/* * Copyright (c) 2004-2012 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ /* $NetBSD: if_bridge.c,v 1.31 2005/06/01 19:45:34 jdc Exp $ */ /* * Copyright 2001 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1999, 2000 Jason L. Wright (jason@thought.net) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * OpenBSD: if_bridge.c,v 1.60 2001/06/15 03:38:33 itojun Exp */ /* * Network interface bridge support. * * TODO: * * - Currently only supports Ethernet-like interfaces (Ethernet, * 802.11, VLANs on Ethernet, etc.) Figure out a nice way * to bridge other types of interfaces (FDDI-FDDI, and maybe * consider heterogenous bridges). */ #include #define BRIDGE_DEBUG 1 #ifndef BRIDGE_DEBUG #define BRIDGE_DEBUG 0 #endif /* BRIDGE_DEBUG */ #include #include #include #include #include #include #include /* for net/if.h */ #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include /* for struct arpcom */ #include #include #include #include #ifdef INET6 #include #include #endif #ifdef DEV_CARP #include #endif #include /* for struct arpcom */ #include #include #include #if NVLAN > 0 #include #endif /* NVLAN > 0 */ #include #include #include #include #ifdef PFIL_HOOKS #include #include #endif /* PFIL_HOOKS */ #if BRIDGE_DEBUG #define BR_LCKDBG_MAX 4 #define BRIDGE_LOCK(_sc) bridge_lock(_sc) #define BRIDGE_UNLOCK(_sc) bridge_unlock(_sc) #define BRIDGE_LOCK_ASSERT(_sc) \ lck_mtx_assert((_sc)->sc_mtx, LCK_MTX_ASSERT_OWNED) #define BRIDGE_LOCK2REF(_sc, _err) _err = bridge_lock2ref(_sc) #define BRIDGE_UNREF(_sc) bridge_unref(_sc) #define BRIDGE_XLOCK(_sc) bridge_xlock(_sc) #define BRIDGE_XDROP(_sc) bridge_xdrop(_sc) #else /* BRIDGE_DEBUG */ #define BRIDGE_LOCK(_sc) lck_mtx_lock((_sc)->sc_mtx) #define BRIDGE_UNLOCK(_sc) lck_mtx_unlock((_sc)->sc_mtx) #define BRIDGE_LOCK_ASSERT(_sc) \ lck_mtx_assert((_sc)->sc_mtx, LCK_MTX_ASSERT_OWNED) #define BRIDGE_LOCK2REF(_sc, _err) do { \ lck_mtx_assert((_sc)->sc_mtx, LCK_MTX_ASSERT_OWNED); \ if ((_sc)->sc_iflist_xcnt > 0) \ (_err) = EBUSY; \ else \ (_sc)->sc_iflist_ref++; \ lck_mtx_unlock((_sc)->sc_mtx); \ } while (0) #define BRIDGE_UNREF(_sc) do { \ lck_mtx_lock((_sc)->sc_mtx); \ (_sc)->sc_iflist_ref--; \ if (((_sc)->sc_iflist_xcnt > 0) && ((_sc)->sc_iflist_ref == 0)) { \ lck_mtx_unlock((_sc)->sc_mtx); \ wakeup(&(_sc)->sc_cv); \ } else \ lck_mtx_unlock((_sc)->sc_mtx); \ } while (0) #define BRIDGE_XLOCK(_sc) do { \ lck_mtx_assert((_sc)->sc_mtx, LCK_MTX_ASSERT_OWNED); \ (_sc)->sc_iflist_xcnt++; \ while ((_sc)->sc_iflist_ref > 0) \ msleep(&(_sc)->sc_cv, (_sc)->sc_mtx, PZERO, \ "BRIDGE_XLOCK", NULL); \ } while (0) #define BRIDGE_XDROP(_sc) do { \ lck_mtx_assert((_sc)->sc_mtx, LCK_MTX_ASSERT_OWNED); \ (_sc)->sc_iflist_xcnt--; \ } while (0) #endif /* BRIDGE_DEBUG */ #if NBPFILTER > 0 #define BRIDGE_BPF_MTAP_INPUT(sc, m) \ if (sc->sc_bpf_input) \ bridge_bpf_input(sc->sc_ifp, m) #else /* NBPFILTER */ #define BRIDGE_BPF_MTAP_INPUT(ifp, m) #endif /* NBPFILTER */ /* * Size of the route hash table. Must be a power of two. */ /* APPLE MODIFICATION - per Wasabi performance improvement, change the hash table size */ #if 0 #ifndef BRIDGE_RTHASH_SIZE #define BRIDGE_RTHASH_SIZE 1024 #endif #else #ifndef BRIDGE_RTHASH_SIZE #define BRIDGE_RTHASH_SIZE 256 #endif #endif /* APPLE MODIFICATION - support for HW checksums */ #if APPLE_BRIDGE_HWCKSUM_SUPPORT #include #include #endif #define BRIDGE_RTHASH_MASK (BRIDGE_RTHASH_SIZE - 1) /* * Maximum number of addresses to cache. */ #ifndef BRIDGE_RTABLE_MAX #define BRIDGE_RTABLE_MAX 100 #endif /* * Timeout (in seconds) for entries learned dynamically. */ #ifndef BRIDGE_RTABLE_TIMEOUT #define BRIDGE_RTABLE_TIMEOUT (20 * 60) /* same as ARP */ #endif /* * Number of seconds between walks of the route list. */ #ifndef BRIDGE_RTABLE_PRUNE_PERIOD #define BRIDGE_RTABLE_PRUNE_PERIOD (5 * 60) #endif /* * List of capabilities to possibly mask on the member interface. */ #define BRIDGE_IFCAPS_MASK (IFCAP_TOE|IFCAP_TSO|IFCAP_TXCSUM) /* * List of capabilities to disable on the member interface. */ #define BRIDGE_IFCAPS_STRIP IFCAP_LRO /* * Bridge interface list entry. */ struct bridge_iflist { TAILQ_ENTRY(bridge_iflist) bif_next; struct ifnet *bif_ifp; /* member if */ struct bstp_port bif_stp; /* STP state */ uint32_t bif_flags; /* member if flags */ int bif_savedcaps; /* saved capabilities */ uint32_t bif_addrmax; /* max # of addresses */ uint32_t bif_addrcnt; /* cur. # of addresses */ uint32_t bif_addrexceeded;/* # of address violations */ interface_filter_t bif_iff_ref; struct bridge_softc *bif_sc; char bif_promisc; /* promiscuous mode set */ char bif_proto_attached; /* protocol attached */ char bif_filter_attached; /* interface filter attached */ }; /* * Bridge route node. */ struct bridge_rtnode { LIST_ENTRY(bridge_rtnode) brt_hash; /* hash table linkage */ LIST_ENTRY(bridge_rtnode) brt_list; /* list linkage */ struct bridge_iflist *brt_dst; /* destination if */ unsigned long brt_expire; /* expiration time */ uint8_t brt_flags; /* address flags */ uint8_t brt_addr[ETHER_ADDR_LEN]; uint16_t brt_vlan; /* vlan id */ }; #define brt_ifp brt_dst->bif_ifp /* * Software state for each bridge. */ struct bridge_softc { struct ifnet *sc_ifp; /* make this an interface */ LIST_ENTRY(bridge_softc) sc_list; lck_mtx_t *sc_mtx; void *sc_cv; uint32_t sc_brtmax; /* max # of addresses */ uint32_t sc_brtcnt; /* cur. # of addresses */ uint32_t sc_brttimeout; /* rt timeout in seconds */ uint32_t sc_iflist_ref; /* refcount for sc_iflist */ uint32_t sc_iflist_xcnt; /* refcount for sc_iflist */ TAILQ_HEAD(, bridge_iflist) sc_iflist; /* member interface list */ LIST_HEAD(, bridge_rtnode) *sc_rthash; /* our forwarding table */ LIST_HEAD(, bridge_rtnode) sc_rtlist; /* list version of above */ uint32_t sc_rthash_key; /* key for hash */ TAILQ_HEAD(, bridge_iflist) sc_spanlist; /* span ports list */ struct bstp_state sc_stp; /* STP state */ uint32_t sc_brtexceeded; /* # of cache drops */ uint32_t sc_filter_flags; /* ipf and flags */ char sc_if_xname[IFNAMSIZ]; bpf_packet_func sc_bpf_input; bpf_packet_func sc_bpf_output; u_int32_t sc_flags; #if BRIDGE_DEBUG void *lock_lr[BR_LCKDBG_MAX]; /* locking calling history */ int next_lock_lr; void *unlock_lr[BR_LCKDBG_MAX]; /* unlocking caller history */ int next_unlock_lr; #endif /* BRIDGE_DEBUG */ }; #define SCF_DETACHING 0x1 decl_lck_mtx_data(static, bridge_list_mtx_data); static lck_mtx_t *bridge_list_mtx = &bridge_list_mtx_data; int bridge_rtable_prune_period = BRIDGE_RTABLE_PRUNE_PERIOD; static zone_t bridge_rtnode_pool = NULL; static int bridge_clone_create(struct if_clone *, uint32_t, void *); static int bridge_clone_destroy(struct ifnet *); static errno_t bridge_ioctl(struct ifnet *, u_long, void *); #if HAS_IF_CAP static void bridge_mutecaps(struct bridge_softc *); static void bridge_set_ifcap(struct bridge_softc *, struct bridge_iflist *, int); #endif __private_extern__ void bridge_ifdetach(struct bridge_iflist *, struct ifnet *); static int bridge_init(struct ifnet *); #if HAS_BRIDGE_DUMMYNET static void bridge_dummynet(struct mbuf *, struct ifnet *); #endif static void bridge_ifstop(struct ifnet *, int); static int bridge_output(struct ifnet *, struct mbuf *); static void bridge_start(struct ifnet *); __private_extern__ errno_t bridge_input(struct ifnet *, struct mbuf *, void *); #if BRIDGE_MEMBER_OUT_FILTER static errno_t bridge_iff_output(void *, ifnet_t, protocol_family_t , mbuf_t *); static int bridge_member_output(struct ifnet *, struct mbuf *, struct sockaddr *, struct rtentry *); #endif static int bridge_enqueue(struct bridge_softc *, struct ifnet *, struct mbuf *); static void bridge_rtdelete(struct bridge_softc *, struct ifnet *ifp, int); static void bridge_forward(struct bridge_softc *, struct bridge_iflist *, struct mbuf *m); static void bridge_timer(void *); static void bridge_broadcast(struct bridge_softc *, struct ifnet *, struct mbuf *, int); static void bridge_span(struct bridge_softc *, struct mbuf *); static int bridge_rtupdate(struct bridge_softc *, const uint8_t *, uint16_t, struct bridge_iflist *, int, uint8_t); static struct ifnet *bridge_rtlookup(struct bridge_softc *, const uint8_t *, uint16_t); static void bridge_rttrim(struct bridge_softc *); static void bridge_rtage(struct bridge_softc *); static void bridge_rtflush(struct bridge_softc *, int); static int bridge_rtdaddr(struct bridge_softc *, const uint8_t *, uint16_t); static int bridge_rtable_init(struct bridge_softc *); static void bridge_rtable_fini(struct bridge_softc *); static int bridge_rtnode_addr_cmp(const uint8_t *, const uint8_t *); static struct bridge_rtnode *bridge_rtnode_lookup(struct bridge_softc *, const uint8_t *, uint16_t); static int bridge_rtnode_insert(struct bridge_softc *, struct bridge_rtnode *); static void bridge_rtnode_destroy(struct bridge_softc *, struct bridge_rtnode *); #if BRIDGESTP static void bridge_rtable_expire(struct ifnet *, int); static void bridge_state_change(struct ifnet *, int); #endif /* BRIDGESTP */ static struct bridge_iflist *bridge_lookup_member(struct bridge_softc *, const char *name); static struct bridge_iflist *bridge_lookup_member_if(struct bridge_softc *, struct ifnet *ifp); static void bridge_delete_member(struct bridge_softc *, struct bridge_iflist *, int); static void bridge_delete_span(struct bridge_softc *, struct bridge_iflist *); static int bridge_ioctl_add(struct bridge_softc *, void *); static int bridge_ioctl_del(struct bridge_softc *, void *); static int bridge_ioctl_gifflags(struct bridge_softc *, void *); static int bridge_ioctl_sifflags(struct bridge_softc *, void *); static int bridge_ioctl_scache(struct bridge_softc *, void *); static int bridge_ioctl_gcache(struct bridge_softc *, void *); static int bridge_ioctl_gifs32(struct bridge_softc *, void *); static int bridge_ioctl_gifs64(struct bridge_softc *, void *); static int bridge_ioctl_rts32(struct bridge_softc *, void *); static int bridge_ioctl_rts64(struct bridge_softc *, void *); static int bridge_ioctl_saddr32(struct bridge_softc *, void *); static int bridge_ioctl_saddr64(struct bridge_softc *, void *); static int bridge_ioctl_sto(struct bridge_softc *, void *); static int bridge_ioctl_gto(struct bridge_softc *, void *); static int bridge_ioctl_daddr32(struct bridge_softc *, void *); static int bridge_ioctl_daddr64(struct bridge_softc *, void *); static int bridge_ioctl_flush(struct bridge_softc *, void *); static int bridge_ioctl_gpri(struct bridge_softc *, void *); static int bridge_ioctl_spri(struct bridge_softc *, void *); static int bridge_ioctl_ght(struct bridge_softc *, void *); static int bridge_ioctl_sht(struct bridge_softc *, void *); static int bridge_ioctl_gfd(struct bridge_softc *, void *); static int bridge_ioctl_sfd(struct bridge_softc *, void *); static int bridge_ioctl_gma(struct bridge_softc *, void *); static int bridge_ioctl_sma(struct bridge_softc *, void *); static int bridge_ioctl_sifprio(struct bridge_softc *, void *); static int bridge_ioctl_sifcost(struct bridge_softc *, void *); static int bridge_ioctl_sifmaxaddr(struct bridge_softc *, void *); static int bridge_ioctl_addspan(struct bridge_softc *, void *); static int bridge_ioctl_delspan(struct bridge_softc *, void *); static int bridge_ioctl_gbparam32(struct bridge_softc *, void *); static int bridge_ioctl_gbparam64(struct bridge_softc *, void *); static int bridge_ioctl_grte(struct bridge_softc *, void *); static int bridge_ioctl_gifsstp32(struct bridge_softc *, void *); static int bridge_ioctl_gifsstp64(struct bridge_softc *, void *); static int bridge_ioctl_sproto(struct bridge_softc *, void *); static int bridge_ioctl_stxhc(struct bridge_softc *, void *); static int bridge_ioctl_purge(struct bridge_softc *sc, void *arg); static int bridge_ioctl_gfilt(struct bridge_softc *, void *); static int bridge_ioctl_sfilt(struct bridge_softc *, void *); #ifdef PFIL_HOOKS static int bridge_pfil(struct mbuf **, struct ifnet *, struct ifnet *, int); static int bridge_ip_checkbasic(struct mbuf **mp); #ifdef INET6 static int bridge_ip6_checkbasic(struct mbuf **mp); #endif /* INET6 */ static int bridge_fragment(struct ifnet *, struct mbuf *, struct ether_header *, int, struct llc *); #endif /* PFIL_HOOKS */ static errno_t bridge_set_bpf_tap(ifnet_t ifn, bpf_tap_mode mode, bpf_packet_func bpf_callback); __private_extern__ errno_t bridge_bpf_input(ifnet_t ifp, struct mbuf *m); __private_extern__ errno_t bridge_bpf_output(ifnet_t ifp, struct mbuf *m); static void bridge_detach(ifnet_t ifp); #define m_copypacket(m, how) m_copym(m, 0, M_COPYALL, how) /* The default bridge vlan is 1 (IEEE 802.1Q-2003 Table 9-2) */ #define VLANTAGOF(_m) 0 u_int8_t bstp_etheraddr[ETHER_ADDR_LEN] = { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x00 }; #if BRIDGESTP static struct bstp_cb_ops bridge_ops = { .bcb_state = bridge_state_change, .bcb_rtage = bridge_rtable_expire }; #endif /* BRIDGESTP */ SYSCTL_DECL(_net_link); SYSCTL_NODE(_net_link, IFT_BRIDGE, bridge, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "Bridge"); #if defined(PFIL_HOOKS) static int pfil_onlyip = 1; /* only pass IP[46] packets when pfil is enabled */ static int pfil_bridge = 1; /* run pfil hooks on the bridge interface */ static int pfil_member = 1; /* run pfil hooks on the member interface */ static int pfil_ipfw = 0; /* layer2 filter with ipfw */ static int pfil_ipfw_arp = 0; /* layer2 filter with ipfw */ static int pfil_local_phys = 0; /* run pfil hooks on the physical interface for locally destined packets */ SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_onlyip, CTLFLAG_RW|CTLFLAG_LOCKED, &pfil_onlyip, 0, "Only pass IP packets when pfil is enabled"); SYSCTL_INT(_net_link_bridge, OID_AUTO, ipfw_arp, CTLFLAG_RW|CTLFLAG_LOCKED, &pfil_ipfw_arp, 0, "Filter ARP packets through IPFW layer2"); SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_bridge, CTLFLAG_RW|CTLFLAG_LOCKED, &pfil_bridge, 0, "Packet filter on the bridge interface"); SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_member, CTLFLAG_RW|CTLFLAG_LOCKED, &pfil_member, 0, "Packet filter on the member interface"); SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_local_phys, CTLFLAG_RW|CTLFLAG_LOCKED, &pfil_local_phys, 0, "Packet filter on the physical interface for locally destined packets"); #endif /* PFIL_HOOKS */ #if BRIDGESTP static int log_stp = 0; /* log STP state changes */ SYSCTL_INT(_net_link_bridge, OID_AUTO, log_stp, CTLFLAG_RW, &log_stp, 0, "Log STP state changes"); #endif /* BRIDGESTP */ struct bridge_control { int (*bc_func)(struct bridge_softc *, void *); unsigned int bc_argsize; unsigned int bc_flags; }; #define BC_F_COPYIN 0x01 /* copy arguments in */ #define BC_F_COPYOUT 0x02 /* copy arguments out */ #define BC_F_SUSER 0x04 /* do super-user check */ static const struct bridge_control bridge_control_table32[] = { { bridge_ioctl_add, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_del, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gifflags, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_sifflags, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_scache, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gcache, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_gifs32, sizeof (struct ifbifconf32), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_rts32, sizeof (struct ifbaconf32), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_saddr32, sizeof (struct ifbareq32), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sto, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gto, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_daddr32, sizeof (struct ifbareq32), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_flush, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gpri, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_spri, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_ght, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sht, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gfd, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sfd, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gma, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sma, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sifprio, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sifcost, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gfilt, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sfilt, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_purge, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_addspan, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_delspan, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gbparam32, sizeof (struct ifbropreq32), BC_F_COPYOUT }, { bridge_ioctl_grte, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_gifsstp32, sizeof (struct ifbpstpconf32), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_sproto, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_stxhc, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sifmaxaddr, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, }; static const struct bridge_control bridge_control_table64[] = { { bridge_ioctl_add, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_del, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gifflags, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_sifflags, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_scache, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gcache, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_gifs64, sizeof (struct ifbifconf64), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_rts64, sizeof (struct ifbaconf64), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_saddr64, sizeof (struct ifbareq64), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sto, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gto, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_daddr64, sizeof (struct ifbareq64), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_flush, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gpri, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_spri, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_ght, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sht, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gfd, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sfd, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gma, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sma, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sifprio, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sifcost, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gfilt, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sfilt, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_purge, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_addspan, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_delspan, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gbparam64, sizeof (struct ifbropreq64), BC_F_COPYOUT }, { bridge_ioctl_grte, sizeof (struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_gifsstp64, sizeof (struct ifbpstpconf64), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_sproto, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_stxhc, sizeof (struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sifmaxaddr, sizeof (struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, }; static const unsigned int bridge_control_table_size = sizeof (bridge_control_table32) / sizeof (bridge_control_table32[0]); static LIST_HEAD(, bridge_softc) bridge_list = LIST_HEAD_INITIALIZER(bridge_list); static lck_grp_t *bridge_lock_grp = NULL; static lck_attr_t *bridge_lock_attr = NULL; static if_clone_t bridge_cloner = NULL; static int if_bridge_txstart = 0; SYSCTL_INT(_net_link_bridge, OID_AUTO, txstart, CTLFLAG_RW | CTLFLAG_LOCKED, &if_bridge_txstart, 0, "Bridge interface uses TXSTART model"); #if BRIDGE_DEBUG static int if_bridge_debug = 0; SYSCTL_INT(_net_link_bridge, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &if_bridge_debug, 0, "Bridge debug"); static void printf_ether_header(struct ether_header *eh); static void printf_mbuf_data(mbuf_t m, size_t offset, size_t len); static void printf_mbuf_pkthdr(mbuf_t m, const char *prefix, const char *suffix); static void printf_mbuf(mbuf_t m, const char *prefix, const char *suffix); static void link_print(struct sockaddr_dl *dl_p); static void bridge_lock(struct bridge_softc *); static void bridge_unlock(struct bridge_softc *); static int bridge_lock2ref(struct bridge_softc *); static void bridge_unref(struct bridge_softc *); static void bridge_xlock(struct bridge_softc *); static void bridge_xdrop(struct bridge_softc *); static void bridge_lock(struct bridge_softc *sc) { void *lr_saved = __builtin_return_address(0); lck_mtx_assert(sc->sc_mtx, LCK_MTX_ASSERT_NOTOWNED); lck_mtx_lock(sc->sc_mtx); sc->lock_lr[sc->next_lock_lr] = lr_saved; sc->next_lock_lr = (sc->next_lock_lr+1) % SO_LCKDBG_MAX; } static void bridge_unlock(struct bridge_softc *sc) { void *lr_saved = __builtin_return_address(0); lck_mtx_assert(sc->sc_mtx, LCK_MTX_ASSERT_OWNED); sc->unlock_lr[sc->next_unlock_lr] = lr_saved; sc->next_unlock_lr = (sc->next_unlock_lr+1) % SO_LCKDBG_MAX; lck_mtx_unlock(sc->sc_mtx); } static int bridge_lock2ref(struct bridge_softc *sc) { int error = 0; void *lr_saved = __builtin_return_address(0); lck_mtx_assert(sc->sc_mtx, LCK_MTX_ASSERT_OWNED); if (sc->sc_iflist_xcnt > 0) error = EBUSY; else sc->sc_iflist_ref++; sc->unlock_lr[sc->next_unlock_lr] = lr_saved; sc->next_unlock_lr = (sc->next_unlock_lr+1) % SO_LCKDBG_MAX; lck_mtx_unlock(sc->sc_mtx); return (error); } static void bridge_unref(struct bridge_softc *sc) { void *lr_saved = __builtin_return_address(0); lck_mtx_assert(sc->sc_mtx, LCK_MTX_ASSERT_NOTOWNED); lck_mtx_lock(sc->sc_mtx); sc->lock_lr[sc->next_lock_lr] = lr_saved; sc->next_lock_lr = (sc->next_lock_lr+1) % SO_LCKDBG_MAX; sc->sc_iflist_ref--; sc->unlock_lr[sc->next_unlock_lr] = lr_saved; sc->next_unlock_lr = (sc->next_unlock_lr+1) % SO_LCKDBG_MAX; if ((sc->sc_iflist_xcnt > 0) && (sc->sc_iflist_ref == 0)) { lck_mtx_unlock(sc->sc_mtx); wakeup(&sc->sc_cv); } else lck_mtx_unlock(sc->sc_mtx); } static void bridge_xlock(struct bridge_softc *sc) { void *lr_saved = __builtin_return_address(0); lck_mtx_assert(sc->sc_mtx, LCK_MTX_ASSERT_OWNED); sc->sc_iflist_xcnt++; while (sc->sc_iflist_ref > 0) { sc->unlock_lr[sc->next_unlock_lr] = lr_saved; sc->next_unlock_lr = (sc->next_unlock_lr+1) % SO_LCKDBG_MAX; msleep(&sc->sc_cv, sc->sc_mtx, PZERO, "BRIDGE_XLOCK", NULL); sc->lock_lr[sc->next_lock_lr] = lr_saved; sc->next_lock_lr = (sc->next_lock_lr+1) % SO_LCKDBG_MAX; } } static void bridge_xdrop(struct bridge_softc *sc) { lck_mtx_assert(sc->sc_mtx, LCK_MTX_ASSERT_OWNED); sc->sc_iflist_xcnt--; } void printf_mbuf_pkthdr(mbuf_t m, const char *prefix, const char *suffix) { if (m) printf("%spktlen: %u rcvif: %p header: %p nextpkt: %p%s", prefix ? prefix : "", (unsigned int)mbuf_pkthdr_len(m), mbuf_pkthdr_rcvif(m), mbuf_pkthdr_header(m), mbuf_nextpkt(m), suffix ? suffix : ""); else printf("%s%s\n", prefix, suffix); } void printf_mbuf(mbuf_t m, const char *prefix, const char *suffix) { if (m) { printf("%s%p type: %u flags: 0x%x len: %u data: %p maxlen: %u " "datastart: %p next: %p%s", prefix ? prefix : "", m, mbuf_type(m), mbuf_flags(m), (unsigned int)mbuf_len(m), mbuf_data(m), (unsigned int)mbuf_maxlen(m), mbuf_datastart(m), mbuf_next(m), !suffix || (mbuf_flags(m) & MBUF_PKTHDR) ? "" : suffix); if ((mbuf_flags(m) & MBUF_PKTHDR)) printf_mbuf_pkthdr(m, " ", suffix); } else printf("%s%s\n", prefix, suffix); } void printf_mbuf_data(mbuf_t m, size_t offset, size_t len) { mbuf_t n; size_t i, j; size_t pktlen, mlen, maxlen; unsigned char *ptr; pktlen = mbuf_pkthdr_len(m); if (offset > pktlen) return; maxlen = (pktlen - offset > len) ? len : pktlen; n = m; mlen = mbuf_len(n); ptr = mbuf_data(n); for (i = 0, j = 0; i < maxlen; i++, j++) { if (j >= mlen) { n = mbuf_next(n); if (n == 0) break; ptr = mbuf_data(n); mlen = mbuf_len(n); j = 0; } if (i >= offset) { printf("%02x%s", ptr[j], i % 2 ? " " : ""); } } } static void printf_ether_header(struct ether_header *eh) { printf("%02x:%02x:%02x:%02x:%02x:%02x > " "%02x:%02x:%02x:%02x:%02x:%02x 0x%04x ", eh->ether_shost[0], eh->ether_shost[1], eh->ether_shost[2], eh->ether_shost[3], eh->ether_shost[4], eh->ether_shost[5], eh->ether_dhost[0], eh->ether_dhost[1], eh->ether_dhost[2], eh->ether_dhost[3], eh->ether_dhost[4], eh->ether_dhost[5], eh->ether_type); } static void link_print(struct sockaddr_dl *dl_p) { int i; #if 1 printf("sdl len %d index %d family %d type 0x%x nlen %d alen %d" " slen %d addr ", dl_p->sdl_len, dl_p->sdl_index, dl_p->sdl_family, dl_p->sdl_type, dl_p->sdl_nlen, dl_p->sdl_alen, dl_p->sdl_slen); #endif for (i = 0; i < dl_p->sdl_alen; i++) printf("%s%x", i ? ":" : "", (CONST_LLADDR(dl_p))[i]); printf("\n"); } #endif /* BRIDGE_DEBUG */ /* * bridgeattach: * * Pseudo-device attach routine. */ __private_extern__ int bridgeattach(__unused int n) { int error; lck_grp_attr_t *lck_grp_attr = NULL; struct ifnet_clone_params ifnet_clone_params; bridge_rtnode_pool = zinit(sizeof (struct bridge_rtnode), 1024 * sizeof (struct bridge_rtnode), 0, "bridge_rtnode"); zone_change(bridge_rtnode_pool, Z_CALLERACCT, FALSE); lck_grp_attr = lck_grp_attr_alloc_init(); bridge_lock_grp = lck_grp_alloc_init("if_bridge", lck_grp_attr); bridge_lock_attr = lck_attr_alloc_init(); #if BRIDGE_DEBUG lck_attr_setdebug(bridge_lock_attr); #endif lck_mtx_init(bridge_list_mtx, bridge_lock_grp, bridge_lock_attr); /* can free the attributes once we've allocated the group lock */ lck_grp_attr_free(lck_grp_attr); LIST_INIT(&bridge_list); #if BRIDGESTP bstp_sys_init(); #endif /* BRIDGESTP */ ifnet_clone_params.ifc_name = "bridge"; ifnet_clone_params.ifc_create = bridge_clone_create; ifnet_clone_params.ifc_destroy = bridge_clone_destroy; error = ifnet_clone_attach(&ifnet_clone_params, &bridge_cloner); if (error != 0) printf("%s: ifnet_clone_attach failed %d\n", __func__, error); return (error); } #if defined(PFIL_HOOKS) /* * handler for net.link.bridge.pfil_ipfw */ static int sysctl_pfil_ipfw SYSCTL_HANDLER_ARGS { #pragma unused(arg1, arg2) int enable = pfil_ipfw; int error; error = sysctl_handle_int(oidp, &enable, 0, req); enable = (enable) ? 1 : 0; if (enable != pfil_ipfw) { pfil_ipfw = enable; /* * Disable pfil so that ipfw doesnt run twice, if the user * really wants both then they can re-enable pfil_bridge and/or * pfil_member. Also allow non-ip packets as ipfw can filter by * layer2 type. */ if (pfil_ipfw) { pfil_onlyip = 0; pfil_bridge = 0; pfil_member = 0; } } return (error); } SYSCTL_PROC(_net_link_bridge, OID_AUTO, ipfw, CTLTYPE_INT|CTLFLAG_RW, &pfil_ipfw, 0, &sysctl_pfil_ipfw, "I", "Layer2 filter with IPFW"); #endif /* PFIL_HOOKS */ /* * bridge_clone_create: * * Create a new bridge instance. */ static int bridge_clone_create(struct if_clone *ifc, uint32_t unit, __unused void *params) { struct ifnet *ifp = NULL; struct bridge_softc *sc; u_char eaddr[6]; struct ifnet_init_eparams init_params; errno_t error = 0; uint32_t sdl_buffer[offsetof(struct sockaddr_dl, sdl_data) + IFNAMSIZ + ETHER_ADDR_LEN]; struct sockaddr_dl *sdl = (struct sockaddr_dl *)sdl_buffer; sc = _MALLOC(sizeof (*sc), M_DEVBUF, M_WAITOK); memset(sc, 0, sizeof (*sc)); sc->sc_mtx = lck_mtx_alloc_init(bridge_lock_grp, bridge_lock_attr); sc->sc_brtmax = BRIDGE_RTABLE_MAX; sc->sc_brttimeout = BRIDGE_RTABLE_TIMEOUT; sc->sc_filter_flags = IFBF_FILT_DEFAULT; #ifndef BRIDGE_IPF /* * For backwards compatibility with previous behaviour... * Switch off filtering on the bridge itself if BRIDGE_IPF is * not defined. */ sc->sc_filter_flags &= ~IFBF_FILT_USEIPF; #endif /* Initialize our routing table. */ error = bridge_rtable_init(sc); if (error != 0) { printf("%s: bridge_rtable_init failed %d\n", __func__, error); goto done; } TAILQ_INIT(&sc->sc_iflist); TAILQ_INIT(&sc->sc_spanlist); /* use the interface name as the unique id for ifp recycle */ snprintf(sc->sc_if_xname, sizeof (sc->sc_if_xname), "%s%d", ifc->ifc_name, unit); bzero(&init_params, sizeof (init_params)); init_params.ver = IFNET_INIT_CURRENT_VERSION; init_params.len = sizeof (init_params); if (if_bridge_txstart) { init_params.start = bridge_start; } else { init_params.flags = IFNET_INIT_LEGACY; init_params.output = bridge_output; } init_params.uniqueid = sc->sc_if_xname; init_params.uniqueid_len = strlen(sc->sc_if_xname); init_params.sndq_maxlen = IFQ_MAXLEN; init_params.name = ifc->ifc_name; init_params.unit = unit; init_params.family = IFNET_FAMILY_ETHERNET; init_params.type = IFT_BRIDGE; init_params.demux = ether_demux; init_params.add_proto = ether_add_proto; init_params.del_proto = ether_del_proto; init_params.check_multi = ether_check_multi; init_params.framer = ether_frameout; init_params.softc = sc; init_params.ioctl = bridge_ioctl; init_params.set_bpf_tap = bridge_set_bpf_tap; init_params.detach = bridge_detach; init_params.broadcast_addr = etherbroadcastaddr; init_params.broadcast_len = ETHER_ADDR_LEN; error = ifnet_allocate_extended(&init_params, &ifp); if (error != 0) { printf("%s: ifnet_allocate failed %d\n", __func__, error); goto done; } sc->sc_ifp = ifp; error = ifnet_set_mtu(ifp, ETHERMTU); if (error != 0) { printf("%s: ifnet_set_mtu failed %d\n", __func__, error); goto done; } error = ifnet_set_addrlen(ifp, ETHER_ADDR_LEN); if (error != 0) { printf("%s: ifnet_set_addrlen failed %d\n", __func__, error); goto done; } error = ifnet_set_hdrlen(ifp, ETHER_HDR_LEN); if (error != 0) { printf("%s: ifnet_set_hdrlen failed %d\n", __func__, error); goto done; } error = ifnet_set_flags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST, 0xffff); if (error != 0) { printf("%s: ifnet_set_flags failed %d\n", __func__, error); goto done; } #if 0 /* * Generate a random ethernet address with a locally administered * address. * * Since we are using random ethernet addresses for the bridge, it is * possible that we might have address collisions, so make sure that * this hardware address isn't already in use on another bridge. */ { int retry; for (retry = 1; retry != 0;) { struct ifnet *bifp; struct bridge_softc *sc2; read_random(eaddr, ETHER_ADDR_LEN); eaddr[0] &= ~1; /* clear multicast bit */ eaddr[0] |= 2; /* set the LAA bit */ retry = 0; lck_mtx_lock(bridge_list_mtx); LIST_FOREACH(sc2, &bridge_list, sc_list) { bifp = sc2->sc_ifp; if (memcmp(eaddr, ifnet_lladdr(bifp), ETHER_ADDR_LEN) == 0) retry = 1; } lck_mtx_unlock(bridge_list_mtx); } } #else /* * Generate a random ethernet address and use the private AC:DE:48 * OUI code. */ { uint32_t r; read_random(&r, sizeof (r)); eaddr[0] = 0xAC; eaddr[1] = 0xDE; eaddr[2] = 0x48; eaddr[3] = (r >> 0) & 0xffu; eaddr[4] = (r >> 8) & 0xffu; eaddr[5] = (r >> 16) & 0xffu; } #endif memset(sdl, 0, sizeof (sdl_buffer)); sdl->sdl_family = AF_LINK; sdl->sdl_nlen = strlen(sc->sc_if_xname); sdl->sdl_alen = ETHER_ADDR_LEN; sdl->sdl_len = offsetof(struct sockaddr_dl, sdl_data); memcpy(sdl->sdl_data, sc->sc_if_xname, sdl->sdl_nlen); memcpy(LLADDR(sdl), eaddr, ETHER_ADDR_LEN); #if BRIDGE_DEBUG if (if_bridge_debug) link_print(sdl); #endif error = ifnet_attach(ifp, NULL); if (error != 0) { printf("%s: ifnet_attach failed %d\n", __func__, error); goto done; } error = ifnet_set_lladdr_and_type(ifp, eaddr, ETHER_ADDR_LEN, IFT_ETHER); if (error != 0) { printf("%s: ifnet_set_lladdr_and_type failed %d\n", __func__, error); goto done; } #if APPLE_BRIDGE_HWCKSUM_SUPPORT /* * APPLE MODIFICATION - our bridge can support HW checksums * (useful if underlying interfaces support them) on TX, * RX is not that interesting, since the stack just looks to * see if the packet has been checksummed already (I think) * but we might as well indicate we support it */ ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx; #endif #if BRIDGESTP bstp_attach(&sc->sc_stp, &bridge_ops); #endif /* BRIDGESTP */ lck_mtx_lock(bridge_list_mtx); LIST_INSERT_HEAD(&bridge_list, sc, sc_list); lck_mtx_unlock(bridge_list_mtx); /* attach as ethernet */ error = bpf_attach(ifp, DLT_EN10MB, sizeof (struct ether_header), NULL, NULL); done: if (error != 0) { printf("%s failed error %d\n", __func__, error); /* Cleanup TBD */ } return (error); } /* * bridge_clone_destroy: * * Destroy a bridge instance. */ static int bridge_clone_destroy(struct ifnet *ifp) { struct bridge_softc *sc = ifp->if_softc; struct bridge_iflist *bif; errno_t error; BRIDGE_LOCK(sc); if ((sc->sc_flags & SCF_DETACHING)) { BRIDGE_UNLOCK(sc); return (0); } sc->sc_flags |= SCF_DETACHING; bridge_ifstop(ifp, 1); error = ifnet_set_flags(ifp, 0, IFF_UP); if (error != 0) { printf("%s: ifnet_set_flags failed %d\n", __func__, error); } while ((bif = TAILQ_FIRST(&sc->sc_iflist)) != NULL) bridge_delete_member(sc, bif, 0); while ((bif = TAILQ_FIRST(&sc->sc_spanlist)) != NULL) { bridge_delete_span(sc, bif); } BRIDGE_UNLOCK(sc); error = ifnet_detach(ifp); if (error != 0) { panic("bridge_clone_destroy: ifnet_detach(%p) failed %d\n", ifp, error); if ((sc = (struct bridge_softc *)ifnet_softc(ifp)) != NULL) { BRIDGE_LOCK(sc); sc->sc_flags &= ~SCF_DETACHING; BRIDGE_UNLOCK(sc); } return (0); } return (0); } #define DRVSPEC do { \ if (ifd->ifd_cmd >= bridge_control_table_size) { \ error = EINVAL; \ break; \ } \ bc = &bridge_control_table[ifd->ifd_cmd]; \ \ if (cmd == SIOCGDRVSPEC && \ (bc->bc_flags & BC_F_COPYOUT) == 0) { \ error = EINVAL; \ break; \ } else if (cmd == SIOCSDRVSPEC && \ (bc->bc_flags & BC_F_COPYOUT) != 0) { \ error = EINVAL; \ break; \ } \ \ if (bc->bc_flags & BC_F_SUSER) { \ error = kauth_authorize_generic(kauth_cred_get(), \ KAUTH_GENERIC_ISSUSER); \ if (error) \ break; \ } \ \ if (ifd->ifd_len != bc->bc_argsize || \ ifd->ifd_len > sizeof (args)) { \ error = EINVAL; \ break; \ } \ \ bzero(&args, sizeof (args)); \ if (bc->bc_flags & BC_F_COPYIN) { \ error = copyin(ifd->ifd_data, &args, ifd->ifd_len); \ if (error) \ break; \ } \ \ BRIDGE_LOCK(sc); \ error = (*bc->bc_func)(sc, &args); \ BRIDGE_UNLOCK(sc); \ if (error) \ break; \ \ if (bc->bc_flags & BC_F_COPYOUT) \ error = copyout(&args, ifd->ifd_data, ifd->ifd_len); \ } while (0) /* * bridge_ioctl: * * Handle a control request from the operator. */ static errno_t bridge_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct bridge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int error = 0; lck_mtx_assert(sc->sc_mtx, LCK_MTX_ASSERT_NOTOWNED); #if BRIDGE_DEBUG if (if_bridge_debug) printf("%s: ifp %p cmd 0x%08lx (%c%c [%lu] %c %lu)\n", __func__, ifp, cmd, (cmd & IOC_IN) ? 'I' : ' ', (cmd & IOC_OUT) ? 'O' : ' ', IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff); #endif switch (cmd) { case SIOCSIFADDR: case SIOCAIFADDR: ifnet_set_flags(ifp, IFF_UP, IFF_UP); break; case SIOCGIFMEDIA32: case SIOCGIFMEDIA64: error = EINVAL; break; case SIOCADDMULTI: case SIOCDELMULTI: break; case SIOCSDRVSPEC32: case SIOCGDRVSPEC32: { union { struct ifbreq ifbreq; struct ifbifconf32 ifbifconf; struct ifbareq32 ifbareq; struct ifbaconf32 ifbaconf; struct ifbrparam ifbrparam; struct ifbropreq32 ifbropreq; } args; struct ifdrv32 *ifd = (struct ifdrv32 *)data; const struct bridge_control *bridge_control_table = bridge_control_table32, *bc; DRVSPEC; break; } case SIOCSDRVSPEC64: case SIOCGDRVSPEC64: { union { struct ifbreq ifbreq; struct ifbifconf64 ifbifconf; struct ifbareq64 ifbareq; struct ifbaconf64 ifbaconf; struct ifbrparam ifbrparam; struct ifbropreq64 ifbropreq; } args; struct ifdrv64 *ifd = (struct ifdrv64 *)data; const struct bridge_control *bridge_control_table = bridge_control_table64, *bc; DRVSPEC; break; } case SIOCSIFFLAGS: if (!(ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) { /* * If interface is marked down and it is running, * then stop and disable it. */ BRIDGE_LOCK(sc); bridge_ifstop(ifp, 1); BRIDGE_UNLOCK(sc); } else if ((ifp->if_flags & IFF_UP) && !(ifp->if_flags & IFF_RUNNING)) { /* * If interface is marked up and it is stopped, then * start it. */ BRIDGE_LOCK(sc); error = bridge_init(ifp); BRIDGE_UNLOCK(sc); } break; case SIOCSIFLLADDR: error = ifnet_set_lladdr(ifp, ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); if (error != 0) printf("%s: ifnet_set_lladdr failed %d\n", __func__, error); break; case SIOCSIFMTU: /* Do not allow the MTU to be changed on the bridge */ error = EINVAL; break; default: error = ether_ioctl(ifp, cmd, data); #if BRIDGE_DEBUG if (error != 0 && error != EOPNOTSUPP) printf("%s: ether_ioctl ifp %p cmd 0x%08lx " "(%c%c [%lu] %c %lu) failed error: %d\n", __func__, ifp, cmd, (cmd & IOC_IN) ? 'I' : ' ', (cmd & IOC_OUT) ? 'O' : ' ', IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error); #endif /* BRIDGE_DEBUG */ break; } lck_mtx_assert(sc->sc_mtx, LCK_MTX_ASSERT_NOTOWNED); return (error); } #if HAS_IF_CAP /* * bridge_mutecaps: * * Clear or restore unwanted capabilities on the member interface */ static void bridge_mutecaps(struct bridge_softc *sc) { struct bridge_iflist *bif; int enabled, mask; /* Initial bitmask of capabilities to test */ mask = BRIDGE_IFCAPS_MASK; TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) { /* Every member must support it or its disabled */ mask &= bif->bif_savedcaps; } TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) { enabled = bif->bif_ifp->if_capenable; enabled &= ~BRIDGE_IFCAPS_STRIP; /* strip off mask bits and enable them again if allowed */ enabled &= ~BRIDGE_IFCAPS_MASK; enabled |= mask; bridge_set_ifcap(sc, bif, enabled); } } static void bridge_set_ifcap(struct bridge_softc *sc, struct bridge_iflist *bif, int set) { struct ifnet *ifp = bif->bif_ifp; struct ifreq ifr; int error; bzero(&ifr, sizeof (ifr)); ifr.ifr_reqcap = set; if (ifp->if_capenable != set) { IFF_LOCKGIANT(ifp); error = (*ifp->if_ioctl)(ifp, SIOCSIFCAP, (caddr_t)&ifr); IFF_UNLOCKGIANT(ifp); if (error) printf("%s: error setting interface capabilities " "on %s\n", __func__, ifnet_name(sc->sc_ifp), ifnet_unit(sc->sc_ifp), ifp->if_xname); } } #endif /* HAS_IF_CAP */ /* * bridge_lookup_member: * * Lookup a bridge member interface. */ static struct bridge_iflist * bridge_lookup_member(struct bridge_softc *sc, const char *name) { struct bridge_iflist *bif; struct ifnet *ifp; char if_xname[IFNAMSIZ]; BRIDGE_LOCK_ASSERT(sc); TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) { ifp = bif->bif_ifp; snprintf(if_xname, sizeof (if_xname), "%s%d", ifnet_name(ifp), ifnet_unit(ifp)); if (strncmp(if_xname, name, sizeof (if_xname)) == 0) return (bif); } return (NULL); } /* * bridge_lookup_member_if: * * Lookup a bridge member interface by ifnet*. */ static struct bridge_iflist * bridge_lookup_member_if(struct bridge_softc *sc, struct ifnet *member_ifp) { struct bridge_iflist *bif; BRIDGE_LOCK_ASSERT(sc); TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) { if (bif->bif_ifp == member_ifp) return (bif); } return (NULL); } static errno_t bridge_iff_input(void *cookie, ifnet_t ifp, __unused protocol_family_t protocol, mbuf_t *data, char **frame_ptr) { errno_t error = 0; struct bridge_iflist *bif = (struct bridge_iflist *)cookie; struct bridge_softc *sc = bif->bif_sc; int included = 0; size_t frmlen = 0; mbuf_t m = *data; if ((m->m_flags & M_PROTO1)) goto out; if (*frame_ptr >= (char *)mbuf_datastart(m) && *frame_ptr <= (char *)mbuf_data(m)) { included = 1; frmlen = (char *)mbuf_data(m) - *frame_ptr; } #if BRIDGE_DEBUG if (if_bridge_debug) { printf("%s: %s%d from %s%d m %p data %p frame %p %s " "frmlen %lu\n", __func__, ifnet_name(sc->sc_ifp), ifnet_unit(sc->sc_ifp), ifnet_name(ifp), ifnet_unit(ifp), m, mbuf_data(m), *frame_ptr, included ? "inside" : "outside", frmlen); if (if_bridge_debug > 1) { printf_mbuf(m, "bridge_iff_input[", "\n"); printf_ether_header((struct ether_header *) (void *)*frame_ptr); printf_mbuf_data(m, 0, 20); printf("\n"); } } #endif /* BRIDGE_DEBUG */ /* Move data pointer to start of frame to the link layer header */ if (included) { (void) mbuf_setdata(m, (char *)mbuf_data(m) - frmlen, mbuf_len(m) + frmlen); (void) mbuf_pkthdr_adjustlen(m, frmlen); } else { printf("%s: frame_ptr outside mbuf\n", __func__); goto out; } error = bridge_input(ifp, m, *frame_ptr); /* Adjust packet back to original */ if (error == 0) { (void) mbuf_setdata(m, (char *)mbuf_data(m) + frmlen, mbuf_len(m) - frmlen); (void) mbuf_pkthdr_adjustlen(m, -frmlen); } #if BRIDGE_DEBUG if (if_bridge_debug > 1) { printf("\n"); printf_mbuf(m, "bridge_iff_input]", "\n"); } #endif /* BRIDGE_DEBUG */ out: lck_mtx_assert(sc->sc_mtx, LCK_MTX_ASSERT_NOTOWNED); return (error); } #if BRIDGE_MEMBER_OUT_FILTER static errno_t bridge_iff_output(void *cookie, ifnet_t ifp, __unused protocol_family_t protocol, mbuf_t *data) { errno_t error = 0; struct bridge_iflist *bif = (struct bridge_iflist *)cookie; struct bridge_softc *sc = bif->bif_sc; mbuf_t m = *data; if ((m->m_flags & M_PROTO1)) goto out; #if BRIDGE_DEBUG if (if_bridge_debug) { printf("%s: %s%d from %s%d m %p data %p\n", __func__, ifnet_name(sc->sc_ifp), ifnet_unit(sc->sc_ifp), ifnet_name(ifp), ifnet_unit(ifp), m, mbuf_data(m)); } #endif /* BRIDGE_DEBUG */ error = bridge_member_output(sc, ifp, m); if (error != 0) { printf("%s: bridge_member_output failed error %d\n", __func__, error); } out: lck_mtx_assert(sc->sc_mtx, LCK_MTX_ASSERT_NOTOWNED); return (error); } #endif /* BRIDGE_MEMBER_OUT_FILTER */ static void bridge_iff_event(void *cookie, ifnet_t ifp, __unused protocol_family_t protocol, const struct kev_msg *event_msg) { struct bridge_iflist *bif = (struct bridge_iflist *)cookie; if (event_msg->vendor_code == KEV_VENDOR_APPLE && event_msg->kev_class == KEV_NETWORK_CLASS && event_msg->kev_subclass == KEV_DL_SUBCLASS) { switch (event_msg->event_code) { case KEV_DL_IF_DETACHING: case KEV_DL_IF_DETACHED: bridge_ifdetach(bif, ifp); break; case KEV_DL_LINK_OFF: case KEV_DL_LINK_ON: { #if BRIDGESTP bstp_linkstate(ifp, event_msg->event_code); #endif /* BRIDGESTP */ break; } case KEV_DL_SIFFLAGS: { if (bif->bif_promisc == 0 && (ifp->if_flags & IFF_UP)) { errno_t error = ifnet_set_promiscuous(ifp, 1); if (error != 0) { printf("%s: " "ifnet_set_promiscuous" "(%s%d) failed %d\n", __func__, ifnet_name(ifp), ifnet_unit(ifp), error); } else { bif->bif_promisc = 1; } } break; } default: break; } } } /* * bridge_iff_detached: * * Detach an interface from a bridge. Called when a member * interface is detaching. */ static void bridge_iff_detached(void *cookie, __unused ifnet_t ifp) { struct bridge_iflist *bif = (struct bridge_iflist *)cookie; #if BRIDGE_DEBUG printf("%s: %s%d\n", __func__, ifnet_name(ifp), ifnet_unit(ifp)); #endif bridge_ifdetach(bif, ifp); _FREE(bif, M_DEVBUF); } static errno_t bridge_proto_input(ifnet_t ifp, __unused protocol_family_t protocol, __unused mbuf_t packet, __unused char *header) { printf("%s: unexpected packet from %s%d\n", __func__, ifnet_name(ifp), ifnet_unit(ifp)); return (0); } static int bridge_attach_protocol(struct ifnet *ifp) { int error; struct ifnet_attach_proto_param reg; printf("%s: %s%d\n", __func__, ifnet_name(ifp), ifnet_unit(ifp)); bzero(®, sizeof (reg)); reg.input = bridge_proto_input; error = ifnet_attach_protocol(ifp, PF_BRIDGE, ®); if (error) printf("%s: ifnet_attach_protocol(%s%d) failed, %d\n", __func__, ifnet_name(ifp), ifnet_unit(ifp), error); return (error); } static int bridge_detach_protocol(struct ifnet *ifp) { int error; printf("%s: %s%d\n", __func__, ifnet_name(ifp), ifnet_unit(ifp)); error = ifnet_detach_protocol(ifp, PF_BRIDGE); if (error) printf("%s: ifnet_detach_protocol(%s%d) failed, %d\n", __func__, ifnet_name(ifp), ifnet_unit(ifp), error); return (error); } /* * bridge_delete_member: * * Delete the specified member interface. */ static void bridge_delete_member(struct bridge_softc *sc, struct bridge_iflist *bif, int gone) { struct ifnet *ifs = bif->bif_ifp; BRIDGE_LOCK_ASSERT(sc); if (!gone) { switch (ifs->if_type) { case IFT_ETHER: case IFT_L2VLAN: /* * Take the interface out of promiscuous mode. */ if (bif->bif_promisc) (void) ifnet_set_promiscuous(ifs, 0); break; case IFT_GIF: break; default: #ifdef DIAGNOSTIC panic("bridge_delete_member: impossible"); #endif break; } #if HAS_IF_CAP /* reneable any interface capabilities */ bridge_set_ifcap(sc, bif, bif->bif_savedcaps); #endif } if (bif->bif_proto_attached) { /* Respect lock ordering with DLIL lock */ BRIDGE_UNLOCK(sc); (void) bridge_detach_protocol(ifs); BRIDGE_LOCK(sc); } #if BRIDGESTP if (bif->bif_flags & IFBIF_STP) bstp_disable(&bif->bif_stp); #endif /* BRIDGESTP */ ifs->if_bridge = NULL; BRIDGE_XLOCK(sc); TAILQ_REMOVE(&sc->sc_iflist, bif, bif_next); BRIDGE_XDROP(sc); ifnet_release(ifs); #if HAS_IF_CAP bridge_mutecaps(sc); /* recalcuate now this interface is removed */ #endif /* HAS_IF_CAP */ bridge_rtdelete(sc, ifs, IFBF_FLUSHALL); KASSERT(bif->bif_addrcnt == 0, ("%s: %d bridge routes referenced", __func__, bif->bif_addrcnt)); #if BRIDGESTP BRIDGE_UNLOCK(sc); bstp_destroy(&bif->bif_stp); /* prepare to free */ BRIDGE_LOCK(sc); #endif /* BRIDGESTP */ if (bif->bif_filter_attached) { /* Respect lock ordering with DLIL lock */ BRIDGE_UNLOCK(sc); iflt_detach(bif->bif_iff_ref); BRIDGE_LOCK(sc); } else { _FREE(bif, M_DEVBUF); } } /* * bridge_delete_span: * * Delete the specified span interface. */ static void bridge_delete_span(struct bridge_softc *sc, struct bridge_iflist *bif) { BRIDGE_LOCK_ASSERT(sc); KASSERT(bif->bif_ifp->if_bridge == NULL, ("%s: not a span interface", __func__)); ifnet_release(bif->bif_ifp); TAILQ_REMOVE(&sc->sc_spanlist, bif, bif_next); _FREE(bif, M_DEVBUF); } static int bridge_ioctl_add(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif = NULL; struct ifnet *ifs; int error = 0; struct iff_filter iff; ifs = ifunit(req->ifbr_ifsname); if (ifs == NULL) return (ENOENT); if (ifs->if_ioctl == NULL) /* must be supported */ return (EINVAL); /* If it's in the span list, it can't be a member. */ TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) if (ifs == bif->bif_ifp) return (EBUSY); /* Allow the first Ethernet member to define the MTU */ if (ifs->if_type != IFT_GIF) { if (TAILQ_EMPTY(&sc->sc_iflist)) sc->sc_ifp->if_mtu = ifs->if_mtu; else if (sc->sc_ifp->if_mtu != ifs->if_mtu) { printf("%s: %s%d: invalid MTU for %s%d", __func__, ifnet_name(sc->sc_ifp), ifnet_unit(sc->sc_ifp), ifnet_name(ifs), ifnet_unit(ifs)); return (EINVAL); } } if (ifs->if_bridge == sc) return (EEXIST); if (ifs->if_bridge != NULL) return (EBUSY); bif = _MALLOC(sizeof (*bif), M_DEVBUF, M_NOWAIT|M_ZERO); if (bif == NULL) return (ENOMEM); bif->bif_ifp = ifs; bif->bif_flags = IFBIF_LEARNING | IFBIF_DISCOVER; #if HAS_IF_CAP bif->bif_savedcaps = ifs->if_capenable; #endif /* HAS_IF_CAP */ bif->bif_sc = sc; ifnet_reference(ifs); ifs->if_bridge = sc; #if BRIDGESTP bstp_create(&sc->sc_stp, &bif->bif_stp, bif->bif_ifp); #endif /* BRIDGESTP */ /* * XXX: XLOCK HERE!?! */ TAILQ_INSERT_TAIL(&sc->sc_iflist, bif, bif_next); #if HAS_IF_CAP /* Set interface capabilities to the intersection set of all members */ bridge_mutecaps(sc); #endif /* HAS_IF_CAP */ switch (ifs->if_type) { case IFT_ETHER: case IFT_L2VLAN: /* * Place the interface into promiscuous mode. */ error = ifnet_set_promiscuous(ifs, 1); if (error) { /* Ignore error when device is not up */ if (error != ENETDOWN) goto out; error = 0; } else { bif->bif_promisc = 1; } break; case IFT_GIF: break; default: error = EINVAL; goto out; } /* * Respect lock ordering with DLIL lock for the following operations */ BRIDGE_UNLOCK(sc); /* * install an interface filter */ memset(&iff, 0, sizeof (struct iff_filter)); iff.iff_cookie = bif; iff.iff_name = "com.apple.kernel.bsd.net.if_bridge"; iff.iff_input = bridge_iff_input; #if BRIDGE_MEMBER_OUT_FILTER iff.iff_output = bridge_iff_output; #endif /* BRIDGE_MEMBER_OUT_FILTER */ iff.iff_event = bridge_iff_event; iff.iff_detached = bridge_iff_detached; error = iflt_attach(ifs, &iff, &bif->bif_iff_ref); if (error != 0) { printf("%s: iflt_attach failed %d\n", __func__, error); BRIDGE_LOCK(sc); goto out; } bif->bif_filter_attached = 1; /* * install an dummy "bridge" protocol */ if ((error = bridge_attach_protocol(ifs)) != 0) { if (error != 0) { printf("%s: bridge_attach_protocol failed %d\n", __func__, error); BRIDGE_LOCK(sc); goto out; } } bif->bif_proto_attached = 1; BRIDGE_LOCK(sc); out: if (error && bif != NULL) bridge_delete_member(sc, bif, 1); return (error); } static int bridge_ioctl_del(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); bridge_delete_member(sc, bif, 0); return (0); } static int bridge_ioctl_purge(__unused struct bridge_softc *sc, __unused void *arg) { return (0); } static int bridge_ioctl_gifflags(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; struct bstp_port *bp; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); bp = &bif->bif_stp; req->ifbr_ifsflags = bif->bif_flags; req->ifbr_state = bp->bp_state; req->ifbr_priority = bp->bp_priority; req->ifbr_path_cost = bp->bp_path_cost; req->ifbr_portno = bif->bif_ifp->if_index & 0xfff; req->ifbr_proto = bp->bp_protover; req->ifbr_role = bp->bp_role; req->ifbr_stpflags = bp->bp_flags; req->ifbr_addrcnt = bif->bif_addrcnt; req->ifbr_addrmax = bif->bif_addrmax; req->ifbr_addrexceeded = bif->bif_addrexceeded; /* Copy STP state options as flags */ if (bp->bp_operedge) req->ifbr_ifsflags |= IFBIF_BSTP_EDGE; if (bp->bp_flags & BSTP_PORT_AUTOEDGE) req->ifbr_ifsflags |= IFBIF_BSTP_AUTOEDGE; if (bp->bp_ptp_link) req->ifbr_ifsflags |= IFBIF_BSTP_PTP; if (bp->bp_flags & BSTP_PORT_AUTOPTP) req->ifbr_ifsflags |= IFBIF_BSTP_AUTOPTP; if (bp->bp_flags & BSTP_PORT_ADMEDGE) req->ifbr_ifsflags |= IFBIF_BSTP_ADMEDGE; if (bp->bp_flags & BSTP_PORT_ADMCOST) req->ifbr_ifsflags |= IFBIF_BSTP_ADMCOST; return (0); } static int bridge_ioctl_sifflags(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; #if BRIDGESTP struct bstp_port *bp; int error; #endif /* BRIDGESTP */ bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); if (req->ifbr_ifsflags & IFBIF_SPAN) /* SPAN is readonly */ return (EINVAL); #if BRIDGESTP if (req->ifbr_ifsflags & IFBIF_STP) { if ((bif->bif_flags & IFBIF_STP) == 0) { error = bstp_enable(&bif->bif_stp); if (error) return (error); } } else { if ((bif->bif_flags & IFBIF_STP) != 0) bstp_disable(&bif->bif_stp); } /* Pass on STP flags */ bp = &bif->bif_stp; bstp_set_edge(bp, req->ifbr_ifsflags & IFBIF_BSTP_EDGE ? 1 : 0); bstp_set_autoedge(bp, req->ifbr_ifsflags & IFBIF_BSTP_AUTOEDGE ? 1 : 0); bstp_set_ptp(bp, req->ifbr_ifsflags & IFBIF_BSTP_PTP ? 1 : 0); bstp_set_autoptp(bp, req->ifbr_ifsflags & IFBIF_BSTP_AUTOPTP ? 1 : 0); #else /* !BRIDGESTP */ if (req->ifbr_ifsflags & IFBIF_STP) return (EOPNOTSUPP); #endif /* !BRIDGESTP */ /* Save the bits relating to the bridge */ bif->bif_flags = req->ifbr_ifsflags & IFBIFMASK; return (0); } static int bridge_ioctl_scache(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; sc->sc_brtmax = param->ifbrp_csize; bridge_rttrim(sc); return (0); } static int bridge_ioctl_gcache(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; param->ifbrp_csize = sc->sc_brtmax; return (0); } #define BRIDGE_IOCTL_GIFS do { \ struct bridge_iflist *bif; \ struct ifbreq breq; \ char *buf, *outbuf; \ unsigned int count, buflen, len; \ \ count = 0; \ TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) \ count++; \ TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) \ count++; \ \ buflen = sizeof (breq) * count; \ if (bifc->ifbic_len == 0) { \ bifc->ifbic_len = buflen; \ return (0); \ } \ BRIDGE_UNLOCK(sc); \ outbuf = _MALLOC(buflen, M_TEMP, M_WAITOK | M_ZERO); \ BRIDGE_LOCK(sc); \ \ count = 0; \ buf = outbuf; \ len = min(bifc->ifbic_len, buflen); \ bzero(&breq, sizeof (breq)); \ TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) { \ if (len < sizeof (breq)) \ break; \ \ snprintf(breq.ifbr_ifsname, sizeof (breq.ifbr_ifsname), \ "%s%d", ifnet_name(bif->bif_ifp), \ ifnet_unit(bif->bif_ifp)); \ /* Fill in the ifbreq structure */ \ error = bridge_ioctl_gifflags(sc, &breq); \ if (error) \ break; \ memcpy(buf, &breq, sizeof (breq)); \ count++; \ buf += sizeof (breq); \ len -= sizeof (breq); \ } \ TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) { \ if (len < sizeof (breq)) \ break; \ \ snprintf(breq.ifbr_ifsname, sizeof (breq.ifbr_ifsname), \ "%s%d", ifnet_name(bif->bif_ifp), \ ifnet_unit(bif->bif_ifp)); \ breq.ifbr_ifsflags = bif->bif_flags; \ breq.ifbr_portno = bif->bif_ifp->if_index & 0xfff; \ memcpy(buf, &breq, sizeof (breq)); \ count++; \ buf += sizeof (breq); \ len -= sizeof (breq); \ } \ \ BRIDGE_UNLOCK(sc); \ bifc->ifbic_len = sizeof (breq) * count; \ error = copyout(outbuf, bifc->ifbic_req, bifc->ifbic_len); \ BRIDGE_LOCK(sc); \ _FREE(outbuf, M_TEMP); \ } while (0) static int bridge_ioctl_gifs64(struct bridge_softc *sc, void *arg) { struct ifbifconf64 *bifc = arg; int error = 0; BRIDGE_IOCTL_GIFS; return (error); } static int bridge_ioctl_gifs32(struct bridge_softc *sc, void *arg) { struct ifbifconf32 *bifc = arg; int error = 0; BRIDGE_IOCTL_GIFS; return (error); } #define BRIDGE_IOCTL_RTS do { \ struct bridge_rtnode *brt; \ char *buf, *outbuf; \ unsigned int count, buflen, len; \ struct timespec now; \ \ if (bac->ifbac_len == 0) \ return (0); \ \ count = 0; \ LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) \ count++; \ buflen = sizeof (bareq) * count; \ \ BRIDGE_UNLOCK(sc); \ outbuf = _MALLOC(buflen, M_TEMP, M_WAITOK | M_ZERO); \ BRIDGE_LOCK(sc); \ \ count = 0; \ buf = outbuf; \ len = min(bac->ifbac_len, buflen); \ bzero(&bareq, sizeof (bareq)); \ LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) { \ if (len < sizeof (bareq)) \ goto out; \ snprintf(bareq.ifba_ifsname, sizeof (bareq.ifba_ifsname), \ "%s%d", ifnet_name(brt->brt_ifp), \ ifnet_unit(brt->brt_ifp)); \ memcpy(bareq.ifba_dst, brt->brt_addr, sizeof (brt->brt_addr)); \ bareq.ifba_vlan = brt->brt_vlan; \ if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) { \ nanouptime(&now); \ if ((unsigned long)now.tv_sec < brt->brt_expire) \ bareq.ifba_expire = \ brt->brt_expire - now.tv_sec; \ } else \ bareq.ifba_expire = 0; \ bareq.ifba_flags = brt->brt_flags; \ \ memcpy(buf, &bareq, sizeof (bareq)); \ count++; \ buf += sizeof (bareq); \ len -= sizeof (bareq); \ } \ out: \ BRIDGE_UNLOCK(sc); \ bac->ifbac_len = sizeof (bareq) * count; \ error = copyout(outbuf, bac->ifbac_req, bac->ifbac_len); \ BRIDGE_LOCK(sc); \ _FREE(outbuf, M_TEMP); \ return (error); \ } while (0) static int bridge_ioctl_rts64(struct bridge_softc *sc, void *arg) { struct ifbaconf64 *bac = arg; struct ifbareq64 bareq; int error = 0; BRIDGE_IOCTL_RTS; return (error); } static int bridge_ioctl_rts32(struct bridge_softc *sc, void *arg) { struct ifbaconf32 *bac = arg; struct ifbareq32 bareq; int error = 0; BRIDGE_IOCTL_RTS; return (error); } static int bridge_ioctl_saddr32(struct bridge_softc *sc, void *arg) { struct ifbareq32 *req = arg; struct bridge_iflist *bif; int error; bif = bridge_lookup_member(sc, req->ifba_ifsname); if (bif == NULL) return (ENOENT); error = bridge_rtupdate(sc, req->ifba_dst, req->ifba_vlan, bif, 1, req->ifba_flags); return (error); } static int bridge_ioctl_saddr64(struct bridge_softc *sc, void *arg) { struct ifbareq64 *req = arg; struct bridge_iflist *bif; int error; bif = bridge_lookup_member(sc, req->ifba_ifsname); if (bif == NULL) return (ENOENT); error = bridge_rtupdate(sc, req->ifba_dst, req->ifba_vlan, bif, 1, req->ifba_flags); return (error); } static int bridge_ioctl_sto(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; sc->sc_brttimeout = param->ifbrp_ctime; return (0); } static int bridge_ioctl_gto(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; param->ifbrp_ctime = sc->sc_brttimeout; return (0); } static int bridge_ioctl_daddr32(struct bridge_softc *sc, void *arg) { struct ifbareq32 *req = arg; return (bridge_rtdaddr(sc, req->ifba_dst, req->ifba_vlan)); } static int bridge_ioctl_daddr64(struct bridge_softc *sc, void *arg) { struct ifbareq64 *req = arg; return (bridge_rtdaddr(sc, req->ifba_dst, req->ifba_vlan)); } static int bridge_ioctl_flush(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; bridge_rtflush(sc, req->ifbr_ifsflags); return (0); } static int bridge_ioctl_gpri(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; struct bstp_state *bs = &sc->sc_stp; param->ifbrp_prio = bs->bs_bridge_priority; return (0); } static int bridge_ioctl_spri(struct bridge_softc *sc, void *arg) { #if BRIDGESTP struct ifbrparam *param = arg; return (bstp_set_priority(&sc->sc_stp, param->ifbrp_prio)); #else /* !BRIDGESTP */ #pragma unused(sc, arg) return (EOPNOTSUPP); #endif /* !BRIDGESTP */ } static int bridge_ioctl_ght(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; struct bstp_state *bs = &sc->sc_stp; param->ifbrp_hellotime = bs->bs_bridge_htime >> 8; return (0); } static int bridge_ioctl_sht(struct bridge_softc *sc, void *arg) { #if BRIDGESTP struct ifbrparam *param = arg; return (bstp_set_htime(&sc->sc_stp, param->ifbrp_hellotime)); #else /* !BRIDGESTP */ #pragma unused(sc, arg) return (EOPNOTSUPP); #endif /* !BRIDGESTP */ } static int bridge_ioctl_gfd(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; struct bstp_state *bs = &sc->sc_stp; param->ifbrp_fwddelay = bs->bs_bridge_fdelay >> 8; return (0); } static int bridge_ioctl_sfd(struct bridge_softc *sc, void *arg) { #if BRIDGESTP struct ifbrparam *param = arg; return (bstp_set_fdelay(&sc->sc_stp, param->ifbrp_fwddelay)); #else /* !BRIDGESTP */ #pragma unused(sc, arg) return (EOPNOTSUPP); #endif /* !BRIDGESTP */ } static int bridge_ioctl_gma(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; struct bstp_state *bs = &sc->sc_stp; param->ifbrp_maxage = bs->bs_bridge_max_age >> 8; return (0); } static int bridge_ioctl_sma(struct bridge_softc *sc, void *arg) { #if BRIDGESTP struct ifbrparam *param = arg; return (bstp_set_maxage(&sc->sc_stp, param->ifbrp_maxage)); #else /* !BRIDGESTP */ #pragma unused(sc, arg) return (EOPNOTSUPP); #endif /* !BRIDGESTP */ } static int bridge_ioctl_sifprio(struct bridge_softc *sc, void *arg) { #if BRIDGESTP struct ifbreq *req = arg; struct bridge_iflist *bif; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); return (bstp_set_port_priority(&bif->bif_stp, req->ifbr_priority)); #else /* !BRIDGESTP */ #pragma unused(sc, arg) return (EOPNOTSUPP); #endif /* !BRIDGESTP */ } static int bridge_ioctl_sifcost(struct bridge_softc *sc, void *arg) { #if BRIDGESTP struct ifbreq *req = arg; struct bridge_iflist *bif; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); return (bstp_set_path_cost(&bif->bif_stp, req->ifbr_path_cost)); #else /* !BRIDGESTP */ #pragma unused(sc, arg) return (EOPNOTSUPP); #endif /* !BRIDGESTP */ } static int bridge_ioctl_gfilt(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; param->ifbrp_filter = sc->sc_filter_flags; return (0); } static int bridge_ioctl_sfilt(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; if (param->ifbrp_filter & ~IFBF_FILT_MASK) return (EINVAL); #ifndef BRIDGE_IPF if (param->ifbrp_filter & IFBF_FILT_USEIPF) return (EINVAL); #endif sc->sc_filter_flags = param->ifbrp_filter; return (0); } static int bridge_ioctl_sifmaxaddr(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); bif->bif_addrmax = req->ifbr_addrmax; return (0); } static int bridge_ioctl_addspan(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif = NULL; struct ifnet *ifs; ifs = ifunit(req->ifbr_ifsname); if (ifs == NULL) return (ENOENT); TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) if (ifs == bif->bif_ifp) return (EBUSY); if (ifs->if_bridge != NULL) return (EBUSY); switch (ifs->if_type) { case IFT_ETHER: case IFT_GIF: case IFT_L2VLAN: break; default: return (EINVAL); } bif = _MALLOC(sizeof (*bif), M_DEVBUF, M_NOWAIT|M_ZERO); if (bif == NULL) return (ENOMEM); bif->bif_ifp = ifs; bif->bif_flags = IFBIF_SPAN; ifnet_reference(bif->bif_ifp); TAILQ_INSERT_HEAD(&sc->sc_spanlist, bif, bif_next); return (0); } static int bridge_ioctl_delspan(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; struct ifnet *ifs; ifs = ifunit(req->ifbr_ifsname); if (ifs == NULL) return (ENOENT); TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) if (ifs == bif->bif_ifp) break; if (bif == NULL) return (ENOENT); bridge_delete_span(sc, bif); return (0); } #define BRIDGE_IOCTL_GBPARAM do { \ struct bstp_state *bs = &sc->sc_stp; \ struct bstp_port *root_port; \ \ req->ifbop_maxage = bs->bs_bridge_max_age >> 8; \ req->ifbop_hellotime = bs->bs_bridge_htime >> 8; \ req->ifbop_fwddelay = bs->bs_bridge_fdelay >> 8; \ \ root_port = bs->bs_root_port; \ if (root_port == NULL) \ req->ifbop_root_port = 0; \ else \ req->ifbop_root_port = root_port->bp_ifp->if_index; \ \ req->ifbop_holdcount = bs->bs_txholdcount; \ req->ifbop_priority = bs->bs_bridge_priority; \ req->ifbop_protocol = bs->bs_protover; \ req->ifbop_root_path_cost = bs->bs_root_pv.pv_cost; \ req->ifbop_bridgeid = bs->bs_bridge_pv.pv_dbridge_id; \ req->ifbop_designated_root = bs->bs_root_pv.pv_root_id; \ req->ifbop_designated_bridge = bs->bs_root_pv.pv_dbridge_id; \ req->ifbop_last_tc_time.tv_sec = bs->bs_last_tc_time.tv_sec; \ req->ifbop_last_tc_time.tv_usec = bs->bs_last_tc_time.tv_usec; \ } while (0) static int bridge_ioctl_gbparam32(struct bridge_softc *sc, void *arg) { struct ifbropreq32 *req = arg; BRIDGE_IOCTL_GBPARAM; return (0); } static int bridge_ioctl_gbparam64(struct bridge_softc *sc, void *arg) { struct ifbropreq64 *req = arg; BRIDGE_IOCTL_GBPARAM; return (0); } static int bridge_ioctl_grte(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; param->ifbrp_cexceeded = sc->sc_brtexceeded; return (0); } #define BRIDGE_IOCTL_GIFSSTP do { \ struct bridge_iflist *bif; \ struct bstp_port *bp; \ struct ifbpstpreq bpreq; \ char *buf, *outbuf; \ unsigned int count, buflen, len; \ \ count = 0; \ TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) { \ if ((bif->bif_flags & IFBIF_STP) != 0) \ count++; \ } \ \ buflen = sizeof (bpreq) * count; \ if (bifstp->ifbpstp_len == 0) { \ bifstp->ifbpstp_len = buflen; \ return (0); \ } \ \ BRIDGE_UNLOCK(sc); \ outbuf = _MALLOC(buflen, M_TEMP, M_WAITOK | M_ZERO); \ BRIDGE_LOCK(sc); \ \ count = 0; \ buf = outbuf; \ len = min(bifstp->ifbpstp_len, buflen); \ bzero(&bpreq, sizeof (bpreq)); \ TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) { \ if (len < sizeof (bpreq)) \ break; \ \ if ((bif->bif_flags & IFBIF_STP) == 0) \ continue; \ \ bp = &bif->bif_stp; \ bpreq.ifbp_portno = bif->bif_ifp->if_index & 0xfff; \ bpreq.ifbp_fwd_trans = bp->bp_forward_transitions; \ bpreq.ifbp_design_cost = bp->bp_desg_pv.pv_cost; \ bpreq.ifbp_design_port = bp->bp_desg_pv.pv_port_id; \ bpreq.ifbp_design_bridge = bp->bp_desg_pv.pv_dbridge_id; \ bpreq.ifbp_design_root = bp->bp_desg_pv.pv_root_id; \ \ memcpy(buf, &bpreq, sizeof (bpreq)); \ count++; \ buf += sizeof (bpreq); \ len -= sizeof (bpreq); \ } \ \ BRIDGE_UNLOCK(sc); \ bifstp->ifbpstp_len = sizeof (bpreq) * count; \ error = copyout(outbuf, bifstp->ifbpstp_req, bifstp->ifbpstp_len); \ BRIDGE_LOCK(sc); \ _FREE(outbuf, M_TEMP); \ return (error); \ } while (0) static int bridge_ioctl_gifsstp32(struct bridge_softc *sc, void *arg) { struct ifbpstpconf32 *bifstp = arg; int error = 0; BRIDGE_IOCTL_GIFSSTP; return (error); } static int bridge_ioctl_gifsstp64(struct bridge_softc *sc, void *arg) { struct ifbpstpconf64 *bifstp = arg; int error = 0; BRIDGE_IOCTL_GIFSSTP; return (error); } static int bridge_ioctl_sproto(struct bridge_softc *sc, void *arg) { #if BRIDGESTP struct ifbrparam *param = arg; return (bstp_set_protocol(&sc->sc_stp, param->ifbrp_proto)); #else /* !BRIDGESTP */ #pragma unused(sc, arg) return (EOPNOTSUPP); #endif /* !BRIDGESTP */ } static int bridge_ioctl_stxhc(struct bridge_softc *sc, void *arg) { #if BRIDGESTP struct ifbrparam *param = arg; return (bstp_set_holdcount(&sc->sc_stp, param->ifbrp_txhc)); #else /* !BRIDGESTP */ #pragma unused(sc, arg) return (EOPNOTSUPP); #endif /* !BRIDGESTP */ } /* * bridge_ifdetach: * * Detach an interface from a bridge. Called when a member * interface is detaching. */ __private_extern__ void bridge_ifdetach(struct bridge_iflist *bif, struct ifnet *ifp) { struct bridge_softc *sc = ifp->if_bridge; #if BRIDGE_DEBUG printf("%s: %s%d\n", __func__, ifnet_name(ifp), ifnet_unit(ifp)); #endif /* Check if the interface is a bridge member */ if (sc != NULL) { BRIDGE_LOCK(sc); bif = bridge_lookup_member_if(sc, ifp); if (bif != NULL) bridge_delete_member(sc, bif, 1); BRIDGE_UNLOCK(sc); return; } /* Check if the interface is a span port */ lck_mtx_lock(bridge_list_mtx); LIST_FOREACH(sc, &bridge_list, sc_list) { BRIDGE_LOCK(sc); TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) if (ifp == bif->bif_ifp) { bridge_delete_span(sc, bif); break; } BRIDGE_UNLOCK(sc); } lck_mtx_unlock(bridge_list_mtx); } /* * bridge_init: * * Initialize a bridge interface. */ static int bridge_init(struct ifnet *ifp) { struct bridge_softc *sc = (struct bridge_softc *)ifp->if_softc; struct timespec ts; errno_t error; BRIDGE_LOCK_ASSERT(sc); if ((ifnet_flags(ifp) & IFF_RUNNING)) return (0); ts.tv_sec = bridge_rtable_prune_period; ts.tv_nsec = 0; bsd_timeout(bridge_timer, sc, &ts); error = ifnet_set_flags(ifp, IFF_RUNNING, IFF_RUNNING); #if BRIDGESTP if (error == 0) bstp_init(&sc->sc_stp); /* Initialize Spanning Tree */ #endif /* BRIDGESTP */ return (error); } /* * bridge_ifstop: * * Stop the bridge interface. */ static void bridge_ifstop(struct ifnet *ifp, __unused int disable) { struct bridge_softc *sc = ifp->if_softc; BRIDGE_LOCK_ASSERT(sc); if ((ifnet_flags(ifp) & IFF_RUNNING) == 0) return; bsd_untimeout(bridge_timer, sc); #if BRIDGESTP bstp_stop(&sc->sc_stp); #endif /* BRIDGESTP */ bridge_rtflush(sc, IFBF_FLUSHDYN); (void) ifnet_set_flags(ifp, 0, IFF_RUNNING); } /* * bridge_enqueue: * * Enqueue a packet on a bridge member interface. * */ static int bridge_enqueue(struct bridge_softc *sc, struct ifnet *dst_ifp, struct mbuf *m) { int len, error = 0; short mflags; struct mbuf *m0; VERIFY(dst_ifp != NULL); /* * We may be sending a fragment so traverse the mbuf * * NOTE: bridge_fragment() is called only when PFIL_HOOKS is enabled. */ for (; m; m = m0) { errno_t _error; struct flowadv adv = { FADV_SUCCESS }; m0 = m->m_nextpkt; m->m_nextpkt = NULL; len = m->m_pkthdr.len; mflags = m->m_flags; m->m_flags |= M_PROTO1; /* set to avoid loops */ #if HAS_IF_CAP /* * If underlying interface can not do VLAN tag insertion itself * then attach a packet tag that holds it. */ if ((m->m_flags & M_VLANTAG) && (dst_ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) { m = ether_vlanencap(m, m->m_pkthdr.ether_vtag); if (m == NULL) { printf("%s: %s%d: unable to prepend VLAN " "header\n", __func__, ifnet_name(dst_ifp), ifnet_unit(dst_ifp)); (void) ifnet_stat_increment_out(dst_ifp, 0, 0, 1); continue; } m->m_flags &= ~M_VLANTAG; } #endif /* HAS_IF_CAP */ _error = dlil_output(dst_ifp, 0, m, NULL, NULL, 1, &adv); /* Preserve existing error value */ if (error == 0) { if (_error != 0) error = _error; else if (adv.code == FADV_FLOW_CONTROLLED) error = EQFULL; else if (adv.code == FADV_SUSPENDED) error = EQSUSPENDED; } if (_error == 0) { (void) ifnet_stat_increment_out(sc->sc_ifp, 1, len, 0); } else { (void) ifnet_stat_increment_out(sc->sc_ifp, 0, 0, 1); } } return (error); } #if HAS_BRIDGE_DUMMYNET /* * bridge_dummynet: * * Receive a queued packet from dummynet and pass it on to the output * interface. * * The mbuf has the Ethernet header already attached. */ static void bridge_dummynet(struct mbuf *m, struct ifnet *ifp) { struct bridge_softc *sc; sc = ifp->if_bridge; /* * The packet didnt originate from a member interface. This should only * ever happen if a member interface is removed while packets are * queued for it. */ if (sc == NULL) { m_freem(m); return; } if (PFIL_HOOKED(&inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&inet6_pfil_hook) #endif ) { if (bridge_pfil(&m, sc->sc_ifp, ifp, PFIL_OUT) != 0) return; if (m == NULL) return; } (void) bridge_enqueue(sc, ifp, m); } #endif /* HAS_BRIDGE_DUMMYNET */ #if BRIDGE_MEMBER_OUT_FILTER /* * bridge_member_output: * * Send output from a bridge member interface. This * performs the bridging function for locally originated * packets. * * The mbuf has the Ethernet header already attached. We must * enqueue or free the mbuf before returning. */ static int bridge_member_output(struct ifnet *ifp, struct mbuf *m, __unused struct sockaddr *sa, __unused struct rtentry *rt) { struct ether_header *eh; struct ifnet *dst_if; struct bridge_softc *sc; uint16_t vlan; #if BRIDGE_DEBUG if (if_bridge_debug) printf("%s: ifp %p %s%d\n", __func__, ifp, ifnet_name(ifp), ifnet_unit(ifp)); #endif /* BRIDGE_DEBUG */ if (m->m_len < ETHER_HDR_LEN) { m = m_pullup(m, ETHER_HDR_LEN); if (m == NULL) return (0); } eh = mtod(m, struct ether_header *); sc = ifp->if_bridge; vlan = VLANTAGOF(m); BRIDGE_LOCK(sc); /* * APPLE MODIFICATION * If the packet is an 802.1X ethertype, then only send on the * original output interface. */ if (eh->ether_type == htons(ETHERTYPE_PAE)) { dst_if = ifp; goto sendunicast; } /* * If bridge is down, but the original output interface is up, * go ahead and send out that interface. Otherwise, the packet * is dropped below. */ if ((sc->sc_ifp->if_flags & IFF_RUNNING) == 0) { dst_if = ifp; goto sendunicast; } /* * If the packet is a multicast, or we don't know a better way to * get there, send to all interfaces. */ if (ETHER_IS_MULTICAST(eh->ether_dhost)) dst_if = NULL; else dst_if = bridge_rtlookup(sc, eh->ether_dhost, vlan); if (dst_if == NULL) { struct bridge_iflist *bif; struct mbuf *mc; int error = 0, used = 0; bridge_span(sc, m); BRIDGE_LOCK2REF(sc, error); if (error) { m_freem(m); return (0); } TAILQ_FOREACH(bif, &sc->sc_iflist, bif_next) { dst_if = bif->bif_ifp; if (dst_if->if_type == IFT_GIF) continue; if ((dst_if->if_flags & IFF_RUNNING) == 0) continue; /* * If this is not the original output interface, * and the interface is participating in spanning * tree, make sure the port is in a state that * allows forwarding. */ if (dst_if != ifp && (bif->bif_flags & IFBIF_STP) && bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) continue; if (LIST_NEXT(bif, bif_next) == NULL) { used = 1; mc = m; } else { mc = m_copypacket(m, M_DONTWAIT); if (mc == NULL) { (void) ifnet_stat_increment_out( sc->sc_ifp, 0, 0, 1); continue; } } (void) bridge_enqueue(sc, dst_if, mc); } if (used == 0) m_freem(m); BRIDGE_UNREF(sc); return (0); } sendunicast: /* * XXX Spanning tree consideration here? */ bridge_span(sc, m); if ((dst_if->if_flags & IFF_RUNNING) == 0) { m_freem(m); BRIDGE_UNLOCK(sc); return (0); } BRIDGE_UNLOCK(sc); (void) bridge_enqueue(sc, dst_if, m); return (0); } #endif /* BRIDGE_MEMBER_OUT_FILTER */ #if APPLE_BRIDGE_HWCKSUM_SUPPORT static struct mbuf * bridge_fix_txcsum(struct mbuf *m) { /* * basic tests indicate that the vast majority of packets being * processed here have an Ethernet header mbuf pre-pended to them * (the first case below) * * the second highest are those where the Ethernet and IP/TCP/UDP * headers are all in one mbuf (second case below) * * the third case has, in fact, never hit for me -- although if I * comment out the first two cases, that code works for them, so I * consider it a decent general solution */ int amt = ETHER_HDR_LEN; int hlen = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data); int off = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data); /* * NOTE we should never get vlan-attached packets here; * support for those COULD be added, but we don't use them * and it really kinda slows things down to worry about them */ #ifdef DIAGNOSTIC if (m_tag_find(m, PACKET_TAG_VLAN, NULL) != NULL) { printf("%s: transmitting packet tagged with VLAN?\n", __func__); KASSERT(0); m_freem(m); return (NULL); } #endif if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) { amt += hlen; } if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) { amt += off + sizeof (uint16_t); } if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) { amt += off + sizeof (uint16_t); } if (m->m_len == ETHER_HDR_LEN) { /* * this is the case where there's an Ethernet header in an * mbuf the first mbuf is the Ethernet header -- just strip * it off and do the checksum */ /* set up m_ip so the cksum operations work */ struct mbuf *m_ip = m->m_next; /* APPLE MODIFICATION 22 Apr 2008 * Clear the m_tag list before setting * M_PKTHDR. * * If this m_buf chain was extended via M_PREPEND(), then * m_ip->m_pkthdr is identical to m->m_pkthdr (see * M_MOVE_PKTHDR()). The only thing preventing access to this * invalid packet header data is the fact that the M_PKTHDR * flag is clear, i.e., m_ip->m_flag & M_PKTHDR == 0, but we're * about to set the M_PKTHDR flag, so to be safe we initialize, * more accurately, we clear, m_ip->m_pkthdr.tags via * m_tag_init(). * * Suppose that we do not do this; if m_pullup(), below, fails, * then m_ip will be freed along with m_ip->m_pkthdr.tags, but * we will also free m soon after, via m_freem(), and * consequently attempt to free m->m_pkthdr.tags in the * process. The problem is that m->m_pkthdr.tags will have * already been freed by virtue of being equal to * m_ip->m_pkthdr.tags. Attempts to dereference * m->m_pkthdr.tags in m_tag_delete_chain() will result in a * panic. */ m_tag_init(m_ip); /* END MODIFICATION */ m_ip->m_flags |= M_PKTHDR; m_ip->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags; m_ip->m_pkthdr.csum_data = m->m_pkthdr.csum_data; m_ip->m_pkthdr.len = m->m_pkthdr.len - ETHER_HDR_LEN; /* * set up the header mbuf so we can prepend it * back on again later */ m->m_pkthdr.csum_flags = 0; m->m_pkthdr.csum_data = 0; m->m_pkthdr.len = ETHER_HDR_LEN; m->m_next = NULL; /* now do the checksums we need -- first IP */ if (m_ip->m_pkthdr.csum_flags & M_CSUM_IPv4) { /* * make sure the IP header (or at least the part with * the cksum) is there */ m_ip = m_pullup(m_ip, sizeof (struct ip)); if (m_ip == NULL) { printf("%s: failed to flatten header\n", __func__); m_freem(m); return (NULL); } /* now do the checksum */ { struct ip *ip = mtod(m_ip, struct ip *); ip->ip_sum = in_cksum(m_ip, hlen); #ifdef VERY_VERY_VERY_DIAGNOSTIC printf("%s: performed IPv4 checksum\n", __func__); #endif } } /* now do a TCP or UDP delayed checksum */ if (m_ip->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { in_delayed_cksum(m_ip); #ifdef VERY_VERY_VERY_DIAGNOSTIC printf("%s: performed TCPv4/UDPv4 checksum\n", __func__); #endif } /* now attach the ethernet header back onto the IP packet */ m->m_next = m_ip; m->m_pkthdr.len += m_length(m_ip); /* * clear the M_PKTHDR flags on the ip packet (again, * we re-attach later) */ m_ip->m_flags &= ~M_PKTHDR; /* and clear any csum flags */ m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_IPv4); } else if (m->m_len >= amt) { /* * everything fits in the first mbuf, so futz with * m->m_data, m->m_len and m->m_pkthdr.len to make it work */ m->m_len -= ETHER_HDR_LEN; m->m_data += ETHER_HDR_LEN; m->m_pkthdr.len -= ETHER_HDR_LEN; /* now do the checksums we need -- first IP */ if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) { struct ip *ip = mtod(m, struct ip *); ip->ip_sum = in_cksum(m, hlen); #ifdef VERY_VERY_VERY_DIAGNOSTIC printf("%s: performed IPv4 checksum\n", __func__); #endif } // now do a TCP or UDP delayed checksum if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { in_delayed_cksum(m); #ifdef VERY_VERY_VERY_DIAGNOSTIC printf("%s: performed TCPv4/UDPv4 checksum\n", __func__); #endif } /* now stick the ethernet header back on */ m->m_len += ETHER_HDR_LEN; m->m_data -= ETHER_HDR_LEN; m->m_pkthdr.len += ETHER_HDR_LEN; /* and clear any csum flags */ m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_IPv4); } else { struct mbuf *m_ip; /* * general case -- need to simply split it off and deal * first, calculate how much needs to be made writable * (we may have a read-only mbuf here) */ hlen = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data); #if PARANOID off = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data); if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) { amt += hlen; } if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) { amt += sizeof (struct tcphdr *); amt += off; } if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) { amt += sizeof (struct udphdr *); amt += off; } #endif /* * now split the ethernet header off of the IP packet * (we'll re-attach later) */ m_ip = m_split(m, ETHER_HDR_LEN, M_NOWAIT); if (m_ip == NULL) { printf("%s: could not split ether header\n", __func__); m_freem(m); return (NULL); } #if PARANOID /* * make sure that the IP packet is writable * for the portion we need */ if (m_makewritable(&m_ip, 0, amt, M_DONTWAIT) != 0) { printf("%s: could not make %d bytes writable\n", __func__, amt); m_freem(m); m_freem(m_ip); return (NULL); } #endif m_ip->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags; m_ip->m_pkthdr.csum_data = m->m_pkthdr.csum_data; m->m_pkthdr.csum_flags = 0; m->m_pkthdr.csum_data = 0; /* now do the checksums we need -- first IP */ if (m_ip->m_pkthdr.csum_flags & M_CSUM_IPv4) { /* * make sure the IP header (or at least the part * with the cksum) is there */ m_ip = m_pullup(m_ip, sizeof (struct ip)); if (m_ip == NULL) { printf("%s: failed to flatten header\n", __func__); m_freem(m); return (NULL); } /* now do the checksum */ { struct ip *ip = mtod(m_ip, struct ip *); ip->ip_sum = in_cksum(m_ip, hlen); #ifdef VERY_VERY_VERY_DIAGNOSTIC printf("%s: performed IPv4 checksum\n", __func__); #endif } } /* now do a TCP or UDP delayed checksum */ if (m_ip->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { in_delayed_cksum(m_ip); #ifdef VERY_VERY_VERY_DIAGNOSTIC printf("%s: performed TCPv4/UDPv4 checksum\n", __func__); #endif } // now attach the ethernet header back onto the IP packet m->m_next = m_ip; m->m_pkthdr.len += m_length(m_ip); /* * clear the M_PKTHDR flags on the ip packet * (again, we re-attach later) */ m_ip->m_flags &= ~M_PKTHDR; /* and clear any csum flags */ m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_IPv4); } return (m); } #endif /* * Output callback. * * This routine is called externally from above only when if_bridge_txstart * is disabled; otherwise it is called internally by bridge_start(). */ static int bridge_output(struct ifnet *ifp, struct mbuf *m) { struct bridge_softc *sc = ifnet_softc(ifp); struct ether_header *eh; struct ifnet *dst_if; int error = 0; eh = mtod(m, struct ether_header *); dst_if = NULL; BRIDGE_LOCK(sc); if (!(m->m_flags & (M_BCAST|M_MCAST))) { dst_if = bridge_rtlookup(sc, eh->ether_dhost, 0); } #if APPLE_BRIDGE_HWCKSUM_SUPPORT /* * APPLE MODIFICATION - if the packet needs a checksum * (i.e., checksum has been deferred for HW support) * AND the destination interface doesn't support HW * checksums, then we need to fix-up the checksum here */ if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_IPv4)) && (dst_if == NULL || (dst_if->if_csum_flags_tx & m->m_pkthdr.csum_flags) != m->m_pkthdr.csum_flags)) { m = bridge_fix_txcsum(m); if (m == NULL) { BRIDGE_UNLOCK(sc); return (0); } } #else if (eh->ether_type == htons(ETHERTYPE_IP)) mbuf_outbound_finalize(m, PF_INET, sizeof (*eh)); else m->m_pkthdr.csum_flags = 0; #endif /* APPLE_BRIDGE_HWCKSUM_SUPPORT */ atomic_add_64(&ifp->if_obytes, m->m_pkthdr.len); atomic_add_64(&ifp->if_opackets, 1); #if NBPFILTER > 0 if (sc->sc_bpf_output) bridge_bpf_output(ifp, m); #endif if (dst_if == NULL) { /* callee will unlock */ bridge_broadcast(sc, ifp, m, 0); } else { BRIDGE_UNLOCK(sc); error = bridge_enqueue(sc, dst_if, m); } return (error); } /* * bridge_start: * * Start output on a bridge. * * This routine is invoked by the start worker thread; because we never call * it directly, there is no need do deploy any serialization mechanism other * than what's already used by the worker thread, i.e. this is already single * threaded. * * This routine is called only when if_bridge_txstart is enabled. */ static void bridge_start(struct ifnet *ifp) { struct mbuf *m; for (;;) { if (ifnet_dequeue(ifp, &m) != 0) break; (void) bridge_output(ifp, m); } } /* * bridge_forward: * * The forwarding function of the bridge. * * NOTE: Releases the lock on return. */ static void bridge_forward(struct bridge_softc *sc, struct bridge_iflist *sbif, struct mbuf *m) { struct bridge_iflist *dbif; struct ifnet *src_if, *dst_if, *ifp; struct ether_header *eh; uint16_t vlan; uint8_t *dst; int error; lck_mtx_assert(sc->sc_mtx, LCK_MTX_ASSERT_OWNED); #if BRIDGE_DEBUG if (if_bridge_debug) printf("%s: %s%d m%p\n", __func__, ifnet_name(sc->sc_ifp), ifnet_unit(sc->sc_ifp), m); #endif /* BRIDGE_DEBUG */ src_if = m->m_pkthdr.rcvif; ifp = sc->sc_ifp; (void) ifnet_stat_increment_in(ifp, 1, m->m_pkthdr.len, 0); vlan = VLANTAGOF(m); if ((sbif->bif_flags & IFBIF_STP) && sbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) goto drop; eh = mtod(m, struct ether_header *); dst = eh->ether_dhost; /* If the interface is learning, record the address. */ if (sbif->bif_flags & IFBIF_LEARNING) { error = bridge_rtupdate(sc, eh->ether_shost, vlan, sbif, 0, IFBAF_DYNAMIC); /* * If the interface has addresses limits then deny any source * that is not in the cache. */ if (error && sbif->bif_addrmax) goto drop; } if ((sbif->bif_flags & IFBIF_STP) != 0 && sbif->bif_stp.bp_state == BSTP_IFSTATE_LEARNING) goto drop; /* * At this point, the port either doesn't participate * in spanning tree or it is in the forwarding state. */ /* * If the packet is unicast, destined for someone on * "this" side of the bridge, drop it. */ if ((m->m_flags & (M_BCAST|M_MCAST)) == 0) { dst_if = bridge_rtlookup(sc, dst, vlan); if (src_if == dst_if) goto drop; } else { /* * Check if its a reserved multicast address, any address * listed in 802.1D section 7.12.6 may not be forwarded by the * bridge. * This is currently 01-80-C2-00-00-00 to 01-80-C2-00-00-0F */ if (dst[0] == 0x01 && dst[1] == 0x80 && dst[2] == 0xc2 && dst[3] == 0x00 && dst[4] == 0x00 && dst[5] <= 0x0f) goto drop; /* ...forward it to all interfaces. */ atomic_add_64(&ifp->if_imcasts, 1); dst_if = NULL; } /* * If we have a destination interface which is a member of our bridge, * OR this is a unicast packet, push it through the bpf(4) machinery. * For broadcast or multicast packets, don't bother because it will * be reinjected into ether_input. We do this before we pass the packets * through the pfil(9) framework, as it is possible that pfil(9) will * drop the packet, or possibly modify it, making it difficult to debug * firewall issues on the bridge. */ #if NBPFILTER > 0 if (eh->ether_type == htons(ETHERTYPE_RSN_PREAUTH) || dst_if != NULL || (m->m_flags & (M_BCAST | M_MCAST)) == 0) { m->m_pkthdr.rcvif = ifp; if (sc->sc_bpf_input) bridge_bpf_input(ifp, m); } #endif /* NBPFILTER */ #if defined(PFIL_HOOKS) /* run the packet filter */ if (PFIL_HOOKED(&inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&inet6_pfil_hook) #endif /* INET6 */ ) { BRIDGE_UNLOCK(sc); if (bridge_pfil(&m, ifp, src_if, PFIL_IN) != 0) return; if (m == NULL) return; BRIDGE_LOCK(sc); } #endif /* PFIL_HOOKS */ if (dst_if == NULL) { /* * Clear any in-bound checksum flags for this packet. */ mbuf_inbound_modified(m); bridge_broadcast(sc, src_if, m, 1); return; } /* * At this point, we're dealing with a unicast frame * going to a different interface. */ if ((dst_if->if_flags & IFF_RUNNING) == 0) goto drop; dbif = bridge_lookup_member_if(sc, dst_if); if (dbif == NULL) /* Not a member of the bridge (anymore?) */ goto drop; /* Private segments can not talk to each other */ if (sbif->bif_flags & dbif->bif_flags & IFBIF_PRIVATE) goto drop; if ((dbif->bif_flags & IFBIF_STP) && dbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) goto drop; #if HAS_DHCPRA_MASK /* APPLE MODIFICATION */ if ((dst_if->if_extflags & IFEXTF_DHCPRA_MASK) != 0) { m = ip_xdhcpra_output(dst_if, m); if (!m) { ++sc->sc_sc.sc_ifp.if_xdhcpra; return; } } #endif /* HAS_DHCPRA_MASK */ BRIDGE_UNLOCK(sc); #if defined(PFIL_HOOKS) if (PFIL_HOOKED(&inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&inet6_pfil_hook) #endif ) { if (bridge_pfil(&m, ifp, dst_if, PFIL_OUT) != 0) return; if (m == NULL) return; } #endif /* PFIL_HOOKS */ /* * Clear any in-bound checksum flags for this packet. */ mbuf_inbound_modified(m); (void) bridge_enqueue(sc, dst_if, m); return; drop: BRIDGE_UNLOCK(sc); m_freem(m); } #if BRIDGE_DEBUG char *ether_ntop(char *, size_t, const u_char *); __private_extern__ char * ether_ntop(char *buf, size_t len, const u_char *ap) { snprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", ap[0], ap[1], ap[2], ap[3], ap[4], ap[5]); return (buf); } #endif /* BRIDGE_DEBUG */ /* * bridge_input: * * Filter input from a member interface. Queue the packet for * bridging if it is not for us. */ __private_extern__ errno_t bridge_input(struct ifnet *ifp, struct mbuf *m, __unused void *frame_header) { struct bridge_softc *sc = ifp->if_bridge; struct bridge_iflist *bif, *bif2; struct ifnet *bifp; struct ether_header *eh; struct mbuf *mc, *mc2; uint16_t vlan; int error; #if BRIDGE_DEBUG if (if_bridge_debug) printf("%s: %s%d from %s%d m %p data %p\n", __func__, ifnet_name(sc->sc_ifp), ifnet_unit(sc->sc_ifp), ifnet_name(ifp), ifnet_unit(ifp), m, mbuf_data(m)); #endif /* BRIDGE_DEBUG */ if ((sc->sc_ifp->if_flags & IFF_RUNNING) == 0) { #if BRIDGE_DEBUG if (if_bridge_debug) printf("%s: %s%d not running passing along\n", __func__, ifnet_name(sc->sc_ifp), ifnet_unit(sc->sc_ifp)); #endif /* BRIDGE_DEBUG */ return (0); } bifp = sc->sc_ifp; vlan = VLANTAGOF(m); #ifdef IFF_MONITOR /* * Implement support for bridge monitoring. If this flag has been * set on this interface, discard the packet once we push it through * the bpf(4) machinery, but before we do, increment the byte and * packet counters associated with this interface. */ if ((bifp->if_flags & IFF_MONITOR) != 0) { m->m_pkthdr.rcvif = bifp; BRIDGE_BPF_MTAP_INPUT(sc, m); (void) ifnet_stat_increment_in(bifp, 1, m->m_pkthdr.len, 0); m_freem(m); return (EJUSTRETURN); } #endif /* IFF_MONITOR */ /* * Need to clear the promiscous flags otherwise it will be * dropped by DLIL after processing filters */ if ((mbuf_flags(m) & MBUF_PROMISC)) mbuf_setflags_mask(m, 0, MBUF_PROMISC); BRIDGE_LOCK(sc); bif = bridge_lookup_member_if(sc, ifp); if (bif == NULL) { BRIDGE_UNLOCK(sc); #if BRIDGE_DEBUG if (if_bridge_debug) printf("%s: %s%d bridge_lookup_member_if failed\n", __func__, ifnet_name(sc->sc_ifp), ifnet_unit(sc->sc_ifp)); #endif /* BRIDGE_DEBUG */ return (0); } eh = mtod(m, struct ether_header *); bridge_span(sc, m); if (m->m_flags & (M_BCAST|M_MCAST)) { #if BRIDGE_DEBUG if (if_bridge_debug) if ((m->m_flags & M_MCAST)) printf("%s: mulicast: " "%02x:%02x:%02x:%02x:%02x:%02x\n", __func__, eh->ether_dhost[0], eh->ether_dhost[1], eh->ether_dhost[2], eh->ether_dhost[3], eh->ether_dhost[4], eh->ether_dhost[5]); #endif /* BRIDGE_DEBUG */ /* Tap off 802.1D packets; they do not get forwarded. */ if (memcmp(eh->ether_dhost, bstp_etheraddr, ETHER_ADDR_LEN) == 0) { #if BRIDGESTP m = bstp_input(&bif->bif_stp, ifp, m); #else /* !BRIDGESTP */ m_freem(m); m = NULL; #endif /* !BRIDGESTP */ if (m == NULL) { BRIDGE_UNLOCK(sc); return (EJUSTRETURN); } } if ((bif->bif_flags & IFBIF_STP) && bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) { BRIDGE_UNLOCK(sc); return (0); } /* * Make a deep copy of the packet and enqueue the copy * for bridge processing; return the original packet for * local processing. */ mc = m_dup(m, M_DONTWAIT); if (mc == NULL) { BRIDGE_UNLOCK(sc); return (0); } /* * Perform the bridge forwarding function with the copy. * * Note that bridge_forward calls BRIDGE_UNLOCK */ bridge_forward(sc, bif, mc); /* * Reinject the mbuf as arriving on the bridge so we have a * chance at claiming multicast packets. We can not loop back * here from ether_input as a bridge is never a member of a * bridge. */ KASSERT(bifp->if_bridge == NULL, ("loop created in bridge_input")); mc2 = m_dup(m, M_DONTWAIT); if (mc2 != NULL) { /* Keep the layer3 header aligned */ int i = min(mc2->m_pkthdr.len, max_protohdr); mc2 = m_copyup(mc2, i, ETHER_ALIGN); } if (mc2 != NULL) { // mark packet as arriving on the bridge mc2->m_pkthdr.rcvif = bifp; mc2->m_pkthdr.header = mbuf_data(mc2); #if NBPFILTER > 0 if (sc->sc_bpf_input) bridge_bpf_input(bifp, mc2); #endif /* NBPFILTER */ (void) mbuf_setdata(mc2, (char *)mbuf_data(mc2) + ETHER_HDR_LEN, mbuf_len(mc2) - ETHER_HDR_LEN); (void) mbuf_pkthdr_adjustlen(mc2, - ETHER_HDR_LEN); (void) ifnet_stat_increment_in(bifp, 1, mbuf_pkthdr_len(mc2), 0); #if BRIDGE_DEBUG if (if_bridge_debug) printf("%s: %s%d mcast for us\n", __func__, ifnet_name(sc->sc_ifp), ifnet_unit(sc->sc_ifp)); #endif /* BRIDGE_DEBUG */ dlil_input_packet_list(bifp, mc2); } /* Return the original packet for local processing. */ return (0); } if ((bif->bif_flags & IFBIF_STP) && bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) { BRIDGE_UNLOCK(sc); return (0); } #ifdef DEV_CARP # define OR_CARP_CHECK_WE_ARE_DST(iface) \ || ((iface)->if_carp \ && carp_forus((iface)->if_carp, eh->ether_dhost)) # define OR_CARP_CHECK_WE_ARE_SRC(iface) \ || ((iface)->if_carp \ && carp_forus((iface)->if_carp, eh->ether_shost)) #else # define OR_CARP_CHECK_WE_ARE_DST(iface) # define OR_CARP_CHECK_WE_ARE_SRC(iface) #endif #ifdef INET6 # define OR_PFIL_HOOKED_INET6 \ || PFIL_HOOKED(&inet6_pfil_hook) #else # define OR_PFIL_HOOKED_INET6 #endif #if defined(PFIL_HOOKS) #define PFIL_PHYS(sc, ifp, m) do { \ if (pfil_local_phys && \ (PFIL_HOOKED(&inet_pfil_hook) OR_PFIL_HOOKED_INET6)) { \ if (bridge_pfil(&m, NULL, ifp, \ PFIL_IN) != 0 || m == NULL) { \ BRIDGE_UNLOCK(sc); \ return (NULL); \ } \ } \ } while (0) #else /* PFIL_HOOKS */ #define PFIL_PHYS(sc, ifp, m) #endif /* PFIL_HOOKS */ #define GRAB_OUR_PACKETS(iface) \ if ((iface)->if_type == IFT_GIF) \ continue; \ /* It is destined for us. */ \ if (memcmp(ifnet_lladdr((iface)), eh->ether_dhost, \ ETHER_ADDR_LEN) == 0 OR_CARP_CHECK_WE_ARE_DST((iface))) { \ if ((iface)->if_type == IFT_BRIDGE) { \ BRIDGE_BPF_MTAP_INPUT(sc, m); \ /* Filter on the physical interface. */ \ PFIL_PHYS(sc, iface, m); \ } \ if (bif->bif_flags & IFBIF_LEARNING) { \ error = bridge_rtupdate(sc, eh->ether_shost, \ vlan, bif, 0, IFBAF_DYNAMIC); \ if (error && bif->bif_addrmax) { \ BRIDGE_UNLOCK(sc); \ return (EJUSTRETURN); \ } \ } \ m->m_pkthdr.rcvif = iface; \ BRIDGE_UNLOCK(sc); \ return (0); \ } \ \ /* We just received a packet that we sent out. */ \ if (memcmp(ifnet_lladdr((iface)), eh->ether_shost, \ ETHER_ADDR_LEN) == 0 OR_CARP_CHECK_WE_ARE_SRC((iface))) { \ BRIDGE_UNLOCK(sc); \ return (EJUSTRETURN); \ } /* * Unicast. */ /* * If the packet is for us, set the packets source as the * bridge, and return the packet back to ether_input for * local processing. */ if (memcmp(eh->ether_dhost, ifnet_lladdr(bifp), ETHER_ADDR_LEN) == 0 OR_CARP_CHECK_WE_ARE_DST(bifp)) { /* Mark the packet as arriving on the bridge interface */ (void) mbuf_pkthdr_setrcvif(m, bifp); mbuf_pkthdr_setheader(m, frame_header); /* * If the interface is learning, and the source * address is valid and not multicast, record * the address. */ if ((bif->bif_flags & IFBIF_LEARNING) != 0 && ETHER_IS_MULTICAST(eh->ether_shost) == 0 && (eh->ether_shost[0] | eh->ether_shost[1] | eh->ether_shost[2] | eh->ether_shost[3] | eh->ether_shost[4] | eh->ether_shost[5]) != 0) { (void) bridge_rtupdate(sc, eh->ether_shost, vlan, bif, 0, IFBAF_DYNAMIC); } BRIDGE_BPF_MTAP_INPUT(sc, m); (void) mbuf_setdata(m, (char *)mbuf_data(m) + ETHER_HDR_LEN, mbuf_len(m) - ETHER_HDR_LEN); (void) mbuf_pkthdr_adjustlen(m, - ETHER_HDR_LEN); (void) ifnet_stat_increment_in(bifp, 1, mbuf_pkthdr_len(m), 0); BRIDGE_UNLOCK(sc); #if BRIDGE_DEBUG if (if_bridge_debug) printf("%s: %s%d packet for bridge\n", __func__, ifnet_name(sc->sc_ifp), ifnet_unit(sc->sc_ifp)); #endif /* BRIDGE_DEBUG */ dlil_input_packet_list(bifp, m); return (EJUSTRETURN); } /* * if the destination of the packet is for the MAC address of * the member interface itself, then we don't need to forward * it -- just pass it back. Note that it'll likely just be * dropped by the stack, but if something else is bound to * the interface directly (for example, the wireless stats * protocol -- although that actually uses BPF right now), * then it will consume the packet * * ALSO, note that we do this check AFTER checking for the * bridge's own MAC address, because the bridge may be * using the SAME MAC address as one of its interfaces */ if (memcmp(eh->ether_dhost, ifnet_lladdr(ifp), ETHER_ADDR_LEN) == 0) { #ifdef VERY_VERY_VERY_DIAGNOSTIC printf("%s: not forwarding packet bound for member " "interface\n", __func__); #endif BRIDGE_UNLOCK(sc); return (0); } /* Now check the all bridge members. */ TAILQ_FOREACH(bif2, &sc->sc_iflist, bif_next) { GRAB_OUR_PACKETS(bif2->bif_ifp) } #undef OR_CARP_CHECK_WE_ARE_DST #undef OR_CARP_CHECK_WE_ARE_SRC #undef OR_PFIL_HOOKED_INET6 #undef GRAB_OUR_PACKETS /* * Perform the bridge forwarding function. * * Note that bridge_forward calls BRIDGE_UNLOCK */ bridge_forward(sc, bif, m); return (EJUSTRETURN); } /* * bridge_broadcast: * * Send a frame to all interfaces that are members of * the bridge, except for the one on which the packet * arrived. * * NOTE: Releases the lock on return. */ static void bridge_broadcast(struct bridge_softc *sc, struct ifnet *src_if, struct mbuf *m, int runfilt) { #ifndef PFIL_HOOKS #pragma unused(runfilt) #endif struct bridge_iflist *dbif, *sbif; struct mbuf *mc; struct ifnet *dst_if; int error = 0, used = 0; sbif = bridge_lookup_member_if(sc, src_if); BRIDGE_LOCK2REF(sc, error); if (error) { m_freem(m); return; } #ifdef PFIL_HOOKS /* Filter on the bridge interface before broadcasting */ if (runfilt && (PFIL_HOOKED(&inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&inet6_pfil_hook) #endif /* INET6 */ )) { if (bridge_pfil(&m, sc->sc_ifp, NULL, PFIL_OUT) != 0) goto out; if (m == NULL) goto out; } #endif /* PFIL_HOOKS */ TAILQ_FOREACH(dbif, &sc->sc_iflist, bif_next) { dst_if = dbif->bif_ifp; if (dst_if == src_if) continue; /* Private segments can not talk to each other */ if (sbif && (sbif->bif_flags & dbif->bif_flags & IFBIF_PRIVATE)) continue; if ((dbif->bif_flags & IFBIF_STP) && dbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) continue; if ((dbif->bif_flags & IFBIF_DISCOVER) == 0 && (m->m_flags & (M_BCAST|M_MCAST)) == 0) continue; if ((dst_if->if_flags & IFF_RUNNING) == 0) continue; if (TAILQ_NEXT(dbif, bif_next) == NULL) { mc = m; used = 1; } else { mc = m_dup(m, M_DONTWAIT); if (mc == NULL) { (void) ifnet_stat_increment_out(sc->sc_ifp, 0, 0, 1); continue; } } #ifdef PFIL_HOOKS /* * Filter on the output interface. Pass a NULL bridge interface * pointer so we do not redundantly filter on the bridge for * each interface we broadcast on. */ if (runfilt && (PFIL_HOOKED(&inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&inet6_pfil_hook) #endif )) { if (used == 0) { /* Keep the layer3 header aligned */ int i = min(mc->m_pkthdr.len, max_protohdr); mc = m_copyup(mc, i, ETHER_ALIGN); if (mc == NULL) { (void) ifnet_stat_increment_out( sc->sc_ifp, 0, 0, 1); continue; } } if (bridge_pfil(&mc, NULL, dst_if, PFIL_OUT) != 0) continue; if (mc == NULL) continue; } #endif /* PFIL_HOOKS */ (void) bridge_enqueue(sc, dst_if, mc); } if (used == 0) m_freem(m); #ifdef PFIL_HOOKS out: #endif /* PFIL_HOOKS */ BRIDGE_UNREF(sc); } /* * bridge_span: * * Duplicate a packet out one or more interfaces that are in span mode, * the original mbuf is unmodified. */ static void bridge_span(struct bridge_softc *sc, struct mbuf *m) { struct bridge_iflist *bif; struct ifnet *dst_if; struct mbuf *mc; if (TAILQ_EMPTY(&sc->sc_spanlist)) return; TAILQ_FOREACH(bif, &sc->sc_spanlist, bif_next) { dst_if = bif->bif_ifp; if ((dst_if->if_flags & IFF_RUNNING) == 0) continue; mc = m_copypacket(m, M_DONTWAIT); if (mc == NULL) { (void) ifnet_stat_increment_out(sc->sc_ifp, 0, 0, 1); continue; } (void) bridge_enqueue(sc, dst_if, mc); } } /* * bridge_rtupdate: * * Add a bridge routing entry. */ static int bridge_rtupdate(struct bridge_softc *sc, const uint8_t *dst, uint16_t vlan, struct bridge_iflist *bif, int setflags, uint8_t flags) { struct bridge_rtnode *brt; int error; BRIDGE_LOCK_ASSERT(sc); /* Check the source address is valid and not multicast. */ if (ETHER_IS_MULTICAST(dst) || (dst[0] == 0 && dst[1] == 0 && dst[2] == 0 && dst[3] == 0 && dst[4] == 0 && dst[5] == 0) != 0) return (EINVAL); /* 802.1p frames map to vlan 1 */ if (vlan == 0) vlan = 1; /* * A route for this destination might already exist. If so, * update it, otherwise create a new one. */ if ((brt = bridge_rtnode_lookup(sc, dst, vlan)) == NULL) { if (sc->sc_brtcnt >= sc->sc_brtmax) { sc->sc_brtexceeded++; return (ENOSPC); } /* Check per interface address limits (if enabled) */ if (bif->bif_addrmax && bif->bif_addrcnt >= bif->bif_addrmax) { bif->bif_addrexceeded++; return (ENOSPC); } /* * Allocate a new bridge forwarding node, and * initialize the expiration time and Ethernet * address. */ brt = zalloc_noblock(bridge_rtnode_pool); if (brt == NULL) return (ENOMEM); if (bif->bif_flags & IFBIF_STICKY) brt->brt_flags = IFBAF_STICKY; else brt->brt_flags = IFBAF_DYNAMIC; memcpy(brt->brt_addr, dst, ETHER_ADDR_LEN); brt->brt_vlan = vlan; if ((error = bridge_rtnode_insert(sc, brt)) != 0) { zfree(bridge_rtnode_pool, brt); return (error); } brt->brt_dst = bif; bif->bif_addrcnt++; } if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC && brt->brt_dst != bif) { brt->brt_dst->bif_addrcnt--; brt->brt_dst = bif; brt->brt_dst->bif_addrcnt++; } if ((flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) { struct timespec now; nanouptime(&now); brt->brt_expire = now.tv_sec + sc->sc_brttimeout; } if (setflags) brt->brt_flags = flags; return (0); } /* * bridge_rtlookup: * * Lookup the destination interface for an address. */ static struct ifnet * bridge_rtlookup(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan) { struct bridge_rtnode *brt; BRIDGE_LOCK_ASSERT(sc); if ((brt = bridge_rtnode_lookup(sc, addr, vlan)) == NULL) return (NULL); return (brt->brt_ifp); } /* * bridge_rttrim: * * Trim the routine table so that we have a number * of routing entries less than or equal to the * maximum number. */ static void bridge_rttrim(struct bridge_softc *sc) { struct bridge_rtnode *brt, *nbrt; BRIDGE_LOCK_ASSERT(sc); /* Make sure we actually need to do this. */ if (sc->sc_brtcnt <= sc->sc_brtmax) return; /* Force an aging cycle; this might trim enough addresses. */ bridge_rtage(sc); if (sc->sc_brtcnt <= sc->sc_brtmax) return; LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) { bridge_rtnode_destroy(sc, brt); if (sc->sc_brtcnt <= sc->sc_brtmax) return; } } } /* * bridge_timer: * * Aging timer for the bridge. */ static void bridge_timer(void *arg) { struct bridge_softc *sc = arg; BRIDGE_LOCK(sc); bridge_rtage(sc); BRIDGE_UNLOCK(sc); if (sc->sc_ifp->if_flags & IFF_RUNNING) { struct timespec ts; ts.tv_sec = bridge_rtable_prune_period; ts.tv_nsec = 0; bsd_timeout(bridge_timer, sc, &ts); } } /* * bridge_rtage: * * Perform an aging cycle. */ static void bridge_rtage(struct bridge_softc *sc) { struct bridge_rtnode *brt, *nbrt; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) { struct timespec now; nanouptime(&now); if ((unsigned long)now.tv_sec >= brt->brt_expire) bridge_rtnode_destroy(sc, brt); } } } /* * bridge_rtflush: * * Remove all dynamic addresses from the bridge. */ static void bridge_rtflush(struct bridge_softc *sc, int full) { struct bridge_rtnode *brt, *nbrt; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { if (full || (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) bridge_rtnode_destroy(sc, brt); } } /* * bridge_rtdaddr: * * Remove an address from the table. */ static int bridge_rtdaddr(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan) { struct bridge_rtnode *brt; int found = 0; BRIDGE_LOCK_ASSERT(sc); /* * If vlan is zero then we want to delete for all vlans so the lookup * may return more than one. */ while ((brt = bridge_rtnode_lookup(sc, addr, vlan)) != NULL) { bridge_rtnode_destroy(sc, brt); found = 1; } return (found ? 0 : ENOENT); } /* * bridge_rtdelete: * * Delete routes to a speicifc member interface. */ static void bridge_rtdelete(struct bridge_softc *sc, struct ifnet *ifp, int full) { struct bridge_rtnode *brt, *nbrt; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { if (brt->brt_ifp == ifp && (full || (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC)) bridge_rtnode_destroy(sc, brt); } } /* * bridge_rtable_init: * * Initialize the route table for this bridge. */ static int bridge_rtable_init(struct bridge_softc *sc) { int i; sc->sc_rthash = _MALLOC(sizeof (*sc->sc_rthash) * BRIDGE_RTHASH_SIZE, M_DEVBUF, M_NOWAIT); if (sc->sc_rthash == NULL) return (ENOMEM); for (i = 0; i < BRIDGE_RTHASH_SIZE; i++) LIST_INIT(&sc->sc_rthash[i]); sc->sc_rthash_key = random(); LIST_INIT(&sc->sc_rtlist); return (0); } /* * bridge_rtable_fini: * * Deconstruct the route table for this bridge. */ static void bridge_rtable_fini(struct bridge_softc *sc) { KASSERT(sc->sc_brtcnt == 0, ("%s: %d bridge routes referenced", __func__, sc->sc_brtcnt)); _FREE(sc->sc_rthash, M_DEVBUF); } /* * The following hash function is adapted from "Hash Functions" by Bob Jenkins * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). */ #define mix(a, b, c) \ do { \ a -= b; a -= c; a ^= (c >> 13); \ b -= c; b -= a; b ^= (a << 8); \ c -= a; c -= b; c ^= (b >> 13); \ a -= b; a -= c; a ^= (c >> 12); \ b -= c; b -= a; b ^= (a << 16); \ c -= a; c -= b; c ^= (b >> 5); \ a -= b; a -= c; a ^= (c >> 3); \ b -= c; b -= a; b ^= (a << 10); \ c -= a; c -= b; c ^= (b >> 15); \ } while (/*CONSTCOND*/0) static __inline uint32_t bridge_rthash(struct bridge_softc *sc, const uint8_t *addr) { uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = sc->sc_rthash_key; b += addr[5] << 8; b += addr[4]; a += addr[3] << 24; a += addr[2] << 16; a += addr[1] << 8; a += addr[0]; mix(a, b, c); return (c & BRIDGE_RTHASH_MASK); } #undef mix static int bridge_rtnode_addr_cmp(const uint8_t *a, const uint8_t *b) { int i, d; for (i = 0, d = 0; i < ETHER_ADDR_LEN && d == 0; i++) { d = ((int)a[i]) - ((int)b[i]); } return (d); } /* * bridge_rtnode_lookup: * * Look up a bridge route node for the specified destination. Compare the * vlan id or if zero then just return the first match. */ static struct bridge_rtnode * bridge_rtnode_lookup(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan) { struct bridge_rtnode *brt; uint32_t hash; int dir; BRIDGE_LOCK_ASSERT(sc); hash = bridge_rthash(sc, addr); LIST_FOREACH(brt, &sc->sc_rthash[hash], brt_hash) { dir = bridge_rtnode_addr_cmp(addr, brt->brt_addr); if (dir == 0 && (brt->brt_vlan == vlan || vlan == 0)) return (brt); if (dir > 0) return (NULL); } return (NULL); } /* * bridge_rtnode_insert: * * Insert the specified bridge node into the route table. We * assume the entry is not already in the table. */ static int bridge_rtnode_insert(struct bridge_softc *sc, struct bridge_rtnode *brt) { struct bridge_rtnode *lbrt; uint32_t hash; int dir; BRIDGE_LOCK_ASSERT(sc); hash = bridge_rthash(sc, brt->brt_addr); lbrt = LIST_FIRST(&sc->sc_rthash[hash]); if (lbrt == NULL) { LIST_INSERT_HEAD(&sc->sc_rthash[hash], brt, brt_hash); goto out; } do { dir = bridge_rtnode_addr_cmp(brt->brt_addr, lbrt->brt_addr); if (dir == 0 && brt->brt_vlan == lbrt->brt_vlan) return (EEXIST); if (dir > 0) { LIST_INSERT_BEFORE(lbrt, brt, brt_hash); goto out; } if (LIST_NEXT(lbrt, brt_hash) == NULL) { LIST_INSERT_AFTER(lbrt, brt, brt_hash); goto out; } lbrt = LIST_NEXT(lbrt, brt_hash); } while (lbrt != NULL); #ifdef DIAGNOSTIC panic("bridge_rtnode_insert: impossible"); #endif out: LIST_INSERT_HEAD(&sc->sc_rtlist, brt, brt_list); sc->sc_brtcnt++; return (0); } /* * bridge_rtnode_destroy: * * Destroy a bridge rtnode. */ static void bridge_rtnode_destroy(struct bridge_softc *sc, struct bridge_rtnode *brt) { BRIDGE_LOCK_ASSERT(sc); LIST_REMOVE(brt, brt_hash); LIST_REMOVE(brt, brt_list); sc->sc_brtcnt--; brt->brt_dst->bif_addrcnt--; zfree(bridge_rtnode_pool, brt); } #if BRIDGESTP /* * bridge_rtable_expire: * * Set the expiry time for all routes on an interface. */ static void bridge_rtable_expire(struct ifnet *ifp, int age) { struct bridge_softc *sc = ifp->if_bridge; struct bridge_rtnode *brt; BRIDGE_LOCK(sc); /* * If the age is zero then flush, otherwise set all the expiry times to * age for the interface */ if (age == 0) { bridge_rtdelete(sc, ifp, IFBF_FLUSHDYN); } else { LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) { struct timespec now; nanouptime(&now); /* Cap the expiry time to 'age' */ if (brt->brt_ifp == ifp && brt->brt_expire > (unsigned long)now.tv_sec + age && (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) brt->brt_expire = (unsigned long)now.tv_sec + age; } } BRIDGE_UNLOCK(sc); } /* * bridge_state_change: * * Callback from the bridgestp code when a port changes states. */ static void bridge_state_change(struct ifnet *ifp, int state) { struct bridge_softc *sc = ifp->if_bridge; static const char *stpstates[] = { "disabled", "listening", "learning", "forwarding", "blocking", "discarding" }; if (log_stp) log(LOG_NOTICE, "%s%d: state changed to %s on %s%d\n", ifnet_name(sc->sc_ifp), ifnet_unit(sc->sc_ifp), stpstates[state], ifnet_name(ifp), ifnet_unit(ifp)); } #endif /* BRIDGESTP */ #ifdef PFIL_HOOKS /* * Send bridge packets through pfil if they are one of the types pfil can deal * with, or if they are ARP or REVARP. (pfil will pass ARP and REVARP without * question.) If *bifp or *ifp are NULL then packet filtering is skipped for * that interface. */ static int bridge_pfil(struct mbuf **mp, struct ifnet *bifp, struct ifnet *ifp, int dir) { int snap, error, i, hlen; struct ether_header *eh1, eh2; struct ip_fw_args args; struct ip *ip; struct llc llc1; u_int16_t ether_type; snap = 0; error = -1; /* Default error if not error == 0 */ #if 0 /* we may return with the IP fields swapped, ensure its not shared */ KASSERT(M_WRITABLE(*mp), ("%s: modifying a shared mbuf", __func__)); #endif if (pfil_bridge == 0 && pfil_member == 0 && pfil_ipfw == 0) return (0); /* filtering is disabled */ i = min((*mp)->m_pkthdr.len, max_protohdr); if ((*mp)->m_len < i) { *mp = m_pullup(*mp, i); if (*mp == NULL) { printf("%s: m_pullup failed\n", __func__); return (-1); } } eh1 = mtod(*mp, struct ether_header *); ether_type = ntohs(eh1->ether_type); /* * Check for SNAP/LLC. */ if (ether_type < ETHERMTU) { struct llc *llc2 = (struct llc *)(eh1 + 1); if ((*mp)->m_len >= ETHER_HDR_LEN + 8 && llc2->llc_dsap == LLC_SNAP_LSAP && llc2->llc_ssap == LLC_SNAP_LSAP && llc2->llc_control == LLC_UI) { ether_type = htons(llc2->llc_un.type_snap.ether_type); snap = 1; } } /* * If we're trying to filter bridge traffic, don't look at anything * other than IP and ARP traffic. If the filter doesn't understand * IPv6, don't allow IPv6 through the bridge either. This is lame * since if we really wanted, say, an AppleTalk filter, we are hosed, * but of course we don't have an AppleTalk filter to begin with. * (Note that since pfil doesn't understand ARP it will pass *ALL* * ARP traffic.) */ switch (ether_type) { case ETHERTYPE_ARP: case ETHERTYPE_REVARP: if (pfil_ipfw_arp == 0) return (0); /* Automatically pass */ break; case ETHERTYPE_IP: #ifdef INET6 case ETHERTYPE_IPV6: #endif /* INET6 */ break; default: /* * Check to see if the user wants to pass non-ip * packets, these will not be checked by pfil(9) and * passed unconditionally so the default is to drop. */ if (pfil_onlyip) goto bad; } /* Strip off the Ethernet header and keep a copy. */ m_copydata(*mp, 0, ETHER_HDR_LEN, (caddr_t)&eh2); m_adj(*mp, ETHER_HDR_LEN); /* Strip off snap header, if present */ if (snap) { m_copydata(*mp, 0, sizeof (struct llc), (caddr_t)&llc1); m_adj(*mp, sizeof (struct llc)); } /* * Check the IP header for alignment and errors */ if (dir == PFIL_IN) { switch (ether_type) { case ETHERTYPE_IP: error = bridge_ip_checkbasic(mp); break; #ifdef INET6 case ETHERTYPE_IPV6: error = bridge_ip6_checkbasic(mp); break; #endif /* INET6 */ default: error = 0; } if (error) goto bad; } if (IPFW_LOADED && pfil_ipfw != 0 && dir == PFIL_OUT && ifp != NULL) { error = -1; args.rule = ip_dn_claim_rule(*mp); if (args.rule != NULL && fw_one_pass) goto ipfwpass; /* packet already partially processed */ args.m = *mp; args.oif = ifp; args.next_hop = NULL; args.eh = &eh2; args.inp = NULL; /* used by ipfw uid/gid/jail rules */ i = ip_fw_chk_ptr(&args); *mp = args.m; if (*mp == NULL) return (error); if (DUMMYNET_LOADED && (i == IP_FW_DUMMYNET)) { /* put the Ethernet header back on */ M_PREPEND(*mp, ETHER_HDR_LEN, M_DONTWAIT); if (*mp == NULL) return (error); bcopy(&eh2, mtod(*mp, caddr_t), ETHER_HDR_LEN); /* * Pass the pkt to dummynet, which consumes it. The * packet will return to us via bridge_dummynet(). */ args.oif = ifp; ip_dn_io_ptr(mp, DN_TO_IFB_FWD, &args, DN_CLIENT_IPFW); return (error); } if (i != IP_FW_PASS) /* drop */ goto bad; } ipfwpass: error = 0; /* * Run the packet through pfil */ switch (ether_type) { case ETHERTYPE_IP: /* * before calling the firewall, swap fields the same as * IP does. here we assume the header is contiguous */ ip = mtod(*mp, struct ip *); ip->ip_len = ntohs(ip->ip_len); ip->ip_off = ntohs(ip->ip_off); /* * Run pfil on the member interface and the bridge, both can * be skipped by clearing pfil_member or pfil_bridge. * * Keep the order: * in_if -> bridge_if -> out_if */ if (pfil_bridge && dir == PFIL_OUT && bifp != NULL) error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, dir, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; if (pfil_member && ifp != NULL) error = pfil_run_hooks(&inet_pfil_hook, mp, ifp, dir, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; if (pfil_bridge && dir == PFIL_IN && bifp != NULL) error = pfil_run_hooks(&inet_pfil_hook, mp, bifp, dir, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; /* check if we need to fragment the packet */ if (pfil_member && ifp != NULL && dir == PFIL_OUT) { i = (*mp)->m_pkthdr.len; if (i > ifp->if_mtu) { error = bridge_fragment(ifp, *mp, &eh2, snap, &llc1); return (error); } } /* Recalculate the ip checksum and restore byte ordering */ ip = mtod(*mp, struct ip *); hlen = ip->ip_hl << 2; if (hlen < sizeof (struct ip)) goto bad; if (hlen > (*mp)->m_len) { if ((*mp = m_pullup(*mp, hlen)) == 0) goto bad; ip = mtod(*mp, struct ip *); if (ip == NULL) goto bad; } ip->ip_len = htons(ip->ip_len); ip->ip_off = htons(ip->ip_off); ip->ip_sum = 0; if (hlen == sizeof (struct ip)) ip->ip_sum = in_cksum_hdr(ip); else ip->ip_sum = in_cksum(*mp, hlen); break; #ifdef INET6 case ETHERTYPE_IPV6: if (pfil_bridge && dir == PFIL_OUT && bifp != NULL) error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp, dir, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; if (pfil_member && ifp != NULL) error = pfil_run_hooks(&inet6_pfil_hook, mp, ifp, dir, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; if (pfil_bridge && dir == PFIL_IN && bifp != NULL) error = pfil_run_hooks(&inet6_pfil_hook, mp, bifp, dir, NULL); break; #endif default: error = 0; break; } if (*mp == NULL) return (error); if (error != 0) goto bad; error = -1; /* * Finally, put everything back the way it was and return */ if (snap) { M_PREPEND(*mp, sizeof (struct llc), M_DONTWAIT); if (*mp == NULL) return (error); bcopy(&llc1, mtod(*mp, caddr_t), sizeof (struct llc)); } M_PREPEND(*mp, ETHER_HDR_LEN, M_DONTWAIT); if (*mp == NULL) return (error); bcopy(&eh2, mtod(*mp, caddr_t), ETHER_HDR_LEN); return (0); bad: m_freem(*mp); *mp = NULL; return (error); } /* * Perform basic checks on header size since * pfil assumes ip_input has already processed * it for it. Cut-and-pasted from ip_input.c. * Given how simple the IPv6 version is, * does the IPv4 version really need to be * this complicated? * * XXX Should we update ipstat here, or not? * XXX Right now we update ipstat but not * XXX csum_counter. */ static int bridge_ip_checkbasic(struct mbuf **mp) { struct mbuf *m = *mp; struct ip *ip; int len, hlen; u_short sum; if (*mp == NULL) return (-1); if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) { /* max_linkhdr is already rounded up to nearest 4-byte */ if ((m = m_copyup(m, sizeof (struct ip), max_linkhdr)) == NULL) { /* XXXJRT new stat, please */ ipstat.ips_toosmall++; goto bad; } } else if (__predict_false(m->m_len < sizeof (struct ip))) { if ((m = m_pullup(m, sizeof (struct ip))) == NULL) { ipstat.ips_toosmall++; goto bad; } } ip = mtod(m, struct ip *); if (ip == NULL) goto bad; if (ip->ip_v != IPVERSION) { ipstat.ips_badvers++; goto bad; } hlen = ip->ip_hl << 2; if (hlen < sizeof (struct ip)) { /* minimum header length */ ipstat.ips_badhlen++; goto bad; } if (hlen > m->m_len) { if ((m = m_pullup(m, hlen)) == 0) { ipstat.ips_badhlen++; goto bad; } ip = mtod(m, struct ip *); if (ip == NULL) goto bad; } if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); } else { if (hlen == sizeof (struct ip)) { sum = in_cksum_hdr(ip); } else { sum = in_cksum(m, hlen); } } if (sum) { ipstat.ips_badsum++; goto bad; } /* Retrieve the packet length. */ len = ntohs(ip->ip_len); /* * Check for additional length bogosity */ if (len < hlen) { ipstat.ips_badlen++; goto bad; } /* * Check that the amount of data in the buffers * is as at least much as the IP header would have us expect. * Drop packet if shorter than we expect. */ if (m->m_pkthdr.len < len) { ipstat.ips_tooshort++; goto bad; } /* Checks out, proceed */ *mp = m; return (0); bad: *mp = m; return (-1); } #ifdef INET6 /* * Same as above, but for IPv6. * Cut-and-pasted from ip6_input.c. * XXX Should we update ip6stat, or not? */ static int bridge_ip6_checkbasic(struct mbuf **mp) { struct mbuf *m = *mp; struct ip6_hdr *ip6; /* * If the IPv6 header is not aligned, slurp it up into a new * mbuf with space for link headers, in the event we forward * it. Otherwise, if it is aligned, make sure the entire base * IPv6 header is in the first mbuf of the chain. */ if (IP6_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) { struct ifnet *inifp = m->m_pkthdr.rcvif; /* max_linkhdr is already rounded up to nearest 4-byte */ if ((m = m_copyup(m, sizeof (struct ip6_hdr), max_linkhdr)) == NULL) { /* XXXJRT new stat, please */ ip6stat.ip6s_toosmall++; in6_ifstat_inc(inifp, ifs6_in_hdrerr); goto bad; } } else if (__predict_false(m->m_len < sizeof (struct ip6_hdr))) { struct ifnet *inifp = m->m_pkthdr.rcvif; if ((m = m_pullup(m, sizeof (struct ip6_hdr))) == NULL) { ip6stat.ip6s_toosmall++; in6_ifstat_inc(inifp, ifs6_in_hdrerr); goto bad; } } ip6 = mtod(m, struct ip6_hdr *); if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) { ip6stat.ip6s_badvers++; in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr); goto bad; } /* Checks out, proceed */ *mp = m; return (0); bad: *mp = m; return (-1); } #endif /* INET6 */ /* * bridge_fragment: * * Return a fragmented mbuf chain. */ static int bridge_fragment(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh, int snap, struct llc *llc) { struct mbuf *m0; struct ip *ip; int error = -1; if (m->m_len < sizeof (struct ip) && (m = m_pullup(m, sizeof (struct ip))) == NULL) goto out; ip = mtod(m, struct ip *); error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, CSUM_DELAY_IP); if (error) goto out; /* walk the chain and re-add the Ethernet header */ for (m0 = m; m0; m0 = m0->m_nextpkt) { if (error == 0) { if (snap) { M_PREPEND(m0, sizeof (struct llc), M_DONTWAIT); if (m0 == NULL) { error = ENOBUFS; continue; } bcopy(llc, mtod(m0, caddr_t), sizeof (struct llc)); } M_PREPEND(m0, ETHER_HDR_LEN, M_DONTWAIT); if (m0 == NULL) { error = ENOBUFS; continue; } bcopy(eh, mtod(m0, caddr_t), ETHER_HDR_LEN); } else { m_freem(m); } } if (error == 0) ipstat.ips_fragmented++; return (error); out: if (m != NULL) m_freem(m); return (error); } #endif /* PFIL_HOOKS */ static errno_t bridge_set_bpf_tap(ifnet_t ifp, bpf_tap_mode mode, bpf_packet_func bpf_callback) { struct bridge_softc *sc = (struct bridge_softc *)ifnet_softc(ifp); /* TBD locking */ if (sc == NULL || (sc->sc_flags & SCF_DETACHING)) { return (ENODEV); } switch (mode) { case BPF_TAP_DISABLE: sc->sc_bpf_input = sc->sc_bpf_output = NULL; break; case BPF_TAP_INPUT: sc->sc_bpf_input = bpf_callback; break; case BPF_TAP_OUTPUT: sc->sc_bpf_output = bpf_callback; break; case BPF_TAP_INPUT_OUTPUT: sc->sc_bpf_input = sc->sc_bpf_output = bpf_callback; break; default: break; } return (0); } static void bridge_detach(ifnet_t ifp) { struct bridge_softc *sc = (struct bridge_softc *)ifnet_softc(ifp); #if BRIDGESTP bstp_detach(&sc->sc_stp); #endif /* BRIDGESTP */ /* Tear down the routing table. */ bridge_rtable_fini(sc); lck_mtx_lock(bridge_list_mtx); LIST_REMOVE(sc, sc_list); lck_mtx_unlock(bridge_list_mtx); ifnet_release(ifp); lck_mtx_free(sc->sc_mtx, bridge_lock_grp); _FREE(sc, M_DEVBUF); } __private_extern__ errno_t bridge_bpf_input(ifnet_t ifp, struct mbuf *m) { struct bridge_softc *sc = (struct bridge_softc *)ifnet_softc(ifp); if (sc->sc_bpf_input) { if (mbuf_pkthdr_rcvif(m) != ifp) { printf("%s: rcvif: %p != ifp %p\n", __func__, mbuf_pkthdr_rcvif(m), ifp); } (*sc->sc_bpf_input)(ifp, m); } return (0); } __private_extern__ errno_t bridge_bpf_output(ifnet_t ifp, struct mbuf *m) { struct bridge_softc *sc = (struct bridge_softc *)ifnet_softc(ifp); if (sc->sc_bpf_output) { (*sc->sc_bpf_output)(ifp, m); } return (0); }