/* * Copyright (c) 2006 - 2007 Kungliga Tekniska Högskolan * (Royal Institute of Technology, Stockholm, Sweden). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include "imath/imath.h" #include "imath/iprime.h" static void BN2mpz(mpz_t *s, const BIGNUM *bn) { size_t len; void *p; mp_int_init(s); len = BN_num_bytes(bn); p = malloc(len); BN_bn2bin(bn, p); mp_int_read_unsigned(s, p, len); free(p); } static BIGNUM * mpz2BN(mpz_t *s) { size_t size; BIGNUM *bn; void *p; size = mp_int_unsigned_len(s); p = malloc(size); if (p == NULL && size != 0) return NULL; mp_int_to_unsigned(s, p, size); bn = BN_bin2bn(p, size, NULL); free(p); return bn; } static int random_num(mp_int, size_t); static void setup_blind(mp_int n, mp_int b, mp_int bi) { mp_int_init(b); mp_int_init(bi); random_num(b, mp_int_count_bits(n)); mp_int_mod(b, n, b); mp_int_invmod(b, n, bi); } static void blind(mp_int in, mp_int b, mp_int e, mp_int n) { mpz_t t1; mp_int_init(&t1); /* in' = (in * b^e) mod n */ mp_int_exptmod(b, e, n, &t1); mp_int_mul(&t1, in, in); mp_int_mod(in, n, in); mp_int_clear(&t1); } static void unblind(mp_int out, mp_int bi, mp_int n) { /* out' = (out * 1/b) mod n */ mp_int_mul(out, bi, out); mp_int_mod(out, n, out); } static mp_result rsa_private_calculate(mp_int in, mp_int p, mp_int q, mp_int dmp1, mp_int dmq1, mp_int iqmp, mp_int out) { mpz_t vp, vq, u; mp_int_init(&vp); mp_int_init(&vq); mp_int_init(&u); /* vq = c ^ (d mod (q - 1)) mod q */ /* vp = c ^ (d mod (p - 1)) mod p */ mp_int_mod(in, p, &u); mp_int_exptmod(&u, dmp1, p, &vp); mp_int_mod(in, q, &u); mp_int_exptmod(&u, dmq1, q, &vq); /* C2 = 1/q mod p (iqmp) */ /* u = (vp - vq)C2 mod p. */ mp_int_sub(&vp, &vq, &u); if (mp_int_compare_zero(&u) < 0) mp_int_add(&u, p, &u); mp_int_mul(&u, iqmp, &u); mp_int_mod(&u, p, &u); /* c ^ d mod n = vq + u q */ mp_int_mul(&u, q, &u); mp_int_add(&u, &vq, out); mp_int_clear(&vp); mp_int_clear(&vq); mp_int_clear(&u); return MP_OK; } /* * */ static int imath_rsa_public_encrypt(int flen, const unsigned char* from, unsigned char* to, RSA* rsa, int padding) { unsigned char *p, *p0; mp_result res; size_t size, padlen; mpz_t enc, dec, n, e; if (padding != RSA_PKCS1_PADDING) return -1; size = RSA_size(rsa); if (size < RSA_PKCS1_PADDING_SIZE || size - RSA_PKCS1_PADDING_SIZE < flen) return -2; BN2mpz(&n, rsa->n); BN2mpz(&e, rsa->e); p = p0 = malloc(size - 1); if (p0 == NULL) { mp_int_clear(&e); mp_int_clear(&n); return -3; } padlen = size - flen - 3; *p++ = 2; if (RAND_bytes(p, padlen) != 1) { mp_int_clear(&e); mp_int_clear(&n); free(p0); return -4; } while(padlen) { if (*p == 0) *p = 1; padlen--; p++; } *p++ = 0; memcpy(p, from, flen); p += flen; assert((p - p0) == size - 1); mp_int_init(&enc); mp_int_init(&dec); mp_int_read_unsigned(&dec, p0, size - 1); free(p0); res = mp_int_exptmod(&dec, &e, &n, &enc); mp_int_clear(&dec); mp_int_clear(&e); mp_int_clear(&n); { size_t ssize; ssize = mp_int_unsigned_len(&enc); assert(size >= ssize); mp_int_to_unsigned(&enc, to, ssize); size = ssize; } mp_int_clear(&enc); return size; } static int imath_rsa_public_decrypt(int flen, const unsigned char* from, unsigned char* to, RSA* rsa, int padding) { unsigned char *p; mp_result res; size_t size; mpz_t s, us, n, e; if (padding != RSA_PKCS1_PADDING) return -1; if (flen > RSA_size(rsa)) return -2; BN2mpz(&n, rsa->n); BN2mpz(&e, rsa->e); #if 0 /* Check that the exponent is larger then 3 */ if (mp_int_compare_value(&e, 3) <= 0) { mp_int_clear(&n); mp_int_clear(&e); return -3; } #endif mp_int_init(&s); mp_int_init(&us); mp_int_read_unsigned(&s, rk_UNCONST(from), flen); if (mp_int_compare(&s, &n) >= 0) { mp_int_clear(&n); mp_int_clear(&e); return -4; } res = mp_int_exptmod(&s, &e, &n, &us); mp_int_clear(&s); mp_int_clear(&n); mp_int_clear(&e); if (res != MP_OK) return -5; p = to; size = mp_int_unsigned_len(&us); assert(size <= RSA_size(rsa)); mp_int_to_unsigned(&us, p, size); mp_int_clear(&us); /* head zero was skipped by mp_int_to_unsigned */ if (*p == 0) return -6; if (*p != 1) return -7; size--; p++; while (size && *p == 0xff) { size--; p++; } if (size == 0 || *p != 0) return -8; size--; p++; memmove(to, p, size); return size; } static int imath_rsa_private_encrypt(int flen, const unsigned char* from, unsigned char* to, RSA* rsa, int padding) { unsigned char *p, *p0; mp_result res; size_t size; mpz_t in, out, n, e, b, bi; int blinding = (rsa->flags & RSA_FLAG_NO_BLINDING) == 0; if (padding != RSA_PKCS1_PADDING) return -1; size = RSA_size(rsa); if (size < RSA_PKCS1_PADDING_SIZE || size - RSA_PKCS1_PADDING_SIZE < flen) return -2; p0 = p = malloc(size); *p++ = 0; *p++ = 1; memset(p, 0xff, size - flen - 3); p += size - flen - 3; *p++ = 0; memcpy(p, from, flen); p += flen; assert((p - p0) == size); BN2mpz(&n, rsa->n); BN2mpz(&e, rsa->e); mp_int_init(&in); mp_int_init(&out); mp_int_read_unsigned(&in, p0, size); free(p0); if(mp_int_compare_zero(&in) < 0 || mp_int_compare(&in, &n) >= 0) { size = 0; goto out; } if (blinding) { setup_blind(&n, &b, &bi); blind(&in, &b, &e, &n); } if (rsa->p && rsa->q && rsa->dmp1 && rsa->dmq1 && rsa->iqmp) { mpz_t p, q, dmp1, dmq1, iqmp; BN2mpz(&p, rsa->p); BN2mpz(&q, rsa->q); BN2mpz(&dmp1, rsa->dmp1); BN2mpz(&dmq1, rsa->dmq1); BN2mpz(&iqmp, rsa->iqmp); res = rsa_private_calculate(&in, &p, &q, &dmp1, &dmq1, &iqmp, &out); mp_int_clear(&p); mp_int_clear(&q); mp_int_clear(&dmp1); mp_int_clear(&dmq1); mp_int_clear(&iqmp); } else { mpz_t d; BN2mpz(&d, rsa->d); res = mp_int_exptmod(&in, &d, &n, &out); mp_int_clear(&d); if (res != MP_OK) { size = 0; goto out; } } if (blinding) { unblind(&out, &bi, &n); mp_int_clear(&b); mp_int_clear(&bi); } { size_t ssize; ssize = mp_int_unsigned_len(&out); assert(size >= ssize); mp_int_to_unsigned(&out, to, size); size = ssize; } out: mp_int_clear(&e); mp_int_clear(&n); mp_int_clear(&in); mp_int_clear(&out); return size; } static int imath_rsa_private_decrypt(int flen, const unsigned char* from, unsigned char* to, RSA* rsa, int padding) { unsigned char *ptr; mp_result res; size_t size; mpz_t in, out, n, e, b, bi; int blinding = (rsa->flags & RSA_FLAG_NO_BLINDING) == 0; if (padding != RSA_PKCS1_PADDING) return -1; size = RSA_size(rsa); if (flen > size) return -2; mp_int_init(&in); mp_int_init(&out); BN2mpz(&n, rsa->n); BN2mpz(&e, rsa->e); res = mp_int_read_unsigned(&in, rk_UNCONST(from), flen); if (res != MP_OK) { size = -1; goto out; } if(mp_int_compare_zero(&in) < 0 || mp_int_compare(&in, &n) >= 0) { size = 0; goto out; } if (blinding) { setup_blind(&n, &b, &bi); blind(&in, &b, &e, &n); } if (rsa->p && rsa->q && rsa->dmp1 && rsa->dmq1 && rsa->iqmp) { mpz_t p, q, dmp1, dmq1, iqmp; BN2mpz(&p, rsa->p); BN2mpz(&q, rsa->q); BN2mpz(&dmp1, rsa->dmp1); BN2mpz(&dmq1, rsa->dmq1); BN2mpz(&iqmp, rsa->iqmp); res = rsa_private_calculate(&in, &p, &q, &dmp1, &dmq1, &iqmp, &out); mp_int_clear(&p); mp_int_clear(&q); mp_int_clear(&dmp1); mp_int_clear(&dmq1); mp_int_clear(&iqmp); } else { mpz_t d; if(mp_int_compare_zero(&in) < 0 || mp_int_compare(&in, &n) >= 0) return MP_RANGE; BN2mpz(&d, rsa->d); res = mp_int_exptmod(&in, &d, &n, &out); mp_int_clear(&d); if (res != MP_OK) { size = 0; goto out; } } if (blinding) { unblind(&out, &bi, &n); mp_int_clear(&b); mp_int_clear(&bi); } ptr = to; { size_t ssize; ssize = mp_int_unsigned_len(&out); assert(size >= ssize); mp_int_to_unsigned(&out, ptr, ssize); size = ssize; } /* head zero was skipped by mp_int_to_unsigned */ if (*ptr != 2) return -3; size--; ptr++; while (size && *ptr != 0) { size--; ptr++; } if (size == 0) return -4; size--; ptr++; memmove(to, ptr, size); out: mp_int_clear(&e); mp_int_clear(&n); mp_int_clear(&in); mp_int_clear(&out); return size; } static int random_num(mp_int num, size_t len) { unsigned char *p; mp_result res; len = (len + 7) / 8; p = malloc(len); if (p == NULL) return 1; if (RAND_bytes(p, len) != 1) { free(p); return 1; } res = mp_int_read_unsigned(num, p, len); free(p); if (res != MP_OK) return 1; return 0; } #define CHECK(f, v) if ((f) != (v)) { goto out; } static int imath_rsa_generate_key(RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb) { mpz_t el, p, q, n, d, dmp1, dmq1, iqmp, t1, t2, t3; int counter, ret; if (bits < 789) return -1; ret = -1; mp_int_init(&el); mp_int_init(&p); mp_int_init(&q); mp_int_init(&n); mp_int_init(&d); mp_int_init(&dmp1); mp_int_init(&dmq1); mp_int_init(&iqmp); mp_int_init(&t1); mp_int_init(&t2); mp_int_init(&t3); BN2mpz(&el, e); /* generate p and q so that p != q and bits(pq) ~ bits */ counter = 0; do { BN_GENCB_call(cb, 2, counter++); CHECK(random_num(&p, bits / 2 + 1), 0); CHECK(mp_int_find_prime(&p), MP_TRUE); CHECK(mp_int_sub_value(&p, 1, &t1), MP_OK); CHECK(mp_int_gcd(&t1, &el, &t2), MP_OK); } while(mp_int_compare_value(&t2, 1) != 0); BN_GENCB_call(cb, 3, 0); counter = 0; do { BN_GENCB_call(cb, 2, counter++); CHECK(random_num(&q, bits / 2 + 1), 0); CHECK(mp_int_find_prime(&q), MP_TRUE); if (mp_int_compare(&p, &q) == 0) /* don't let p and q be the same */ continue; CHECK(mp_int_sub_value(&q, 1, &t1), MP_OK); CHECK(mp_int_gcd(&t1, &el, &t2), MP_OK); } while(mp_int_compare_value(&t2, 1) != 0); /* make p > q */ if (mp_int_compare(&p, &q) < 0) mp_int_swap(&p, &q); BN_GENCB_call(cb, 3, 1); /* calculate n, n = p * q */ CHECK(mp_int_mul(&p, &q, &n), MP_OK); /* calculate d, d = 1/e mod (p - 1)(q - 1) */ CHECK(mp_int_sub_value(&p, 1, &t1), MP_OK); CHECK(mp_int_sub_value(&q, 1, &t2), MP_OK); CHECK(mp_int_mul(&t1, &t2, &t3), MP_OK); CHECK(mp_int_invmod(&el, &t3, &d), MP_OK); /* calculate dmp1 dmp1 = d mod (p-1) */ CHECK(mp_int_mod(&d, &t1, &dmp1), MP_OK); /* calculate dmq1 dmq1 = d mod (q-1) */ CHECK(mp_int_mod(&d, &t2, &dmq1), MP_OK); /* calculate iqmp iqmp = 1/q mod p */ CHECK(mp_int_invmod(&q, &p, &iqmp), MP_OK); /* fill in RSA key */ rsa->e = mpz2BN(&el); rsa->p = mpz2BN(&p); rsa->q = mpz2BN(&q); rsa->n = mpz2BN(&n); rsa->d = mpz2BN(&d); rsa->dmp1 = mpz2BN(&dmp1); rsa->dmq1 = mpz2BN(&dmq1); rsa->iqmp = mpz2BN(&iqmp); ret = 1; out: mp_int_clear(&el); mp_int_clear(&p); mp_int_clear(&q); mp_int_clear(&n); mp_int_clear(&d); mp_int_clear(&dmp1); mp_int_clear(&dmq1); mp_int_clear(&iqmp); mp_int_clear(&t1); mp_int_clear(&t2); mp_int_clear(&t3); return ret; } static int imath_rsa_init(RSA *rsa) { return 1; } static int imath_rsa_finish(RSA *rsa) { return 1; } const RSA_METHOD hc_rsa_imath_method = { "hcrypto imath RSA", imath_rsa_public_encrypt, imath_rsa_public_decrypt, imath_rsa_private_encrypt, imath_rsa_private_decrypt, NULL, NULL, imath_rsa_init, imath_rsa_finish, 0, NULL, NULL, NULL, imath_rsa_generate_key }; const RSA_METHOD * RSA_imath_method(void) { return &hc_rsa_imath_method; }