/* * Copyright (c) 2000-2012 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 * $FreeBSD: src/sys/netinet/udp_usrreq.c,v 1.64.2.13 2001/08/08 18:59:54 ghelmer Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if INET6 #include #endif #include #include #include #if INET6 #include #include #endif #include #include #include #include #include #if IPSEC #include #include extern int ipsec_bypass; #endif /*IPSEC*/ #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETUDP, 0) #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETUDP, 2) #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETUDP, 1) #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETUDP, 3) #define DBG_FNC_UDP_INPUT NETDBG_CODE(DBG_NETUDP, (5 << 8)) #define DBG_FNC_UDP_OUTPUT NETDBG_CODE(DBG_NETUDP, (6 << 8) | 1) /* * UDP protocol implementation. * Per RFC 768, August, 1980. */ #ifndef COMPAT_42 static int udpcksum = 1; #else static int udpcksum = 0; /* XXX */ #endif SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW | CTLFLAG_LOCKED, &udpcksum, 0, ""); static u_int32_t udps_in_sw_cksum; SYSCTL_UINT(_net_inet_udp, OID_AUTO, in_sw_cksum, CTLFLAG_RD | CTLFLAG_LOCKED, &udps_in_sw_cksum, 0, "Number of received packets checksummed in software"); static u_int64_t udps_in_sw_cksum_bytes; SYSCTL_QUAD(_net_inet_udp, OID_AUTO, in_sw_cksum_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &udps_in_sw_cksum_bytes, "Amount of received data checksummed in software"); static u_int32_t udps_out_sw_cksum; SYSCTL_UINT(_net_inet_udp, OID_AUTO, out_sw_cksum, CTLFLAG_RD | CTLFLAG_LOCKED, &udps_out_sw_cksum, 0, "Number of transmitted packets checksummed in software"); static u_int64_t udps_out_sw_cksum_bytes; SYSCTL_QUAD(_net_inet_udp, OID_AUTO, out_sw_cksum_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &udps_out_sw_cksum_bytes, "Amount of transmitted data checksummed in software"); int log_in_vain = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW | CTLFLAG_LOCKED, &log_in_vain, 0, "Log all incoming UDP packets"); static int blackhole = 0; SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW | CTLFLAG_LOCKED, &blackhole, 0, "Do not send port unreachables for refused connects"); struct inpcbhead udb; /* from udp_var.h */ #define udb6 udb /* for KAME src sync over BSD*'s */ struct inpcbinfo udbinfo; #ifndef UDBHASHSIZE #define UDBHASHSIZE 16 #endif extern int esp_udp_encap_port; extern void ipfwsyslog( int level, const char *format,...); extern int fw_verbose; static int udp_gc_done = FALSE; /* Garbage collection performed last slowtimo */ #if IPFIREWALL #define log_in_vain_log( a ) { \ if ( (log_in_vain == 3 ) && (fw_verbose == 2)) { /* Apple logging, log to ipfw.log */ \ ipfwsyslog a ; \ } \ else log a ; \ } #else #define log_in_vain_log( a ) { log a; } #endif struct udpstat udpstat; /* from udp_var.h */ SYSCTL_STRUCT(_net_inet_udp, UDPCTL_STATS, stats, CTLFLAG_RD | CTLFLAG_LOCKED, &udpstat, udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); SYSCTL_INT(_net_inet_udp, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED, &udbinfo.ipi_count, 0, "Number of active PCBs"); __private_extern__ int udp_use_randomport = 1; SYSCTL_INT(_net_inet_udp, OID_AUTO, randomize_ports, CTLFLAG_RW | CTLFLAG_LOCKED, &udp_use_randomport, 0, "Randomize UDP port numbers"); #if INET6 struct udp_in6 { struct sockaddr_in6 uin6_sin; u_char uin6_init_done : 1; }; struct udp_ip6 { struct ip6_hdr uip6_ip6; u_char uip6_init_done : 1; }; static void ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip); static void udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off, struct sockaddr_in *pudp_in, struct udp_in6 *pudp_in6, struct udp_ip6 *pudp_ip6); #else static void udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off, struct sockaddr_in *pudp_in); #endif static int udp_detach(struct socket *so); static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, struct mbuf *, struct proc *); extern int ChkAddressOK( __uint32_t dstaddr, __uint32_t srcaddr ); void udp_init() { vm_size_t str_size; struct inpcbinfo *pcbinfo; LIST_INIT(&udb); udbinfo.listhead = &udb; udbinfo.hashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.hashmask); udbinfo.porthashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.porthashmask); #ifdef __APPLE__ str_size = (vm_size_t) sizeof(struct inpcb); udbinfo.ipi_zone = (void *) zinit(str_size, 80000*str_size, 8192, "udpcb"); pcbinfo = &udbinfo; /* * allocate lock group attribute and group for udp pcb mutexes */ pcbinfo->mtx_grp_attr = lck_grp_attr_alloc_init(); pcbinfo->mtx_grp = lck_grp_alloc_init("udppcb", pcbinfo->mtx_grp_attr); pcbinfo->mtx_attr = lck_attr_alloc_init(); if ((pcbinfo->mtx = lck_rw_alloc_init(pcbinfo->mtx_grp, pcbinfo->mtx_attr)) == NULL) return; /* pretty much dead if this fails... */ #else udbinfo.ipi_zone = zinit("udpcb", sizeof(struct inpcb), maxsockets, ZONE_INTERRUPT, 0); #endif } void udp_input(m, iphlen) register struct mbuf *m; int iphlen; { register struct ip *ip; register struct udphdr *uh; register struct inpcb *inp; struct mbuf *opts = 0; int len, isbroadcast; struct ip save_ip; struct sockaddr *append_sa; struct inpcbinfo *pcbinfo = &udbinfo; struct sockaddr_in udp_in = { sizeof (udp_in), AF_INET, 0, { 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 } }; struct ip_moptions *imo = NULL; int foundmembership = 0, ret = 0; #if INET6 struct udp_in6 udp_in6 = { { sizeof (udp_in6.uin6_sin), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }, 0 }; struct udp_ip6 udp_ip6; #endif /* INET6 */ struct ifnet *ifp = (m->m_pkthdr.rcvif != NULL) ? m->m_pkthdr.rcvif: NULL; udpstat.udps_ipackets++; KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_START, 0,0,0,0,0); if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16) m->m_pkthdr.csum_flags = 0; /* invalidate hwcksum for UDP */ /* Expect 32-bit aligned data pointer on strict-align platforms */ MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); /* * Strip IP options, if any; should skip this, * make available to user, and use on returned packets, * but we don't yet have a way to check the checksum * with options still present. */ if (iphlen > sizeof (struct ip)) { ip_stripoptions(m, (struct mbuf *)0); iphlen = sizeof(struct ip); } /* * Get IP and UDP header together in first mbuf. */ ip = mtod(m, struct ip *); if (m->m_len < iphlen + sizeof(struct udphdr)) { if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) { udpstat.udps_hdrops++; KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0); return; } ip = mtod(m, struct ip *); } uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen); /* destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) { if (ifp->if_udp_stat != NULL) atomic_add_64(&ifp->if_udp_stat->port0, 1); goto bad; } KERNEL_DEBUG(DBG_LAYER_IN_BEG, uh->uh_dport, uh->uh_sport, ip->ip_src.s_addr, ip->ip_dst.s_addr, uh->uh_ulen); /* * Make mbuf data length reflect UDP length. * If not enough data to reflect UDP length, drop. */ len = ntohs((u_short)uh->uh_ulen); if (ip->ip_len != len) { if (len > ip->ip_len || len < sizeof(struct udphdr)) { udpstat.udps_badlen++; if (ifp->if_udp_stat != NULL) atomic_add_64(&ifp->if_udp_stat->badlength, 1); goto bad; } m_adj(m, len - ip->ip_len); /* ip->ip_len = len; */ } /* * Save a copy of the IP header in case we want restore it * for sending an ICMP error message in response. */ save_ip = *ip; /* * Checksum extended UDP header and data. */ if (uh->uh_sum) { if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) uh->uh_sum = m->m_pkthdr.csum_data; else goto doudpcksum; uh->uh_sum ^= 0xffff; } else { char b[9]; doudpcksum: bcopy(((struct ipovly *)ip)->ih_x1, b, sizeof (((struct ipovly *)ip)->ih_x1)); bzero(((struct ipovly *)ip)->ih_x1, sizeof (((struct ipovly *)ip)->ih_x1)); ((struct ipovly *)ip)->ih_len = uh->uh_ulen; uh->uh_sum = in_cksum(m, len + sizeof (struct ip)); bcopy(b, ((struct ipovly *)ip)->ih_x1, sizeof (((struct ipovly *)ip)->ih_x1)); udp_in_cksum_stats(len); } if (uh->uh_sum) { udpstat.udps_badsum++; if (ifp->if_udp_stat != NULL) atomic_add_64(&ifp->if_udp_stat->badchksum, 1); m_freem(m); KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0); return; } } #ifndef __APPLE__ else udpstat.udps_nosum++; #endif isbroadcast = in_broadcast(ip->ip_dst, ifp); if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || isbroadcast) { int reuse_sock = 0, mcast_delivered = 0; lck_rw_lock_shared(pcbinfo->mtx); /* * Deliver a multicast or broadcast datagram to *all* sockets * for which the local and remote addresses and ports match * those of the incoming datagram. This allows more than * one process to receive multi/broadcasts on the same port. * (This really ought to be done for unicast datagrams as * well, but that would cause problems with existing * applications that open both address-specific sockets and * a wildcard socket listening to the same port -- they would * end up receiving duplicates of every unicast datagram. * Those applications open the multiple sockets to overcome an * inadequacy of the UDP socket interface, but for backwards * compatibility we avoid the problem here rather than * fixing the interface. Maybe 4.5BSD will remedy this?) */ /* * Construct sockaddr format source address. */ udp_in.sin_port = uh->uh_sport; udp_in.sin_addr = ip->ip_src; /* * Locate pcb(s) for datagram. * (Algorithm copied from raw_intr().) */ #if INET6 udp_in6.uin6_init_done = udp_ip6.uip6_init_done = 0; #endif LIST_FOREACH(inp, &udb, inp_list) { if (inp->inp_socket == NULL) continue; if (inp != sotoinpcb(inp->inp_socket)) panic("udp_input: bad so back ptr inp=%p\n", inp); #if INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (ip_restrictrecvif && ifp != NULL && (ifp->if_eflags & IFEF_RESTRICTED_RECV) && !(inp->inp_flags & INP_RECV_ANYIF)) continue; if ((inp->inp_moptions == NULL) && (ntohl(ip->ip_dst.s_addr) != INADDR_ALLHOSTS_GROUP) && (isbroadcast == 0) ) continue; if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) { continue; } udp_lock(inp->inp_socket, 1, 0); if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { udp_unlock(inp->inp_socket, 1, 0); continue; } if (inp->inp_lport != uh->uh_dport) { udp_unlock(inp->inp_socket, 1, 0); continue; } if (inp->inp_laddr.s_addr != INADDR_ANY) { if (inp->inp_laddr.s_addr != ip->ip_dst.s_addr) { udp_unlock(inp->inp_socket, 1, 0); continue; } } if (inp->inp_faddr.s_addr != INADDR_ANY) { if (inp->inp_faddr.s_addr != ip->ip_src.s_addr || inp->inp_fport != uh->uh_sport) { udp_unlock(inp->inp_socket, 1, 0); continue; } } if (isbroadcast == 0 && (ntohl(ip->ip_dst.s_addr) != INADDR_ALLHOSTS_GROUP)) { if((imo = inp->inp_moptions) == NULL) { udp_unlock(inp->inp_socket, 1, 0); continue; } else { struct sockaddr_in group; int blocked; IMO_LOCK(imo); bzero(&group, sizeof(struct sockaddr_in)); group.sin_len = sizeof(struct sockaddr_in); group.sin_family = AF_INET; group.sin_addr = ip->ip_dst; blocked = imo_multi_filter(imo, ifp, (struct sockaddr *)&group, (struct sockaddr *)&udp_in); if (blocked == MCAST_PASS) foundmembership = 1; IMO_UNLOCK(imo); if (!foundmembership) { udp_unlock(inp->inp_socket, 1, 0); continue; } foundmembership = 0; } } reuse_sock = inp->inp_socket->so_options& (SO_REUSEPORT|SO_REUSEADDR); { #if IPSEC int skipit = 0; /* check AH/ESP integrity. */ if (ipsec_bypass == 0) { if (ipsec4_in_reject_so(m, inp->inp_socket)) { IPSEC_STAT_INCREMENT(ipsecstat.in_polvio); /* do not inject data to pcb */ skipit = 1; } } if (skipit == 0) #endif /*IPSEC*/ { struct mbuf *n = NULL; if (reuse_sock) n = m_copy(m, 0, M_COPYALL); #if INET6 udp_append(inp, ip, m, iphlen + sizeof(struct udphdr), &udp_in, &udp_in6, &udp_ip6); #else udp_append(inp, ip, m, iphlen + sizeof(struct udphdr), &udp_in); #endif /* INET6 */ mcast_delivered++; m = n; } udp_unlock(inp->inp_socket, 1, 0); } /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids searching * through all pcbs in the common case of a non-shared * port. It assumes that an application will never * clear these options after setting them. */ if (reuse_sock == 0 || m == NULL) break; /* * Expect 32-bit aligned data pointer on strict-align * platforms. */ MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); /* * Recompute IP and UDP header pointers for new mbuf */ ip = mtod(m, struct ip *); uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen); } lck_rw_done(pcbinfo->mtx); if (mcast_delivered == 0) { /* * No matching pcb found; discard datagram. * (No need to send an ICMP Port Unreachable * for a broadcast or multicast datgram.) */ udpstat.udps_noportbcast++; if (ifp->if_udp_stat != NULL) atomic_add_64(&ifp->if_udp_stat->port_unreach, 1); goto bad; } if (m != NULL) /* free the extra copy of mbuf or skipped by IPSec */ m_freem(m); KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0); return; } #if IPSEC /* * UDP to port 4500 with a payload where the first four bytes are * not zero is a UDP encapsulated IPSec packet. Packets where * the payload is one byte and that byte is 0xFF are NAT keepalive * packets. Decapsulate the ESP packet and carry on with IPSec input * or discard the NAT keep-alive. */ if (ipsec_bypass == 0 && (esp_udp_encap_port & 0xFFFF) != 0 && uh->uh_dport == ntohs((u_short)esp_udp_encap_port)) { int payload_len = len - sizeof(struct udphdr) > 4 ? 4 : len - sizeof(struct udphdr); if (m->m_len < iphlen + sizeof(struct udphdr) + payload_len) { if ((m = m_pullup(m, iphlen + sizeof(struct udphdr) + payload_len)) == 0) { udpstat.udps_hdrops++; KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0); return; } /* * Expect 32-bit aligned data pointer on strict-align * platforms. */ MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); ip = mtod(m, struct ip *); uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen); } /* Check for NAT keepalive packet */ if (payload_len == 1 && *(u_int8_t*)((caddr_t)uh + sizeof(struct udphdr)) == 0xFF) { m_freem(m); KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0); return; } else if (payload_len == 4 && *(u_int32_t*)(void *)((caddr_t)uh + sizeof(struct udphdr)) != 0) { /* UDP encapsulated IPSec packet to pass through NAT */ KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0); /* preserve the udp header */ esp4_input(m, iphlen + sizeof(struct udphdr)); return; } } #endif /* * Locate pcb for datagram. */ inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport, ip->ip_dst, uh->uh_dport, 1, ifp); if (inp == NULL) { if (ifp->if_udp_stat != NULL) atomic_add_64(&ifp->if_udp_stat->port_unreach, 1); if (log_in_vain) { char buf[MAX_IPv4_STR_LEN]; char buf2[MAX_IPv4_STR_LEN]; /* check src and dst address */ if (log_in_vain != 3) log(LOG_INFO, "Connection attempt to UDP %s:%d from %s:%d\n", inet_ntop(AF_INET, &ip->ip_dst, buf, sizeof(buf)), ntohs(uh->uh_dport), inet_ntop(AF_INET, &ip->ip_src, buf2, sizeof(buf2)), ntohs(uh->uh_sport)); else if (!(m->m_flags & (M_BCAST | M_MCAST)) && ip->ip_dst.s_addr != ip->ip_src.s_addr) log_in_vain_log((LOG_INFO, "Stealth Mode connection attempt to UDP %s:%d from %s:%d\n", inet_ntop(AF_INET, &ip->ip_dst, buf, sizeof(buf)), ntohs(uh->uh_dport), inet_ntop(AF_INET, &ip->ip_src, buf2, sizeof(buf2)), ntohs(uh->uh_sport))) } udpstat.udps_noport++; if (m->m_flags & (M_BCAST | M_MCAST)) { udpstat.udps_noportbcast++; goto bad; } #if ICMP_BANDLIM if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) goto bad; #endif if (blackhole) if (ifp && ifp->if_type != IFT_LOOP) goto bad; *ip = save_ip; ip->ip_len += iphlen; icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0); return; } udp_lock(inp->inp_socket, 1, 0); if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { udp_unlock(inp->inp_socket, 1, 0); if (ifp->if_udp_stat != NULL) atomic_add_64(&ifp->if_udp_stat->cleanup, 1); goto bad; } #if IPSEC if (ipsec_bypass == 0 && inp != NULL) { if (ipsec4_in_reject_so(m, inp->inp_socket)) { IPSEC_STAT_INCREMENT(ipsecstat.in_polvio); udp_unlock(inp->inp_socket, 1, 0); if (ifp->if_udp_stat != NULL) atomic_add_64(&ifp->if_udp_stat->badipsec, 1); goto bad; } } #endif /*IPSEC*/ /* * Construct sockaddr format source address. * Stuff source address and datagram in user buffer. */ udp_in.sin_port = uh->uh_sport; udp_in.sin_addr = ip->ip_src; if ((inp->inp_flags & INP_CONTROLOPTS) != 0 || (inp->inp_socket->so_options & SO_TIMESTAMP) != 0 || (inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) { #if INET6 if (inp->inp_vflag & INP_IPV6) { int savedflags; ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip); savedflags = inp->inp_flags; inp->inp_flags &= ~INP_UNMAPPABLEOPTS; ret = ip6_savecontrol(inp, m, &opts); inp->inp_flags = savedflags; } else #endif { ret = ip_savecontrol(inp, &opts, ip, m); } if (ret != 0) { udp_unlock(inp->inp_socket, 1, 0); goto bad; } } m_adj(m, iphlen + sizeof(struct udphdr)); KERNEL_DEBUG(DBG_LAYER_IN_END, uh->uh_dport, uh->uh_sport, save_ip.ip_src.s_addr, save_ip.ip_dst.s_addr, uh->uh_ulen); #if INET6 if (inp->inp_vflag & INP_IPV6) { in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin); append_sa = (struct sockaddr *)&udp_in6.uin6_sin; } else #endif append_sa = (struct sockaddr *)&udp_in; if (nstat_collect) { locked_add_64(&inp->inp_stat->rxpackets, 1); locked_add_64(&inp->inp_stat->rxbytes, m->m_pkthdr.len); } so_recv_data_stat(inp->inp_socket, m, 0); if (sbappendaddr(&inp->inp_socket->so_rcv, append_sa, m, opts, NULL) == 0) { udpstat.udps_fullsock++; } else { sorwakeup(inp->inp_socket); } udp_unlock(inp->inp_socket, 1, 0); KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0); return; bad: m_freem(m); if (opts) m_freem(opts); KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0); return; } #if INET6 static void ip_2_ip6_hdr(ip6, ip) struct ip6_hdr *ip6; struct ip *ip; { bzero(ip6, sizeof(*ip6)); ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_plen = ip->ip_len; ip6->ip6_nxt = ip->ip_p; ip6->ip6_hlim = ip->ip_ttl; if (ip->ip_src.s_addr) { ip6->ip6_src.s6_addr32[2] = IPV6_ADDR_INT32_SMP; ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr; } if (ip->ip_dst.s_addr) { ip6->ip6_dst.s6_addr32[2] = IPV6_ADDR_INT32_SMP; ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr; } } #endif /* * subroutine of udp_input(), mainly for source code readability. */ static void #if INET6 udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off, struct sockaddr_in *pudp_in, struct udp_in6 *pudp_in6, struct udp_ip6 *pudp_ip6) #else udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off, struct sockaddr_in *pudp_in) #endif { struct sockaddr *append_sa; struct mbuf *opts = 0; int ret = 0; #if CONFIG_MACF_NET if (mac_inpcb_check_deliver(last, n, AF_INET, SOCK_DGRAM) != 0) { m_freem(n); return; } #endif if ((last->inp_flags & INP_CONTROLOPTS) != 0 || (last->inp_socket->so_options & SO_TIMESTAMP) != 0 || (last->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) { #if INET6 if (last->inp_vflag & INP_IPV6) { int savedflags; if (pudp_ip6->uip6_init_done == 0) { ip_2_ip6_hdr(&pudp_ip6->uip6_ip6, ip); pudp_ip6->uip6_init_done = 1; } savedflags = last->inp_flags; last->inp_flags &= ~INP_UNMAPPABLEOPTS; ret = ip6_savecontrol(last, n, &opts); if (ret != 0) { last->inp_flags = savedflags; goto error; } last->inp_flags = savedflags; } else #endif { ret = ip_savecontrol(last, &opts, ip, n); if (ret != 0) { goto error; } } } #if INET6 if (last->inp_vflag & INP_IPV6) { if (pudp_in6->uin6_init_done == 0) { in6_sin_2_v4mapsin6(pudp_in, &pudp_in6->uin6_sin); pudp_in6->uin6_init_done = 1; } append_sa = (struct sockaddr *)&pudp_in6->uin6_sin; } else #endif append_sa = (struct sockaddr *)pudp_in; if (nstat_collect) { locked_add_64(&last->inp_stat->rxpackets, 1); locked_add_64(&last->inp_stat->rxbytes, n->m_pkthdr.len); } so_recv_data_stat(last->inp_socket, n, 0); m_adj(n, off); if (sbappendaddr(&last->inp_socket->so_rcv, append_sa, n, opts, NULL) == 0) { udpstat.udps_fullsock++; } else { sorwakeup(last->inp_socket); } return; error: m_freem(n); m_freem(opts); return; } /* * Notify a udp user of an asynchronous error; * just wake up so that they can collect error status. */ void udp_notify(inp, errno) register struct inpcb *inp; int errno; { inp->inp_socket->so_error = errno; sorwakeup(inp->inp_socket); sowwakeup(inp->inp_socket); } void udp_ctlinput(cmd, sa, vip) int cmd; struct sockaddr *sa; void *vip; { struct ip *ip = vip; void (*notify)(struct inpcb *, int) = udp_notify; struct in_addr faddr; struct inpcb *inp; faddr = ((struct sockaddr_in *)(void *)sa)->sin_addr; if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) return; if (PRC_IS_REDIRECT(cmd)) { ip = 0; notify = in_rtchange; } else if (cmd == PRC_HOSTDEAD) ip = 0; else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) return; if (ip) { struct udphdr uh; bcopy(((caddr_t)ip + (ip->ip_hl << 2)), &uh, sizeof (uh)); inp = in_pcblookup_hash(&udbinfo, faddr, uh.uh_dport, ip->ip_src, uh.uh_sport, 0, NULL); if (inp != NULL && inp->inp_socket != NULL) { udp_lock(inp->inp_socket, 1, 0); if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { udp_unlock(inp->inp_socket, 1, 0); return; } (*notify)(inp, inetctlerrmap[cmd]); udp_unlock(inp->inp_socket, 1, 0); } } else in_pcbnotifyall(&udbinfo, faddr, inetctlerrmap[cmd], notify); } int udp_ctloutput(struct socket *so, struct sockopt *sopt) { int error, optval; struct inpcb *inp; /* Allow at this level */ if (sopt->sopt_level != IPPROTO_UDP && !(sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_FLUSH)) return (ip_ctloutput(so, sopt)); error = 0; inp = sotoinpcb(so); switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { case UDP_NOCKSUM: /* This option is settable only for UDP over IPv4 */ if (!(inp->inp_vflag & INP_IPV4)) { error = EINVAL; break; } if ((error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval))) != 0) break; if (optval != 0) inp->inp_flags |= INP_UDP_NOCKSUM; else inp->inp_flags &= ~INP_UDP_NOCKSUM; break; case SO_FLUSH: if ((error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval))) != 0) break; error = inp_flush(inp, optval); break; default: error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (sopt->sopt_name) { case UDP_NOCKSUM: optval = inp->inp_flags & INP_UDP_NOCKSUM; break; default: error = ENOPROTOOPT; break; } if (error == 0) error = sooptcopyout(sopt, &optval, sizeof (optval)); break; } return (error); } static int udp_pcblist SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int error, i, n; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ lck_rw_lock_exclusive(udbinfo.mtx); if (req->oldptr == USER_ADDR_NULL) { n = udbinfo.ipi_count; req->oldidx = 2 * (sizeof xig) + (n + n/8) * sizeof(struct xinpcb); lck_rw_done(udbinfo.mtx); return 0; } if (req->newptr != USER_ADDR_NULL) { lck_rw_done(udbinfo.mtx); return EPERM; } /* * OK, now we're committed to doing something. */ gencnt = udbinfo.ipi_gencnt; n = udbinfo.ipi_count; bzero(&xig, sizeof(xig)); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) { lck_rw_done(udbinfo.mtx); return error; } /* * We are done if there is no pcb */ if (n == 0) { lck_rw_done(udbinfo.mtx); return 0; } inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK); if (inp_list == 0) { lck_rw_done(udbinfo.mtx); return ENOMEM; } for (inp = LIST_FIRST(udbinfo.listhead), i = 0; inp && i < n; inp = LIST_NEXT(inp, inp_list)) { if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) inp_list[i++] = inp; } n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) { struct xinpcb xi; bzero(&xi, sizeof(xi)); xi.xi_len = sizeof xi; /* XXX should avoid extra copy */ inpcb_to_compat(inp, &xi.xi_inp); if (inp->inp_socket) sotoxsocket(inp->inp_socket, &xi.xi_socket); error = SYSCTL_OUT(req, &xi, sizeof xi); } } if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * them before, they know that something happened * while we were processing this request, and it * might be necessary to retry. */ bzero(&xig, sizeof(xig)); xig.xig_len = sizeof xig; xig.xig_gen = udbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = udbinfo.ipi_count; error = SYSCTL_OUT(req, &xig, sizeof xig); } FREE(inp_list, M_TEMP); lck_rw_done(udbinfo.mtx); return error; } SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist, "S,xinpcb", "List of active UDP sockets"); #if !CONFIG_EMBEDDED static int udp_pcblist64 SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int error, i, n; struct inpcb *inp, **inp_list; inp_gen_t gencnt; struct xinpgen xig; /* * The process of preparing the TCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ lck_rw_lock_shared(udbinfo.mtx); if (req->oldptr == USER_ADDR_NULL) { n = udbinfo.ipi_count; req->oldidx = 2 * (sizeof xig) + (n + n/8) * sizeof(struct xinpcb64); lck_rw_done(udbinfo.mtx); return 0; } if (req->newptr != USER_ADDR_NULL) { lck_rw_done(udbinfo.mtx); return EPERM; } /* * OK, now we're committed to doing something. */ gencnt = udbinfo.ipi_gencnt; n = udbinfo.ipi_count; bzero(&xig, sizeof(xig)); xig.xig_len = sizeof xig; xig.xig_count = n; xig.xig_gen = gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) { lck_rw_done(udbinfo.mtx); return error; } /* * We are done if there is no pcb */ if (n == 0) { lck_rw_done(udbinfo.mtx); return 0; } inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK); if (inp_list == 0) { lck_rw_done(udbinfo.mtx); return ENOMEM; } for (inp = LIST_FIRST(udbinfo.listhead), i = 0; inp && i < n; inp = LIST_NEXT(inp, inp_list)) { if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) inp_list[i++] = inp; } n = i; error = 0; for (i = 0; i < n; i++) { inp = inp_list[i]; if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) { struct xinpcb64 xi; bzero(&xi, sizeof(xi)); xi.xi_len = sizeof xi; inpcb_to_xinpcb64(inp, &xi); if (inp->inp_socket) sotoxsocket64(inp->inp_socket, &xi.xi_socket); error = SYSCTL_OUT(req, &xi, sizeof xi); } } if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * her before, she knows that something happened * while we were processing this request, and it * might be necessary to retry. */ bzero(&xig, sizeof(xig)); xig.xig_len = sizeof xig; xig.xig_gen = udbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = udbinfo.ipi_count; error = SYSCTL_OUT(req, &xig, sizeof xig); } FREE(inp_list, M_TEMP); lck_rw_done(udbinfo.mtx); return error; } SYSCTL_PROC(_net_inet_udp, OID_AUTO, pcblist64, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist64, "S,xinpcb64", "List of active UDP sockets"); #endif /* !CONFIG_EMBEDDED */ static int udp_pcblist_n SYSCTL_HANDLER_ARGS { #pragma unused(oidp, arg1, arg2) int error = 0; error = get_pcblist_n(IPPROTO_UDP, req, &udbinfo); return error; } SYSCTL_PROC(_net_inet_udp, OID_AUTO, pcblist_n, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist_n, "S,xinpcb_n", "List of active UDP sockets"); __private_extern__ void udp_get_ports_used(unsigned int ifindex, uint8_t *bitfield) { inpcb_get_ports_used(ifindex, bitfield, &udbinfo); } __private_extern__ uint32_t udp_count_opportunistic(unsigned int ifindex, u_int32_t flags) { return inpcb_count_opportunistic(ifindex, &udbinfo, flags); } static __inline__ u_int16_t get_socket_id(struct socket * s) { u_int16_t val; if (s == NULL) { return (0); } val = (u_int16_t)(((uintptr_t)s) / sizeof(struct socket)); if (val == 0) { val = 0xffff; } return (val); } static int udp_check_pktinfo(struct mbuf *control, struct ifnet **outif, struct in_addr *laddr) { struct cmsghdr *cm = 0; struct in_pktinfo *pktinfo; struct ifnet *ifp; /* * XXX: Currently, we assume all the optional information is stored * in a single mbuf. */ if (control->m_next) return (EINVAL); if (control->m_len < CMSG_LEN(0)) return (EINVAL); for (cm = M_FIRST_CMSGHDR(control); cm; cm = M_NXT_CMSGHDR(control, cm)) { if (cm->cmsg_len < sizeof(struct cmsghdr) || cm->cmsg_len > control->m_len) return (EINVAL); if (cm->cmsg_level != IPPROTO_IP || cm->cmsg_type != IP_PKTINFO) continue; if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_pktinfo))) return (EINVAL); pktinfo = (struct in_pktinfo *)(void *)CMSG_DATA(cm); /* Check for a valid ifindex in pktinfo */ ifnet_head_lock_shared(); if (pktinfo->ipi_ifindex > if_index) { ifnet_head_done(); return (ENXIO); } /* If ipi_ifindex is specified it takes precedence over ipi_spec_dst */ if (pktinfo->ipi_ifindex) { ifp = ifindex2ifnet[pktinfo->ipi_ifindex]; if (ifp == NULL) { ifnet_head_done(); return (ENXIO); } ifnet_head_done(); if (outif != NULL) *outif = ifp; laddr->s_addr = INADDR_ANY; break; } ifnet_head_done(); /* Use the provided ipi_spec_dst address for temp source address */ if (outif != NULL) *outif = NULL; *laddr = pktinfo->ipi_spec_dst; break; } return (0); } static int udp_output(inp, m, addr, control, p) register struct inpcb *inp; struct mbuf *m; struct sockaddr *addr; struct mbuf *control; struct proc *p; { register struct udpiphdr *ui; register int len = m->m_pkthdr.len; struct sockaddr_in *sin; struct in_addr origladdr, laddr, faddr, pi_laddr; u_short lport, fport; struct sockaddr_in ifaddr; int error = 0, udp_dodisconnect = 0, pktinfo = 0; struct socket *so = inp->inp_socket; int soopts = 0; struct mbuf *inpopts; struct ip_moptions *mopts; struct route ro; struct ip_out_args ipoa = { IFSCOPE_NONE, { 0 }, IPOAF_SELECT_SRCIF }; struct ifnet *outif = NULL; struct flowadv *adv = &ipoa.ipoa_flowadv; mbuf_svc_class_t msc = MBUF_SC_UNSPEC; struct ifnet *origoutifp; int flowadv = 0; /* Enable flow advisory only when connected */ flowadv = (so->so_state & SS_ISCONNECTED) ? 1 : 0; pi_laddr.s_addr = INADDR_ANY; KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_START, 0,0,0,0,0); lck_mtx_assert(&inp->inpcb_mtx, LCK_MTX_ASSERT_OWNED); if (control != NULL) { msc = mbuf_service_class_from_control(control); error = udp_check_pktinfo(control, &outif, &pi_laddr); m_freem(control); if (error) goto release; pktinfo++; if (outif != NULL) ipoa.ipoa_boundif = outif->if_index; } KERNEL_DEBUG(DBG_LAYER_OUT_BEG, inp->inp_fport, inp->inp_lport, inp->inp_laddr.s_addr, inp->inp_faddr.s_addr, (htons((u_short)len + sizeof (struct udphdr)))); if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { error = EMSGSIZE; goto release; } if (flowadv && INP_WAIT_FOR_IF_FEEDBACK(inp)) { /* * The socket is flow-controlled, drop the packets * until the inp is not flow controlled */ error = ENOBUFS; goto release; } /* * If socket was bound to an ifindex, tell ip_output about it. * If the ancillary IP_PKTINFO option contains an interface index, * it takes precedence over the one specified by IP_BOUND_IF. */ if (ipoa.ipoa_boundif == IFSCOPE_NONE && (inp->inp_flags & INP_BOUND_IF)) { outif = inp->inp_boundifp; ipoa.ipoa_boundif = outif->if_index; } if (inp->inp_flags & INP_NO_IFT_CELLULAR) ipoa.ipoa_flags |= IPOAF_NO_CELLULAR; soopts |= IP_OUTARGS; /* If there was a routing change, discard cached route and check * that we have a valid source address. * Reacquire a new source address if INADDR_ANY was specified */ if (inp->inp_route.ro_rt != NULL && inp->inp_route.ro_rt->generation_id != route_generation) { struct in_ifaddr *ia; /* src address is gone? */ if ((ia = ifa_foraddr(inp->inp_laddr.s_addr)) == NULL) { if (((inp->inp_flags & INP_INADDR_ANY) == 0) || (so->so_state & SS_ISCONNECTED)) { /* Rdar://5448998 * If the source address is gone, return an error if: * - the source was specified * - the socket was already connected */ soevent(so, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_NOSRCADDR)); error = EADDRNOTAVAIL; goto release; } else { /* new src will be set later */ inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_last_outifp = NULL; } } if (ia != NULL) IFA_REMREF(&ia->ia_ifa); if (inp->inp_route.ro_rt != NULL) rtfree(inp->inp_route.ro_rt); inp->inp_route.ro_rt = NULL; } origoutifp = inp->inp_last_outifp; /* IP_PKTINFO option check. * If a temporary scope or src address is provided, use it for this packet only * and make sure we forget it after sending this datagram. */ if (pi_laddr.s_addr != INADDR_ANY || (ipoa.ipoa_boundif != IFSCOPE_NONE && pktinfo)) { laddr = pi_laddr; /* temp src address for this datagram only */ origladdr.s_addr = INADDR_ANY; udp_dodisconnect = 1; /* we don't want to keep the laddr or route */ inp->inp_flags |= INP_INADDR_ANY; /* remember we don't care about src addr.*/ } else { origladdr = laddr = inp->inp_laddr; } origoutifp = inp->inp_last_outifp; faddr = inp->inp_faddr; lport = inp->inp_lport; fport = inp->inp_fport; if (addr) { sin = (struct sockaddr_in *)(void *)addr; if (faddr.s_addr != INADDR_ANY) { error = EISCONN; goto release; } if (lport == 0) { /* * In case we don't have a local port set, go through the full connect. * We don't have a local port yet (ie, we can't be looked up), * so it's not an issue if the input runs at the same time we do this. */ if (pi_laddr.s_addr != INADDR_ANY) /* if we have a source address specified, use that */ inp->inp_laddr = pi_laddr; error = in_pcbconnect(inp, addr, p, &outif); /* if a scope is specified, use it */ if (error) { goto release; } laddr = inp->inp_laddr; lport = inp->inp_lport; faddr = inp->inp_faddr; fport = inp->inp_fport; udp_dodisconnect = 1; ipoa.ipoa_boundif = (outif != NULL) ? outif->if_index : IFSCOPE_NONE; } else { /* Fast path case * we have a full address and a local port. * use those info to build the packet without changing the pcb * and interfering with the input path. See 3851370 * Note: if we may have a scope from IP_PKTINFO but the * priority is always given to the scope provided by INP_BOUND_IF. */ if (laddr.s_addr == INADDR_ANY) { if ((error = in_pcbladdr(inp, addr, &ifaddr, &outif)) != 0) goto release; laddr = ifaddr.sin_addr; inp->inp_flags |= INP_INADDR_ANY; /* from pcbconnect: remember we don't care about src addr.*/ ipoa.ipoa_boundif = (outif != NULL) ? outif->if_index : IFSCOPE_NONE; } faddr = sin->sin_addr; fport = sin->sin_port; } } else { if (faddr.s_addr == INADDR_ANY) { error = ENOTCONN; goto release; } } #if CONFIG_MACF_NET mac_mbuf_label_associate_inpcb(inp, m); #endif if (inp->inp_flowhash == 0) inp->inp_flowhash = inp_calc_flowhash(inp); /* * Calculate data length and get a mbuf * for UDP and IP headers. */ M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT); if (m == 0) { error = ENOBUFS; goto abort; } /* * Fill in mbuf with extended UDP header * and addresses and length put into network format. */ ui = mtod(m, struct udpiphdr *); bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ ui->ui_pr = IPPROTO_UDP; ui->ui_src = laddr; ui->ui_dst = faddr; ui->ui_sport = lport; ui->ui_dport = fport; ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); /* * Set up checksum and output datagram. */ if (udpcksum && !(inp->inp_flags & INP_UDP_NOCKSUM)) { ui->ui_sum = in_pseudo(ui->ui_src.s_addr, ui->ui_dst.s_addr, htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP)); m->m_pkthdr.csum_flags = CSUM_UDP; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); } else { ui->ui_sum = 0; } ((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len; ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ ((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */ udpstat.udps_opackets++; KERNEL_DEBUG(DBG_LAYER_OUT_END, ui->ui_dport, ui->ui_sport, ui->ui_src.s_addr, ui->ui_dst.s_addr, ui->ui_ulen); #if IPSEC if (ipsec_bypass == 0 && ipsec_setsocket(m, inp->inp_socket) != 0) { error = ENOBUFS; goto abort; } #endif /*IPSEC*/ inpopts = inp->inp_options; soopts |= (inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST)); mopts = inp->inp_moptions; if (mopts != NULL) { IMO_LOCK(mopts); IMO_ADDREF_LOCKED(mopts); if (IN_MULTICAST(ntohl(ui->ui_dst.s_addr)) && mopts->imo_multicast_ifp != NULL) { inp->inp_last_outifp = mopts->imo_multicast_ifp; } IMO_UNLOCK(mopts); } /* Copy the cached route and take an extra reference */ inp_route_copyout(inp, &ro); set_packet_service_class(m, so, msc, 0); m->m_pkthdr.socket_id = get_socket_id(inp->inp_socket); m->m_pkthdr.m_flowhash = inp->inp_flowhash; m->m_pkthdr.m_fhflags |= PF_TAG_FLOWHASH; if (flowadv) m->m_pkthdr.m_fhflags |= PF_TAG_FLOWADV; if (ipoa.ipoa_boundif != IFSCOPE_NONE) ipoa.ipoa_flags |= IPOAF_BOUND_IF; if (laddr.s_addr != INADDR_ANY) ipoa.ipoa_flags |= IPOAF_BOUND_SRCADDR; inp->inp_sndinprog_cnt++; socket_unlock(so, 0); error = ip_output_list(m, 0, inpopts, &ro, soopts, mopts, &ipoa); m = NULL; socket_lock(so, 0); if (mopts != NULL) IMO_REMREF(mopts); if (error == 0 && nstat_collect) { locked_add_64(&inp->inp_stat->txpackets, 1); locked_add_64(&inp->inp_stat->txbytes, len); } if (flowadv && (adv->code == FADV_FLOW_CONTROLLED || adv->code == FADV_SUSPENDED)) { /* return a hint to the application that * the packet has been dropped */ error = ENOBUFS; inp_set_fc_state(inp, adv->code); } VERIFY(inp->inp_sndinprog_cnt > 0); if ( --inp->inp_sndinprog_cnt == 0) inp->inp_flags &= ~(INP_FC_FEEDBACK); /* Synchronize PCB cached route */ inp_route_copyin(inp, &ro); abort: if (udp_dodisconnect) { /* Always discard the cached route for unconnected socket */ if (inp->inp_route.ro_rt != NULL) { rtfree(inp->inp_route.ro_rt); inp->inp_route.ro_rt = NULL; } in_pcbdisconnect(inp); inp->inp_laddr = origladdr; /* XXX rehash? */ inp->inp_last_outifp = origoutifp; } else if (inp->inp_route.ro_rt != NULL) { struct rtentry *rt = inp->inp_route.ro_rt; struct ifnet *outifp; if (rt->rt_flags & (RTF_MULTICAST|RTF_BROADCAST)) rt = NULL; /* unusable */ /* * Always discard if it is a multicast or broadcast route. */ if (rt == NULL) { rtfree(inp->inp_route.ro_rt); inp->inp_route.ro_rt = NULL; } /* * If the destination route is unicast, update outifp with * that of the route interface used by IP. */ if (rt != NULL && (outifp = rt->rt_ifp) != inp->inp_last_outifp) inp->inp_last_outifp = outifp; } release: if (m != NULL) m_freem(m); KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_END, error, 0,0,0,0); return (error); } u_int32_t udp_sendspace = 9216; /* really max datagram size */ /* 187 1K datagrams (approx 192 KB) */ u_int32_t udp_recvspace = 187 * (1024 + #if INET6 sizeof(struct sockaddr_in6) #else sizeof(struct sockaddr_in) #endif ); /* Check that the values of udp send and recv space do not exceed sb_max */ static int sysctl_udp_sospace(struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { u_int32_t new_value = 0, *space_p = NULL; int changed = 0, error = 0; u_quad_t sb_effective_max = (sb_max/ (MSIZE+MCLBYTES)) * MCLBYTES; switch (oidp->oid_number) { case UDPCTL_RECVSPACE: space_p = &udp_recvspace; break; case UDPCTL_MAXDGRAM: space_p = &udp_sendspace; break; default: return EINVAL; } error = sysctl_io_number(req, *space_p, sizeof(u_int32_t), &new_value, &changed); if (changed) { if (new_value > 0 && new_value <= sb_effective_max) { *space_p = new_value; } else { error = ERANGE; } } return error; } SYSCTL_PROC(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_recvspace, 0, &sysctl_udp_sospace, "IU", "Maximum incoming UDP datagram size"); SYSCTL_PROC(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_sendspace, 0, &sysctl_udp_sospace, "IU", "Maximum outgoing UDP datagram size"); static int udp_abort(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); if (inp == 0) panic("udp_abort: so=%p null inp\n", so); /* ??? possible? panic instead? */ soisdisconnected(so); in_pcbdetach(inp); return 0; } static int udp_attach(struct socket *so, __unused int proto, struct proc *p) { struct inpcb *inp; int error; inp = sotoinpcb(so); if (inp != 0) panic ("udp_attach so=%p inp=%p\n", so, inp); error = in_pcballoc(so, &udbinfo, p); if (error) return error; error = soreserve(so, udp_sendspace, udp_recvspace); if (error) return error; inp = (struct inpcb *)so->so_pcb; inp->inp_vflag |= INP_IPV4; inp->inp_ip_ttl = ip_defttl; if (nstat_collect) nstat_udp_new_pcb(inp); return 0; } static int udp_bind(struct socket *so, struct sockaddr *nam, struct proc *p) { struct inpcb *inp; int error; if (nam->sa_family != 0 && nam->sa_family != AF_INET && nam->sa_family != AF_INET6) { return EAFNOSUPPORT; } inp = sotoinpcb(so); if (inp == 0) return EINVAL; error = in_pcbbind(inp, nam, p); return error; } static int udp_connect(struct socket *so, struct sockaddr *nam, struct proc *p) { struct inpcb *inp; int error; inp = sotoinpcb(so); if (inp == 0) return EINVAL; if (inp->inp_faddr.s_addr != INADDR_ANY) return EISCONN; error = in_pcbconnect(inp, nam, p, NULL); if (error == 0) { soisconnected(so); if (inp->inp_flowhash == 0) inp->inp_flowhash = inp_calc_flowhash(inp); } return error; } static int udp_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); if (inp == 0) panic("udp_detach: so=%p null inp\n", so); /* ??? possible? panic instead? */ in_pcbdetach(inp); inp->inp_state = INPCB_STATE_DEAD; return 0; } static int udp_disconnect(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); if (inp == 0) return EINVAL; if (inp->inp_faddr.s_addr == INADDR_ANY) return ENOTCONN; in_pcbdisconnect(inp); /* reset flow controlled state, just in case */ inp_reset_fc_state(inp); inp->inp_laddr.s_addr = INADDR_ANY; so->so_state &= ~SS_ISCONNECTED; /* XXX */ inp->inp_last_outifp = NULL; return 0; } static int udp_send(struct socket *so, __unused int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct proc *p) { struct inpcb *inp; inp = sotoinpcb(so); if (inp == 0) { m_freem(m); return EINVAL; } return udp_output(inp, m, addr, control, p); } int udp_shutdown(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); if (inp == 0) return EINVAL; socantsendmore(so); return 0; } struct pr_usrreqs udp_usrreqs = { udp_abort, pru_accept_notsupp, udp_attach, udp_bind, udp_connect, pru_connect2_notsupp, in_control, udp_detach, udp_disconnect, pru_listen_notsupp, in_setpeeraddr, pru_rcvd_notsupp, pru_rcvoob_notsupp, udp_send, pru_sense_null, udp_shutdown, in_setsockaddr, sosend, soreceive, pru_sopoll_notsupp }; int udp_lock(struct socket *so, int refcount, void *debug) { void *lr_saved; if (debug == NULL) lr_saved = __builtin_return_address(0); else lr_saved = debug; if (so->so_pcb) { lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_NOTOWNED); lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx); } else { panic("udp_lock: so=%p NO PCB! lr=%p lrh= %s\n", so, lr_saved, solockhistory_nr(so)); /* NOTREACHED */ } if (refcount) so->so_usecount++; so->lock_lr[so->next_lock_lr] = lr_saved; so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX; return (0); } int udp_unlock(struct socket *so, int refcount, void *debug) { void *lr_saved; if (debug == NULL) lr_saved = __builtin_return_address(0); else lr_saved = debug; if (refcount) so->so_usecount--; if (so->so_pcb == NULL) { panic("udp_unlock: so=%p NO PCB! lr=%p lrh= %s\n", so, lr_saved, solockhistory_nr(so)); /* NOTREACHED */ } else { lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED); so->unlock_lr[so->next_unlock_lr] = lr_saved; so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX; lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx); } return (0); } lck_mtx_t * udp_getlock(struct socket *so, __unused int locktype) { struct inpcb *inp = sotoinpcb(so); if (so->so_pcb) return(&inp->inpcb_mtx); else { panic("udp_getlock: so=%p NULL so_pcb lrh= %s\n", so, solockhistory_nr(so)); return (so->so_proto->pr_domain->dom_mtx); } } void udp_slowtimo() { struct inpcb *inp, *inpnxt; struct socket *so; struct inpcbinfo *pcbinfo = &udbinfo; if (lck_rw_try_lock_exclusive(pcbinfo->mtx) == FALSE) { if (udp_gc_done == TRUE) { udp_gc_done = FALSE; return; /* couldn't get the lock, better lock next time */ } lck_rw_lock_exclusive(pcbinfo->mtx); } udp_gc_done = TRUE; for (inp = udb.lh_first; inp != NULL; inp = inpnxt) { inpnxt = inp->inp_list.le_next; if (inp->inp_wantcnt != WNT_STOPUSING) continue; so = inp->inp_socket; if (!lck_mtx_try_lock(&inp->inpcb_mtx)) /* skip if busy, no hurry for cleanup... */ continue; if (so->so_usecount == 0) { if (inp->inp_state != INPCB_STATE_DEAD) { #if INET6 if (INP_CHECK_SOCKAF(so, AF_INET6)) in6_pcbdetach(inp); else #endif /* INET6 */ in_pcbdetach(inp); } in_pcbdispose(inp); } else { lck_mtx_unlock(&inp->inpcb_mtx); } } lck_rw_done(pcbinfo->mtx); } int ChkAddressOK( __uint32_t dstaddr, __uint32_t srcaddr ) { if ( dstaddr == srcaddr ){ return 0; } return 1; } void udp_in_cksum_stats(u_int32_t len) { udps_in_sw_cksum++; udps_in_sw_cksum_bytes += len; } void udp_out_cksum_stats(u_int32_t len) { udps_out_sw_cksum++; udps_out_sw_cksum_bytes += len; }