL(&nbi_64.addr)) { u_int16_t *idp = (u_int16_t *)(void *)&nb_addr.s6_addr[2]; if (*idp == 0) *idp = htons(ifp->if_index); } /* Callee returns a locked route upon success */ if ((rt = nd6_lookup(&nb_addr, 0, ifp, 0)) == NULL) { error = EINVAL; break; } RT_LOCK_ASSERT_HELD(rt); ln = rt->rt_llinfo; nbi_64.state = ln->ln_state; nbi_64.asked = ln->ln_asked; nbi_64.isrouter = ln->ln_router; nbi_64.expire = ln->ln_expire; RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); bcopy(&nbi_64, data, sizeof (nbi_64)); break; } case SIOCGDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */ case SIOCGDEFIFACE_IN6_64: { /* struct in6_ndifreq_64 */ struct in6_ndifreq_64 *ndif_64 = (struct in6_ndifreq_64 *)(void *)data; struct in6_ndifreq_32 *ndif_32 = (struct in6_ndifreq_32 *)(void *)data; if (cmd == SIOCGDEFIFACE_IN6_64) { u_int64_t j = nd6_defifindex; bcopy(&j, &ndif_64->ifindex, sizeof (j)); } else { bcopy(&nd6_defifindex, &ndif_32->ifindex, sizeof (u_int32_t)); } break; } case SIOCSDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */ case SIOCSDEFIFACE_IN6_64: { /* struct in6_ndifreq_64 */ struct in6_ndifreq_64 *ndif_64 = (struct in6_ndifreq_64 *)(void *)data; struct in6_ndifreq_32 *ndif_32 = (struct in6_ndifreq_32 *)(void *)data; u_int32_t idx; if (cmd == SIOCSDEFIFACE_IN6_64) { u_int64_t j; bcopy(&ndif_64->ifindex, &j, sizeof (j)); idx = (u_int32_t)j; } else { bcopy(&ndif_32->ifindex, &idx, sizeof (idx)); } error = nd6_setdefaultiface(idx); return (error); /* NOTREACHED */ } } return (error); } /* * Create neighbor cache entry and cache link-layer address, * on reception of inbound ND6 packets. (RS/RA/NS/redirect) */ void nd6_cache_lladdr( struct ifnet *ifp, struct in6_addr *from, char *lladdr, __unused int lladdrlen, int type, /* ICMP6 type */ int code) /* type dependent information */ { struct rtentry *rt = NULL; struct llinfo_nd6 *ln = NULL; int is_newentry; struct sockaddr_dl *sdl = NULL; int do_update; int olladdr; int llchange; int newstate = 0; struct timeval timenow; if (ifp == NULL) panic("ifp == NULL in nd6_cache_lladdr"); if (from == NULL) panic("from == NULL in nd6_cache_lladdr"); /* nothing must be updated for unspecified address */ if (IN6_IS_ADDR_UNSPECIFIED(from)) return; /* * Validation about ifp->if_addrlen and lladdrlen must be done in * the caller. * * XXX If the link does not have link-layer adderss, what should * we do? (ifp->if_addrlen == 0) * Spec says nothing in sections for RA, RS and NA. There's small * description on it in NS section (RFC 2461 7.2.3). */ getmicrotime(&timenow); rt = nd6_lookup(from, 0, ifp, 0); if (rt == NULL) { if ((rt = nd6_lookup(from, 1, ifp, 0)) == NULL) return; RT_LOCK_ASSERT_HELD(rt); is_newentry = 1; } else { RT_LOCK_ASSERT_HELD(rt); /* do nothing if static ndp is set */ if (rt->rt_flags & RTF_STATIC) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); return; } is_newentry = 0; } if (rt == NULL) return; if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { fail: RT_UNLOCK(rt); nd6_free(rt); rtfree(rt); return; } ln = (struct llinfo_nd6 *)rt->rt_llinfo; if (ln == NULL) goto fail; if (rt->rt_gateway == NULL) goto fail; if (rt->rt_gateway->sa_family != AF_LINK) goto fail; sdl = SDL(rt->rt_gateway); olladdr = (sdl->sdl_alen) ? 1 : 0; if (olladdr && lladdr) { if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) llchange = 1; else llchange = 0; } else llchange = 0; /* * newentry olladdr lladdr llchange (*=record) * 0 n n -- (1) * 0 y n -- (2) * 0 n y -- (3) * STALE * 0 y y n (4) * * 0 y y y (5) * STALE * 1 -- n -- (6) NOSTATE(= PASSIVE) * 1 -- y -- (7) * STALE */ if (lladdr) { /* (3-5) and (7) */ /* * Record source link-layer address * XXX is it dependent to ifp->if_type? */ sdl->sdl_alen = ifp->if_addrlen; bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); /* cache the gateway (sender HW) address */ nd6_llreach_alloc(rt, ifp, LLADDR(sdl), sdl->sdl_alen, FALSE); } if (!is_newentry) { if ((!olladdr && lladdr != NULL) || /* (3) */ (olladdr && lladdr != NULL && llchange)) { /* (5) */ do_update = 1; newstate = ND6_LLINFO_STALE; } else /* (1-2,4) */ do_update = 0; } else { do_update = 1; if (lladdr == NULL) /* (6) */ newstate = ND6_LLINFO_NOSTATE; else /* (7) */ newstate = ND6_LLINFO_STALE; } if (do_update) { /* * Update the state of the neighbor cache. */ ln->ln_state = newstate; if (ln->ln_state == ND6_LLINFO_STALE) { struct mbuf *m = ln->ln_hold; /* * XXX: since nd6_output() below will cause * state tansition to DELAY and reset the timer, * we must set the timer now, although it is actually * meaningless. */ ln->ln_expire = timenow.tv_sec + nd6_gctimer; ln->ln_hold = NULL; if (m != NULL) { struct sockaddr_in6 sin6; rtkey_to_sa6(rt, &sin6); /* * we assume ifp is not a p2p here, so just * set the 2nd argument as the 1st one. */ RT_UNLOCK(rt); nd6_output(ifp, ifp, m, &sin6, rt, NULL); RT_LOCK(rt); } } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { /* probe right away */ ln->ln_expire = timenow.tv_sec; } } /* * ICMP6 type dependent behavior. * * NS: clear IsRouter if new entry * RS: clear IsRouter * RA: set IsRouter if there's lladdr * redir: clear IsRouter if new entry * * RA case, (1): * The spec says that we must set IsRouter in the following cases: * - If lladdr exist, set IsRouter. This means (1-5). * - If it is old entry (!newentry), set IsRouter. This means (7). * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. * A quetion arises for (1) case. (1) case has no lladdr in the * neighbor cache, this is similar to (6). * This case is rare but we figured that we MUST NOT set IsRouter. * * newentry olladdr lladdr llchange NS RS RA redir * D R * 0 n n -- (1) c ? s * 0 y n -- (2) c s s * 0 n y -- (3) c s s * 0 y y n (4) c s s * 0 y y y (5) c s s * 1 -- n -- (6) c c c s * 1 -- y -- (7) c c s c s * * (c=clear s=set) */ switch (type & 0xff) { case ND_NEIGHBOR_SOLICIT: /* * New entry must have is_router flag cleared. */ if (is_newentry) /* (6-7) */ ln->ln_router = 0; break; case ND_REDIRECT: /* * If the icmp is a redirect to a better router, always set the * is_router flag. Otherwise, if the entry is newly created, * clear the flag. [RFC 2461, sec 8.3] */ if (code == ND_REDIRECT_ROUTER) ln->ln_router = 1; else if (is_newentry) /* (6-7) */ ln->ln_router = 0; break; case ND_ROUTER_SOLICIT: /* * is_router flag must always be cleared. */ ln->ln_router = 0; break; case ND_ROUTER_ADVERT: /* * Mark an entry with lladdr as a router. */ if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ (is_newentry && lladdr)) { /* (7) */ ln->ln_router = 1; } break; } /* * When the link-layer address of a router changes, select the * best router again. In particular, when the neighbor entry is newly * created, it might affect the selection policy. * Question: can we restrict the first condition to the "is_newentry" * case? * * Note: Perform default router selection even when we are a router, * if Scoped Routing is enabled. */ if (do_update && ln->ln_router && (ip6_doscopedroute || !ip6_forwarding)) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); lck_mtx_lock(nd6_mutex); defrouter_select(ifp); lck_mtx_unlock(nd6_mutex); } else { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); } } static void nd6_slowtimo( __unused void *ignored_arg) { int i; struct nd_ifinfo *nd6if; lck_rw_lock_shared(nd_if_rwlock); for (i = 1; i < if_index + 1; i++) { if (!nd_ifinfo || i >= nd_ifinfo_indexlim) break; nd6if = &nd_ifinfo[i]; if (!nd6if->initialized) break; lck_mtx_lock(&nd6if->lock); if (nd6if->basereachable && /* already initialized */ (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { /* * Since reachable time rarely changes by router * advertisements, we SHOULD insure that a new random * value gets recomputed at least once every few hours. * (RFC 2461, 6.3.4) */ nd6if->recalctm = nd6_recalc_reachtm_interval; nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); } lck_mtx_unlock(&nd6if->lock); } lck_rw_done(nd_if_rwlock); timeout(nd6_slowtimo, (caddr_t)0, ND6_SLOWTIMER_INTERVAL * hz); } #define senderr(e) { error = (e); goto bad;} int nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, struct sockaddr_in6 *dst, struct rtentry *hint0, struct flowadv *adv) { struct mbuf *m = m0; struct rtentry *rt = hint0, *hint = hint0; struct llinfo_nd6 *ln = NULL; int error = 0; struct timeval timenow; struct rtentry *rtrele = NULL; struct nd_ifinfo *ndi; if (rt != NULL) { RT_LOCK_SPIN(rt); RT_ADDREF_LOCKED(rt); } if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr) || !nd6_need_cache(ifp)) { if (rt != NULL) RT_UNLOCK(rt); goto sendpkt; } /* * Next hop determination. Because we may involve the gateway route * in addition to the original route, locking is rather complicated. * The general concept is that regardless of whether the route points * to the original route or to the gateway route, this routine takes * an extra reference on such a route. This extra reference will be * released at the end. * * Care must be taken to ensure that the "hint0" route never gets freed * via rtfree(), since the caller may have stored it inside a struct * route with a reference held for that placeholder. * * This logic is similar to, though not exactly the same as the one * used by route_to_gwroute(). */ if (rt != NULL) { /* * We have a reference to "rt" by now (or below via rtalloc1), * which will either be released or freed at the end of this * routine. */ RT_LOCK_ASSERT_HELD(rt); if (!(rt->rt_flags & RTF_UP)) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); if ((hint = rt = rtalloc1_scoped((struct sockaddr *)dst, 1, 0, ifp->if_index)) != NULL) { RT_LOCK_SPIN(rt); if (rt->rt_ifp != ifp) { /* XXX: loop care? */ RT_UNLOCK(rt); error = nd6_output(ifp, origifp, m0, dst, rt, adv); rtfree(rt); return (error); } } else { senderr(EHOSTUNREACH); } } if (rt->rt_flags & RTF_GATEWAY) { struct rtentry *gwrt; struct in6_ifaddr *ia6 = NULL; struct sockaddr_in6 gw6; rtgw_to_sa6(rt, &gw6); /* * Must drop rt_lock since nd6_is_addr_neighbor() * calls nd6_lookup() and acquires rnh_lock. */ RT_UNLOCK(rt); /* * We skip link-layer address resolution and NUD * if the gateway is not a neighbor from ND point * of view, regardless of the value of nd_ifinfo.flags. * The second condition is a bit tricky; we skip * if the gateway is our own address, which is * sometimes used to install a route to a p2p link. */ if (!nd6_is_addr_neighbor(&gw6, ifp, 0) || (ia6 = in6ifa_ifpwithaddr(ifp, &gw6.sin6_addr))) { /* * We allow this kind of tricky route only * when the outgoing interface is p2p. * XXX: we may need a more generic rule here. */ if (ia6 != NULL) IFA_REMREF(&ia6->ia_ifa); if ((ifp->if_flags & IFF_POINTOPOINT) == 0) senderr(EHOSTUNREACH); goto sendpkt; } RT_LOCK_SPIN(rt); gw6 = *((struct sockaddr_in6 *)(void *)rt->rt_gateway); /* If hint is now down, give up */ if (!(rt->rt_flags & RTF_UP)) { RT_UNLOCK(rt); senderr(EHOSTUNREACH); } /* If there's no gateway route, look it up */ if ((gwrt = rt->rt_gwroute) == NULL) { RT_UNLOCK(rt); goto lookup; } /* Become a regular mutex */ RT_CONVERT_LOCK(rt); /* * Take gwrt's lock while holding route's lock; * this is okay since gwrt never points back * to rt, so no lock ordering issues. */ RT_LOCK_SPIN(gwrt); if (!(gwrt->rt_flags & RTF_UP)) { rt->rt_gwroute = NULL; RT_UNLOCK(gwrt); RT_UNLOCK(rt); rtfree(gwrt); lookup: lck_mtx_lock(rnh_lock); gwrt = rtalloc1_scoped_locked( (struct sockaddr *)&gw6, 1, 0, ifp->if_index); RT_LOCK(rt); /* * Bail out if the route is down, no route * to gateway, circular route, or if the * gateway portion of "rt" has changed. */ if (!(rt->rt_flags & RTF_UP) || gwrt == NULL || gwrt == rt || !equal(SA(&gw6), rt->rt_gateway)) { if (gwrt == rt) { RT_REMREF_LOCKED(gwrt); gwrt = NULL; } RT_UNLOCK(rt); if (gwrt != NULL) rtfree_locked(gwrt); lck_mtx_unlock(rnh_lock); senderr(EHOSTUNREACH); } VERIFY(gwrt != NULL); /* * Set gateway route; callee adds ref to gwrt; * gwrt has an extra ref from rtalloc1() for * this routine. */ rt_set_gwroute(rt, rt_key(rt), gwrt); RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); /* Remember to release/free "rt" at the end */ rtrele = rt; rt = gwrt; } else { RT_ADDREF_LOCKED(gwrt); RT_UNLOCK(gwrt); RT_UNLOCK(rt); /* Remember to release/free "rt" at the end */ rtrele = rt; rt = gwrt; } VERIFY(rt == gwrt); /* * This is an opportunity to revalidate the parent * route's gwroute, in case it now points to a dead * route entry. Parent route won't go away since the * clone (hint) holds a reference to it. rt == gwrt. */ RT_LOCK_SPIN(hint); if ((hint->rt_flags & (RTF_WASCLONED | RTF_UP)) == (RTF_WASCLONED | RTF_UP)) { struct rtentry *prt = hint->rt_parent; VERIFY(prt != NULL); RT_CONVERT_LOCK(hint); RT_ADDREF(prt); RT_UNLOCK(hint); rt_revalidate_gwroute(prt, rt); RT_REMREF(prt); } else { RT_UNLOCK(hint); } RT_LOCK_SPIN(rt); /* rt == gwrt; if it is now down, give up */ if (!(rt->rt_flags & RTF_UP)) { RT_UNLOCK(rt); rtfree(rt); rt = NULL; /* "rtrele" == original "rt" */ senderr(EHOSTUNREACH); } } /* Become a regular mutex */ RT_CONVERT_LOCK(rt); } /* * Address resolution or Neighbor Unreachability Detection * for the next hop. * At this point, the destination of the packet must be a unicast * or an anycast address(i.e. not a multicast). */ /* Look up the neighbor cache for the nexthop */ if (rt && (rt->rt_flags & RTF_LLINFO) != 0) { ln = rt->rt_llinfo; } else { struct sockaddr_in6 sin6; /* * Clear out Scope ID field in case it is set. */ sin6 = *dst; sin6.sin6_scope_id = 0; /* * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), * the condition below is not very efficient. But we believe * it is tolerable, because this should be a rare case. * Must drop rt_lock since nd6_is_addr_neighbor() calls * nd6_lookup() and acquires rnh_lock. */ if (rt != NULL) RT_UNLOCK(rt); if (nd6_is_addr_neighbor(&sin6, ifp, 0)) { /* "rtrele" may have been used, so clean up "rt" now */ if (rt != NULL) { /* Don't free "hint0" */ if (rt == hint0) RT_REMREF(rt); else rtfree(rt); } /* Callee returns a locked route upon success */ rt = nd6_lookup(&dst->sin6_addr, 1, ifp, 0); if (rt != NULL) { RT_LOCK_ASSERT_HELD(rt); ln = rt->rt_llinfo; } } else if (rt != NULL) { RT_LOCK(rt); } } if (!ln || !rt) { if (rt != NULL) RT_UNLOCK(rt); lck_rw_lock_shared(nd_if_rwlock); ndi = ND_IFINFO(ifp); VERIFY(ndi != NULL && ndi->initialized); lck_mtx_lock(&ndi->lock); if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && !(ndi->flags & ND6_IFF_PERFORMNUD)) { lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); log(LOG_DEBUG, "nd6_output: can't allocate llinfo for %s " "(ln=%p, rt=%p)\n", ip6_sprintf(&dst->sin6_addr), ln, rt); senderr(EIO); /* XXX: good error? */ } lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); goto sendpkt; /* send anyway */ } getmicrotime(&timenow); /* We don't have to do link-layer address resolution on a p2p link. */ if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && ln->ln_state < ND6_LLINFO_REACHABLE) { ln->ln_state = ND6_LLINFO_STALE; ln->ln_expire = rt_expiry(rt, timenow.tv_sec, nd6_gctimer); } /* * The first time we send a packet to a neighbor whose entry is * STALE, we have to change the state to DELAY and a sets a timer to * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do * neighbor unreachability detection on expiration. * (RFC 2461 7.3.3) */ if (ln->ln_state == ND6_LLINFO_STALE) { ln->ln_asked = 0; ln->ln_state = ND6_LLINFO_DELAY; ln->ln_expire = rt_expiry(rt, timenow.tv_sec, nd6_delay); } /* * If the neighbor cache entry has a state other than INCOMPLETE * (i.e. its link-layer address is already resolved), just * send the packet. */ if (ln->ln_state > ND6_LLINFO_INCOMPLETE) { RT_UNLOCK(rt); /* * Move this entry to the head of the queue so that it is * less likely for this entry to be a target of forced * garbage collection (see nd6_rtrequest()). */ lck_mtx_lock(rnh_lock); RT_LOCK_SPIN(rt); if (ln->ln_flags & ND6_LNF_IN_USE) { LN_DEQUEUE(ln); LN_INSERTHEAD(ln); } RT_UNLOCK(rt); lck_mtx_unlock(rnh_lock); goto sendpkt; } /* * There is a neighbor cache entry, but no ethernet address * response yet. Replace the held mbuf (if any) with this * latest one. * * This code conforms to the rate-limiting rule described in Section * 7.2.2 of RFC 2461, because the timer is set correctly after sending * an NS below. */ if (ln->ln_state == ND6_LLINFO_NOSTATE) ln->ln_state = ND6_LLINFO_INCOMPLETE; if (ln->ln_hold) m_freem(ln->ln_hold); ln->ln_hold = m; if (ln->ln_expire && ln->ln_asked < nd6_mmaxtries && ln->ln_expire < timenow.tv_sec) { ln->ln_asked++; lck_rw_lock_shared(nd_if_rwlock); ndi = ND_IFINFO(ifp); VERIFY(ndi != NULL && ndi->initialized); lck_mtx_lock(&ndi->lock); ln->ln_expire = timenow.tv_sec + ndi->retrans / 1000; lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); RT_UNLOCK(rt); /* We still have a reference on rt (for ln) */ if (ip6_forwarding) nd6_prproxy_ns_output(ifp, NULL, &dst->sin6_addr, ln); else nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); } else { RT_UNLOCK(rt); } /* * Move this entry to the head of the queue so that it is * less likely for this entry to be a target of forced * garbage collection (see nd6_rtrequest()). */ lck_mtx_lock(rnh_lock); RT_LOCK_SPIN(rt); if (ln->ln_flags & ND6_LNF_IN_USE) { LN_DEQUEUE(ln); LN_INSERTHEAD(ln); } /* Clean up "rt" now while we can */ if (rt == hint0) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); } else { RT_UNLOCK(rt); rtfree_locked(rt); } rt = NULL; /* "rt" has been taken care of */ lck_mtx_unlock(rnh_lock); error = 0; goto release; sendpkt: if (rt != NULL) RT_LOCK_ASSERT_NOTHELD(rt); /* discard the packet if IPv6 operation is disabled on the interface */ lck_rw_lock_shared(nd_if_rwlock); ndi = ND_IFINFO(ifp); VERIFY(ndi != NULL && ndi->initialized); /* test is done here without holding ndi lock, for performance */ if (ndi->flags & ND6_IFF_IFDISABLED) { lck_rw_done(nd_if_rwlock); error = ENETDOWN; /* better error? */ goto bad; } lck_rw_done(nd_if_rwlock); if ((ifp->if_flags & IFF_LOOPBACK) != 0) { /* forwarding rules require the original scope_id */ m->m_pkthdr.rcvif = origifp; error = dlil_output(origifp, PF_INET6, m, (caddr_t)rt, (struct sockaddr *)dst, 0, adv); goto release; } else { /* Do not allow loopback address to wind up on a wire */ struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); if ((IN6_IS_ADDR_LOOPBACK(&ip6->ip6_src) || IN6_IS_ADDR_LOOPBACK(&ip6->ip6_dst))) { ip6stat.ip6s_badscope++; /* * Do not simply drop the packet just like a * firewall -- we want the the application to feel * the pain. Return ENETUNREACH like ip6_output * does in some similar cases. This can startle * the otherwise clueless process that specifies * loopback as the source address. */ error = ENETUNREACH; goto bad; } } if (rt != NULL) { RT_LOCK_SPIN(rt); /* Mark use timestamp */ if (rt->rt_llinfo != NULL) nd6_llreach_use(rt->rt_llinfo); RT_UNLOCK(rt); } if (hint && nstat_collect) nstat_route_tx(hint, 1, m->m_pkthdr.len, 0); m->m_pkthdr.rcvif = NULL; error = dlil_output(ifp, PF_INET6, m, (caddr_t)rt, (struct sockaddr *)dst, 0, adv); goto release; bad: if (m != NULL) m_freem(m); release: /* Clean up "rt" unless it's already been done */ if (rt != NULL) { RT_LOCK_SPIN(rt); if (rt == hint0) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); } else { RT_UNLOCK(rt); rtfree(rt); } } /* And now clean up "rtrele" if there is any */ if (rtrele != NULL) { RT_LOCK_SPIN(rtrele); if (rtrele == hint0) { RT_REMREF_LOCKED(rtrele); RT_UNLOCK(rtrele); } else { RT_UNLOCK(rtrele); rtfree(rtrele); } } return (error); } #undef senderr int nd6_need_cache( struct ifnet *ifp) { /* * XXX: we currently do not make neighbor cache on any interface * other than ARCnet, Ethernet, FDDI and GIF. * * RFC2893 says: * - unidirectional tunnels needs no ND */ switch (ifp->if_type) { case IFT_ARCNET: case IFT_ETHER: case IFT_FDDI: case IFT_IEEE1394: case IFT_L2VLAN: case IFT_IEEE8023ADLAG: #if IFT_IEEE80211 case IFT_IEEE80211: #endif case IFT_GIF: /* XXX need more cases? */ case IFT_PPP: #if IFT_TUNNEL case IFT_TUNNEL: #endif case IFT_BRIDGE: case IFT_CELLULAR: return(1); default: return(0); } } int nd6_storelladdr( struct ifnet *ifp, struct rtentry *rt, struct mbuf *m, struct sockaddr *dst, u_char *desten) { int i; struct sockaddr_dl *sdl; if (m->m_flags & M_MCAST) { switch (ifp->if_type) { case IFT_ETHER: case IFT_FDDI: case IFT_L2VLAN: case IFT_IEEE8023ADLAG: #if IFT_IEEE80211 case IFT_IEEE80211: #endif case IFT_BRIDGE: ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, desten); return(1); case IFT_IEEE1394: for (i = 0; i < ifp->if_addrlen; i++) desten[i] = ~0; return(1); case IFT_ARCNET: *desten = 0; return(1); default: return(0); /* caller will free mbuf */ } } if (rt == NULL) { /* this could happen, if we could not allocate memory */ return(0); /* caller will free mbuf */ } RT_LOCK(rt); if (rt->rt_gateway->sa_family != AF_LINK) { printf("nd6_storelladdr: something odd happens\n"); RT_UNLOCK(rt); return(0); /* caller will free mbuf */ } sdl = SDL(rt->rt_gateway); if (sdl->sdl_alen == 0) { /* this should be impossible, but we bark here for debugging */ printf("nd6_storelladdr: sdl_alen == 0\n"); RT_UNLOCK(rt); return(0); /* caller will free mbuf */ } bcopy(LLADDR(sdl), desten, sdl->sdl_alen); RT_UNLOCK(rt); return(1); } /* * This is the ND pre-output routine; care must be taken to ensure that * the "hint" route never gets freed via rtfree(), since the caller may * have stored it inside a struct route with a reference held for that * placeholder. */ errno_t nd6_lookup_ipv6(ifnet_t ifp, const struct sockaddr_in6 *ip6_dest, struct sockaddr_dl *ll_dest, size_t ll_dest_len, route_t hint, mbuf_t packet) { route_t route = hint; errno_t result = 0; struct sockaddr_dl *sdl = NULL; size_t copy_len; if (ip6_dest->sin6_family != AF_INET6) return (EAFNOSUPPORT); if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) return (ENETDOWN); if (hint != NULL) { /* * Callee holds a reference on the route and returns * with the route entry locked, upon success. */ result = route_to_gwroute((const struct sockaddr *)ip6_dest, hint, &route); if (result != 0) return (result); if (route != NULL) RT_LOCK_ASSERT_HELD(route); } if ((packet->m_flags & M_MCAST) != 0) { if (route != NULL) RT_UNLOCK(route); result = dlil_resolve_multi(ifp, (const struct sockaddr*)ip6_dest, (struct sockaddr *)ll_dest, ll_dest_len); if (route != NULL) RT_LOCK(route); goto release; } if (route == NULL) { /* * This could happen, if we could not allocate memory or * if route_to_gwroute() didn't return a route. */ result = ENOBUFS; goto release; } if (route->rt_gateway->sa_family != AF_LINK) { printf("nd6_lookup_ipv6: gateway address not AF_LINK\n"); result = EADDRNOTAVAIL; goto release; } sdl = SDL(route->rt_gateway); if (sdl->sdl_alen == 0) { /* this should be impossible, but we bark here for debugging */ printf("nd6_lookup_ipv6: sdl_alen == 0\n"); result = EHOSTUNREACH; goto release; } copy_len = sdl->sdl_len <= ll_dest_len ? sdl->sdl_len : ll_dest_len; bcopy(sdl, ll_dest, copy_len); release: if (route != NULL) { if (route == hint) { RT_REMREF_LOCKED(route); RT_UNLOCK(route); } else { RT_UNLOCK(route); rtfree(route); } } return (result); } int nd6_setifinfo(struct ifnet *ifp, u_int32_t before, u_int32_t after) { /* * We only care about ND6_IFF_PROXY_PREFIXES for now. */ before &= ND6_IFF_PROXY_PREFIXES; after &= ND6_IFF_PROXY_PREFIXES; if (before == after) return (0); return (nd6_if_prproxy(ifp, ((int32_t)(after - before) > 0))); } SYSCTL_DECL(_net_inet6_icmp6); static int nd6_sysctl_drlist SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int error = 0; char buf[1024]; struct nd_defrouter *dr; int p64 = proc_is64bit(req->p); if (req->newptr) return (EPERM); lck_mtx_lock(nd6_mutex); if (p64) { struct in6_defrouter_64 *d, *de; for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = TAILQ_NEXT(dr, dr_entry)) { d = (struct in6_defrouter_64 *)(void *)buf; de = (struct in6_defrouter_64 *) (void *)(buf + sizeof (buf)); if (d + 1 <= de) { bzero(d, sizeof (*d)); d->rtaddr.sin6_family = AF_INET6; d->rtaddr.sin6_len = sizeof (d->rtaddr); if (in6_recoverscope(&d->rtaddr, &dr->rtaddr, dr->ifp) != 0) log(LOG_ERR, "scope error in " "default router list (%s)\n", ip6_sprintf(&dr->rtaddr)); d->flags = dr->flags; d->stateflags = dr->stateflags; d->stateflags &= ~NDDRF_PROCESSED; d->rtlifetime = dr->rtlifetime; d->expire = dr->expire; d->if_index = dr->ifp->if_index; } else { panic("buffer too short"); } error = SYSCTL_OUT(req, buf, sizeof (*d)); if (error) break; } } else { struct in6_defrouter_32 *d_32, *de_32; for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = TAILQ_NEXT(dr, dr_entry)) { d_32 = (struct in6_defrouter_32 *)(void *)buf; de_32 = (struct in6_defrouter_32 *) (void *)(buf + sizeof (buf)); if (d_32 + 1 <= de_32) { bzero(d_32, sizeof (*d_32)); d_32->rtaddr.sin6_family = AF_INET6; d_32->rtaddr.sin6_len = sizeof (d_32->rtaddr); if (in6_recoverscope(&d_32->rtaddr, &dr->rtaddr, dr->ifp) != 0) log(LOG_ERR, "scope error in " "default router list (%s)\n", ip6_sprintf(&dr->rtaddr)); d_32->flags = dr->flags; d_32->stateflags = dr->stateflags; d_32->stateflags &= ~NDDRF_PROCESSED; d_32->rtlifetime = dr->rtlifetime; d_32->expire = dr->expire; d_32->if_index = dr->ifp->if_index; } else { panic("buffer too short"); } error = SYSCTL_OUT(req, buf, sizeof (*d_32)); if (error) break; } } lck_mtx_unlock(nd6_mutex); return (error); } static int nd6_sysctl_prlist SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int error = 0; char buf[1024]; struct nd_prefix *pr; int p64 = proc_is64bit(req->p); if (req->newptr) return (EPERM); lck_mtx_lock(nd6_mutex); if (p64) { struct in6_prefix_64 *p, *pe; for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { u_short advrtrs = 0; size_t advance; struct sockaddr_in6 *sin6, *s6; struct nd_pfxrouter *pfr; p = (struct in6_prefix_64 *)(void *)buf; pe = (struct in6_prefix_64 *) (void *)(buf + sizeof (buf)); if (p + 1 <= pe) { bzero(p, sizeof (*p)); sin6 = (struct sockaddr_in6 *)(p + 1); NDPR_LOCK(pr); p->prefix = pr->ndpr_prefix; if (in6_recoverscope(&p->prefix, &p->prefix.sin6_addr, pr->ndpr_ifp) != 0) log(LOG_ERR, "scope error in prefix list (%s)\n", ip6_sprintf(&p->prefix.sin6_addr)); p->raflags = pr->ndpr_raf; p->prefixlen = pr->ndpr_plen; p->vltime = pr->ndpr_vltime; p->pltime = pr->ndpr_pltime; p->if_index = pr->ndpr_ifp->if_index; p->expire = pr->ndpr_expire; p->refcnt = pr->ndpr_addrcnt; p->flags = pr->ndpr_stateflags; p->origin = PR_ORIG_RA; advrtrs = 0; for (pfr = pr->ndpr_advrtrs.lh_first; pfr; pfr = pfr->pfr_next) { if ((void *)&sin6[advrtrs + 1] > (void *)pe) { advrtrs++; continue; } s6 = &sin6[advrtrs]; bzero(s6, sizeof (*s6)); s6->sin6_family = AF_INET6; s6->sin6_len = sizeof (*sin6); if (in6_recoverscope(s6, &pfr->router->rtaddr, pfr->router->ifp) != 0) log(LOG_ERR, "scope error in " "prefix list (%s)\n", ip6_sprintf(&pfr->router-> rtaddr)); advrtrs++; } p->advrtrs = advrtrs; NDPR_UNLOCK(pr); } else { panic("buffer too short"); } advance = sizeof (*p) + sizeof (*sin6) * advrtrs; error = SYSCTL_OUT(req, buf, advance); if (error) break; } } else { struct in6_prefix_32 *p_32, *pe_32; for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { u_short advrtrs = 0; size_t advance; struct sockaddr_in6 *sin6, *s6; struct nd_pfxrouter *pfr; p_32 = (struct in6_prefix_32 *)(void *)buf; pe_32 = (struct in6_prefix_32 *) (void *)(buf + sizeof (buf)); if (p_32 + 1 <= pe_32) { bzero(p_32, sizeof (*p_32)); sin6 = (struct sockaddr_in6 *)(p_32 + 1); NDPR_LOCK(pr); p_32->prefix = pr->ndpr_prefix; if (in6_recoverscope(&p_32->prefix, &p_32->prefix.sin6_addr, pr->ndpr_ifp) != 0) log(LOG_ERR, "scope error in prefix " "list (%s)\n", ip6_sprintf(&p_32-> prefix.sin6_addr)); p_32->raflags = pr->ndpr_raf; p_32->prefixlen = pr->ndpr_plen; p_32->vltime = pr->ndpr_vltime; p_32->pltime = pr->ndpr_pltime; p_32->if_index = pr->ndpr_ifp->if_index; p_32->expire = pr->ndpr_expire; p_32->refcnt = pr->ndpr_addrcnt; p_32->flags = pr->ndpr_stateflags; p_32->origin = PR_ORIG_RA; advrtrs = 0; for (pfr = pr->ndpr_advrtrs.lh_first; pfr; pfr = pfr->pfr_next) { if ((void *)&sin6[advrtrs + 1] > (void *)pe_32) { advrtrs++; continue; } s6 = &sin6[advrtrs]; bzero(s6, sizeof (*s6)); s6->sin6_family = AF_INET6; s6->sin6_len = sizeof (*sin6); if (in6_recoverscope(s6, &pfr->router->rtaddr, pfr->router->ifp) != 0) log(LOG_ERR, "scope error in " "prefix list (%s)\n", ip6_sprintf(&pfr->router-> rtaddr)); advrtrs++; } p_32->advrtrs = advrtrs; NDPR_UNLOCK(pr); } else { panic("buffer too short"); } advance = sizeof (*p_32) + sizeof (*sin6) * advrtrs; error = SYSCTL_OUT(req, buf, advance); if (error) break; } } lck_mtx_unlock(nd6_mutex); return (error); } SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, nd6_sysctl_drlist, "S,in6_defrouter",""); SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, nd6_sysctl_prlist, "S,in6_defrouter","");