/* * Copyright (c) 2003-2012 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* $FreeBSD: src/sys/netinet6/in6.c,v 1.7.2.7 2001/08/06 20:26:22 ume Exp $ */ /* $KAME: in6.c,v 1.187 2001/05/24 07:43:59 itojun Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.2 (Berkeley) 11/15/93 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if PF #include #endif /* PF */ /* * Definitions of some costant IP6 addresses. */ const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; const struct in6_addr in6addr_nodelocal_allnodes = IN6ADDR_NODELOCAL_ALLNODES_INIT; const struct in6_addr in6addr_linklocal_allnodes = IN6ADDR_LINKLOCAL_ALLNODES_INIT; const struct in6_addr in6addr_linklocal_allrouters = IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; const struct in6_addr in6addr_linklocal_allv2routers = IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; const struct in6_addr in6mask0 = IN6MASK0; const struct in6_addr in6mask7 = IN6MASK7; const struct in6_addr in6mask16 = IN6MASK16; const struct in6_addr in6mask32 = IN6MASK32; const struct in6_addr in6mask64 = IN6MASK64; const struct in6_addr in6mask96 = IN6MASK96; const struct in6_addr in6mask128 = IN6MASK128; const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0}; static int in6_lifaddr_ioctl(struct socket *, u_long, struct if_laddrreq *, struct ifnet *, struct proc *); static int in6_autoconf(struct ifnet *, int); static int in6_setrouter(struct ifnet *, int); static int in6_ifinit(struct ifnet *, struct in6_ifaddr *, struct sockaddr_in6 *, int); static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); static struct in6_ifaddr *in6_ifaddr_alloc(int); static void in6_ifaddr_attached(struct ifaddr *); static void in6_ifaddr_detached(struct ifaddr *); static void in6_ifaddr_free(struct ifaddr *); static void in6_ifaddr_trace(struct ifaddr *, int); static struct in6_aliasreq *in6_aliasreq_to_native(void *, int, struct in6_aliasreq *); static void in6_ifaddr_set_dadprogress(struct in6_ifaddr *); extern lck_mtx_t *nd6_mutex; extern int in6_init2done; #define IN6IFA_TRACE_HIST_SIZE 32 /* size of trace history */ /* For gdb */ __private_extern__ unsigned int in6ifa_trace_hist_size = IN6IFA_TRACE_HIST_SIZE; struct in6_ifaddr_dbg { struct in6_ifaddr in6ifa; /* in6_ifaddr */ struct in6_ifaddr in6ifa_old; /* saved in6_ifaddr */ u_int16_t in6ifa_refhold_cnt; /* # of IFA_ADDREF */ u_int16_t in6ifa_refrele_cnt; /* # of IFA_REMREF */ /* * Alloc and free callers. */ ctrace_t in6ifa_alloc; ctrace_t in6ifa_free; /* * Circular lists of IFA_ADDREF and IFA_REMREF callers. */ ctrace_t in6ifa_refhold[IN6IFA_TRACE_HIST_SIZE]; ctrace_t in6ifa_refrele[IN6IFA_TRACE_HIST_SIZE]; /* * Trash list linkage */ TAILQ_ENTRY(in6_ifaddr_dbg) in6ifa_trash_link; }; /* List of trash in6_ifaddr entries protected by in6ifa_trash_lock */ static TAILQ_HEAD(, in6_ifaddr_dbg) in6ifa_trash_head; static decl_lck_mtx_data(, in6ifa_trash_lock); #if DEBUG static unsigned int in6ifa_debug = 1; /* debugging (enabled) */ #else static unsigned int in6ifa_debug; /* debugging (disabled) */ #endif /* !DEBUG */ static unsigned int in6ifa_size; /* size of zone element */ static struct zone *in6ifa_zone; /* zone for in6_ifaddr */ #define IN6IFA_ZONE_MAX 64 /* maximum elements in zone */ #define IN6IFA_ZONE_NAME "in6_ifaddr" /* zone name */ /* * Subroutine for in6_ifaddloop() and in6_ifremloop(). * This routine does actual work. */ static void in6_ifloop_request(int cmd, struct ifaddr *ifa) { struct sockaddr_in6 all1_sa; struct rtentry *nrt = NULL; int e; bzero(&all1_sa, sizeof(all1_sa)); all1_sa.sin6_family = AF_INET6; all1_sa.sin6_len = sizeof(struct sockaddr_in6); all1_sa.sin6_addr = in6mask128; /* * We specify the address itself as the gateway, and set the * RTF_LLINFO flag, so that the corresponding host route would have * the flag, and thus applications that assume traditional behavior * would be happy. Note that we assume the caller of the function * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest, * which changes the outgoing interface to the loopback interface. * ifa_addr for INET6 is set once during init; no need to hold lock. */ lck_mtx_lock(rnh_lock); e = rtrequest_locked(cmd, ifa->ifa_addr, ifa->ifa_addr, (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt); if (e != 0) { log(LOG_ERR, "in6_ifloop_request: " "%s operation failed for %s (errno=%d)\n", cmd == RTM_ADD ? "ADD" : "DELETE", ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr), e); } if (nrt != NULL) RT_LOCK(nrt); /* * Make sure rt_ifa be equal to IFA, the second argument of the * function. * We need this because when we refer to rt_ifa->ia6_flags in * ip6_input, we assume that the rt_ifa points to the address instead * of the loopback address. */ if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) { rtsetifa(nrt, ifa); } /* * Report the addition/removal of the address to the routing socket. * XXX: since we called rtinit for a p2p interface with a destination, * we end up reporting twice in such a case. Should we rather * omit the second report? */ if (nrt != NULL) { rt_newaddrmsg(cmd, ifa, e, nrt); if (cmd == RTM_DELETE) { RT_UNLOCK(nrt); rtfree_locked(nrt); } else { /* the cmd must be RTM_ADD here */ RT_REMREF_LOCKED(nrt); RT_UNLOCK(nrt); } } lck_mtx_unlock(rnh_lock); } /* * Add ownaddr as loopback rtentry. We previously add the route only if * necessary (ex. on a p2p link). However, since we now manage addresses * separately from prefixes, we should always add the route. We can't * rely on the cloning mechanism from the corresponding interface route * any more. */ static void in6_ifaddloop(struct ifaddr *ifa) { struct rtentry *rt; /* * If there is no loopback entry, allocate one. ifa_addr for * INET6 is set once during init; no need to hold lock. */ rt = rtalloc1(ifa->ifa_addr, 0, 0); if (rt != NULL) RT_LOCK(rt); if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 || (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { if (rt != NULL) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); } in6_ifloop_request(RTM_ADD, ifa); } else if (rt != NULL) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); } } /* * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(), * if it exists. */ static void in6_ifremloop(struct ifaddr *ifa) { struct in6_ifaddr *ia; struct rtentry *rt; int ia_count = 0; /* * Some of BSD variants do not remove cloned routes * from an interface direct route, when removing the direct route * (see comments in net/net_osdep.h). Even for variants that do remove * cloned routes, they could fail to remove the cloned routes when * we handle multple addresses that share a common prefix. * So, we should remove the route corresponding to the deleted address * regardless of the result of in6_is_ifloop_auto(). */ /* * Delete the entry only if exact one ifa exists. More than one ifa * can exist if we assign a same single address to multiple * (probably p2p) interfaces. * XXX: we should avoid such a configuration in IPv6... */ lck_rw_lock_exclusive(&in6_ifaddr_rwlock); for (ia = in6_ifaddrs; ia; ia = ia->ia_next) { IFA_LOCK(&ia->ia_ifa); if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) { ia_count++; if (ia_count > 1) { IFA_UNLOCK(&ia->ia_ifa); break; } } IFA_UNLOCK(&ia->ia_ifa); } lck_rw_done(&in6_ifaddr_rwlock); if (ia_count == 1) { /* * Before deleting, check if a corresponding loopbacked host * route surely exists. With this check, we can avoid to * delete an interface direct route whose destination is same * as the address being removed. This can happen when removing * a subnet-router anycast address on an interface attahced * to a shared medium. ifa_addr for INET6 is set once during * init; no need to hold lock. */ rt = rtalloc1(ifa->ifa_addr, 0, 0); if (rt != NULL) { RT_LOCK(rt); if ((rt->rt_flags & RTF_HOST) != 0 && (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { RT_REMREF_LOCKED(rt); RT_UNLOCK(rt); in6_ifloop_request(RTM_DELETE, ifa); } else { RT_UNLOCK(rt); } } } } int in6_mask2len(mask, lim0) struct in6_addr *mask; u_char *lim0; { int x = 0, y; u_char *lim = lim0, *p; /* ignore the scope_id part */ if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) lim = (u_char *)mask + sizeof(*mask); for (p = (u_char *)mask; p < lim; x++, p++) { if (*p != 0xff) break; } y = 0; if (p < lim) { for (y = 0; y < 8; y++) { if ((*p & (0x80 >> y)) == 0) break; } } /* * when the limit pointer is given, do a stricter check on the * remaining bits. */ if (p < lim) { if (y != 0 && (*p & (0x00ff >> y)) != 0) return (-1); for (p = p + 1; p < lim; p++) if (*p != 0) return (-1); } return x * 8 + y; } void in6_len2mask(mask, len) struct in6_addr *mask; int len; { int i; bzero(mask, sizeof(*mask)); for (i = 0; i < len / 8; i++) mask->s6_addr8[i] = 0xff; if (len % 8) mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff; } void in6_aliasreq_64_to_32(struct in6_aliasreq_64 *src, struct in6_aliasreq_32 *dst) { bzero(dst, sizeof (*dst)); bcopy(src->ifra_name, dst->ifra_name, sizeof (dst->ifra_name)); dst->ifra_addr = src->ifra_addr; dst->ifra_dstaddr = src->ifra_dstaddr; dst->ifra_prefixmask = src->ifra_prefixmask; dst->ifra_flags = src->ifra_flags; dst->ifra_lifetime.ia6t_expire = src->ifra_lifetime.ia6t_expire; dst->ifra_lifetime.ia6t_preferred = src->ifra_lifetime.ia6t_preferred; dst->ifra_lifetime.ia6t_vltime = src->ifra_lifetime.ia6t_vltime; dst->ifra_lifetime.ia6t_pltime = src->ifra_lifetime.ia6t_pltime; } void in6_aliasreq_32_to_64(struct in6_aliasreq_32 *src, struct in6_aliasreq_64 *dst) { bzero(dst, sizeof (*dst)); bcopy(src->ifra_name, dst->ifra_name, sizeof (dst->ifra_name)); dst->ifra_addr = src->ifra_addr; dst->ifra_dstaddr = src->ifra_dstaddr; dst->ifra_prefixmask = src->ifra_prefixmask; dst->ifra_flags = src->ifra_flags; dst->ifra_lifetime.ia6t_expire = src->ifra_lifetime.ia6t_expire; dst->ifra_lifetime.ia6t_preferred = src->ifra_lifetime.ia6t_preferred; dst->ifra_lifetime.ia6t_vltime = src->ifra_lifetime.ia6t_vltime; dst->ifra_lifetime.ia6t_pltime = src->ifra_lifetime.ia6t_pltime; } static struct in6_aliasreq * in6_aliasreq_to_native(void *data, int data_is_64, struct in6_aliasreq *dst) { #if defined(__LP64__) if (data_is_64) bcopy(data, dst, sizeof (*dst)); else in6_aliasreq_32_to_64((struct in6_aliasreq_32 *)data, (struct in6_aliasreq_64 *)dst); #else if (data_is_64) in6_aliasreq_64_to_32((struct in6_aliasreq_64 *)data, (struct in6_aliasreq_32 *)dst); else bcopy(data, dst, sizeof (*dst)); #endif /* __LP64__ */ return (dst); } #define ifa2ia6(ifa) ((struct in6_ifaddr *)(void *)(ifa)) int in6_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p) { struct in6_aliasreq sifra, *ifra = NULL; struct in6_ifaddr *ia = NULL; struct sockaddr_in6 sin6, *sa6 = NULL; int index, privileged, error = 0; u_int32_t ifru_scope_id[16]; struct timeval timenow; int p64 = proc_is64bit(p); getmicrotime(&timenow); privileged = (proc_suser(p) == 0); switch (cmd) { #if MROUTING case SIOCGETSGCNT_IN6: /* struct sioc_sg_req6 */ case SIOCGETMIFCNT_IN6_32: /* struct sioc_mif_req6_32 */ case SIOCGETMIFCNT_IN6_64: /* struct sioc_mif_req6_64 */ return (mrt6_ioctl(cmd, data)); /* NOTREACHED */ #endif case SIOCAADDRCTL_POLICY: /* struct in6_addrpolicy */ case SIOCDADDRCTL_POLICY: /* struct in6_addrpolicy */ if (!privileged) return (EPERM); return (in6_src_ioctl(cmd, data)); /* NOTREACHED */ case SIOCDRADD_IN6_32: /* struct in6_defrouter_32 */ case SIOCDRADD_IN6_64: /* struct in6_defrouter_64 */ case SIOCDRDEL_IN6_32: /* struct in6_defrouter_32 */ case SIOCDRDEL_IN6_64: /* struct in6_defrouter_64 */ if (!privileged) return (EPERM); return (defrtrlist_ioctl(cmd, data)); /* NOTREACHED */ } if (ifp == NULL) return (EOPNOTSUPP); switch (cmd) { case SIOCAUTOCONF_START: /* struct in6_ifreq */ case SIOCAUTOCONF_STOP: /* struct in6_ifreq */ case SIOCLL_START_32: /* struct in6_aliasreq_32 */ case SIOCLL_START_64: /* struct in6_aliasreq_64 */ case SIOCLL_STOP: /* struct in6_ifreq */ case SIOCSETROUTERMODE_IN6: /* struct in6_ifreq */ case SIOCPROTOATTACH_IN6_32: /* struct in6_aliasreq_32 */ case SIOCPROTOATTACH_IN6_64: /* struct in6_aliasreq_64 */ case SIOCPROTODETACH_IN6: /* struct in6_ifreq */ if (!privileged) return (EPERM); break; case SIOCSNDFLUSH_IN6: /* struct in6_ifreq */ case SIOCSPFXFLUSH_IN6: /* struct in6_ifreq */ case SIOCSRTRFLUSH_IN6: /* struct in6_ifreq */ case SIOCSDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */ case SIOCSDEFIFACE_IN6_64: /* struct in6_ndifreq_64 */ case SIOCSIFINFO_FLAGS: /* struct in6_ndireq */ if (!privileged) return (EPERM); /* FALLTHRU */ case OSIOCGIFINFO_IN6: /* struct in6_ondireq */ case SIOCGIFINFO_IN6: /* struct in6_ondireq */ case SIOCGDRLST_IN6_32: /* struct in6_drlist_32 */ case SIOCGDRLST_IN6_64: /* struct in6_drlist_64 */ case SIOCGPRLST_IN6_32: /* struct in6_prlist_32 */ case SIOCGPRLST_IN6_64: /* struct in6_prlist_64 */ case SIOCGNBRINFO_IN6_32: /* struct in6_nbrinfo_32 */ case SIOCGNBRINFO_IN6_64: /* struct in6_nbrinfo_64 */ case SIOCGDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */ case SIOCGDEFIFACE_IN6_64: /* struct in6_ndifreq_64 */ return (nd6_ioctl(cmd, data, ifp)); /* NOTREACHED */ case SIOCSIFPREFIX_IN6: /* struct in6_prefixreq */ case SIOCDIFPREFIX_IN6: /* struct in6_prefixreq */ case SIOCAIFPREFIX_IN6: /* struct in6_rrenumreq */ case SIOCCIFPREFIX_IN6: /* struct in6_rrenumreq */ case SIOCSGIFPREFIX_IN6: /* struct in6_rrenumreq */ case SIOCGIFPREFIX_IN6: /* struct in6_prefixreq */ log(LOG_NOTICE, "prefix ioctls are now invalidated. " "please use ifconfig.\n"); return (EOPNOTSUPP); /* NOTREACHED */ case SIOCSSCOPE6: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; if (!privileged) return (EPERM); bcopy(ifr->ifr_ifru.ifru_scope_id, ifru_scope_id, sizeof (ifru_scope_id)); return (scope6_set(ifp, ifru_scope_id)); /* NOTREACHED */ } case SIOCGSCOPE6: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; bcopy(ifr->ifr_ifru.ifru_scope_id, ifru_scope_id, sizeof (ifru_scope_id)); return (scope6_get(ifp, ifru_scope_id)); /* NOTREACHED */ } case SIOCGSCOPE6DEF: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; bcopy(ifr->ifr_ifru.ifru_scope_id, ifru_scope_id, sizeof (ifru_scope_id)); return (scope6_get_default(ifru_scope_id)); /* NOTREACHED */ } case SIOCALIFADDR: /* struct if_laddrreq */ case SIOCDLIFADDR: /* struct if_laddrreq */ if (!privileged) return(EPERM); /* FALLTHRU */ case SIOCGLIFADDR: { /* struct if_laddrreq */ struct if_laddrreq iflr; bcopy(data, &iflr, sizeof (iflr)); error = in6_lifaddr_ioctl(so, cmd, &iflr, ifp, p); bcopy(&iflr, data, sizeof (iflr)); return (error); /* NOTREACHED */ } } switch (cmd) { case SIOCLL_START_32: /* struct in6_aliasreq_32 */ case SIOCAIFADDR_IN6_32: { /* struct in6_aliasreq_32 */ /* * Convert user ifra to the kernel form, when appropriate. * This allows the conversion between different data models * to be centralized, so that it can be passed around to other * routines that are expecting the kernel form. */ ifra = in6_aliasreq_to_native(data, 0, &sifra); bcopy(&ifra->ifra_addr, &sin6, sizeof (sin6)); sa6 = &sin6; break; } case SIOCLL_START_64: /* struct in6_aliasreq_64 */ case SIOCAIFADDR_IN6_64: { /* struct in6_aliasreq_64 */ /* * Convert user ifra to the kernel form, when appropriate. * This allows the conversion between different data models * to be centralized, so that it can be passed around to other * routines that are expecting the kernel form. */ ifra = in6_aliasreq_to_native(data, 1, &sifra); bcopy(&ifra->ifra_addr, &sin6, sizeof (sin6)); sa6 = &sin6; break; } case SIOCSIFADDR_IN6: /* struct in6_ifreq (deprecated) */ case SIOCGIFADDR_IN6: /* struct in6_ifreq */ case SIOCSIFDSTADDR_IN6: /* struct in6_ifreq (deprecated) */ case SIOCSIFNETMASK_IN6: /* struct in6_ifreq (deprecated) */ case SIOCGIFDSTADDR_IN6: /* struct in6_ifreq */ case SIOCGIFNETMASK_IN6: /* struct in6_ifreq */ case SIOCDIFADDR_IN6: /* struct in6_ifreq */ case SIOCGIFPSRCADDR_IN6: /* struct in6_ifreq */ case SIOCGIFPDSTADDR_IN6: /* struct in6_ifreq */ case SIOCGIFAFLAG_IN6: /* struct in6_ifreq */ case SIOCSNDFLUSH_IN6: /* struct in6_ifreq */ case SIOCSPFXFLUSH_IN6: /* struct in6_ifreq */ case SIOCSRTRFLUSH_IN6: /* struct in6_ifreq */ case SIOCGIFALIFETIME_IN6: /* struct in6_ifreq */ case SIOCSIFALIFETIME_IN6: /* struct in6_ifreq */ case SIOCGIFSTAT_IN6: /* struct in6_ifreq */ case SIOCGIFSTAT_ICMP6: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; bcopy(&ifr->ifr_addr, &sin6, sizeof (sin6)); sa6 = &sin6; break; } default: break; } switch (cmd) { case SIOCAUTOCONF_START: return (in6_autoconf(ifp, TRUE)); /* NOTREACHED */ case SIOCAUTOCONF_STOP: return (in6_autoconf(ifp, FALSE)); /* NOTREACHED */ case SIOCLL_START_32: case SIOCLL_START_64: VERIFY(ifra != NULL); /* * NOTE: All the interface specific DLIL attachements should * be done here. They are currently done in in6_ifattach() * for the interfaces that need it. */ if ((ifp->if_eflags & IFEF_NOAUTOIPV6LL) != 0 && ifra->ifra_addr.sin6_family == AF_INET6 && ifra->ifra_dstaddr.sin6_family == AF_INET6) { /* some interfaces may provide LinkLocal addresses */ error = in6_if_up(ifp, ifra); } else { error = in6_if_up(ifp, NULL); } return (error); /* NOTREACHED */ case SIOCLL_STOP: /* Remove link local addresses from interface */ lck_rw_lock_exclusive(&in6_ifaddr_rwlock); ia = in6_ifaddrs; while (ia != NULL) { if (ia->ia_ifa.ifa_ifp != ifp) { ia = ia->ia_next; continue; } IFA_LOCK(&ia->ia_ifa); if (IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) { IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for us */ IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); in6_purgeaddr(&ia->ia_ifa); IFA_REMREF(&ia->ia_ifa); /* for us */ lck_rw_lock_exclusive(&in6_ifaddr_rwlock); /* * Purging the address caused in6_ifaddr_rwlock * to be dropped and reacquired; * therefore search again from the beginning * of in6_ifaddrs list. */ ia = in6_ifaddrs; continue; } IFA_UNLOCK(&ia->ia_ifa); ia = ia->ia_next; } lck_rw_done(&in6_ifaddr_rwlock); return (0); /* NOTREACHED */ case SIOCSETROUTERMODE_IN6: { /* struct in6_ifreq */ int intval; VERIFY(ifp != NULL); bcopy(&((struct in6_ifreq *)(void *)data)->ifr_intval, &intval, sizeof (intval)); return (in6_setrouter(ifp, intval)); /* NOTREACHED */ } case SIOCPROTOATTACH_IN6_32: /* struct in6_aliasreq_32 */ case SIOCPROTOATTACH_IN6_64: /* struct in6_aliasreq_64 */ return (in6_domifattach(ifp)); /* NOTREACHED */ case SIOCPROTODETACH_IN6: /* struct in6_ifreq */ /* Cleanup interface routes and addresses */ in6_purgeif(ifp); if ((error = proto_unplumb(PF_INET6, ifp))) printf("SIOCPROTODETACH_IN6: %s error=%d\n", if_name(ifp), error); return (error); /* NOTREACHED */ } /* * Find address for this interface, if it exists. * * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation * only, and used the first interface address as the target of other * operations (without checking ifra_addr). This was because netinet * code/API assumed at most 1 interface address per interface. * Since IPv6 allows a node to assign multiple addresses * on a single interface, we almost always look and check the * presence of ifra_addr, and reject invalid ones here. * It also decreases duplicated code among SIOC*_IN6 operations. */ if (sa6 != NULL && sa6->sin6_family == AF_INET6) { if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) { if (sa6->sin6_addr.s6_addr16[1] == 0) { /* link ID is not embedded by the user */ sa6->sin6_addr.s6_addr16[1] = htons(ifp->if_index); } else if (sa6->sin6_addr.s6_addr16[1] != htons(ifp->if_index)) { return (EINVAL); /* link ID contradicts */ } if (sa6->sin6_scope_id) { if (sa6->sin6_scope_id != (u_int32_t)ifp->if_index) return (EINVAL); sa6->sin6_scope_id = 0; /* XXX: good way? */ } } ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); } else { ia = NULL; } switch (cmd) { case SIOCSIFADDR_IN6: /* struct in6_ifreq */ case SIOCSIFDSTADDR_IN6: /* struct in6_ifreq */ case SIOCSIFNETMASK_IN6: /* struct in6_ifreq */ /* * Since IPv6 allows a node to assign multiple addresses * on a single interface, SIOCSIFxxx ioctls are deprecated. */ /* we decided to obsolete this command (20000704) */ error = EINVAL; goto ioctl_cleanup; case SIOCDIFADDR_IN6: /* struct in6_ifreq */ /* * for IPv4, we look for existing in_ifaddr here to allow * "ifconfig if0 delete" to remove the first IPv4 address on * the interface. For IPv6, as the spec allows multiple * interface address from the day one, we consider "remove the * first one" semantics to be not preferable. */ if (ia == NULL) { error = EADDRNOTAVAIL; goto ioctl_cleanup; } /* FALLTHROUGH */ case SIOCAIFADDR_IN6_32: /* struct in6_aliasreq_32 */ case SIOCAIFADDR_IN6_64: /* struct in6_aliasreq_64 */ VERIFY(sa6 != NULL); /* * We always require users to specify a valid IPv6 address for * the corresponding operation. Use "sa6" instead of "ifra" * since SIOCDIFADDR_IN6 falls thru above. */ if (sa6->sin6_family != AF_INET6 || sa6->sin6_len != sizeof(struct sockaddr_in6)) { error = EAFNOSUPPORT; goto ioctl_cleanup; } if (!privileged) { error = EPERM; goto ioctl_cleanup; } break; case SIOCGIFADDR_IN6: /* struct in6_ifreq */ /* This interface is basically deprecated. use SIOCGIFCONF. */ /* FALLTHRU */ case SIOCGIFAFLAG_IN6: /* struct in6_ifreq */ case SIOCGIFNETMASK_IN6: /* struct in6_ifreq */ case SIOCGIFDSTADDR_IN6: /* struct in6_ifreq */ case SIOCGIFALIFETIME_IN6: /* struct in6_ifreq */ /* must think again about its semantics */ if (ia == NULL) { error = EADDRNOTAVAIL; goto ioctl_cleanup; } break; case SIOCSIFALIFETIME_IN6: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; if (!privileged) { error = EPERM; goto ioctl_cleanup; } if (ia == NULL) { error = EADDRNOTAVAIL; goto ioctl_cleanup; } /* sanity for overflow - beware unsigned */ if (p64) { struct in6_addrlifetime_64 lt; bcopy(&ifr->ifr_ifru.ifru_lifetime, <, sizeof (lt)); if (((ia->ia6_flags & IN6_IFF_TEMPORARY) != 0 || lt.ia6t_vltime != ND6_INFINITE_LIFETIME) && lt.ia6t_vltime + timenow.tv_sec < timenow.tv_sec) { error = EINVAL; goto ioctl_cleanup; } if (((ia->ia6_flags & IN6_IFF_TEMPORARY) != 0 || lt.ia6t_pltime != ND6_INFINITE_LIFETIME) && lt.ia6t_pltime + timenow.tv_sec < timenow.tv_sec) { error = EINVAL; goto ioctl_cleanup; } } else { struct in6_addrlifetime_32 lt; bcopy(&ifr->ifr_ifru.ifru_lifetime, <, sizeof (lt)); if (((ia->ia6_flags & IN6_IFF_TEMPORARY) != 0 || lt.ia6t_vltime != ND6_INFINITE_LIFETIME) && lt.ia6t_vltime + timenow.tv_sec < timenow.tv_sec) { error = EINVAL; goto ioctl_cleanup; } if (((ia->ia6_flags & IN6_IFF_TEMPORARY) != 0 || lt.ia6t_pltime != ND6_INFINITE_LIFETIME) && lt.ia6t_pltime + timenow.tv_sec < timenow.tv_sec) { error = EINVAL; goto ioctl_cleanup; } } break; } } switch (cmd) { case SIOCGIFADDR_IN6: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; struct sockaddr_in6 addr; IFA_LOCK(&ia->ia_ifa); bcopy(&ia->ia_addr, &addr, sizeof (addr)); IFA_UNLOCK(&ia->ia_ifa); if ((error = sa6_recoverscope(&addr, TRUE)) != 0) { IFA_REMREF(&ia->ia_ifa); return (error); } bcopy(&addr, &ifr->ifr_addr, sizeof (addr)); break; } case SIOCGIFDSTADDR_IN6: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; struct sockaddr_in6 dstaddr; if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { error = EINVAL; goto ioctl_cleanup; } /* * XXX: should we check if ifa_dstaddr is NULL and return * an error? */ IFA_LOCK(&ia->ia_ifa); bcopy(&ia->ia_dstaddr, &dstaddr, sizeof (dstaddr)); IFA_UNLOCK(&ia->ia_ifa); if ((error = sa6_recoverscope(&dstaddr, TRUE)) != 0) { IFA_REMREF(&ia->ia_ifa); return (error); } bcopy(&dstaddr, &ifr->ifr_dstaddr, sizeof (dstaddr)); break; } case SIOCGIFNETMASK_IN6: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; IFA_LOCK(&ia->ia_ifa); bcopy(&ia->ia_prefixmask, &ifr->ifr_addr, sizeof (struct sockaddr_in6)); IFA_UNLOCK(&ia->ia_ifa); break; } case SIOCGIFAFLAG_IN6: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; IFA_LOCK(&ia->ia_ifa); bcopy(&ia->ia6_flags, &ifr->ifr_ifru.ifru_flags6, sizeof (ifr->ifr_ifru.ifru_flags6)); IFA_UNLOCK(&ia->ia_ifa); break; } case SIOCGIFSTAT_IN6: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; if (ifp == NULL) { error = EINVAL; goto ioctl_cleanup; } index = ifp->if_index; lck_rw_lock_shared(&in6_ifs_rwlock); if (in6_ifstat == NULL || index >= in6_ifstatmax || in6_ifstat[index] == NULL) { /* return EAFNOSUPPORT? */ bzero(&ifr->ifr_ifru.ifru_stat, sizeof (ifr->ifr_ifru.ifru_stat)); } else { bcopy(in6_ifstat[index], &ifr->ifr_ifru.ifru_stat, sizeof (ifr->ifr_ifru.ifru_stat)); } lck_rw_done(&in6_ifs_rwlock); break; } case SIOCGIFSTAT_ICMP6: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; if (ifp == NULL) { error = EINVAL; goto ioctl_cleanup; } index = ifp->if_index; lck_rw_lock_shared(&icmp6_ifs_rwlock); if (icmp6_ifstat == NULL || index >= icmp6_ifstatmax || icmp6_ifstat[index] == NULL) { /* return EAFNOSUPPORT? */ bzero(&ifr->ifr_ifru.ifru_stat, sizeof (ifr->ifr_ifru.ifru_icmp6stat)); } else { bcopy(icmp6_ifstat[index], &ifr->ifr_ifru.ifru_icmp6stat, sizeof (ifr->ifr_ifru.ifru_icmp6stat)); } lck_rw_done(&icmp6_ifs_rwlock); break; } case SIOCGIFALIFETIME_IN6: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; IFA_LOCK(&ia->ia_ifa); if (p64) { struct in6_addrlifetime_64 lt; bzero(<, sizeof (lt)); lt.ia6t_expire = ia->ia6_lifetime.ia6t_expire; lt.ia6t_preferred = ia->ia6_lifetime.ia6t_preferred; lt.ia6t_vltime = ia->ia6_lifetime.ia6t_vltime; lt.ia6t_pltime = ia->ia6_lifetime.ia6t_pltime; bcopy(<, &ifr->ifr_ifru.ifru_lifetime, sizeof (lt)); } else { struct in6_addrlifetime_32 lt; bzero(<, sizeof (lt)); lt.ia6t_expire = (uint32_t)ia->ia6_lifetime.ia6t_expire; lt.ia6t_preferred = (uint32_t)ia->ia6_lifetime.ia6t_preferred; lt.ia6t_vltime = (uint32_t)ia->ia6_lifetime.ia6t_vltime; lt.ia6t_pltime = (uint32_t)ia->ia6_lifetime.ia6t_pltime; bcopy(<, &ifr->ifr_ifru.ifru_lifetime, sizeof (lt)); } IFA_UNLOCK(&ia->ia_ifa); break; } case SIOCSIFALIFETIME_IN6: { /* struct in6_ifreq */ struct in6_ifreq *ifr = (struct in6_ifreq *)(void *)data; IFA_LOCK(&ia->ia_ifa); if (p64) { struct in6_addrlifetime_64 lt; bcopy(&ifr->ifr_ifru.ifru_lifetime, <, sizeof (lt)); ia->ia6_lifetime.ia6t_expire = lt.ia6t_expire; ia->ia6_lifetime.ia6t_preferred = lt.ia6t_preferred; ia->ia6_lifetime.ia6t_vltime = lt.ia6t_vltime; ia->ia6_lifetime.ia6t_pltime = lt.ia6t_pltime; } else { struct in6_addrlifetime_32 lt; bcopy(&ifr->ifr_ifru.ifru_lifetime, <, sizeof (lt)); ia->ia6_lifetime.ia6t_expire = (uint32_t)lt.ia6t_expire; ia->ia6_lifetime.ia6t_preferred = (uint32_t)lt.ia6t_preferred; ia->ia6_lifetime.ia6t_vltime = lt.ia6t_vltime; ia->ia6_lifetime.ia6t_pltime = lt.ia6t_pltime; } /* for sanity */ if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME || (ia->ia6_flags & IN6_IFF_TEMPORARY) != 0) { ia->ia6_lifetime.ia6t_expire = timenow.tv_sec + ia->ia6_lifetime.ia6t_vltime; } else ia->ia6_lifetime.ia6t_expire = 0; if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME || (ia->ia6_flags & IN6_IFF_TEMPORARY) != 0) { ia->ia6_lifetime.ia6t_preferred = timenow.tv_sec + ia->ia6_lifetime.ia6t_pltime; } else ia->ia6_lifetime.ia6t_preferred = 0; IFA_UNLOCK(&ia->ia_ifa); break; } case SIOCAIFADDR_IN6_32: /* struct in6_aliasreq_32 */ case SIOCAIFADDR_IN6_64: { /* struct in6_aliasreq_64 */ int i; struct nd_prefix pr0, *pr; VERIFY(ifra != NULL); /* Attempt to attach the protocol, in case it isn't attached */ error = in6_domifattach(ifp); if (error) { if (error == EEXIST) error = 0; else goto ioctl_cleanup; } else { /* PF_INET6 wasn't previously attached */ if ((error = in6_if_up(ifp, NULL)) != 0) goto ioctl_cleanup; } /* * first, make or update the interface address structure, * and link it to the list. */ if ((error = in6_update_ifa(ifp, ifra, ia, 0, M_WAITOK)) != 0) goto ioctl_cleanup; /* * then, make the prefix on-link on the interface. * XXX: we'd rather create the prefix before the address, but * we need at least one address to install the corresponding * interface route, so we configure the address first. */ /* * convert mask to prefix length (prefixmask has already * been validated in in6_update_ifa(). */ bzero(&pr0, sizeof(pr0)); lck_mtx_init(&pr0.ndpr_lock, ifa_mtx_grp, ifa_mtx_attr); pr0.ndpr_ifp = ifp; pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, NULL); if (pr0.ndpr_plen == 128) break; /* we don't need to install a host route. */ pr0.ndpr_prefix = ifra->ifra_addr; pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr; /* apply the mask for safety. */ for (i = 0; i < 4; i++) { pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= ifra->ifra_prefixmask.sin6_addr.s6_addr32[i]; } /* * XXX: since we don't have an API to set prefix (not address) * lifetimes, we just use the same lifetimes as addresses. * The (temporarily) installed lifetimes can be overridden by * later advertised RAs (when accept_rtadv is non 0), which is * an intended behavior. */ pr0.ndpr_raf_onlink = 1; /* should be configurable? */ pr0.ndpr_raf_auto = ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; pr0.ndpr_stateflags |= NDPRF_STATIC; /* add the prefix if there's one. */ if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { /* * nd6_prelist_add will install the corresponding * interface route. */ if ((error = nd6_prelist_add(&pr0, NULL, &pr, FALSE)) != 0) goto ioctl_cleanup; if (pr == NULL) { log(LOG_ERR, "nd6_prelist_add succedded but " "no prefix\n"); error = EINVAL; goto ioctl_cleanup; } } if (ia != NULL) IFA_REMREF(&ia->ia_ifa); if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) == NULL) { /* XXX: this should not happen! */ log(LOG_ERR, "in6_control: addition succeeded, but" " no ifaddr\n"); } else { IFA_LOCK(&ia->ia_ifa); if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && ia->ia6_ndpr == NULL) { /* new autoconfed addr */ NDPR_LOCK(pr); pr->ndpr_addrcnt++; VERIFY(pr->ndpr_addrcnt != 0); ia->ia6_ndpr = pr; NDPR_ADDREF_LOCKED(pr); /* for addr reference */ /* * If this is the first autoconf address from * the prefix, create a temporary address * as well (when specified). */ if (ip6_use_tempaddr && pr->ndpr_addrcnt == 1) { int e; NDPR_UNLOCK(pr); IFA_UNLOCK(&ia->ia_ifa); if ((e = in6_tmpifadd(ia, 1, M_WAITOK)) != 0) { log(LOG_NOTICE, "in6_control: " "failed to create a " "temporary address, " "errno=%d\n", e); } } else { NDPR_UNLOCK(pr); IFA_UNLOCK(&ia->ia_ifa); } } else { IFA_UNLOCK(&ia->ia_ifa); } /* * this might affect the status of autoconfigured * addresses, that is, this address might make * other addresses detached. */ lck_mtx_lock(nd6_mutex); pfxlist_onlink_check(); lck_mtx_unlock(nd6_mutex); } /* Drop use count held above during lookup/add */ NDPR_REMREF(pr); #if PF pf_ifaddr_hook(ifp, cmd); #endif /* PF */ break; } case SIOCDIFADDR_IN6: { /* struct in6_ifreq */ int i = 0; struct nd_prefix pr0, *pr; /* * If the address being deleted is the only one that owns * the corresponding prefix, expire the prefix as well. * XXX: theoretically, we don't have to worry about such * relationship, since we separate the address management * and the prefix management. We do this, however, to provide * as much backward compatibility as possible in terms of * the ioctl operation. * Note that in6_purgeaddr() will decrement ndpr_addrcnt. */ IFA_LOCK(&ia->ia_ifa); bzero(&pr0, sizeof(pr0)); pr0.ndpr_ifp = ifp; pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); if (pr0.ndpr_plen == 128) { IFA_UNLOCK(&ia->ia_ifa); goto purgeaddr; } pr0.ndpr_prefix = ia->ia_addr; pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr; for (i = 0; i < 4; i++) { pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &= ia->ia_prefixmask.sin6_addr.s6_addr32[i]; } IFA_UNLOCK(&ia->ia_ifa); /* * The logic of the following condition is a bit complicated. * We expire the prefix when * 1. the address obeys autoconfiguration and it is the * only owner of the associated prefix, or * 2. the address does not obey autoconf and there is no * other owner of the prefix. */ if ((pr = nd6_prefix_lookup(&pr0)) != NULL) { IFA_LOCK(&ia->ia_ifa); NDPR_LOCK(pr); if (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 && pr->ndpr_addrcnt == 1) || ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 && pr->ndpr_addrcnt == 0)) { /* XXX: just for expiration */ pr->ndpr_expire = 1; } NDPR_UNLOCK(pr); IFA_UNLOCK(&ia->ia_ifa); /* Drop use count held above during lookup */ NDPR_REMREF(pr); } purgeaddr: in6_purgeaddr(&ia->ia_ifa); #if PF pf_ifaddr_hook(ifp, cmd); #endif /* PF */ break; } default: error = ifnet_ioctl(ifp, PF_INET6, cmd, data); goto ioctl_cleanup; } ioctl_cleanup: if (ia != NULL) IFA_REMREF(&ia->ia_ifa); return (error); } static int in6_autoconf(struct ifnet *ifp, int enable) { int error = 0; if (ifp->if_flags & IFF_LOOPBACK) return (EINVAL); if (enable) { /* * An interface in IPv6 router mode implies that it * is either configured with a static IP address or * autoconfigured via a locally-generated RA. Prevent * SIOCAUTOCONF_START from being set in that mode. */ ifnet_lock_exclusive(ifp); if (ifp->if_eflags & IFEF_IPV6_ROUTER) { ifp->if_eflags &= ~IFEF_ACCEPT_RTADV; error = EBUSY; } else { ifp->if_eflags |= IFEF_ACCEPT_RTADV; } ifnet_lock_done(ifp); } else { struct in6_ifaddr *ia = NULL; ifnet_lock_exclusive(ifp); ifp->if_eflags &= ~IFEF_ACCEPT_RTADV; ifnet_lock_done(ifp); /* Remove autoconfigured address from interface */ lck_rw_lock_exclusive(&in6_ifaddr_rwlock); ia = in6_ifaddrs; while (ia != NULL) { if (ia->ia_ifa.ifa_ifp != ifp) { ia = ia->ia_next; continue; } IFA_LOCK(&ia->ia_ifa); if (ia->ia6_flags & IN6_IFF_AUTOCONF) { IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for us */ IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); in6_purgeaddr(&ia->ia_ifa); IFA_REMREF(&ia->ia_ifa); /* for us */ lck_rw_lock_exclusive(&in6_ifaddr_rwlock); /* * Purging the address caused in6_ifaddr_rwlock * to be dropped and reacquired; * therefore search again from the beginning * of in6_ifaddrs list. */ ia = in6_ifaddrs; continue; } IFA_UNLOCK(&ia->ia_ifa); ia = ia->ia_next; } lck_rw_done(&in6_ifaddr_rwlock); } return (error); } /* * Handle SIOCSETROUTERMODE_IN6 to set or clear the IPv6 router mode flag on * the interface. Entering or exiting this mode will result in the removal of * autoconfigured IPv6 addresses on the interface. */ static int in6_setrouter(struct ifnet *ifp, int enable) { if (ifp->if_flags & IFF_LOOPBACK) return (ENODEV); if (enable) { struct nd_ifinfo *ndi; lck_rw_lock_shared(nd_if_rwlock); ndi = ND_IFINFO(ifp); if (ndi != NULL && ndi->initialized) { lck_mtx_lock(&ndi->lock); if (ndi->flags & ND6_IFF_PROXY_PREFIXES) { /* No proxy if we are an advertising router */ ndi->flags &= ~ND6_IFF_PROXY_PREFIXES; lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); (void) nd6_if_prproxy(ifp, FALSE); } else { lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); } } else { lck_rw_done(nd_if_rwlock); } } ifnet_lock_exclusive(ifp); if (enable) { ifp->if_eflags |= IFEF_IPV6_ROUTER; } else { ifp->if_eflags &= ~IFEF_IPV6_ROUTER; } ifnet_lock_done(ifp); lck_mtx_lock(nd6_mutex); defrouter_select(ifp); lck_mtx_unlock(nd6_mutex); if_allmulti(ifp, enable); return (in6_autoconf(ifp, FALSE)); } /* * Update parameters of an IPv6 interface address. * If necessary, a new entry is created and linked into address chains. * This function is separated from in6_control(). */ int in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, struct in6_ifaddr *ia, int flags, int how) { int error = 0, hostIsNew = 0, plen = -1; struct in6_ifaddr *oia; struct sockaddr_in6 dst6; struct in6_addrlifetime *lt; struct in6_multi *in6m_sol = NULL; struct in6_multi_mship *imm; struct timeval timenow; struct rtentry *rt; struct ifaddr *ifa = NULL; int delay; /* Validate parameters */ if (ifp == NULL || ifra == NULL) /* this maybe redundant */ return(EINVAL); /* * The destination address for a p2p link must have a family * of AF_UNSPEC or AF_INET6. */ if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && ifra->ifra_dstaddr.sin6_family != AF_INET6 && ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) return(EAFNOSUPPORT); /* * validate ifra_prefixmask. don't check sin6_family, netmask * does not carry fields other than sin6_len. */ if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) return(EINVAL); /* * Set the address family value for the mask if it was not set. * Radar 3899482. */ if (ifra->ifra_prefixmask.sin6_len == sizeof(struct sockaddr_in6) && ifra->ifra_prefixmask.sin6_family == 0) { ifra->ifra_prefixmask.sin6_family = AF_INET6; } /* * Because the IPv6 address architecture is classless, we require * users to specify a (non 0) prefix length (mask) for a new address. * We also require the prefix (when specified) mask is valid, and thus * reject a non-consecutive mask. */ if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) return(EINVAL); if (ifra->ifra_prefixmask.sin6_len != 0) { plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, (u_char *)&ifra->ifra_prefixmask + ifra->ifra_prefixmask.sin6_len); if (plen <= 0) return (EINVAL); } else { /* * In this case, ia must not be NULL. We just use its prefix * length. */ IFA_LOCK(&ia->ia_ifa); plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); IFA_UNLOCK(&ia->ia_ifa); } /* * If the destination address on a p2p interface is specified, * and the address is a scoped one, validate/set the scope * zone identifier. */ dst6 = ifra->ifra_dstaddr; if (((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 ) && (dst6.sin6_family == AF_INET6)) { int scopeid; if ((error = in6_recoverscope(&dst6, &ifra->ifra_dstaddr.sin6_addr, ifp)) != 0) return(error); scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr); if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */ dst6.sin6_scope_id = scopeid; else if (dst6.sin6_scope_id != scopeid) return(EINVAL); /* scope ID mismatch. */ if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL, NULL)) != 0) return(error); dst6.sin6_scope_id = 0; /* XXX */ } /* * The destination address can be specified only for a p2p or a * loopback interface. If specified, the corresponding prefix length * must be 128. */ if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { /* XXX: noisy message */ log(LOG_INFO, "in6_update_ifa: a destination can be " "specified for a p2p or a loopback IF only\n"); return(EINVAL); } if (plen != 128) { /* * The following message seems noisy, but we dare to * add it for diagnosis. */ log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 " "when dstaddr is specified\n"); return(EINVAL); } } /* lifetime consistency check */ getmicrotime(&timenow); lt = &ifra->ifra_lifetime; if ((lt->ia6t_vltime != ND6_INFINITE_LIFETIME || (ifra->ifra_flags & IN6_IFF_TEMPORARY) != 0) && lt->ia6t_vltime + timenow.tv_sec < timenow.tv_sec) { return EINVAL; } if (lt->ia6t_vltime == 0) { /* * the following log might be noisy, but this is a typical * configuration mistake or a tool's bug. */ log(LOG_INFO, "in6_update_ifa: valid lifetime is 0 for %s\n", ip6_sprintf(&ifra->ifra_addr.sin6_addr)); } if ((lt->ia6t_pltime != ND6_INFINITE_LIFETIME || (ifra->ifra_flags & IN6_IFF_TEMPORARY) != 0) && lt->ia6t_pltime + timenow.tv_sec < timenow.tv_sec) { return EINVAL; } /* * If this is a new address, allocate a new ifaddr and link it * into chains. */ if (ia == NULL) { hostIsNew = 1; /* * in6_update_ifa() may be called in a process of a received * RA; in such a case, we should call malloc with M_NOWAIT. * The exception to this is during init time or as part of * handling an ioctl, when we know it's okay to do M_WAITOK. */ ia = in6_ifaddr_alloc(how); if (ia == NULL) return (ENOBUFS); ifnet_lock_exclusive(ifp); IFA_LOCK(&ia->ia_ifa); LIST_INIT(&ia->ia6_memberships); /* Initialize the address and masks, and put time stamp */ ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; ia->ia_addr.sin6_family = AF_INET6; ia->ia_addr.sin6_len = sizeof(ia->ia_addr); ia->ia6_createtime = timenow.tv_sec; if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { /* * XXX: some functions expect that ifa_dstaddr is not * NULL for p2p interfaces. */ ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; } else { ia->ia_ifa.ifa_dstaddr = NULL; } ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; ia->ia_ifp = ifp; /* if_attach_ifa() holds a reference for ifa_link */ if_attach_ifa(ifp, &ia->ia_ifa); /* hold a reference for this routine */ IFA_ADDREF_LOCKED(&ia->ia_ifa); IFA_UNLOCK(&ia->ia_ifa); ifnet_lock_done(ifp); lck_rw_lock_exclusive(&in6_ifaddr_rwlock); /* Hold a reference for in6_ifaddrs link */ IFA_ADDREF(&ia->ia_ifa); if ((oia = in6_ifaddrs) != NULL) { for ( ; oia->ia_next; oia = oia->ia_next) continue; oia->ia_next = ia; } else { in6_ifaddrs = ia; } lck_rw_done(&in6_ifaddr_rwlock); } else { /* hold a reference for this routine */ IFA_ADDREF(&ia->ia_ifa); } ifa = &ia->ia_ifa; IFA_LOCK(ifa); /* update timestamp */ ia->ia6_updatetime = timenow.tv_sec; /* set prefix mask */ if (ifra->ifra_prefixmask.sin6_len) { /* * We prohibit changing the prefix length of an existing * address, because * + such an operation should be rare in IPv6, and * + the operation would confuse prefix management. */ if (ia->ia_prefixmask.sin6_len && in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { log(LOG_INFO, "in6_update_ifa: the prefix length of an" " existing (%s) address should not be changed\n", ip6_sprintf(&ia->ia_addr.sin6_addr)); error = EINVAL; IFA_UNLOCK(ifa); goto unlink; } ia->ia_prefixmask = ifra->ifra_prefixmask; } /* * If a new destination address is specified, scrub the old one and * install the new destination. Note that the interface must be * p2p or loopback (see the check above.) */ if (dst6.sin6_family == AF_INET6 && !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) { if ((ia->ia_flags & IFA_ROUTE)) { int e; IFA_UNLOCK(ifa); if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { log(LOG_ERR, "in6_update_ifa: failed to remove " "a route to the old destination: %s\n", ip6_sprintf(&ia->ia_addr.sin6_addr)); /* proceed anyway... */ } IFA_LOCK(ifa); } else { ia->ia_flags &= ~IFA_ROUTE; } IFA_LOCK_ASSERT_HELD(ifa); ia->ia_dstaddr = dst6; } /* * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred * to see if the address is deprecated or invalidated, but initialize * these members for applications. */ ia->ia6_lifetime = ifra->ifra_lifetime; if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME || (ifra->ifra_flags & IN6_IFF_TEMPORARY) != 0) { ia->ia6_lifetime.ia6t_expire = timenow.tv_sec + ia->ia6_lifetime.ia6t_vltime; } else ia->ia6_lifetime.ia6t_expire = 0; if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME || (ifra->ifra_flags & IN6_IFF_TEMPORARY) != 0) { ia->ia6_lifetime.ia6t_preferred = timenow.tv_sec + ia->ia6_lifetime.ia6t_pltime; } else ia->ia6_lifetime.ia6t_preferred = 0; IFA_UNLOCK(ifa); /* reset the interface and routing table appropriately. */ if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0) goto unlink; IFA_LOCK(ifa); /* * configure address flags. */ ia->ia6_flags = ifra->ifra_flags; /* * backward compatibility - if IN6_IFF_DEPRECATED is set from the * userland, make it deprecated. */ if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { ia->ia6_lifetime.ia6t_pltime = 0; ia->ia6_lifetime.ia6t_preferred = timenow.tv_sec; } /* * Mark the address as tentative before joining multicast addresses, * so that corresponding MLD responses would not have a tentative * source address. */ ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ if (hostIsNew && in6if_do_dad(ifp)) in6_ifaddr_set_dadprogress(ia); /* * Do not delay sending neighbor solicitations when using optimistic * duplicate address detection, c.f. RFC 4429. */ if (ia->ia6_flags & IN6_IFF_OPTIMISTIC) flags &= ~IN6_IFAUPDATE_DADDELAY; /* * We are done if we have simply modified an existing address. */ if (!hostIsNew) { IFA_UNLOCK(ifa); /* release reference held for this routine */ IFA_REMREF(ifa); return (error); } /* * Beyond this point, we should call in6_purgeaddr upon an error, * not just go to unlink. */ IFA_LOCK_ASSERT_HELD(ifa); /* Join necessary multicast groups */ if ((ifp->if_flags & IFF_MULTICAST) != 0) { struct sockaddr_in6 mltaddr, mltmask; struct in6_addr llsol; IFA_UNLOCK(ifa); /* join solicited multicast addr for new host id */ bzero(&llsol, sizeof(struct in6_addr)); llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; llsol.s6_addr32[1] = 0; llsol.s6_addr32[2] = htonl(1); llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; llsol.s6_addr8[12] = 0xff; if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) { /* XXX: should not happen */ log(LOG_ERR, "in6_update_ifa: " "in6_setscope failed\n"); goto cleanup; } delay = 0; if ((flags & IN6_IFAUPDATE_DADDELAY)) { /* * We need a random delay for DAD on the address * being configured. It also means delaying * transmission of the corresponding MLD report to * avoid report collision. * [draft-ietf-ipv6-rfc2462bis-02.txt] */ delay = random() % (MAX_RTR_SOLICITATION_DELAY * PR_SLOWHZ); } imm = in6_joingroup(ifp, &llsol, &error, delay); if (imm == NULL) { nd6log((LOG_WARNING, "in6_update_ifa: addmulti failed for " "%s on %s (errno=%d)\n", ip6_sprintf(&llsol), if_name(ifp), error)); in6_purgeaddr((struct ifaddr *)ia); /* release reference held for this routine */ IFA_REMREF(ifa); return (error); } in6m_sol = imm->i6mm_maddr; /* take a refcount for this routine */ IN6M_ADDREF(in6m_sol); IFA_LOCK_SPIN(ifa); LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); IFA_UNLOCK(ifa); bzero(&mltmask, sizeof(mltmask)); mltmask.sin6_len = sizeof(struct sockaddr_in6); mltmask.sin6_family = AF_INET6; mltmask.sin6_addr = in6mask32; #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */ /* * join link-local all-nodes address */ bzero(&mltaddr, sizeof(mltaddr)); mltaddr.sin6_len = sizeof(struct sockaddr_in6); mltaddr.sin6_family = AF_INET6; mltaddr.sin6_addr = in6addr_linklocal_allnodes; if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) goto cleanup; /* XXX: should not fail */ /* * XXX: do we really need this automatic routes? * We should probably reconsider this stuff. Most applications * actually do not need the routes, since they usually specify * the outgoing interface. */ rt = rtalloc1_scoped((struct sockaddr *)&mltaddr, 0, 0UL, ia->ia_ifp->if_index); if (rt) { if (memcmp(&mltaddr.sin6_addr, &((struct sockaddr_in6 *) (void *)rt_key(rt))->sin6_addr, MLTMASK_LEN)) { rtfree(rt); rt = NULL; } } if (!rt) { error = rtrequest_scoped(RTM_ADD, (struct sockaddr *)&mltaddr, (struct sockaddr *)&ia->ia_addr, (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, NULL, ia->ia_ifp->if_index); if (error) goto cleanup; } else { rtfree(rt); } imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); if (!imm) { nd6log((LOG_WARNING, "in6_update_ifa: addmulti failed for " "%s on %s (errno=%d)\n", ip6_sprintf(&mltaddr.sin6_addr), if_name(ifp), error)); goto cleanup; } IFA_LOCK_SPIN(ifa); LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); IFA_UNLOCK(ifa); /* * join node information group address */ #define hostnamelen strlen(hostname) delay = 0; if ((flags & IN6_IFAUPDATE_DADDELAY)) { /* * The spec doesn't say anything about delay for this * group, but the same logic should apply. */ delay = random() % (MAX_RTR_SOLICITATION_DELAY * PR_SLOWHZ); } if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr) == 0) { imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, delay); /* XXX jinmei */ if (!imm) { nd6log((LOG_WARNING, "in6_update_ifa: " "addmulti failed for %s on %s " "(errno=%d)\n", ip6_sprintf(&mltaddr.sin6_addr), if_name(ifp), error)); /* XXX not very fatal, go on... */ } else { IFA_LOCK_SPIN(ifa); LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); IFA_UNLOCK(ifa); } } #undef hostnamelen /* * join interface-local all-nodes address. * (ff01::1%ifN, and ff01::%ifN/32) */ mltaddr.sin6_addr = in6addr_nodelocal_allnodes; if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0) goto cleanup; /* XXX: should not fail */ /* XXX: again, do we really need the route? */ rt = rtalloc1_scoped((struct sockaddr *)&mltaddr, 0, 0UL, ia->ia_ifp->if_index); if (rt) { if (memcmp(&mltaddr.sin6_addr, &((struct sockaddr_in6 *) (void *)rt_key(rt))->sin6_addr, MLTMASK_LEN)) { rtfree(rt); rt = NULL; } } if (!rt) { error = rtrequest_scoped(RTM_ADD, (struct sockaddr *)&mltaddr, (struct sockaddr *)&ia->ia_addr, (struct sockaddr *)&mltmask, RTF_UP | RTF_CLONING, NULL, ia->ia_ifp->if_index); if (error) goto cleanup; } else rtfree(rt); imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0); if (!imm) { nd6log((LOG_WARNING, "in6_update_ifa: " "addmulti failed for %s on %s " "(errno=%d)\n", ip6_sprintf(&mltaddr.sin6_addr), if_name(ifp), error)); goto cleanup; } IFA_LOCK(ifa); LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); /* keep it locked */ #undef MLTMASK_LEN } IFA_LOCK_ASSERT_HELD(ifa); /* * Make sure to initialize ND6 information. this is to workaround * issues with interfaces with IPv6 addresses, which have never brought * up. We are assuming that it is safe to nd6_ifattach multiple times. * NOTE: this is how stf0 gets initialized */ if ((error = nd6_ifattach(ifp)) != 0) return error; /* * Perform DAD, if needed. * XXX It may be of use, if we can administratively * disable DAD. */ if (hostIsNew && in6if_do_dad(ifp) && ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) && (ia->ia6_flags & IN6_IFF_DADPROGRESS)) { int mindelay, maxdelay; int *delayptr, delayval; IFA_UNLOCK(ifa); delayptr = NULL; if ((flags & IN6_IFAUPDATE_DADDELAY)) { /* * We need to impose a delay before sending an NS * for DAD. Check if we also needed a delay for the * corresponding MLD message. If we did, the delay * should be larger than the MLD delay (this could be * relaxed a bit, but this simple logic is at least * safe). */ mindelay = 0; if (in6m_sol != NULL) { IN6M_LOCK(in6m_sol); if (in6m_sol->in6m_state == MLD_REPORTING_MEMBER) mindelay = in6m_sol->in6m_timer; IN6M_UNLOCK(in6m_sol); } maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; if (maxdelay - mindelay == 0) delayval = 0; else { delayval = (random() % (maxdelay - mindelay)) + mindelay; } delayptr = &delayval; } nd6_dad_start((struct ifaddr *)ia, delayptr); } else { IFA_UNLOCK(ifa); } done: /* release reference held for this routine */ if (ifa != NULL) IFA_REMREF(ifa); if (in6m_sol != NULL) IN6M_REMREF(in6m_sol); return (error); unlink: /* * XXX: if a change of an existing address failed, keep the entry * anyway. */ if (hostIsNew) { in6_unlink_ifa(ia, ifp); } goto done; cleanup: in6_purgeaddr(&ia->ia_ifa); goto done; } void in6_purgeaddr(struct ifaddr *ifa) { struct ifnet *ifp = ifa->ifa_ifp; struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; struct in6_multi_mship *imm; lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED); /* stop DAD processing */ nd6_dad_stop(ifa); /* * delete route to the destination of the address being purged. * The interface must be p2p or loopback in this case. */ IFA_LOCK(ifa); if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) { int e; IFA_UNLOCK(ifa); if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) { log(LOG_ERR, "in6_purgeaddr: failed to remove " "a route to the p2p destination: %s on %s, " "errno=%d\n", ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp), e); /* proceed anyway... */ } else { IFA_LOCK_SPIN(ifa); ia->ia_flags &= ~IFA_ROUTE; IFA_UNLOCK(ifa); } } else { IFA_UNLOCK(ifa); } IFA_LOCK_ASSERT_NOTHELD(ifa); /* Remove ownaddr's loopback rtentry, if it exists. */ in6_ifremloop(&(ia->ia_ifa)); /* * leave from multicast groups we have joined for the interface */ IFA_LOCK(ifa); while ((imm = ia->ia6_memberships.lh_first) != NULL) { LIST_REMOVE(imm, i6mm_chain); IFA_UNLOCK(ifa); in6_leavegroup(imm); IFA_LOCK(ifa); } IFA_UNLOCK(ifa); /* in6_unlink_ifa() will need exclusive access */ in6_unlink_ifa(ia, ifp); in6_post_msg(ifp, KEV_INET6_ADDR_DELETED, ia); } static void in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) { struct in6_ifaddr *oia; struct ifaddr *ifa; int unlinked; lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED); ifa = &ia->ia_ifa; IFA_ADDREF(ifa); ifnet_lock_exclusive(ifp); IFA_LOCK(ifa); if (ifa->ifa_debug & IFD_ATTACHED) if_detach_ifa(ifp, ifa); IFA_UNLOCK(ifa); ifnet_lock_done(ifp); unlinked = 1; lck_rw_lock_exclusive(&in6_ifaddr_rwlock); oia = ia; if (oia == (ia = in6_ifaddrs)) { in6_ifaddrs = ia->ia_next; } else { while (ia->ia_next && (ia->ia_next != oia)) ia = ia->ia_next; if (ia->ia_next) { ia->ia_next = oia->ia_next; } else { /* search failed */ printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n"); unlinked = 0; } } /* * When an autoconfigured address is being removed, release the * reference to the base prefix. Also, since the release might * affect the status of other (detached) addresses, call * pfxlist_onlink_check(). */ ifa = &oia->ia_ifa; IFA_LOCK(ifa); if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) { if (oia->ia6_ndpr == NULL) { log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " "%p has no prefix\n", oia); } else { struct nd_prefix *pr = oia->ia6_ndpr; oia->ia6_flags &= ~IN6_IFF_AUTOCONF; oia->ia6_ndpr = NULL; NDPR_LOCK(pr); VERIFY(pr->ndpr_addrcnt != 0); pr->ndpr_addrcnt--; NDPR_UNLOCK(pr); NDPR_REMREF(pr); /* release addr reference */ } IFA_UNLOCK(ifa); lck_rw_done(&in6_ifaddr_rwlock); lck_mtx_lock(nd6_mutex); pfxlist_onlink_check(); lck_mtx_unlock(nd6_mutex); } else { IFA_UNLOCK(ifa); lck_rw_done(&in6_ifaddr_rwlock); } /* * release another refcnt for the link from in6_ifaddrs. * Do this only if it's not already unlinked in the event that we lost * the race, since in6_ifaddr_rwlock was momentarily dropped above. */ if (unlinked) IFA_REMREF(ifa); /* release reference held for this routine */ IFA_REMREF(ifa); } void in6_purgeif(struct ifnet *ifp) { struct in6_ifaddr *ia; if (ifp == NULL) return; lck_mtx_assert(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED); lck_rw_lock_exclusive(&in6_ifaddr_rwlock); ia = in6_ifaddrs; while (ia != NULL) { if (ia->ia_ifa.ifa_ifp != ifp) { ia = ia->ia_next; continue; } IFA_ADDREF(&ia->ia_ifa); /* for us */ lck_rw_done(&in6_ifaddr_rwlock); in6_purgeaddr(&ia->ia_ifa); IFA_REMREF(&ia->ia_ifa); /* for us */ lck_rw_lock_exclusive(&in6_ifaddr_rwlock); /* * Purging the address would have caused * in6_ifaddr_rwlock to be dropped and reacquired; * therefore search again from the beginning * of in6_ifaddrs list. */ ia = in6_ifaddrs; } lck_rw_done(&in6_ifaddr_rwlock); in6_ifdetach(ifp); } /* * SIOC[GAD]LIFADDR. * SIOCGLIFADDR: get first address. (?) * SIOCGLIFADDR with IFLR_PREFIX: * get first address that matches the specified prefix. * SIOCALIFADDR: add the specified address. * SIOCALIFADDR with IFLR_PREFIX: * add the specified prefix, filling hostaddr part from * the first link-local address. prefixlen must be <= 64. * SIOCDLIFADDR: delete the specified address. * SIOCDLIFADDR with IFLR_PREFIX: * delete the first address that matches the specified prefix. * return values: * EINVAL on invalid parameters * EADDRNOTAVAIL on prefix match failed/specified address not found * other values may be returned from in6_ioctl() * * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64. * this is to accomodate address naming scheme other than RFC2374, * in the future. * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374 * address encoding scheme. (see figure on page 8) */ static int in6_lifaddr_ioctl(struct socket *so, u_long cmd, struct if_laddrreq *iflr, struct ifnet *ifp, struct proc *p) { struct ifaddr *ifa = NULL; struct sockaddr *sa; int p64 = proc_is64bit(p); VERIFY(ifp != NULL); switch (cmd) { case SIOCGLIFADDR: /* address must be specified on GET with IFLR_PREFIX */ if ((iflr->flags & IFLR_PREFIX) == 0) break; /* FALLTHROUGH */ case SIOCALIFADDR: case SIOCDLIFADDR: /* address must be specified on ADD and DELETE */ sa = (struct sockaddr *)&iflr->addr; if (sa->sa_family != AF_INET6) return EINVAL; if (sa->sa_len != sizeof(struct sockaddr_in6)) return EINVAL; /* XXX need improvement */ sa = (struct sockaddr *)&iflr->dstaddr; if (sa->sa_family && sa->sa_family != AF_INET6) return EINVAL; if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6)) return EINVAL; break; default: /* shouldn't happen */ #if 0 panic("invalid cmd to in6_lifaddr_ioctl"); /* NOTREACHED */ #else return EOPNOTSUPP; #endif } if (sizeof(struct in6_addr) * 8 < iflr->prefixlen) return EINVAL; switch (cmd) { case SIOCALIFADDR: { struct in6_aliasreq ifra; struct in6_addr hostaddr; int prefixlen; int hostid_found = 0; if ((iflr->flags & IFLR_PREFIX) != 0) { struct sockaddr_in6 *sin6; /* * hostaddr is to fill in the hostaddr part of the * address. hostaddr points to the first link-local * address attached to the interface. */ ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); if (!ifa) return EADDRNOTAVAIL; IFA_LOCK_SPIN(ifa); hostaddr = *IFA_IN6(ifa); IFA_UNLOCK(ifa); hostid_found = 1; IFA_REMREF(ifa); ifa = NULL; /* prefixlen must be <= 64. */ if (64 < iflr->prefixlen) return EINVAL; prefixlen = iflr->prefixlen; /* hostid part must be zero. */ sin6 = (struct sockaddr_in6 *)&iflr->addr; if (sin6->sin6_addr.s6_addr32[2] != 0 || sin6->sin6_addr.s6_addr32[3] != 0) { return EINVAL; } } else prefixlen = iflr->prefixlen; /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ bzero(&ifra, sizeof(ifra)); bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); bcopy(&iflr->addr, &ifra.ifra_addr, ((struct sockaddr *)&iflr->addr)->sa_len); if (hostid_found) { /* fill in hostaddr part */ ifra.ifra_addr.sin6_addr.s6_addr32[2] = hostaddr.s6_addr32[2]; ifra.ifra_addr.sin6_addr.s6_addr32[3] = hostaddr.s6_addr32[3]; } if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, ((struct sockaddr *)&iflr->dstaddr)->sa_len); if (hostid_found) { ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] = hostaddr.s6_addr32[2]; ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] = hostaddr.s6_addr32[3]; } } ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen); ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX; if (!p64) { #if defined(__LP64__) struct in6_aliasreq_32 ifra_32; /* * Use 32-bit ioctl and structure for 32-bit process. */ in6_aliasreq_64_to_32((struct in6_aliasreq_64 *)&ifra, &ifra_32); return (in6_control(so, SIOCAIFADDR_IN6_32, (caddr_t)&ifra_32, ifp, p)); #else return (in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p)); #endif /* __LP64__ */ } else { #if defined(__LP64__) return (in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p)); #else struct in6_aliasreq_64 ifra_64; /* * Use 64-bit ioctl and structure for 64-bit process. */ in6_aliasreq_32_to_64((struct in6_aliasreq_32 *)&ifra, &ifra_64); return (in6_control(so, SIOCAIFADDR_IN6_64, (caddr_t)&ifra_64, ifp, p)); #endif /* __LP64__ */ } /* NOTREACHED */ } case SIOCGLIFADDR: case SIOCDLIFADDR: { struct in6_ifaddr *ia; struct in6_addr mask, candidate, match; struct sockaddr_in6 *sin6; int cmp; bzero(&mask, sizeof(mask)); if (iflr->flags & IFLR_PREFIX) { /* lookup a prefix rather than address. */ in6_prefixlen2mask(&mask, iflr->prefixlen); sin6 = (struct sockaddr_in6 *)&iflr->addr; bcopy(&sin6->sin6_addr, &match, sizeof(match)); match.s6_addr32[0] &= mask.s6_addr32[0]; match.s6_addr32[1] &= mask.s6_addr32[1]; match.s6_addr32[2] &= mask.s6_addr32[2]; match.s6_addr32[3] &= mask.s6_addr32[3]; /* if you set extra bits, that's wrong */ if (bcmp(&match, &sin6->sin6_addr, sizeof(match))) return EINVAL; cmp = 1; } else { if (cmd == SIOCGLIFADDR) { /* on getting an address, take the 1st match */ cmp = 0; /* XXX */ } else { /* on deleting an address, do exact match */ in6_prefixlen2mask(&mask, 128); sin6 = (struct sockaddr_in6 *)&iflr->addr; bcopy(&sin6->sin6_addr, &match, sizeof(match)); cmp = 1; } } ifnet_lock_shared(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } if (!cmp) { IFA_UNLOCK(ifa); break; } bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate)); IFA_UNLOCK(ifa); /* * XXX: this is adhoc, but is necessary to allow * a user to specify fe80::/64 (not /10) for a * link-local address. */ if (IN6_IS_ADDR_LINKLOCAL(&candidate)) candidate.s6_addr16[1] = 0; candidate.s6_addr32[0] &= mask.s6_addr32[0]; candidate.s6_addr32[1] &= mask.s6_addr32[1]; candidate.s6_addr32[2] &= mask.s6_addr32[2]; candidate.s6_addr32[3] &= mask.s6_addr32[3]; if (IN6_ARE_ADDR_EQUAL(&candidate, &match)) break; } if (ifa != NULL) IFA_ADDREF(ifa); ifnet_lock_done(ifp); if (!ifa) return EADDRNOTAVAIL; ia = ifa2ia6(ifa); if (cmd == SIOCGLIFADDR) { struct sockaddr_in6 *s6; IFA_LOCK(ifa); /* fill in the if_laddrreq structure */ bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len); s6 = (struct sockaddr_in6 *)&iflr->addr; if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { s6->sin6_addr.s6_addr16[1] = 0; s6->sin6_scope_id = in6_addr2scopeid(ifp, &s6->sin6_addr); } if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { bcopy(&ia->ia_dstaddr, &iflr->dstaddr, ia->ia_dstaddr.sin6_len); s6 = (struct sockaddr_in6 *)&iflr->dstaddr; if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) { s6->sin6_addr.s6_addr16[1] = 0; s6->sin6_scope_id = in6_addr2scopeid(ifp, &s6->sin6_addr); } } else bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); iflr->prefixlen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); iflr->flags = ia->ia6_flags; /* XXX */ IFA_UNLOCK(ifa); IFA_REMREF(ifa); return 0; } else { struct in6_aliasreq ifra; /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ bzero(&ifra, sizeof(ifra)); bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); IFA_LOCK(ifa); bcopy(&ia->ia_addr, &ifra.ifra_addr, ia->ia_addr.sin6_len); if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, ia->ia_dstaddr.sin6_len); } else { bzero(&ifra.ifra_dstaddr, sizeof(ifra.ifra_dstaddr)); } bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr, ia->ia_prefixmask.sin6_len); ifra.ifra_flags = ia->ia6_flags; IFA_UNLOCK(ifa); IFA_REMREF(ifa); if (!p64) { #if defined(__LP64__) struct in6_aliasreq_32 ifra_32; /* * Use 32-bit structure for 32-bit process. * SIOCDIFADDR_IN6 is encoded with in6_ifreq, * so it stays the same since the size does * not change. The data part of the ioctl, * however, is of a different structure, i.e. * in6_aliasreq. */ in6_aliasreq_64_to_32( (struct in6_aliasreq_64 *)&ifra, &ifra_32); return (in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra_32, ifp, p)); #else return (in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, ifp, p)); #endif /* __LP64__ */ } else { #if defined(__LP64__) return (in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra, ifp, p)); #else struct in6_aliasreq_64 ifra_64; /* * Use 64-bit structure for 64-bit process. * SIOCDIFADDR_IN6 is encoded with in6_ifreq, * so it stays the same since the size does * not change. The data part of the ioctl, * however, is of a different structure, i.e. * in6_aliasreq. */ in6_aliasreq_32_to_64( (struct in6_aliasreq_32 *)&ifra, &ifra_64); return (in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra_64, ifp, p)); #endif /* __LP64__ */ } /* NOTREACHED */ } } } return EOPNOTSUPP; /* just for safety */ } /* * Initialize an interface's intetnet6 address * and routing table entry. */ static int in6_ifinit(ifp, ia, sin6, newhost) struct ifnet *ifp; struct in6_ifaddr *ia; struct sockaddr_in6 *sin6; int newhost; { int error = 0, plen, ifacount = 0; struct ifaddr *ifa; /* * Give the interface a chance to initialize * if this is its first address, * and to validate the address if necessary. */ ifnet_lock_shared(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK_SPIN(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } ifacount++; IFA_UNLOCK(ifa); } ifnet_lock_done(ifp); ifa = &ia->ia_ifa; IFA_LOCK_SPIN(ifa); ia->ia_addr = *sin6; IFA_UNLOCK(ifa); /* * NOTE: SIOCSIFADDR is defined with struct ifreq as parameter, * but here we are sending it down to the interface with a pointer * to struct ifaddr, for legacy reasons. */ if (ifacount <= 1 && (error = ifnet_ioctl(ifp, PF_INET6, SIOCSIFADDR, ia))) { if (error == EOPNOTSUPP) error = 0; else if (error) return(error); } IFA_LOCK(ifa); ia->ia_ifa.ifa_metric = ifp->if_metric; /* we could do in(6)_socktrim here, but just omit it at this moment. */ /* * Special case: * If the destination address is specified for a point-to-point * interface, install a route to the destination as an interface * direct route. */ plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { IFA_UNLOCK(ifa); if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, RTF_UP | RTF_HOST)) != 0) return(error); IFA_LOCK(ifa); ia->ia_flags |= IFA_ROUTE; } IFA_LOCK_ASSERT_HELD(ifa); if (plen < 128) { /* * The RTF_CLONING flag is necessary for in6_is_ifloop_auto(). */ ia->ia_ifa.ifa_flags |= RTF_CLONING; } /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */ if (newhost) { /* set the rtrequest function to create llinfo */ ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; IFA_UNLOCK(ifa); in6_ifaddloop(&(ia->ia_ifa)); } else { IFA_UNLOCK(ifa); } return(error); } void in6_purgeaddrs(struct ifnet *ifp) { in6_purgeif(ifp); } /* * Find an IPv6 interface link-local address specific to an interface. */ struct in6_ifaddr * in6ifa_ifpforlinklocal(ifp, ignoreflags) struct ifnet *ifp; int ignoreflags; { struct ifaddr *ifa; ifnet_lock_shared(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK_SPIN(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { if ((((struct in6_ifaddr *)ifa)->ia6_flags & ignoreflags) != 0) { IFA_UNLOCK(ifa); continue; } IFA_ADDREF_LOCKED(ifa); /* for caller */ IFA_UNLOCK(ifa); break; } IFA_UNLOCK(ifa); } ifnet_lock_done(ifp); return((struct in6_ifaddr *)ifa); } /* * find the internet address corresponding to a given interface and address. */ struct in6_ifaddr * in6ifa_ifpwithaddr(ifp, addr) struct ifnet *ifp; struct in6_addr *addr; { struct ifaddr *ifa; ifnet_lock_shared(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK_SPIN(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { IFA_ADDREF_LOCKED(ifa); /* for caller */ IFA_UNLOCK(ifa); break; } IFA_UNLOCK(ifa); } ifnet_lock_done(ifp); return((struct in6_ifaddr *)ifa); } struct in6_ifaddr * in6ifa_prproxyaddr(struct in6_addr *addr) { struct in6_ifaddr *ia; lck_rw_lock_shared(&in6_ifaddr_rwlock); for (ia = in6_ifaddrs; ia; ia = ia->ia_next) { IFA_LOCK(&ia->ia_ifa); if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(&ia->ia_ifa))) { IFA_ADDREF_LOCKED(&ia->ia_ifa); /* for caller */ IFA_UNLOCK(&ia->ia_ifa); break; } IFA_UNLOCK(&ia->ia_ifa); } lck_rw_done(&in6_ifaddr_rwlock); if (ia != NULL && !nd6_prproxy_ifaddr(ia)) { IFA_REMREF(&ia->ia_ifa); ia = NULL; } return (ia); } /* * Convert IP6 address to printable (loggable) representation. */ static char digits[] = "0123456789abcdef"; static int ip6round = 0; char * ip6_sprintf(addr) const struct in6_addr *addr; { static char ip6buf[8][48]; int i; char *cp; const u_short *a = (const u_short *)addr; const u_char *d; int dcolon = 0; ip6round = (ip6round + 1) & 7; cp = ip6buf[ip6round]; for (i = 0; i < 8; i++) { if (dcolon == 1) { if (*a == 0) { if (i == 7) *cp++ = ':'; a++; continue; } else dcolon = 2; } if (*a == 0) { if (dcolon == 0 && *(a + 1) == 0) { if (i == 0) *cp++ = ':'; *cp++ = ':'; dcolon = 1; } else { *cp++ = '0'; *cp++ = ':'; } a++; continue; } d = (const u_char *)a; *cp++ = digits[*d >> 4]; *cp++ = digits[*d++ & 0xf]; *cp++ = digits[*d >> 4]; *cp++ = digits[*d & 0xf]; *cp++ = ':'; a++; } *--cp = 0; return(ip6buf[ip6round]); } int in6addr_local(struct in6_addr *in6) { struct rtentry *rt; struct sockaddr_in6 sin6; int local = 0; if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_SCOPE_LINKLOCAL(in6)) return (1); sin6.sin6_family = AF_INET6; sin6.sin6_len = sizeof (sin6); bcopy(in6, &sin6.sin6_addr, sizeof (*in6)); rt = rtalloc1((struct sockaddr *)&sin6, 0, 0); if (rt != NULL) { RT_LOCK_SPIN(rt); if (rt->rt_gateway->sa_family == AF_LINK) local = 1; RT_UNLOCK(rt); rtfree(rt); } else { local = in6_localaddr(in6); } return (local); } int in6_localaddr(struct in6_addr *in6) { struct in6_ifaddr *ia; if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) return (1); lck_rw_lock_shared(&in6_ifaddr_rwlock); for (ia = in6_ifaddrs; ia; ia = ia->ia_next) { IFA_LOCK_SPIN(&ia->ia_ifa); if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, &ia->ia_prefixmask.sin6_addr)) { IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); return (1); } IFA_UNLOCK(&ia->ia_ifa); } lck_rw_done(&in6_ifaddr_rwlock); return (0); } int in6_is_addr_deprecated(struct sockaddr_in6 *sa6) { struct in6_ifaddr *ia; lck_rw_lock_shared(&in6_ifaddr_rwlock); for (ia = in6_ifaddrs; ia; ia = ia->ia_next) { IFA_LOCK_SPIN(&ia->ia_ifa); if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, &sa6->sin6_addr) && (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0) { IFA_UNLOCK(&ia->ia_ifa); lck_rw_done(&in6_ifaddr_rwlock); return(1); /* true */ } /* XXX: do we still have to go thru the rest of the list? */ IFA_UNLOCK(&ia->ia_ifa); } lck_rw_done(&in6_ifaddr_rwlock); return(0); /* false */ } /* * return length of part which dst and src are equal * hard coding... */ int in6_matchlen(src, dst) struct in6_addr *src, *dst; { int match = 0; u_char *s = (u_char *)src, *d = (u_char *)dst; u_char *lim = s + 16, r; while (s < lim) if ((r = (*d++ ^ *s++)) != 0) { while (r < 128) { match++; r <<= 1; } break; } else match += 8; return match; } /* XXX: to be scope conscious */ int in6_are_prefix_equal(p1, p2, len) struct in6_addr *p1, *p2; int len; { int bytelen, bitlen; /* sanity check */ if (0 > len || len > 128) { log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", len); return(0); } bytelen = len / 8; bitlen = len % 8; if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) return(0); if (bitlen != 0 && p1->s6_addr[bytelen] >> (8 - bitlen) != p2->s6_addr[bytelen] >> (8 - bitlen)) return(0); return(1); } void in6_prefixlen2mask(maskp, len) struct in6_addr *maskp; int len; { u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; int bytelen, bitlen, i; /* sanity check */ if (0 > len || len > 128) { log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", len); return; } bzero(maskp, sizeof(*maskp)); bytelen = len / 8; bitlen = len % 8; for (i = 0; i < bytelen; i++) maskp->s6_addr[i] = 0xff; if (bitlen) maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; } /* * return the best address out of the same scope */ struct in6_ifaddr * in6_ifawithscope( struct ifnet *oifp, struct in6_addr *dst) { int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0; int blen = -1; struct ifaddr *ifa; struct ifnet *ifp; struct in6_ifaddr *ifa_best = NULL; if (oifp == NULL) { return(NULL); } /* * We search for all addresses on all interfaces from the beginning. * Comparing an interface with the outgoing interface will be done * only at the final stage of tiebreaking. */ ifnet_head_lock_shared(); TAILQ_FOREACH(ifp, &ifnet_head, if_list) { /* * We can never take an address that breaks the scope zone * of the destination. */ if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst)) continue; ifnet_lock_shared(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { int tlen = -1, dscopecmp, bscopecmp, matchcmp; IFA_LOCK(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } src_scope = in6_addrscope(IFA_IN6(ifa)); /* * Don't use an address before completing DAD * nor a duplicated address. */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) { IFA_UNLOCK(ifa); continue; } /* XXX: is there any case to allow anycasts? */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) { IFA_UNLOCK(ifa); continue; } if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) { IFA_UNLOCK(ifa); continue; } /* * If this is the first address we find, * keep it anyway. */ if (ifa_best == NULL) goto replace; /* * ifa_best is never NULL beyond this line except * within the block labeled "replace". */ /* * If ifa_best has a smaller scope than dst and * the current address has a larger one than * (or equal to) dst, always replace ifa_best. * Also, if the current address has a smaller scope * than dst, ignore it unless ifa_best also has a * smaller scope. * Consequently, after the two if-clause below, * the followings must be satisfied: * (scope(src) < scope(dst) && * scope(best) < scope(dst)) * OR * (scope(best) >= scope(dst) && * scope(src) >= scope(dst)) */ if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 && IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0) goto replace; /* (A) */ if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 && IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0) { IFA_UNLOCK(ifa); continue; /* (B) */ } /* * A deprecated address SHOULD NOT be used in new * communications if an alternate (non-deprecated) * address is available and has sufficient scope. * RFC 2462, Section 5.5.4. */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { /* * Ignore any deprecated addresses if * specified by configuration. */ if (!ip6_use_deprecated) { IFA_UNLOCK(ifa); continue; } /* * If we have already found a non-deprecated * candidate, just ignore deprecated addresses. */ if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) == 0) { IFA_UNLOCK(ifa); continue; } } /* * A non-deprecated address is always preferred * to a deprecated one regardless of scopes and * address matching (Note invariants ensured by the * conditions (A) and (B) above.) */ if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) && (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) == 0) goto replace; /* * When we use temporary addresses described in * RFC 4941, we prefer temporary addresses to * public autoconf addresses. Again, note the * invariants from (A) and (B). Also note that we * don't have any preference between static addresses * and autoconf addresses (despite of whether or not * the latter is temporary or public.) */ if (ip6_use_tempaddr) { struct in6_ifaddr *ifat; ifat = (struct in6_ifaddr *)ifa; if ((ifa_best->ia6_flags & (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) == IN6_IFF_AUTOCONF && (ifat->ia6_flags & (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) { goto replace; } if ((ifa_best->ia6_flags & (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) && (ifat->ia6_flags & (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) == IN6_IFF_AUTOCONF) { IFA_UNLOCK(ifa); continue; } } /* * At this point, we have two cases: * 1. we are looking at a non-deprecated address, * and ifa_best is also non-deprecated. * 2. we are looking at a deprecated address, * and ifa_best is also deprecated. * Also, we do not have to consider a case where * the scope of if_best is larger(smaller) than dst and * the scope of the current address is smaller(larger) * than dst. Such a case has already been covered. * Tiebreaking is done according to the following * items: * - the scope comparison between the address and * dst (dscopecmp) * - the scope comparison between the address and * ifa_best (bscopecmp) * - if the address match dst longer than ifa_best * (matchcmp) * - if the address is on the outgoing I/F (outI/F) * * Roughly speaking, the selection policy is * - the most important item is scope. The same scope * is best. Then search for a larger scope. * Smaller scopes are the last resort. * - A deprecated address is chosen only when we have * no address that has an enough scope, but is * prefered to any addresses of smaller scopes * (this must be already done above.) * - addresses on the outgoing I/F are preferred to * ones on other interfaces if none of above * tiebreaks. In the table below, the column "bI" * means if the best_ifa is on the outgoing * interface, and the column "sI" means if the ifa * is on the outgoing interface. * - If there is no other reasons to choose one, * longest address match against dst is considered. * * The precise decision table is as follows: * dscopecmp bscopecmp match bI oI | replace? * N/A equal N/A Y N | No (1) * N/A equal N/A N Y | Yes (2) * N/A equal larger N/A | Yes (3) * N/A equal !larger N/A | No (4) * larger larger N/A N/A | No (5) * larger smaller N/A N/A | Yes (6) * smaller larger N/A N/A | Yes (7) * smaller smaller N/A N/A | No (8) * equal smaller N/A N/A | Yes (9) * equal larger (already done at A above) */ dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope); bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope); if (bscopecmp == 0) { struct ifnet *bifp = ifa_best->ia_ifp; if (bifp == oifp && ifp != oifp) { /* (1) */ IFA_UNLOCK(ifa); continue; } if (bifp != oifp && ifp == oifp) /* (2) */ goto replace; /* * Both bifp and ifp are on the outgoing * interface, or both two are on a different * interface from the outgoing I/F. * now we need address matching against dst * for tiebreaking. */ tlen = in6_matchlen(IFA_IN6(ifa), dst); matchcmp = tlen - blen; if (matchcmp > 0) /* (3) */ goto replace; IFA_UNLOCK(ifa); continue; /* (4) */ } if (dscopecmp > 0) { if (bscopecmp > 0) { /* (5) */ IFA_UNLOCK(ifa); continue; } goto replace; /* (6) */ } if (dscopecmp < 0) { if (bscopecmp > 0) /* (7) */ goto replace; IFA_UNLOCK(ifa); continue; /* (8) */ } /* now dscopecmp must be 0 */ if (bscopecmp < 0) goto replace; /* (9) */ replace: IFA_ADDREF_LOCKED(ifa); /* for ifa_best */ blen = tlen >= 0 ? tlen : in6_matchlen(IFA_IN6(ifa), dst); best_scope = in6_addrscope(&ifa2ia6(ifa)->ia_addr.sin6_addr); IFA_UNLOCK(ifa); if (ifa_best) IFA_REMREF(&ifa_best->ia_ifa); ifa_best = (struct in6_ifaddr *)ifa; } ifnet_lock_done(ifp); } ifnet_head_done(); /* count statistics for future improvements */ if (ifa_best == NULL) ip6stat.ip6s_sources_none++; else { IFA_LOCK_SPIN(&ifa_best->ia_ifa); if (oifp == ifa_best->ia_ifp) ip6stat.ip6s_sources_sameif[best_scope]++; else ip6stat.ip6s_sources_otherif[best_scope]++; if (best_scope == dst_scope) ip6stat.ip6s_sources_samescope[best_scope]++; else ip6stat.ip6s_sources_otherscope[best_scope]++; if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0) ip6stat.ip6s_sources_deprecated[best_scope]++; IFA_UNLOCK(&ifa_best->ia_ifa); } return(ifa_best); } /* * return the best address out of the same scope. if no address was * found, return the first valid address from designated IF. */ struct in6_ifaddr * in6_ifawithifp( struct ifnet *ifp, struct in6_addr *dst) { int dst_scope = in6_addrscope(dst), blen = -1, tlen; struct ifaddr *ifa; struct in6_ifaddr *besta = NULL; struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ dep[0] = dep[1] = NULL; /* * We first look for addresses in the same scope. * If there is one, return it. * If two or more, return one which matches the dst longest. * If none, return one of global addresses assigned other ifs. */ ifnet_lock_shared(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_ANYCAST) { IFA_UNLOCK(ifa); continue; /* XXX: is there any case to allow anycast? */ } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_NOTREADY) { IFA_UNLOCK(ifa); continue; /* don't use this interface */ } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DETACHED) { IFA_UNLOCK(ifa); continue; } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DEPRECATED) { if (ip6_use_deprecated) { IFA_ADDREF_LOCKED(ifa); /* for dep[0] */ IFA_UNLOCK(ifa); if (dep[0] != NULL) IFA_REMREF(&dep[0]->ia_ifa); dep[0] = (struct in6_ifaddr *)ifa; } else { IFA_UNLOCK(ifa); } continue; } if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { /* * call in6_matchlen() as few as possible */ if (besta) { if (blen == -1) { IFA_UNLOCK(ifa); IFA_LOCK(&besta->ia_ifa); blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); IFA_UNLOCK(&besta->ia_ifa); IFA_LOCK(ifa); } tlen = in6_matchlen(IFA_IN6(ifa), dst); if (tlen > blen) { blen = tlen; IFA_ADDREF_LOCKED(ifa); /* for besta */ IFA_UNLOCK(ifa); IFA_REMREF(&besta->ia_ifa); besta = (struct in6_ifaddr *)ifa; } else { IFA_UNLOCK(ifa); } } else { besta = (struct in6_ifaddr *)ifa; IFA_ADDREF_LOCKED(ifa); /* for besta */ IFA_UNLOCK(ifa); } } else { IFA_UNLOCK(ifa); } } if (besta) { ifnet_lock_done(ifp); if (dep[0] != NULL) IFA_REMREF(&dep[0]->ia_ifa); return(besta); } TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_ANYCAST) { IFA_UNLOCK(ifa); continue; /* XXX: is there any case to allow anycast? */ } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_NOTREADY) { IFA_UNLOCK(ifa); continue; /* don't use this interface */ } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DETACHED) { IFA_UNLOCK(ifa); continue; } if (ifa2ia6(ifa)->ia6_flags & IN6_IFF_DEPRECATED) { if (ip6_use_deprecated) { IFA_ADDREF_LOCKED(ifa); /* for dep[1] */ IFA_UNLOCK(ifa); if (dep[1] != NULL) IFA_REMREF(&dep[1]->ia_ifa); dep[1] = (struct in6_ifaddr *)ifa; } else { IFA_UNLOCK(ifa); } continue; } IFA_ADDREF_LOCKED(ifa); /* for caller */ IFA_UNLOCK(ifa); ifnet_lock_done(ifp); if (dep[0] != NULL) IFA_REMREF(&dep[0]->ia_ifa); if (dep[1] != NULL) IFA_REMREF(&dep[1]->ia_ifa); return (struct in6_ifaddr *)ifa; } ifnet_lock_done(ifp); /* use the last-resort values, that are, deprecated addresses */ if (dep[0]) { if (dep[1] != NULL) IFA_REMREF(&dep[1]->ia_ifa); return dep[0]; } if (dep[1]) return dep[1]; return NULL; } /* * perform DAD when interface becomes IFF_UP. */ int in6_if_up( struct ifnet *ifp, struct in6_aliasreq *ifra) { struct ifaddr *ifa; struct in6_ifaddr *ia; int dad_delay; /* delay ticks before DAD output */ int error; /* * special cases, like 6to4, are handled in in6_ifattach */ error = in6_ifattach(ifp, NULL, ifra); if (error != 0) return error; dad_delay = 0; ifnet_lock_exclusive(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { IFA_LOCK_SPIN(ifa); if (ifa->ifa_addr->sa_family != AF_INET6) { IFA_UNLOCK(ifa); continue; } ia = (struct in6_ifaddr *)ifa; if (ia->ia6_flags & IN6_IFF_DADPROGRESS) { IFA_UNLOCK(ifa); nd6_dad_start(ifa, &dad_delay); } else { IFA_UNLOCK(ifa); } } ifnet_lock_done(ifp); return 0; } int in6if_do_dad( struct ifnet *ifp) { if ((ifp->if_flags & IFF_LOOPBACK) != 0) return(0); /* * If we are using the alternative neighbor discovery * interface on this interface, then skip DAD. * * Also, skip it for interfaces marked "local private" * for now, even when not marked as using the alternative * interface. This is for historical reasons. */ if (ifp->if_eflags & (IFEF_IPV6_ND6ALT|IFEF_LOCALNET_PRIVATE)) return (0); switch (ifp->if_type) { #if IFT_DUMMY case IFT_DUMMY: #endif case IFT_FAITH: /* * These interfaces do not have the IFF_LOOPBACK flag, * but loop packets back. We do not have to do DAD on such * interfaces. We should even omit it, because loop-backed * NS would confuse the DAD procedure. */ return(0); default: /* * Our DAD routine requires the interface up and running. * However, some interfaces can be up before the RUNNING * status. Additionaly, users may try to assign addresses * before the interface becomes up (or running). * We simply skip DAD in such a case as a work around. * XXX: we should rather mark "tentative" on such addresses, * and do DAD after the interface becomes ready. */ if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) return(0); return(1); } } /* * Calculate max IPv6 MTU through all the interfaces and store it * to in6_maxmtu. */ void in6_setmaxmtu(void) { u_int32_t maxmtu = 0; struct ifnet *ifp; ifnet_head_lock_shared(); TAILQ_FOREACH(ifp, &ifnet_head, if_list) { struct nd_ifinfo *ndi; lck_rw_lock_shared(nd_if_rwlock); if ((ndi = ND_IFINFO(ifp)) != NULL && !ndi->initialized) ndi = NULL; if (ndi != NULL) lck_mtx_lock(&ndi->lock); if ((ifp->if_flags & IFF_LOOPBACK) == 0 && IN6_LINKMTU(ifp) > maxmtu) maxmtu = IN6_LINKMTU(ifp); if (ndi != NULL) lck_mtx_unlock(&ndi->lock); lck_rw_done(nd_if_rwlock); } ifnet_head_done(); if (maxmtu) /* update only when maxmtu is positive */ in6_maxmtu = maxmtu; } /* * Provide the length of interface identifiers to be used for the link attached * to the given interface. The length should be defined in "IPv6 over * xxx-link" document. Note that address architecture might also define * the length for a particular set of address prefixes, regardless of the * link type. As clarified in rfc2462bis, those two definitions should be * consistent, and those really are as of August 2004. */ int in6_if2idlen(struct ifnet *ifp) { switch (ifp->if_type) { case IFT_ETHER: /* RFC2464 */ case IFT_IEEE8023ADLAG: /* IEEE802.3ad Link Aggregate */ #ifdef IFT_PROPVIRTUAL case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ #endif #ifdef IFT_L2VLAN case IFT_L2VLAN: /* ditto */ #endif #ifdef IFT_IEEE80211 case IFT_IEEE80211: /* ditto */ #endif #ifdef IFT_MIP case IFT_MIP: /* ditto */ #endif return (64); case IFT_FDDI: /* RFC2467 */ return (64); case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */ return (64); case IFT_PPP: /* RFC2472 */ return (64); case IFT_ARCNET: /* RFC2497 */ return (64); case IFT_FRELAY: /* RFC2590 */ return (64); case IFT_IEEE1394: /* RFC3146 */ return (64); case IFT_GIF: return (64); /* draft-ietf-v6ops-mech-v2-07 */ case IFT_LOOP: return (64); /* XXX: is this really correct? */ case IFT_OTHER: return (64); /* for utun interfaces */ case IFT_CELLULAR: return (64); /* Packet Data over Cellular */ case IFT_BRIDGE: return (64); /* Transparent bridge interface */ default: /* * Unknown link type: * It might be controversial to use the today's common constant * of 64 for these cases unconditionally. For full compliance, * we should return an error in this case. On the other hand, * if we simply miss the standard for the link type or a new * standard is defined for a new link type, the IFID length * is very likely to be the common constant. As a compromise, * we always use the constant, but make an explicit notice * indicating the "unknown" case. */ printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); return (64); } } /* * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be * v4 mapped addr or v4 compat addr */ void in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) { bzero(sin, sizeof(*sin)); sin->sin_len = sizeof(struct sockaddr_in); sin->sin_family = AF_INET; sin->sin_port = sin6->sin6_port; sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; } /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ void in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) { bzero(sin6, sizeof(*sin6)); sin6->sin6_len = sizeof(struct sockaddr_in6); sin6->sin6_family = AF_INET6; sin6->sin6_port = sin->sin_port; sin6->sin6_addr.s6_addr32[0] = 0; sin6->sin6_addr.s6_addr32[1] = 0; if (sin->sin_addr.s_addr) { sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; } else { sin6->sin6_addr.s6_addr32[2] = 0; sin6->sin6_addr.s6_addr32[3] = 0; } } /* Convert sockaddr_in6 into sockaddr_in. */ void in6_sin6_2_sin_in_sock(struct sockaddr *nam) { struct sockaddr_in *sin_p; struct sockaddr_in6 sin6; /* * Save original sockaddr_in6 addr and convert it * to sockaddr_in. */ sin6 = *(struct sockaddr_in6 *)(void *)nam; sin_p = (struct sockaddr_in *)(void *)nam; in6_sin6_2_sin(sin_p, &sin6); } /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ int in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) { struct sockaddr_in *sin_p; struct sockaddr_in6 *sin6_p; MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME, M_WAITOK); if (sin6_p == NULL) return ENOBUFS; sin_p = (struct sockaddr_in *)(void *)*nam; in6_sin_2_v4mapsin6(sin_p, sin6_p); FREE(*nam, M_SONAME); *nam = (struct sockaddr *)sin6_p; return 0; } /* * Posts in6_event_data message kernel events. * * To get the same size of kev_in6_data between ILP32 and LP64 data models * we are using a special version of the in6_addrlifetime structure that * uses only 32 bits fields to be compatible with Leopard, and that * are large enough to span 68 years. */ void in6_post_msg(struct ifnet *ifp, u_int32_t event_code, struct in6_ifaddr *ifa) { struct kev_msg ev_msg; struct kev_in6_data in6_event_data; bzero(&in6_event_data, sizeof(struct kev_in6_data)); bzero(&ev_msg, sizeof(struct kev_msg)); ev_msg.vendor_code = KEV_VENDOR_APPLE; ev_msg.kev_class = KEV_NETWORK_CLASS; ev_msg.kev_subclass = KEV_INET6_SUBCLASS; ev_msg.event_code = event_code; IFA_LOCK(&ifa->ia_ifa); in6_event_data.ia_addr = ifa->ia_addr; in6_event_data.ia_net = ifa->ia_net; in6_event_data.ia_dstaddr = ifa->ia_dstaddr; in6_event_data.ia_prefixmask = ifa->ia_prefixmask; in6_event_data.ia_plen = ifa->ia_plen; in6_event_data.ia6_flags = (u_int32_t)ifa->ia6_flags; in6_event_data.ia_lifetime.ia6t_expire = ifa->ia6_lifetime.ia6t_expire; in6_event_data.ia_lifetime.ia6t_preferred = ifa->ia6_lifetime.ia6t_preferred; in6_event_data.ia_lifetime.ia6t_vltime = ifa->ia6_lifetime.ia6t_vltime; in6_event_data.ia_lifetime.ia6t_pltime = ifa->ia6_lifetime.ia6t_pltime; IFA_UNLOCK(&ifa->ia_ifa); if (ifp != NULL) { (void) strncpy(&in6_event_data.link_data.if_name[0], ifp->if_name, IFNAMSIZ); in6_event_data.link_data.if_family = ifp->if_family; in6_event_data.link_data.if_unit = (u_int32_t) ifp->if_unit; } ev_msg.dv[0].data_ptr = &in6_event_data; ev_msg.dv[0].data_length = sizeof (in6_event_data); ev_msg.dv[1].data_length = 0; kev_post_msg(&ev_msg); } /* * Called as part of ip6_init */ void in6_ifaddr_init(void) { in6_multi_init(); PE_parse_boot_argn("ifa_debug", &in6ifa_debug, sizeof (in6ifa_debug)); in6ifa_size = (in6ifa_debug == 0) ? sizeof (struct in6_ifaddr) : sizeof (struct in6_ifaddr_dbg); in6ifa_zone = zinit(in6ifa_size, IN6IFA_ZONE_MAX * in6ifa_size, 0, IN6IFA_ZONE_NAME); if (in6ifa_zone == NULL) { panic("%s: failed allocating %s", __func__, IN6IFA_ZONE_NAME); /* NOTREACHED */ } zone_change(in6ifa_zone, Z_EXPAND, TRUE); zone_change(in6ifa_zone, Z_CALLERACCT, FALSE); lck_mtx_init(&in6ifa_trash_lock, ifa_mtx_grp, ifa_mtx_attr); TAILQ_INIT(&in6ifa_trash_head); } static struct in6_ifaddr * in6_ifaddr_alloc(int how) { struct in6_ifaddr *in6ifa; in6ifa = (how == M_WAITOK) ? zalloc(in6ifa_zone) : zalloc_noblock(in6ifa_zone); if (in6ifa != NULL) { bzero(in6ifa, in6ifa_size); in6ifa->ia_ifa.ifa_free = in6_ifaddr_free; in6ifa->ia_ifa.ifa_debug |= IFD_ALLOC; ifa_lock_init(&in6ifa->ia_ifa); if (in6ifa_debug != 0) { struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)in6ifa; in6ifa->ia_ifa.ifa_debug |= IFD_DEBUG; in6ifa->ia_ifa.ifa_trace = in6_ifaddr_trace; in6ifa->ia_ifa.ifa_attached = in6_ifaddr_attached; in6ifa->ia_ifa.ifa_detached = in6_ifaddr_detached; ctrace_record(&in6ifa_dbg->in6ifa_alloc); } } return (in6ifa); } static void in6_ifaddr_free(struct ifaddr *ifa) { IFA_LOCK_ASSERT_HELD(ifa); if (ifa->ifa_refcnt != 0) { panic("%s: ifa %p bad ref cnt", __func__, ifa); /* NOTREACHED */ } else if (!(ifa->ifa_debug & IFD_ALLOC)) { panic("%s: ifa %p cannot be freed", __func__, ifa); /* NOTREACHED */ } if (ifa->ifa_debug & IFD_DEBUG) { struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)ifa; ctrace_record(&in6ifa_dbg->in6ifa_free); bcopy(&in6ifa_dbg->in6ifa, &in6ifa_dbg->in6ifa_old, sizeof (struct in6_ifaddr)); if (ifa->ifa_debug & IFD_TRASHED) { /* Become a regular mutex, just in case */ IFA_CONVERT_LOCK(ifa); lck_mtx_lock(&in6ifa_trash_lock); TAILQ_REMOVE(&in6ifa_trash_head, in6ifa_dbg, in6ifa_trash_link); lck_mtx_unlock(&in6ifa_trash_lock); ifa->ifa_debug &= ~IFD_TRASHED; } } IFA_UNLOCK(ifa); ifa_lock_destroy(ifa); bzero(ifa, sizeof (struct in6_ifaddr)); zfree(in6ifa_zone, ifa); } static void in6_ifaddr_attached(struct ifaddr *ifa) { struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)ifa; IFA_LOCK_ASSERT_HELD(ifa); if (!(ifa->ifa_debug & IFD_DEBUG)) { panic("%s: ifa %p has no debug structure", __func__, ifa); /* NOTREACHED */ } if (ifa->ifa_debug & IFD_TRASHED) { /* Become a regular mutex, just in case */ IFA_CONVERT_LOCK(ifa); lck_mtx_lock(&in6ifa_trash_lock); TAILQ_REMOVE(&in6ifa_trash_head, in6ifa_dbg, in6ifa_trash_link); lck_mtx_unlock(&in6ifa_trash_lock); ifa->ifa_debug &= ~IFD_TRASHED; } } static void in6_ifaddr_detached(struct ifaddr *ifa) { struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)ifa; IFA_LOCK_ASSERT_HELD(ifa); if (!(ifa->ifa_debug & IFD_DEBUG)) { panic("%s: ifa %p has no debug structure", __func__, ifa); /* NOTREACHED */ } else if (ifa->ifa_debug & IFD_TRASHED) { panic("%s: ifa %p is already in trash list", __func__, ifa); /* NOTREACHED */ } ifa->ifa_debug |= IFD_TRASHED; /* Become a regular mutex, just in case */ IFA_CONVERT_LOCK(ifa); lck_mtx_lock(&in6ifa_trash_lock); TAILQ_INSERT_TAIL(&in6ifa_trash_head, in6ifa_dbg, in6ifa_trash_link); lck_mtx_unlock(&in6ifa_trash_lock); } static void in6_ifaddr_trace(struct ifaddr *ifa, int refhold) { struct in6_ifaddr_dbg *in6ifa_dbg = (struct in6_ifaddr_dbg *)ifa; ctrace_t *tr; u_int32_t idx; u_int16_t *cnt; if (!(ifa->ifa_debug & IFD_DEBUG)) { panic("%s: ifa %p has no debug structure", __func__, ifa); /* NOTREACHED */ } if (refhold) { cnt = &in6ifa_dbg->in6ifa_refhold_cnt; tr = in6ifa_dbg->in6ifa_refhold; } else { cnt = &in6ifa_dbg->in6ifa_refrele_cnt; tr = in6ifa_dbg->in6ifa_refrele; } idx = atomic_add_16_ov(cnt, 1) % IN6IFA_TRACE_HIST_SIZE; ctrace_record(&tr[idx]); } static void in6_ifaddr_set_dadprogress(struct in6_ifaddr *ia) { uint32_t flags = IN6_IFF_TENTATIVE; uint32_t optdad = nd6_optimistic_dad; if (optdad && (ia->ia_ifp->if_eflags & IFEF_IPV6_ROUTER) == 0) { if ((optdad & ND6_OPTIMISTIC_DAD_LINKLOCAL) && IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) flags = IN6_IFF_OPTIMISTIC; else if ((optdad & ND6_OPTIMISTIC_DAD_AUTOCONF) && (ia->ia6_flags & IN6_IFF_AUTOCONF)) { if (ia->ia6_flags & IN6_IFF_TEMPORARY) { if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY) flags = IN6_IFF_OPTIMISTIC; } else { flags = IN6_IFF_OPTIMISTIC; } } else if ((optdad & ND6_OPTIMISTIC_DAD_DYNAMIC) && (ia->ia6_flags & IN6_IFF_DYNAMIC)) { if (ia->ia6_flags & IN6_IFF_TEMPORARY) { if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY) flags = IN6_IFF_OPTIMISTIC; } else { flags = IN6_IFF_OPTIMISTIC; } } } ia->ia6_flags &= ~(IN6_IFF_DUPLICATED | IN6_IFF_DADPROGRESS); ia->ia6_flags |= flags; }