/* * Copyright (c) 2000-2012 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: @(#)tcp_usrreq.c 8.2 (Berkeley) 1/3/94 * $FreeBSD: src/sys/netinet/tcp_usrreq.c,v 1.51.2.9 2001/08/22 00:59:12 silby Exp $ */ #include #include #include #include #include #if INET6 #include #endif /* INET6 */ #include #include #include #include #include #include #include #include #if INET6 #include #endif #include #if INET6 #include #endif #include #include #if INET6 #include #endif #include #include #include #include #include #include #if TCPDEBUG #include #endif #if IPSEC #include #endif /*IPSEC*/ void tcp_fill_info(struct tcpcb *, struct tcp_info *); errno_t tcp_fill_info_for_info_tuple(struct info_tuple *, struct tcp_info *); int tcp_sysctl_info(struct sysctl_oid *, void *, int , struct sysctl_req *); /* * TCP protocol interface to socket abstraction. */ extern char *tcpstates[]; /* XXX ??? */ static int tcp_attach(struct socket *, struct proc *); static int tcp_connect(struct tcpcb *, struct sockaddr *, struct proc *); #if INET6 static int tcp6_connect(struct tcpcb *, struct sockaddr *, struct proc *); #endif /* INET6 */ static struct tcpcb * tcp_disconnect(struct tcpcb *); static struct tcpcb * tcp_usrclosed(struct tcpcb *); static u_int32_t tcps_in_sw_cksum; SYSCTL_UINT(_net_inet_tcp, OID_AUTO, in_sw_cksum, CTLFLAG_RD | CTLFLAG_LOCKED, &tcps_in_sw_cksum, 0, "Number of received packets checksummed in software"); static u_int64_t tcps_in_sw_cksum_bytes; SYSCTL_QUAD(_net_inet_tcp, OID_AUTO, in_sw_cksum_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &tcps_in_sw_cksum_bytes, "Amount of received data checksummed in software"); static u_int32_t tcps_out_sw_cksum; SYSCTL_UINT(_net_inet_tcp, OID_AUTO, out_sw_cksum, CTLFLAG_RD | CTLFLAG_LOCKED, &tcps_out_sw_cksum, 0, "Number of transmitted packets checksummed in software"); static u_int64_t tcps_out_sw_cksum_bytes; SYSCTL_QUAD(_net_inet_tcp, OID_AUTO, out_sw_cksum_bytes, CTLFLAG_RD | CTLFLAG_LOCKED, &tcps_out_sw_cksum_bytes, "Amount of transmitted data checksummed in software"); extern uint32_t tcp_autorcvbuf_max; extern void tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sb); #if TCPDEBUG #define TCPDEBUG0 int ostate = 0 #define TCPDEBUG1() ostate = tp ? tp->t_state : 0 #define TCPDEBUG2(req) if (tp && (so->so_options & SO_DEBUG)) \ tcp_trace(TA_USER, ostate, tp, 0, 0, req) #else #define TCPDEBUG0 #define TCPDEBUG1() #define TCPDEBUG2(req) #endif SYSCTL_PROC(_net_inet_tcp, OID_AUTO, info, CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY, 0 , 0, tcp_sysctl_info, "S", "TCP info per tuple"); /* * TCP attaches to socket via pru_attach(), reserving space, * and an internet control block. * * Returns: 0 Success * EISCONN * tcp_attach:ENOBUFS * tcp_attach:ENOMEM * tcp_attach:??? [IPSEC specific] */ static int tcp_usr_attach(struct socket *so, __unused int proto, struct proc *p) { int error; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = 0; TCPDEBUG0; TCPDEBUG1(); if (inp) { error = EISCONN; goto out; } error = tcp_attach(so, p); if (error) goto out; if ((so->so_options & SO_LINGER) && so->so_linger == 0) so->so_linger = TCP_LINGERTIME * hz; tp = sototcpcb(so); out: TCPDEBUG2(PRU_ATTACH); return error; } /* * pru_detach() detaches the TCP protocol from the socket. * If the protocol state is non-embryonic, then can't * do this directly: have to initiate a pru_disconnect(), * which may finish later; embryonic TCB's can just * be discarded here. */ static int tcp_usr_detach(struct socket *so) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; TCPDEBUG0; if (inp == 0 || (inp->inp_state == INPCB_STATE_DEAD)) { return EINVAL; /* XXX */ } lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED); tp = intotcpcb(inp); /* In case we got disconnected from the peer */ if (tp == 0) goto out; TCPDEBUG1(); calculate_tcp_clock(); tp = tcp_disconnect(tp); out: TCPDEBUG2(PRU_DETACH); return error; } #define COMMON_START() TCPDEBUG0; \ do { \ if (inp == 0 || (inp->inp_state == INPCB_STATE_DEAD)) { \ return EINVAL; \ } \ tp = intotcpcb(inp); \ TCPDEBUG1(); \ calculate_tcp_clock(); \ } while(0) #define COMMON_END(req) out: TCPDEBUG2(req); return error; goto out /* * Give the socket an address. * * Returns: 0 Success * EINVAL Invalid argument [COMMON_START] * EAFNOSUPPORT Address family not supported * in_pcbbind:EADDRNOTAVAIL Address not available. * in_pcbbind:EINVAL Invalid argument * in_pcbbind:EAFNOSUPPORT Address family not supported [notdef] * in_pcbbind:EACCES Permission denied * in_pcbbind:EADDRINUSE Address in use * in_pcbbind:EAGAIN Resource unavailable, try again * in_pcbbind:EPERM Operation not permitted */ static int tcp_usr_bind(struct socket *so, struct sockaddr *nam, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; struct sockaddr_in *sinp; COMMON_START(); if (nam->sa_family != 0 && nam->sa_family != AF_INET) { error = EAFNOSUPPORT; goto out; } /* * Must check for multicast addresses and disallow binding * to them. */ sinp = (struct sockaddr_in *)(void *)nam; if (sinp->sin_family == AF_INET && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { error = EAFNOSUPPORT; goto out; } error = in_pcbbind(inp, nam, p); if (error) goto out; COMMON_END(PRU_BIND); } #if INET6 static int tcp6_usr_bind(struct socket *so, struct sockaddr *nam, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; struct sockaddr_in6 *sin6p; COMMON_START(); if (nam->sa_family != 0 && nam->sa_family != AF_INET6) { error = EAFNOSUPPORT; goto out; } /* * Must check for multicast addresses and disallow binding * to them. */ sin6p = (struct sockaddr_in6 *)(void *)nam; if (sin6p->sin6_family == AF_INET6 && IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) { error = EAFNOSUPPORT; goto out; } inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { if (IN6_IS_ADDR_UNSPECIFIED(&sin6p->sin6_addr)) inp->inp_vflag |= INP_IPV4; else if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6p); inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; error = in_pcbbind(inp, (struct sockaddr *)&sin, p); goto out; } } error = in6_pcbbind(inp, nam, p); if (error) goto out; COMMON_END(PRU_BIND); } #endif /* INET6 */ /* * Prepare to accept connections. * * Returns: 0 Success * EINVAL [COMMON_START] * in_pcbbind:EADDRNOTAVAIL Address not available. * in_pcbbind:EINVAL Invalid argument * in_pcbbind:EAFNOSUPPORT Address family not supported [notdef] * in_pcbbind:EACCES Permission denied * in_pcbbind:EADDRINUSE Address in use * in_pcbbind:EAGAIN Resource unavailable, try again * in_pcbbind:EPERM Operation not permitted */ static int tcp_usr_listen(struct socket *so, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); if (inp->inp_lport == 0) error = in_pcbbind(inp, (struct sockaddr *)0, p); if (error == 0) tp->t_state = TCPS_LISTEN; COMMON_END(PRU_LISTEN); } #if INET6 static int tcp6_usr_listen(struct socket *so, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); if (inp->inp_lport == 0) { inp->inp_vflag &= ~INP_IPV4; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) inp->inp_vflag |= INP_IPV4; error = in6_pcbbind(inp, (struct sockaddr *)0, p); } if (error == 0) tp->t_state = TCPS_LISTEN; COMMON_END(PRU_LISTEN); } #endif /* INET6 */ /* * Initiate connection to peer. * Create a template for use in transmissions on this connection. * Enter SYN_SENT state, and mark socket as connecting. * Start keep-alive timer, and seed output sequence space. * Send initial segment on connection. */ static int tcp_usr_connect(struct socket *so, struct sockaddr *nam, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; struct sockaddr_in *sinp; TCPDEBUG0; if (inp == 0) return EINVAL; else if (inp->inp_state == INPCB_STATE_DEAD) { if (so->so_error) { error = so->so_error; so->so_error = 0; return error; } else return EINVAL; } tp = intotcpcb(inp); TCPDEBUG1(); calculate_tcp_clock(); if (nam->sa_family != 0 && nam->sa_family != AF_INET) { error = EAFNOSUPPORT; goto out; } /* * Must disallow TCP ``connections'' to multicast addresses. */ sinp = (struct sockaddr_in *)(void *)nam; if (sinp->sin_family == AF_INET && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { error = EAFNOSUPPORT; goto out; } if ((error = tcp_connect(tp, nam, p)) != 0) goto out; error = tcp_output(tp); COMMON_END(PRU_CONNECT); } #if INET6 static int tcp6_usr_connect(struct socket *so, struct sockaddr *nam, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; struct sockaddr_in6 *sin6p; COMMON_START(); if (nam->sa_family != 0 && nam->sa_family != AF_INET6) { error = EAFNOSUPPORT; goto out; } /* * Must disallow TCP ``connections'' to multicast addresses. */ sin6p = (struct sockaddr_in6 *)(void *)nam; if (sin6p->sin6_family == AF_INET6 && IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) { error = EAFNOSUPPORT; goto out; } if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) { struct sockaddr_in sin; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) return (EINVAL); in6_sin6_2_sin(&sin, sin6p); inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; if ((error = tcp_connect(tp, (struct sockaddr *)&sin, p)) != 0) goto out; error = tcp_output(tp); goto out; } inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; if ((error = tcp6_connect(tp, nam, p)) != 0) goto out; error = tcp_output(tp); if (error) goto out; COMMON_END(PRU_CONNECT); } #endif /* INET6 */ /* * Initiate disconnect from peer. * If connection never passed embryonic stage, just drop; * else if don't need to let data drain, then can just drop anyways, * else have to begin TCP shutdown process: mark socket disconnecting, * drain unread data, state switch to reflect user close, and * send segment (e.g. FIN) to peer. Socket will be really disconnected * when peer sends FIN and acks ours. * * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB. */ static int tcp_usr_disconnect(struct socket *so) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED); COMMON_START(); /* In case we got disconnected from the peer */ if (tp == 0) goto out; tp = tcp_disconnect(tp); COMMON_END(PRU_DISCONNECT); } /* * Accept a connection. Essentially all the work is * done at higher levels; just return the address * of the peer, storing through addr. */ static int tcp_usr_accept(struct socket *so, struct sockaddr **nam) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = NULL; TCPDEBUG0; in_setpeeraddr(so, nam); if (so->so_state & SS_ISDISCONNECTED) { error = ECONNABORTED; goto out; } if (inp == 0 || (inp->inp_state == INPCB_STATE_DEAD)) { return (EINVAL); } tp = intotcpcb(inp); TCPDEBUG1(); calculate_tcp_clock(); COMMON_END(PRU_ACCEPT); } #if INET6 static int tcp6_usr_accept(struct socket *so, struct sockaddr **nam) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = NULL; TCPDEBUG0; if (so->so_state & SS_ISDISCONNECTED) { error = ECONNABORTED; goto out; } if (inp == 0 || (inp->inp_state == INPCB_STATE_DEAD)) { return (EINVAL); } tp = intotcpcb(inp); TCPDEBUG1(); calculate_tcp_clock(); in6_mapped_peeraddr(so, nam); COMMON_END(PRU_ACCEPT); } #endif /* INET6 */ /* * Mark the connection as being incapable of further output. * * Returns: 0 Success * EINVAL [COMMON_START] * tcp_output:EADDRNOTAVAIL * tcp_output:ENOBUFS * tcp_output:EMSGSIZE * tcp_output:EHOSTUNREACH * tcp_output:ENETUNREACH * tcp_output:ENETDOWN * tcp_output:ENOMEM * tcp_output:EACCES * tcp_output:EMSGSIZE * tcp_output:ENOBUFS * tcp_output:??? [ignorable: mostly IPSEC/firewall/DLIL] */ static int tcp_usr_shutdown(struct socket *so) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); socantsendmore(so); /* In case we got disconnected from the peer */ if (tp == 0) goto out; tp = tcp_usrclosed(tp); if (tp) error = tcp_output(tp); COMMON_END(PRU_SHUTDOWN); } /* * After a receive, possibly send window update to peer. */ static int tcp_usr_rcvd(struct socket *so, __unused int flags) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); /* In case we got disconnected from the peer */ if (tp == 0) goto out; tcp_sbrcv_trim(tp, &so->so_rcv); tcp_output(tp); COMMON_END(PRU_RCVD); } /* * Do a send by putting data in output queue and updating urgent * marker if URG set. Possibly send more data. Unlike the other * pru_*() routines, the mbuf chains are our responsibility. We * must either enqueue them or free them. The other pru_* routines * generally are caller-frees. * * Returns: 0 Success * ECONNRESET * EINVAL * ENOBUFS * tcp_connect:EADDRINUSE Address in use * tcp_connect:EADDRNOTAVAIL Address not available. * tcp_connect:EINVAL Invalid argument * tcp_connect:EAFNOSUPPORT Address family not supported [notdef] * tcp_connect:EACCES Permission denied * tcp_connect:EAGAIN Resource unavailable, try again * tcp_connect:EPERM Operation not permitted * tcp_output:EADDRNOTAVAIL * tcp_output:ENOBUFS * tcp_output:EMSGSIZE * tcp_output:EHOSTUNREACH * tcp_output:ENETUNREACH * tcp_output:ENETDOWN * tcp_output:ENOMEM * tcp_output:EACCES * tcp_output:EMSGSIZE * tcp_output:ENOBUFS * tcp_output:??? [ignorable: mostly IPSEC/firewall/DLIL] * tcp6_connect:??? [IPV6 only] */ static int tcp_usr_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct proc *p) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; #if INET6 int isipv6; #endif TCPDEBUG0; if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) { /* * OOPS! we lost a race, the TCP session got reset after * we checked SS_CANTSENDMORE, eg: while doing uiomove or a * network interrupt in the non-splnet() section of sosend(). */ if (m) m_freem(m); if (control) m_freem(control); error = ECONNRESET; /* XXX EPIPE? */ tp = NULL; TCPDEBUG1(); goto out; } #if INET6 isipv6 = nam && nam->sa_family == AF_INET6; #endif /* INET6 */ tp = intotcpcb(inp); TCPDEBUG1(); calculate_tcp_clock(); if (control) { /* TCP doesn't do control messages (rights, creds, etc) */ if (control->m_len) { m_freem(control); if (m) m_freem(m); error = EINVAL; goto out; } m_freem(control); /* empty control, just free it */ } if(!(flags & PRUS_OOB)) { sbappendstream(&so->so_snd, m); if (nam && tp->t_state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected, * initialize window to default value, and * initialize maxseg/maxopd using peer's cached * MSS. */ #if INET6 if (isipv6) error = tcp6_connect(tp, nam, p); else #endif /* INET6 */ error = tcp_connect(tp, nam, p); if (error) goto out; tp->snd_wnd = TTCP_CLIENT_SND_WND; tcp_mss(tp, -1, IFSCOPE_NONE); } if (flags & PRUS_EOF) { /* * Close the send side of the connection after * the data is sent. */ socantsendmore(so); tp = tcp_usrclosed(tp); } if (tp != NULL) { if (flags & PRUS_MORETOCOME) tp->t_flags |= TF_MORETOCOME; error = tcp_output(tp); if (flags & PRUS_MORETOCOME) tp->t_flags &= ~TF_MORETOCOME; } } else { if (sbspace(&so->so_snd) == 0) { /* if no space is left in sockbuf, * do not try to squeeze in OOB traffic */ m_freem(m); error = ENOBUFS; goto out; } /* * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section. * Otherwise, snd_up should be one lower. */ sbappendstream(&so->so_snd, m); if (nam && tp->t_state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected, * initialize window to default value, and * initialize maxseg/maxopd using peer's cached * MSS. */ #if INET6 if (isipv6) error = tcp6_connect(tp, nam, p); else #endif /* INET6 */ error = tcp_connect(tp, nam, p); if (error) goto out; tp->snd_wnd = TTCP_CLIENT_SND_WND; tcp_mss(tp, -1, IFSCOPE_NONE); } tp->snd_up = tp->snd_una + so->so_snd.sb_cc; tp->t_force = 1; error = tcp_output(tp); tp->t_force = 0; } COMMON_END((flags & PRUS_OOB) ? PRU_SENDOOB : ((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND)); } /* * Abort the TCP. */ static int tcp_usr_abort(struct socket *so) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); /* In case we got disconnected from the peer */ if (tp == 0) goto out; tp = tcp_drop(tp, ECONNABORTED); so->so_usecount--; COMMON_END(PRU_ABORT); } /* * Receive out-of-band data. * * Returns: 0 Success * EINVAL [COMMON_START] * EINVAL * EWOULDBLOCK */ static int tcp_usr_rcvoob(struct socket *so, struct mbuf *m, int flags) { int error = 0; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp; COMMON_START(); if ((so->so_oobmark == 0 && (so->so_state & SS_RCVATMARK) == 0) || so->so_options & SO_OOBINLINE || tp->t_oobflags & TCPOOB_HADDATA) { error = EINVAL; goto out; } if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) { error = EWOULDBLOCK; goto out; } m->m_len = 1; *mtod(m, caddr_t) = tp->t_iobc; if ((flags & MSG_PEEK) == 0) tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA); COMMON_END(PRU_RCVOOB); } /* xxx - should be const */ struct pr_usrreqs tcp_usrreqs = { tcp_usr_abort, tcp_usr_accept, tcp_usr_attach, tcp_usr_bind, tcp_usr_connect, pru_connect2_notsupp, in_control, tcp_usr_detach, tcp_usr_disconnect, tcp_usr_listen, in_setpeeraddr, tcp_usr_rcvd, tcp_usr_rcvoob, tcp_usr_send, pru_sense_null, tcp_usr_shutdown, in_setsockaddr, sosend, soreceive, pru_sopoll_notsupp }; #if INET6 struct pr_usrreqs tcp6_usrreqs = { tcp_usr_abort, tcp6_usr_accept, tcp_usr_attach, tcp6_usr_bind, tcp6_usr_connect, pru_connect2_notsupp, in6_control, tcp_usr_detach, tcp_usr_disconnect, tcp6_usr_listen, in6_mapped_peeraddr, tcp_usr_rcvd, tcp_usr_rcvoob, tcp_usr_send, pru_sense_null, tcp_usr_shutdown, in6_mapped_sockaddr, sosend, soreceive, pru_sopoll_notsupp }; #endif /* INET6 */ /* * Common subroutine to open a TCP connection to remote host specified * by struct sockaddr_in in mbuf *nam. Call in_pcbbind to assign a local * port number if needed. Call in_pcbladdr to do the routing and to choose * a local host address (interface). If there is an existing incarnation * of the same connection in TIME-WAIT state and if the remote host was * sending CC options and if the connection duration was < MSL, then * truncate the previous TIME-WAIT state and proceed. * Initialize connection parameters and enter SYN-SENT state. * * Returns: 0 Success * EADDRINUSE * EINVAL * in_pcbbind:EADDRNOTAVAIL Address not available. * in_pcbbind:EINVAL Invalid argument * in_pcbbind:EAFNOSUPPORT Address family not supported [notdef] * in_pcbbind:EACCES Permission denied * in_pcbbind:EADDRINUSE Address in use * in_pcbbind:EAGAIN Resource unavailable, try again * in_pcbbind:EPERM Operation not permitted * in_pcbladdr:EINVAL Invalid argument * in_pcbladdr:EAFNOSUPPORT Address family not supported * in_pcbladdr:EADDRNOTAVAIL Address not available */ static int tcp_connect(tp, nam, p) register struct tcpcb *tp; struct sockaddr *nam; struct proc *p; { struct inpcb *inp = tp->t_inpcb, *oinp; struct socket *so = inp->inp_socket; struct tcpcb *otp; struct sockaddr_in *sin = (struct sockaddr_in *)(void *)nam; struct sockaddr_in ifaddr; struct rmxp_tao *taop; struct rmxp_tao tao_noncached; int error; struct ifnet *outif = NULL; if (inp->inp_lport == 0) { error = in_pcbbind(inp, (struct sockaddr *)0, p); if (error) return error; } /* * Cannot simply call in_pcbconnect, because there might be an * earlier incarnation of this same connection still in * TIME_WAIT state, creating an ADDRINUSE error. */ error = in_pcbladdr(inp, nam, &ifaddr, &outif); if (error) return error; tcp_unlock(inp->inp_socket, 0, 0); oinp = in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port, inp->inp_laddr.s_addr != INADDR_ANY ? inp->inp_laddr : ifaddr.sin_addr, inp->inp_lport, 0, NULL); tcp_lock(inp->inp_socket, 0, 0); if (oinp) { if (oinp != inp) /* 4143933: avoid deadlock if inp == oinp */ tcp_lock(oinp->inp_socket, 1, 0); if (in_pcb_checkstate(oinp, WNT_RELEASE, 1) == WNT_STOPUSING) { if (oinp != inp) tcp_unlock(oinp->inp_socket, 1, 0); goto skip_oinp; } if (oinp != inp && (otp = intotcpcb(oinp)) != NULL && otp->t_state == TCPS_TIME_WAIT && ((int)(tcp_now - otp->t_starttime)) < tcp_msl && (otp->t_flags & TF_RCVD_CC)) otp = tcp_close(otp); else { printf("tcp_connect: inp=%p err=EADDRINUSE\n", inp); if (oinp != inp) tcp_unlock(oinp->inp_socket, 1, 0); return EADDRINUSE; } if (oinp != inp) tcp_unlock(oinp->inp_socket, 1, 0); } skip_oinp: if ((inp->inp_laddr.s_addr == INADDR_ANY ? ifaddr.sin_addr.s_addr : inp->inp_laddr.s_addr) == sin->sin_addr.s_addr && inp->inp_lport == sin->sin_port) return EINVAL; if (!lck_rw_try_lock_exclusive(inp->inp_pcbinfo->mtx)) { /*lock inversion issue, mostly with udp multicast packets */ socket_unlock(inp->inp_socket, 0); lck_rw_lock_exclusive(inp->inp_pcbinfo->mtx); socket_lock(inp->inp_socket, 0); } if (inp->inp_laddr.s_addr == INADDR_ANY) { inp->inp_laddr = ifaddr.sin_addr; inp->inp_last_outifp = outif; } inp->inp_faddr = sin->sin_addr; inp->inp_fport = sin->sin_port; in_pcbrehash(inp); lck_rw_done(inp->inp_pcbinfo->mtx); if (inp->inp_flowhash == 0) inp->inp_flowhash = inp_calc_flowhash(inp); tcp_set_max_rwinscale(tp, so); soisconnecting(so); tcpstat.tcps_connattempt++; tp->t_state = TCPS_SYN_SENT; tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, tp->t_keepinit ? tp->t_keepinit : tcp_keepinit); tp->iss = tcp_new_isn(tp); tcp_sendseqinit(tp); if (nstat_collect) nstat_route_connect_attempt(inp->inp_route.ro_rt); /* * Generate a CC value for this connection and * check whether CC or CCnew should be used. */ if ((taop = tcp_gettaocache(tp->t_inpcb)) == NULL) { taop = &tao_noncached; bzero(taop, sizeof(*taop)); } tp->cc_send = CC_INC(tcp_ccgen); if (taop->tao_ccsent != 0 && CC_GEQ(tp->cc_send, taop->tao_ccsent)) { taop->tao_ccsent = tp->cc_send; } else { taop->tao_ccsent = 0; tp->t_flags |= TF_SENDCCNEW; } return 0; } #if INET6 static int tcp6_connect(tp, nam, p) register struct tcpcb *tp; struct sockaddr *nam; struct proc *p; { struct inpcb *inp = tp->t_inpcb, *oinp; struct socket *so = inp->inp_socket; struct tcpcb *otp; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)(void *)nam; struct in6_addr addr6; struct rmxp_tao *taop; struct rmxp_tao tao_noncached; int error = 0; struct ifnet *outif = NULL; if (inp->inp_lport == 0) { error = in6_pcbbind(inp, (struct sockaddr *)0, p); if (error) goto done; } /* * Cannot simply call in_pcbconnect, because there might be an * earlier incarnation of this same connection still in * TIME_WAIT state, creating an ADDRINUSE error. * * in6_pcbladdr() might return an ifp with its reference held * even in the error case, so make sure that it's released * whenever it's non-NULL. */ error = in6_pcbladdr(inp, nam, &addr6, &outif); if (error) goto done; tcp_unlock(inp->inp_socket, 0, 0); oinp = in6_pcblookup_hash(inp->inp_pcbinfo, &sin6->sin6_addr, sin6->sin6_port, IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ? &addr6 : &inp->in6p_laddr, inp->inp_lport, 0, NULL); tcp_lock(inp->inp_socket, 0, 0); if (oinp) { if (oinp != inp && (otp = intotcpcb(oinp)) != NULL && otp->t_state == TCPS_TIME_WAIT && ((int)(tcp_now - otp->t_starttime)) < tcp_msl && (otp->t_flags & TF_RCVD_CC)) { otp = tcp_close(otp); } else { error = EADDRINUSE; goto done; } } if (!lck_rw_try_lock_exclusive(inp->inp_pcbinfo->mtx)) { /*lock inversion issue, mostly with udp multicast packets */ socket_unlock(inp->inp_socket, 0); lck_rw_lock_exclusive(inp->inp_pcbinfo->mtx); socket_lock(inp->inp_socket, 0); } if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { inp->in6p_laddr = addr6; inp->in6p_last_outifp = outif; /* no reference needed */ } inp->in6p_faddr = sin6->sin6_addr; inp->inp_fport = sin6->sin6_port; if ((sin6->sin6_flowinfo & IPV6_FLOWINFO_MASK) != 0) inp->in6p_flowinfo = sin6->sin6_flowinfo; in_pcbrehash(inp); lck_rw_done(inp->inp_pcbinfo->mtx); if (inp->inp_flowhash == 0) inp->inp_flowhash = inp_calc_flowhash(inp); tcp_set_max_rwinscale(tp, so); soisconnecting(so); tcpstat.tcps_connattempt++; tp->t_state = TCPS_SYN_SENT; tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, tp->t_keepinit ? tp->t_keepinit : tcp_keepinit); tp->iss = tcp_new_isn(tp); tcp_sendseqinit(tp); if (nstat_collect) nstat_route_connect_attempt(inp->inp_route.ro_rt); /* * Generate a CC value for this connection and * check whether CC or CCnew should be used. */ if ((taop = tcp_gettaocache(tp->t_inpcb)) == NULL) { taop = &tao_noncached; bzero(taop, sizeof(*taop)); } tp->cc_send = CC_INC(tcp_ccgen); if (taop->tao_ccsent != 0 && CC_GEQ(tp->cc_send, taop->tao_ccsent)) { taop->tao_ccsent = tp->cc_send; } else { taop->tao_ccsent = 0; tp->t_flags |= TF_SENDCCNEW; } done: if (outif != NULL) ifnet_release(outif); return (error); } #endif /* INET6 */ /* * Export TCP internal state information via a struct tcp_info */ __private_extern__ void tcp_fill_info(struct tcpcb *tp, struct tcp_info *ti) { struct inpcb *inp = tp->t_inpcb; bzero(ti, sizeof(*ti)); ti->tcpi_state = tp->t_state; if (tp->t_state > TCPS_LISTEN) { if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP)) ti->tcpi_options |= TCPI_OPT_TIMESTAMPS; if (tp->t_flags & TF_SACK_PERMIT) ti->tcpi_options |= TCPI_OPT_SACK; if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) { ti->tcpi_options |= TCPI_OPT_WSCALE; ti->tcpi_snd_wscale = tp->snd_scale; ti->tcpi_rcv_wscale = tp->rcv_scale; } /* Are we in retranmission episode */ if (tp->snd_max != tp->snd_nxt) ti->tcpi_flags |= TCPI_FLAG_LOSSRECOVERY; else ti->tcpi_flags &= ~TCPI_FLAG_LOSSRECOVERY; ti->tcpi_rto = tp->t_timer[TCPT_REXMT] ? tp->t_rxtcur : 0; ti->tcpi_snd_mss = tp->t_maxseg; ti->tcpi_rcv_mss = tp->t_maxseg; ti->tcpi_rttcur = tp->t_rttcur; ti->tcpi_srtt = tp->t_srtt >> TCP_RTT_SHIFT; ti->tcpi_rttvar = tp->t_rttvar >> TCP_RTTVAR_SHIFT; ti->tcpi_snd_ssthresh = tp->snd_ssthresh; ti->tcpi_snd_cwnd = tp->snd_cwnd; ti->tcpi_snd_sbbytes = tp->t_inpcb->inp_socket->so_snd.sb_cc; ti->tcpi_rcv_space = tp->rcv_wnd; ti->tcpi_snd_wnd = tp->snd_wnd; ti->tcpi_snd_nxt = tp->snd_nxt; ti->tcpi_rcv_nxt = tp->rcv_nxt; /* convert bytes/msec to bits/sec */ if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 && tp->t_bwmeas != NULL) { ti->tcpi_snd_bw = (tp->t_bwmeas->bw_sndbw * 8000); } ti->tcpi_last_outif = (tp->t_inpcb->inp_last_outifp == NULL) ? 0 : tp->t_inpcb->inp_last_outifp->if_index; //atomic_get_64(ti->tcpi_txbytes, &inp->inp_stat->txbytes); ti->tcpi_txbytes = inp->inp_stat->txbytes; ti->tcpi_txretransmitbytes = tp->t_stat.txretransmitbytes; ti->tcpi_txunacked = tp->snd_max - tp->snd_una; //atomic_get_64(ti->tcpi_rxbytes, &inp->inp_stat->rxbytes); ti->tcpi_rxbytes = inp->inp_stat->rxbytes; ti->tcpi_rxduplicatebytes = tp->t_stat.rxduplicatebytes; } } __private_extern__ errno_t tcp_fill_info_for_info_tuple(struct info_tuple *itpl, struct tcp_info *ti) { struct inpcbinfo *pcbinfo = NULL; struct inpcb *inp = NULL; struct socket *so; struct tcpcb *tp; if (itpl->itpl_proto == IPPROTO_TCP) pcbinfo = &tcbinfo; else return EINVAL; if (itpl->itpl_local_sa.sa_family == AF_INET && itpl->itpl_remote_sa.sa_family == AF_INET) { inp = in_pcblookup_hash(pcbinfo, itpl->itpl_remote_sin.sin_addr, itpl->itpl_remote_sin.sin_port, itpl->itpl_local_sin.sin_addr, itpl->itpl_local_sin.sin_port, 0, NULL); } else if (itpl->itpl_local_sa.sa_family == AF_INET6 && itpl->itpl_remote_sa.sa_family == AF_INET6) { struct in6_addr ina6_local; struct in6_addr ina6_remote; ina6_local = itpl->itpl_local_sin6.sin6_addr; if (IN6_IS_SCOPE_LINKLOCAL(&ina6_local) && itpl->itpl_local_sin6.sin6_scope_id) ina6_local.s6_addr16[1] = htons(itpl->itpl_local_sin6.sin6_scope_id); ina6_remote = itpl->itpl_remote_sin6.sin6_addr; if (IN6_IS_SCOPE_LINKLOCAL(&ina6_remote) && itpl->itpl_remote_sin6.sin6_scope_id) ina6_remote.s6_addr16[1] = htons(itpl->itpl_remote_sin6.sin6_scope_id); inp = in6_pcblookup_hash(pcbinfo, &ina6_remote, itpl->itpl_remote_sin6.sin6_port, &ina6_local, itpl->itpl_local_sin6.sin6_port, 0, NULL); } else return EINVAL; if (inp == NULL || (so = inp->inp_socket) == NULL) return ENOENT; socket_lock(so, 0); if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { socket_unlock(so, 0); return ENOENT; } tp = intotcpcb(inp); tcp_fill_info(tp, ti); socket_unlock(so, 0); return 0; } __private_extern__ int tcp_sysctl_info(__unused struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { int error; struct tcp_info ti; struct info_tuple itpl; if (req->newptr == USER_ADDR_NULL) { return EINVAL; } if (req->newlen < sizeof(struct info_tuple)) { return EINVAL; } error = SYSCTL_IN(req, &itpl, sizeof(struct info_tuple)); if (error != 0) { return error; } error = tcp_fill_info_for_info_tuple(&itpl, &ti); if (error != 0) { return error; } error = SYSCTL_OUT(req, &ti, sizeof(struct tcp_info)); if (error != 0) { return error; } return 0; } static int tcp_lookup_peer_pid_locked(struct socket *so, pid_t *out_pid) { int error = EHOSTUNREACH; *out_pid = -1; if ((so->so_state & SS_ISCONNECTED) == 0) return ENOTCONN; struct inpcb *inp = (struct inpcb*)so->so_pcb; uint16_t lport = inp->inp_lport; uint16_t fport = inp->inp_fport; struct inpcb *finp = NULL; if (inp->inp_vflag & INP_IPV6) { struct in6_addr laddr6 = inp->in6p_laddr; struct in6_addr faddr6 = inp->in6p_faddr; socket_unlock(so, 0); finp = in6_pcblookup_hash(&tcbinfo, &laddr6, lport, &faddr6, fport, 0, NULL); socket_lock(so, 0); } else if (inp->inp_vflag & INP_IPV4) { struct in_addr laddr4 = inp->inp_laddr; struct in_addr faddr4 = inp->inp_faddr; socket_unlock(so, 0); finp = in_pcblookup_hash(&tcbinfo, laddr4, lport, faddr4, fport, 0, NULL); socket_lock(so, 0); } if (finp) { *out_pid = finp->inp_socket->last_pid; error = 0; in_pcb_checkstate(finp, WNT_RELEASE, 0); } return error; } /* * The new sockopt interface makes it possible for us to block in the * copyin/out step (if we take a page fault). Taking a page fault at * splnet() is probably a Bad Thing. (Since sockets and pcbs both now * use TSM, there probably isn't any need for this function to run at * splnet() any more. This needs more examination.) */ int tcp_ctloutput(so, sopt) struct socket *so; struct sockopt *sopt; { int error, opt, optval; struct inpcb *inp; struct tcpcb *tp; error = 0; inp = sotoinpcb(so); if (inp == NULL) { return (ECONNRESET); } /* Allow at this level */ if (sopt->sopt_level != IPPROTO_TCP && !(sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_FLUSH)) { #if INET6 if (INP_CHECK_SOCKAF(so, AF_INET6)) error = ip6_ctloutput(so, sopt); else #endif /* INET6 */ error = ip_ctloutput(so, sopt); return (error); } tp = intotcpcb(inp); if (tp == NULL) { return (ECONNRESET); } calculate_tcp_clock(); switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { case TCP_NODELAY: case TCP_NOOPT: case TCP_NOPUSH: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; switch (sopt->sopt_name) { case TCP_NODELAY: opt = TF_NODELAY; break; case TCP_NOOPT: opt = TF_NOOPT; break; case TCP_NOPUSH: opt = TF_NOPUSH; break; default: opt = 0; /* dead code to fool gcc */ break; } if (optval) tp->t_flags |= opt; else tp->t_flags &= ~opt; break; case TCP_RXT_FINDROP: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; opt = TF_RXTFINDROP; if (optval) tp->t_flagsext |= opt; else tp->t_flagsext &= ~opt; break; case TCP_MEASURE_SND_BW: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; opt = TF_MEASURESNDBW; if (optval) { if (tp->t_bwmeas == NULL) { tp->t_bwmeas = tcp_bwmeas_alloc(tp); if (tp->t_bwmeas == NULL) { error = ENOMEM; break; } } tp->t_flagsext |= opt; } else { tp->t_flagsext &= ~opt; /* Reset snd bw measurement state */ tp->t_flagsext &= ~(TF_BWMEAS_INPROGRESS); if (tp->t_bwmeas != NULL) { tcp_bwmeas_free(tp); } } break; case TCP_MEASURE_BW_BURST: { struct tcp_measure_bw_burst in; uint32_t minpkts, maxpkts; bzero(&in, sizeof(in)); error = sooptcopyin(sopt, &in, sizeof(in), sizeof(in)); if (error) break; if ((tp->t_flagsext & TF_MEASURESNDBW) == 0 || tp->t_bwmeas == NULL) { error = EINVAL; break; } minpkts = (in.min_burst_size != 0) ? in.min_burst_size : tp->t_bwmeas->bw_minsizepkts; maxpkts = (in.max_burst_size != 0) ? in.max_burst_size : tp->t_bwmeas->bw_maxsizepkts; if (minpkts > maxpkts) { error = EINVAL; break; } tp->t_bwmeas->bw_minsizepkts = minpkts; tp->t_bwmeas->bw_maxsizepkts = maxpkts; tp->t_bwmeas->bw_minsize = (minpkts * tp->t_maxseg); tp->t_bwmeas->bw_maxsize = (maxpkts * tp->t_maxseg); break; } case TCP_MAXSEG: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval > 0 && optval <= tp->t_maxseg && optval + 40 >= tcp_minmss) tp->t_maxseg = optval; else error = EINVAL; break; case TCP_KEEPALIVE: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval < 0) error = EINVAL; else { tp->t_keepidle = optval * TCP_RETRANSHZ; tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, TCP_KEEPIDLE(tp)); /* reset the timer to new value */ tcp_check_timer_state(tp); } break; case TCP_CONNECTIONTIMEOUT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval < 0) error = EINVAL; else tp->t_keepinit = optval * TCP_RETRANSHZ; break; case PERSIST_TIMEOUT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval < 0) error = EINVAL; else tp->t_persist_timeout = optval * TCP_RETRANSHZ; break; case TCP_RXT_CONNDROPTIME: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; if (optval < 0) error = EINVAL; else tp->rxt_conndroptime = optval * TCP_RETRANSHZ; break; case TCP_NOTSENT_LOWAT: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; if (optval < 0) { error = EINVAL; break; } else { if (optval == 0) { so->so_flags &= ~(SOF_NOTSENT_LOWAT); tp->t_notsent_lowat = 0; } else { so->so_flags |= SOF_NOTSENT_LOWAT; tp->t_notsent_lowat = optval; } } break; case SO_FLUSH: if ((error = sooptcopyin(sopt, &optval, sizeof (optval), sizeof (optval))) != 0) break; error = inp_flush(inp, optval); break; default: error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (sopt->sopt_name) { case TCP_NODELAY: optval = tp->t_flags & TF_NODELAY; break; case TCP_MAXSEG: optval = tp->t_maxseg; break; case TCP_KEEPALIVE: optval = tp->t_keepidle / TCP_RETRANSHZ; break; case TCP_NOOPT: optval = tp->t_flags & TF_NOOPT; break; case TCP_NOPUSH: optval = tp->t_flags & TF_NOPUSH; break; case TCP_CONNECTIONTIMEOUT: optval = tp->t_keepinit / TCP_RETRANSHZ; break; case PERSIST_TIMEOUT: optval = tp->t_persist_timeout / TCP_RETRANSHZ; break; case TCP_RXT_CONNDROPTIME: optval = tp->rxt_conndroptime / TCP_RETRANSHZ; break; case TCP_RXT_FINDROP: optval = tp->t_flagsext & TF_RXTFINDROP; break; case TCP_MEASURE_SND_BW: optval = tp->t_flagsext & TF_MEASURESNDBW; break; case TCP_INFO: { struct tcp_info ti; tcp_fill_info(tp, &ti); error = sooptcopyout(sopt, &ti, sizeof(struct tcp_info)); goto done; /* NOT REACHED */ } case TCP_MEASURE_BW_BURST: { struct tcp_measure_bw_burst out; if ((tp->t_flagsext & TF_MEASURESNDBW) == 0 || tp->t_bwmeas == NULL) { error = EINVAL; break; } out.min_burst_size = tp->t_bwmeas->bw_minsizepkts; out.max_burst_size = tp->t_bwmeas->bw_maxsizepkts; error = sooptcopyout(sopt, &out, sizeof(out)); goto done; } case TCP_NOTSENT_LOWAT: if ((so->so_flags & SOF_NOTSENT_LOWAT) != 0) { optval = tp->t_notsent_lowat; } else { optval = 0; } break; case TCP_PEER_PID: { pid_t pid; error = tcp_lookup_peer_pid_locked(so, &pid); if (error == 0) error = sooptcopyout(sopt, &pid, sizeof(pid)); goto done; } default: error = ENOPROTOOPT; break; } if (error == 0) error = sooptcopyout(sopt, &optval, sizeof optval); break; } done: return (error); } /* * tcp_sendspace and tcp_recvspace are the default send and receive window * sizes, respectively. These are obsolescent (this information should * be set by the route). */ u_int32_t tcp_sendspace = 1448*256; u_int32_t tcp_recvspace = 1448*384; /* During attach, the size of socket buffer allocated is limited to * sb_max in sbreserve. Disallow setting the tcp send and recv space * to be more than sb_max because that will cause tcp_attach to fail * (see radar 5713060) */ static int sysctl_tcp_sospace(struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) { u_int32_t new_value = 0, *space_p = NULL; int changed = 0, error = 0; u_quad_t sb_effective_max = (sb_max / (MSIZE+MCLBYTES)) * MCLBYTES; switch (oidp->oid_number) { case TCPCTL_SENDSPACE: space_p = &tcp_sendspace; break; case TCPCTL_RECVSPACE: space_p = &tcp_recvspace; break; default: return EINVAL; } error = sysctl_io_number(req, *space_p, sizeof(u_int32_t), &new_value, &changed); if (changed) { if (new_value > 0 && new_value <= sb_effective_max) { *space_p = new_value; } else { error = ERANGE; } } return error; } SYSCTL_PROC(_net_inet_tcp, TCPCTL_SENDSPACE, sendspace, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_sendspace , 0, &sysctl_tcp_sospace, "IU", "Maximum outgoing TCP datagram size"); SYSCTL_PROC(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_recvspace , 0, &sysctl_tcp_sospace, "IU", "Maximum incoming TCP datagram size"); /* * Attach TCP protocol to socket, allocating * internet protocol control block, tcp control block, * bufer space, and entering LISTEN state if to accept connections. * * Returns: 0 Success * in_pcballoc:ENOBUFS * in_pcballoc:ENOMEM * in_pcballoc:??? [IPSEC specific] * soreserve:ENOBUFS */ static int tcp_attach(so, p) struct socket *so; struct proc *p; { register struct tcpcb *tp; struct inpcb *inp; int error; #if INET6 int isipv6 = INP_CHECK_SOCKAF(so, AF_INET6) != 0; #endif error = in_pcballoc(so, &tcbinfo, p); if (error) return (error); inp = sotoinpcb(so); if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, tcp_sendspace, tcp_recvspace); if (error) return (error); } if ((so->so_rcv.sb_flags & SB_USRSIZE) == 0) so->so_rcv.sb_flags |= SB_AUTOSIZE; if ((so->so_snd.sb_flags & SB_USRSIZE) == 0) so->so_snd.sb_flags |= SB_AUTOSIZE; #if INET6 if (isipv6) { inp->inp_vflag |= INP_IPV6; inp->in6p_hops = -1; /* use kernel default */ } else #endif /* INET6 */ inp->inp_vflag |= INP_IPV4; tp = tcp_newtcpcb(inp); if (tp == 0) { int nofd = so->so_state & SS_NOFDREF; /* XXX */ so->so_state &= ~SS_NOFDREF; /* don't free the socket yet */ #if INET6 if (isipv6) in6_pcbdetach(inp); else #endif /* INET6 */ in_pcbdetach(inp); so->so_state |= nofd; return (ENOBUFS); } if (nstat_collect) { nstat_tcp_new_pcb(inp); } tp->t_state = TCPS_CLOSED; return (0); } /* * Initiate (or continue) disconnect. * If embryonic state, just send reset (once). * If in ``let data drain'' option and linger null, just drop. * Otherwise (hard), mark socket disconnecting and drop * current input data; switch states based on user close, and * send segment to peer (with FIN). */ static struct tcpcb * tcp_disconnect(tp) register struct tcpcb *tp; { struct socket *so = tp->t_inpcb->inp_socket; if (tp->t_state < TCPS_ESTABLISHED) tp = tcp_close(tp); else if ((so->so_options & SO_LINGER) && so->so_linger == 0) tp = tcp_drop(tp, 0); else { soisdisconnecting(so); sbflush(&so->so_rcv); tp = tcp_usrclosed(tp); if (tp) (void) tcp_output(tp); } return (tp); } /* * User issued close, and wish to trail through shutdown states: * if never received SYN, just forget it. If got a SYN from peer, * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN. * If already got a FIN from peer, then almost done; go to LAST_ACK * state. In all other cases, have already sent FIN to peer (e.g. * after PRU_SHUTDOWN), and just have to play tedious game waiting * for peer to send FIN or not respond to keep-alives, etc. * We can let the user exit from the close as soon as the FIN is acked. */ static struct tcpcb * tcp_usrclosed(tp) register struct tcpcb *tp; { switch (tp->t_state) { case TCPS_CLOSED: case TCPS_LISTEN: tp->t_state = TCPS_CLOSED; tp = tcp_close(tp); break; case TCPS_SYN_SENT: case TCPS_SYN_RECEIVED: tp->t_flags |= TF_NEEDFIN; break; case TCPS_ESTABLISHED: tp->t_state = TCPS_FIN_WAIT_1; break; case TCPS_CLOSE_WAIT: tp->t_state = TCPS_LAST_ACK; break; } if (tp && tp->t_state >= TCPS_FIN_WAIT_2) { soisdisconnected(tp->t_inpcb->inp_socket); /* To prevent the connection hanging in FIN_WAIT_2 forever. */ if (tp->t_state == TCPS_FIN_WAIT_2) tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp, tcp_maxidle); } return (tp); } void tcp_in_cksum_stats(u_int32_t len) { tcps_in_sw_cksum++; tcps_in_sw_cksum_bytes += len; } void tcp_out_cksum_stats(u_int32_t len) { tcps_out_sw_cksum++; tcps_out_sw_cksum_bytes += len; }