/* * See the file LICENSE for redistribution information. * * Copyright (c) 1996-2009 Oracle. All rights reserved. * * $Id$ */ #ifndef _DB_MUTEX_INT_H_ #define _DB_MUTEX_INT_H_ #include "dbinc/atomic.h" #if defined(__cplusplus) extern "C" { #endif /* * Mutexes and Shared Latches * * Mutexes may be test-and-set (spinning & yielding when busy), * native versions (pthreads, WaitForSingleObject) * or a hybrid which has the lower no-contention overhead of test-and-set * mutexes, using operating system calls only to block and wakeup. * * Hybrid exclusive-only mutexes include a 'tas' field. * Hybrid DB_MUTEX_SHARED latches also include a 'shared' field. */ /********************************************************************* * POSIX.1 pthreads interface. *********************************************************************/ #if defined(HAVE_MUTEX_PTHREADS) /* * Pthreads-based mutexes (exclusive-only) and latches (possibly shared) * have the same MUTEX_FIELDS union. Different parts of the union are used * depending on: * - whether HAVE_SHARED_LATCHES is defined, and * - if HAVE_SHARED_LATCHES, whether this particular instance of a mutex * is a shared mutexDB_MUTEX_SHARED. * * The rwlock part of the union is used *only* for non-hybrid shared latches; * in all other cases the mutex and cond fields are the only ones used. * * configuration & Who uses the field * mutex * mutex cond rwlock tas * Native mutex y y * Hybrid mutexes y y y * Native sharedlatches y * Hybrid sharedlatches y y y * * They all have a condition variable which is used only for * DB_MUTEX_SELF_BLOCK waits. * * There can be no self-blocking shared latches: the pthread_cond_wait() would * require getting a pthread_mutex_t, also it would not make sense. */ #define MUTEX_FIELDS \ union { \ struct { \ pthread_mutex_t mutex; /* Mutex */ \ pthread_cond_t cond; /* Condition variable */ \ } m; \ pthread_rwlock_t rwlock; /* Read/write lock */ \ } u; #if defined(HAVE_SHARED_LATCHES) && !defined(HAVE_MUTEX_HYBRID) #define RET_SET_PTHREAD_LOCK(mutexp, ret) do { \ if (F_ISSET(mutexp, DB_MUTEX_SHARED)) \ RET_SET((pthread_rwlock_wrlock(&(mutexp)->u.rwlock)), \ ret); \ else \ RET_SET((pthread_mutex_lock(&(mutexp)->u.m.mutex)), ret); \ } while (0) #define RET_SET_PTHREAD_TRYLOCK(mutexp, ret) do { \ if (F_ISSET(mutexp, DB_MUTEX_SHARED)) \ RET_SET((pthread_rwlock_trywrlock(&(mutexp)->u.rwlock)), \ ret); \ else \ RET_SET((pthread_mutex_trylock(&(mutexp)->u.m.mutex)), \ ret); \ } while (0) #else #define RET_SET_PTHREAD_LOCK(mutexp, ret) \ RET_SET(pthread_mutex_lock(&(mutexp)->u.m.mutex), ret); #define RET_SET_PTHREAD_TRYLOCK(mutexp, ret) \ RET_SET(pthread_mutex_trylock(&(mutexp)->u.m.mutex), ret); #endif #endif #ifdef HAVE_MUTEX_UI_THREADS #include #endif /********************************************************************* * Solaris lwp threads interface. * * !!! * We use LWP mutexes on Solaris instead of UI or POSIX mutexes (both of * which are available), for two reasons. First, the Solaris C library * includes versions of the both UI and POSIX thread mutex interfaces, but * they are broken in that they don't support inter-process locking, and * there's no way to detect it, e.g., calls to configure the mutexes for * inter-process locking succeed without error. So, we use LWP mutexes so * that we don't fail in fairly undetectable ways because the application * wasn't linked with the appropriate threads library. Second, there were * bugs in SunOS 5.7 (Solaris 7) where if an application loaded the C library * before loading the libthread/libpthread threads libraries (e.g., by using * dlopen to load the DB library), the pwrite64 interface would be translated * into a call to pwrite and DB would drop core. *********************************************************************/ #ifdef HAVE_MUTEX_SOLARIS_LWP /* * XXX * Don't change to -- although lwp.h is listed in the * Solaris manual page as the correct include to use, it causes the Solaris * compiler on SunOS 2.6 to fail. */ #include #define MUTEX_FIELDS \ lwp_mutex_t mutex; /* Mutex. */ \ lwp_cond_t cond; /* Condition variable. */ #endif /********************************************************************* * Solaris/Unixware threads interface. *********************************************************************/ #ifdef HAVE_MUTEX_UI_THREADS #include #include #define MUTEX_FIELDS \ mutex_t mutex; /* Mutex. */ \ cond_t cond; /* Condition variable. */ #endif /********************************************************************* * AIX C library functions. *********************************************************************/ #ifdef HAVE_MUTEX_AIX_CHECK_LOCK #include typedef int tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE #define MUTEX_INIT(x) 0 #define MUTEX_SET(x) (!_check_lock(x, 0, 1)) #define MUTEX_UNSET(x) _clear_lock(x, 0) #endif #endif /********************************************************************* * Apple/Darwin library functions. *********************************************************************/ #ifdef HAVE_MUTEX_DARWIN_SPIN_LOCK_TRY typedef u_int32_t tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE extern int _spin_lock_try(tsl_t *); extern void _spin_unlock(tsl_t *); #define MUTEX_SET(tsl) _spin_lock_try(tsl) #define MUTEX_UNSET(tsl) _spin_unlock(tsl) #define MUTEX_INIT(tsl) (MUTEX_UNSET(tsl), 0) #endif #endif /********************************************************************* * General C library functions (msemaphore). * * !!! * Check for HPPA as a special case, because it requires unusual alignment, * and doesn't support semaphores in malloc(3) or shmget(2) memory. * * !!! * Do not remove the MSEM_IF_NOWAIT flag. The problem is that if a single * process makes two msem_lock() calls in a row, the second one returns an * error. We depend on the fact that we can lock against ourselves in the * locking subsystem, where we set up a mutex so that we can block ourselves. * Tested on OSF1 v4.0. *********************************************************************/ #ifdef HAVE_MUTEX_HPPA_MSEM_INIT #define MUTEX_ALIGN 16 #endif #if defined(HAVE_MUTEX_MSEM_INIT) || defined(HAVE_MUTEX_HPPA_MSEM_INIT) #include typedef msemaphore tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE #define MUTEX_INIT(x) (msem_init(x, MSEM_UNLOCKED) <= (msemaphore *)0) #define MUTEX_SET(x) (!msem_lock(x, MSEM_IF_NOWAIT)) #define MUTEX_UNSET(x) msem_unlock(x, 0) #endif #endif /********************************************************************* * Plan 9 library functions. *********************************************************************/ #ifdef HAVE_MUTEX_PLAN9 typedef Lock tsl_t; #define MUTEX_INIT(x) (memset(x, 0, sizeof(Lock)), 0) #define MUTEX_SET(x) canlock(x) #define MUTEX_UNSET(x) unlock(x) #endif /********************************************************************* * Reliant UNIX C library functions. *********************************************************************/ #ifdef HAVE_MUTEX_RELIANTUNIX_INITSPIN #include typedef spinlock_t tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE #define MUTEX_INIT(x) (initspin(x, 1), 0) #define MUTEX_SET(x) (cspinlock(x) == 0) #define MUTEX_UNSET(x) spinunlock(x) #endif #endif /********************************************************************* * General C library functions (POSIX 1003.1 sema_XXX). * * !!! * Never selected by autoconfig in this release (semaphore calls are known * to not work in Solaris 5.5). *********************************************************************/ #ifdef HAVE_MUTEX_SEMA_INIT #include typedef sema_t tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE #define MUTEX_DESTROY(x) sema_destroy(x) #define MUTEX_INIT(x) (sema_init(x, 1, USYNC_PROCESS, NULL) != 0) #define MUTEX_SET(x) (sema_wait(x) == 0) #define MUTEX_UNSET(x) sema_post(x) #endif #endif /********************************************************************* * SGI C library functions. *********************************************************************/ #ifdef HAVE_MUTEX_SGI_INIT_LOCK #include typedef abilock_t tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE #define MUTEX_INIT(x) (init_lock(x) != 0) #define MUTEX_SET(x) (!acquire_lock(x)) #define MUTEX_UNSET(x) release_lock(x) #endif #endif /********************************************************************* * Solaris C library functions. * * !!! * These are undocumented functions, but they're the only ones that work * correctly as far as we know. *********************************************************************/ #ifdef HAVE_MUTEX_SOLARIS_LOCK_TRY #include #define MUTEX_MEMBAR(x) membar_enter() #define MEMBAR_ENTER() membar_enter() #define MEMBAR_EXIT() membar_exit() #include typedef lock_t tsl_t; /* * The functions are declared in , but under #ifdef KERNEL. * Re-declare them here to avoid warnings. */ extern int _lock_try(lock_t *); extern void _lock_clear(lock_t *); #ifdef LOAD_ACTUAL_MUTEX_CODE #define MUTEX_INIT(x) 0 #define MUTEX_SET(x) _lock_try(x) #define MUTEX_UNSET(x) _lock_clear(x) #endif #endif /********************************************************************* * VMS. *********************************************************************/ #ifdef HAVE_MUTEX_VMS #include #include typedef volatile unsigned char tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE #ifdef __ALPHA #define MUTEX_SET(tsl) (!__TESTBITSSI(tsl, 0)) #else /* __VAX */ #define MUTEX_SET(tsl) (!(int)_BBSSI(0, tsl)) #endif #define MUTEX_UNSET(tsl) (*(tsl) = 0) #define MUTEX_INIT(tsl) (MUTEX_UNSET(tsl), 0) #endif #endif /********************************************************************* * VxWorks * Use basic binary semaphores in VxWorks, as we currently do not need * any special features. We do need the ability to single-thread the * entire system, however, because VxWorks doesn't support the open(2) * flag O_EXCL, the mechanism we normally use to single thread access * when we're first looking for a DB environment. *********************************************************************/ #ifdef HAVE_MUTEX_VXWORKS #include "taskLib.h" typedef SEM_ID tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE /* * Uses of this MUTEX_SET() need to have a local 'nowait' variable, * which determines whether to return right away when the semaphore * is busy or to wait until it is available. */ #define MUTEX_SET(tsl) \ (semTake((*(tsl)), nowait ? NO_WAIT : WAIT_FOREVER) == OK) #define MUTEX_UNSET(tsl) (semGive((*tsl))) #define MUTEX_INIT(tsl) \ ((*(tsl) = semBCreate(SEM_Q_FIFO, SEM_FULL)) == NULL) #define MUTEX_DESTROY(tsl) semDelete(*tsl) #endif #endif /********************************************************************* * Win16 * * Win16 spinlocks are simple because we cannot possibly be preempted. * * !!! * We should simplify this by always returning a no-need-to-lock lock * when we initialize the mutex. *********************************************************************/ #ifdef HAVE_MUTEX_WIN16 typedef unsigned int tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE #define MUTEX_INIT(x) 0 #define MUTEX_SET(tsl) (*(tsl) = 1) #define MUTEX_UNSET(tsl) (*(tsl) = 0) #endif #endif /********************************************************************* * Win32 - always a hybrid mutex *********************************************************************/ #if defined(HAVE_MUTEX_WIN32) || defined(HAVE_MUTEX_WIN32_GCC) typedef LONG volatile tsl_t; #define MUTEX_FIELDS \ LONG nwaiters; \ u_int32_t id; /* ID used for creating events */ \ #if defined(LOAD_ACTUAL_MUTEX_CODE) #define MUTEX_SET(tsl) (!InterlockedExchange((PLONG)tsl, 1)) #define MUTEX_UNSET(tsl) InterlockedExchange((PLONG)tsl, 0) #define MUTEX_INIT(tsl) MUTEX_UNSET(tsl) /* * From Intel's performance tuning documentation (and see SR #6975): * ftp://download.intel.com/design/perftool/cbts/appnotes/sse2/w_spinlock.pdf * * "For this reason, it is highly recommended that you insert the PAUSE * instruction into all spin-wait code immediately. Using the PAUSE * instruction does not affect the correctness of programs on existing * platforms, and it improves performance on Pentium 4 processor platforms." */ #ifdef HAVE_MUTEX_WIN32 #if !defined(_WIN64) && !defined(DB_WINCE) #define MUTEX_PAUSE {__asm{_emit 0xf3}; __asm{_emit 0x90}} #endif #endif #ifdef HAVE_MUTEX_WIN32_GCC #define MUTEX_PAUSE __asm__ volatile ("rep; nop" : : ); #endif #endif #endif /********************************************************************* * 68K/gcc assembly. *********************************************************************/ #ifdef HAVE_MUTEX_68K_GCC_ASSEMBLY typedef unsigned char tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE /* gcc/68K: 0 is clear, 1 is set. */ #define MUTEX_SET(tsl) ({ \ register tsl_t *__l = (tsl); \ int __r; \ __asm__ volatile("tas %1; \n \ seq %0" \ : "=dm" (__r), "=m" (*__l) \ : "1" (*__l) \ ); \ __r & 1; \ }) #define MUTEX_UNSET(tsl) (*(tsl) = 0) #define MUTEX_INIT(tsl) (MUTEX_UNSET(tsl), 0) #endif #endif /********************************************************************* * ALPHA/gcc assembly. *********************************************************************/ #ifdef HAVE_MUTEX_ALPHA_GCC_ASSEMBLY typedef u_int32_t tsl_t; #define MUTEX_ALIGN 4 #ifdef LOAD_ACTUAL_MUTEX_CODE /* * For gcc/alpha. Should return 0 if could not acquire the lock, 1 if * lock was acquired properly. */ static inline int MUTEX_SET(tsl_t *tsl) { register tsl_t *__l = tsl; register tsl_t __r; __asm__ volatile( "1: ldl_l %0,%2\n" " blbs %0,2f\n" " or $31,1,%0\n" " stl_c %0,%1\n" " beq %0,3f\n" " mb\n" " br 3f\n" "2: xor %0,%0\n" "3:" : "=&r"(__r), "=m"(*__l) : "1"(*__l) : "memory"); return __r; } /* * Unset mutex. Judging by Alpha Architecture Handbook, the mb instruction * might be necessary before unlocking */ static inline int MUTEX_UNSET(tsl_t *tsl) { __asm__ volatile(" mb\n"); return *tsl = 0; } #define MUTEX_INIT(tsl) MUTEX_UNSET(tsl) #endif #endif /********************************************************************* * Tru64/cc assembly. *********************************************************************/ #ifdef HAVE_MUTEX_TRU64_CC_ASSEMBLY typedef volatile u_int32_t tsl_t; #define MUTEX_ALIGN 4 #ifdef LOAD_ACTUAL_MUTEX_CODE #include #define MUTEX_SET(tsl) (__LOCK_LONG_RETRY((tsl), 1) != 0) #define MUTEX_UNSET(tsl) (__UNLOCK_LONG(tsl)) #define MUTEX_INIT(tsl) (MUTEX_UNSET(tsl), 0) #endif #endif /********************************************************************* * ARM/gcc assembly. *********************************************************************/ #ifdef HAVE_MUTEX_ARM_GCC_ASSEMBLY typedef unsigned char tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE /* gcc/arm: 0 is clear, 1 is set. */ #define MUTEX_SET(tsl) ({ \ int __r; \ __asm__ volatile( \ "swpb %0, %1, [%2]\n\t" \ "eor %0, %0, #1\n\t" \ : "=&r" (__r) \ : "r" (1), "r" (tsl) \ ); \ __r & 1; \ }) #define MUTEX_UNSET(tsl) (*(volatile tsl_t *)(tsl) = 0) #define MUTEX_INIT(tsl) (MUTEX_UNSET(tsl), 0) #endif #endif /********************************************************************* * HPPA/gcc assembly. *********************************************************************/ #ifdef HAVE_MUTEX_HPPA_GCC_ASSEMBLY typedef u_int32_t tsl_t; #define MUTEX_ALIGN 16 #ifdef LOAD_ACTUAL_MUTEX_CODE /* * The PA-RISC has a "load and clear" instead of a "test and set" instruction. * The 32-bit word used by that instruction must be 16-byte aligned. We could * use the "aligned" attribute in GCC but that doesn't work for stack variables. */ #define MUTEX_SET(tsl) ({ \ register tsl_t *__l = (tsl); \ int __r; \ __asm__ volatile("ldcws 0(%1),%0" : "=r" (__r) : "r" (__l)); \ __r & 1; \ }) #define MUTEX_UNSET(tsl) (*(volatile tsl_t *)(tsl) = -1) #define MUTEX_INIT(tsl) (MUTEX_UNSET(tsl), 0) #endif #endif /********************************************************************* * IA64/gcc assembly. *********************************************************************/ #ifdef HAVE_MUTEX_IA64_GCC_ASSEMBLY typedef volatile unsigned char tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE /* gcc/ia64: 0 is clear, 1 is set. */ #define MUTEX_SET(tsl) ({ \ register tsl_t *__l = (tsl); \ long __r; \ __asm__ volatile("xchg1 %0=%1,%2" : \ "=r"(__r), "+m"(*__l) : "r"(1)); \ __r ^ 1; \ }) /* * Store through a "volatile" pointer so we get a store with "release" * semantics. */ #define MUTEX_UNSET(tsl) (*(tsl_t *)(tsl) = 0) #define MUTEX_INIT(tsl) (MUTEX_UNSET(tsl), 0) #endif #endif /********************************************************************* * PowerPC/gcc assembly. *********************************************************************/ #if defined(HAVE_MUTEX_PPC_GCC_ASSEMBLY) typedef u_int32_t tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE /* * The PowerPC does a sort of pseudo-atomic locking. You set up a * 'reservation' on a chunk of memory containing a mutex by loading the * mutex value with LWARX. If the mutex has an 'unlocked' (arbitrary) * value, you then try storing into it with STWCX. If no other process or * thread broke your 'reservation' by modifying the memory containing the * mutex, then the STCWX succeeds; otherwise it fails and you try to get * a reservation again. * * While mutexes are explicitly 4 bytes, a 'reservation' applies to an * entire cache line, normally 32 bytes, aligned naturally. If the mutex * lives near data that gets changed a lot, there's a chance that you'll * see more broken reservations than you might otherwise. The only * situation in which this might be a problem is if one processor is * beating on a variable in the same cache block as the mutex while another * processor tries to acquire the mutex. That's bad news regardless * because of the way it bashes caches, but if you can't guarantee that a * mutex will reside in a relatively quiescent cache line, you might * consider padding the mutex to force it to live in a cache line by * itself. No, you aren't guaranteed that cache lines are 32 bytes. Some * embedded processors use 16-byte cache lines, while some 64-bit * processors use 128-bit cache lines. But assuming a 32-byte cache line * won't get you into trouble for now. * * If mutex locking is a bottleneck, then you can speed it up by adding a * regular LWZ load before the LWARX load, so that you can test for the * common case of a locked mutex without wasting cycles making a reservation. * * gcc/ppc: 0 is clear, 1 is set. */ static inline int MUTEX_SET(int *tsl) { int __r; __asm__ volatile ( "0: \n\t" " lwarx %0,0,%1 \n\t" " cmpwi %0,0 \n\t" " bne- 1f \n\t" " stwcx. %1,0,%1 \n\t" " isync \n\t" " beq+ 2f \n\t" " b 0b \n\t" "1: \n\t" " li %1,0 \n\t" "2: \n\t" : "=&r" (__r), "+r" (tsl) : : "cr0", "memory"); return (int)tsl; } static inline int MUTEX_UNSET(tsl_t *tsl) { __asm__ volatile("sync" : : : "memory"); return *tsl = 0; } #define MUTEX_INIT(tsl) MUTEX_UNSET(tsl) #endif #endif /********************************************************************* * OS/390 C. *********************************************************************/ #ifdef HAVE_MUTEX_S390_CC_ASSEMBLY typedef int tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE /* * cs() is declared in but is built in to the compiler. * Must use LANGLVL(EXTENDED) to get its declaration. */ #define MUTEX_SET(tsl) (!cs(&zero, (tsl), 1)) #define MUTEX_UNSET(tsl) (*(tsl) = 0) #define MUTEX_INIT(tsl) (MUTEX_UNSET(tsl), 0) #endif #endif /********************************************************************* * S/390 32-bit assembly. *********************************************************************/ #ifdef HAVE_MUTEX_S390_GCC_ASSEMBLY typedef int tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE /* gcc/S390: 0 is clear, 1 is set. */ static inline int MUTEX_SET(tsl_t *tsl) { \ register tsl_t *__l = (tsl); \ int __r; \ __asm__ volatile( \ " la 1,%1\n" \ " lhi 0,1\n" \ " l %0,%1\n" \ "0: cs %0,0,0(1)\n" \ " jl 0b" \ : "=&d" (__r), "+m" (*__l) \ : : "0", "1", "cc"); \ return !__r; \ } #define MUTEX_UNSET(tsl) (*(tsl) = 0) #define MUTEX_INIT(tsl) (MUTEX_UNSET(tsl), 0) #endif #endif /********************************************************************* * SCO/cc assembly. *********************************************************************/ #ifdef HAVE_MUTEX_SCO_X86_CC_ASSEMBLY typedef unsigned char tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE /* * UnixWare has threads in libthread, but OpenServer doesn't (yet). * * cc/x86: 0 is clear, 1 is set. */ #if defined(__USLC__) asm int _tsl_set(void *tsl) { %mem tsl movl tsl, %ecx movl $1, %eax lock xchgb (%ecx),%al xorl $1,%eax } #endif #define MUTEX_SET(tsl) _tsl_set(tsl) #define MUTEX_UNSET(tsl) (*(tsl) = 0) #define MUTEX_INIT(tsl) (MUTEX_UNSET(tsl), 0) #endif #endif /********************************************************************* * Sparc/gcc assembly. *********************************************************************/ #ifdef HAVE_MUTEX_SPARC_GCC_ASSEMBLY typedef unsigned char tsl_t; #define MUTEX_ALIGN 8 #ifdef LOAD_ACTUAL_MUTEX_CODE /* * The ldstub instruction takes the location specified by its first argument * (a register containing a memory address) and loads its contents into its * second argument (a register) and atomically sets the contents the location * specified by its first argument to a byte of 1s. (The value in the second * argument is never read, but only overwritten.) * * Hybrid mutexes require membar #StoreLoad and #LoadStore ordering on multi- * processor v9 systems. * * gcc/sparc: 0 is clear, 1 is set. */ #define MUTEX_SET(tsl) ({ \ register tsl_t *__l = (tsl); \ register tsl_t __r; \ __asm__ volatile \ ("ldstub [%1],%0; stbar" \ : "=r"( __r) : "r" (__l)); \ !__r; \ }) #define MUTEX_UNSET(tsl) (*(tsl) = 0, MUTEX_MEMBAR(tsl)) #define MUTEX_INIT(tsl) (MUTEX_UNSET(tsl), 0) #define MUTEX_MEMBAR(x) \ ({ __asm__ volatile ("membar #StoreStore|#StoreLoad|#LoadStore"); }) #define MEMBAR_ENTER() \ ({ __asm__ volatile ("membar #StoreStore|#StoreLoad"); }) #define MEMBAR_EXIT() \ ({ __asm__ volatile ("membar #StoreStore|#LoadStore"); }) #endif #endif /********************************************************************* * UTS/cc assembly. *********************************************************************/ #ifdef HAVE_MUTEX_UTS_CC_ASSEMBLY typedef int tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE #define MUTEX_INIT(x) 0 #define MUTEX_SET(x) (!uts_lock(x, 1)) #define MUTEX_UNSET(x) (*(x) = 0) #endif #endif /********************************************************************* * MIPS/gcc assembly. *********************************************************************/ #ifdef HAVE_MUTEX_MIPS_GCC_ASSEMBLY typedef u_int32_t tsl_t; #define MUTEX_ALIGN 4 #ifdef LOAD_ACTUAL_MUTEX_CODE /* * For gcc/MIPS. Should return 0 if could not acquire the lock, 1 if * lock was acquired properly. */ static inline int MUTEX_SET(tsl_t *tsl) { register tsl_t *__l = tsl; register tsl_t __r, __t; __asm__ volatile( " .set push \n" " .set mips2 \n" " .set noreorder \n" " .set nomacro \n" "1: ll %0, %3 \n" " ori %2, %0, 1 \n" " sc %2, %1 \n" " beqzl %2, 1b \n" " nop \n" " andi %2, %0, 1 \n" " sync \n" " .set reorder \n" " .set pop \n" : "=&r" (__t), "=m" (*tsl), "=&r" (__r) : "m" (*tsl) : "memory"); return (!__r); } static inline void MUTEX_UNSET(tsl_t *tsl) { __asm__ volatile( " .set noreorder \n" " sync \n" " sw $0, %0 \n" " .set reorder \n" : "=m" (*tsl) : "m" (*tsl) : "memory"); } #define MUTEX_INIT(tsl) (*(tsl) = 0) #endif #endif /********************************************************************* * x86/gcc (32- and 64-bit) assembly. *********************************************************************/ #if defined(HAVE_MUTEX_X86_GCC_ASSEMBLY) || \ defined(HAVE_MUTEX_X86_64_GCC_ASSEMBLY) typedef volatile unsigned char tsl_t; #ifdef LOAD_ACTUAL_MUTEX_CODE /* gcc/x86: 0 is clear, 1 is set. */ #define MUTEX_SET(tsl) ({ \ tsl_t __r; \ __asm__ volatile("movb $1, %b0\n\t" \ "xchgb %b0,%1" \ : "=&q" (__r) \ : "m" (*(tsl_t *)(tsl)) \ : "memory", "cc"); \ !__r; /* return 1 on success, 0 on failure */ \ }) #define MUTEX_UNSET(tsl) (*(tsl_t *)(tsl) = 0) #define MUTEX_INIT(tsl) (MUTEX_UNSET(tsl), 0) /* * We need to pass a valid address to generate the memory barrier * otherwise PURIFY will complain. Use something referenced recently * and initialized. */ #if defined(HAVE_MUTEX_X86_GCC_ASSEMBLY) #define MUTEX_MEMBAR(addr) \ ({ __asm__ volatile ("lock; addl $0, %0" ::"m" (addr): "memory"); 1; }) #else #define MUTEX_MEMBAR(addr) \ ({ __asm__ volatile ("mfence" ::: "memory"); 1; }) #endif /* * From Intel's performance tuning documentation (and see SR #6975): * ftp://download.intel.com/design/perftool/cbts/appnotes/sse2/w_spinlock.pdf * * "For this reason, it is highly recommended that you insert the PAUSE * instruction into all spin-wait code immediately. Using the PAUSE * instruction does not affect the correctness of programs on existing * platforms, and it improves performance on Pentium 4 processor platforms." */ #define MUTEX_PAUSE __asm__ volatile ("rep; nop" : : ); #endif #endif /* End of operating system & hardware architecture-specific definitions */ /* * Mutex alignment defaults to sizeof(unsigned int). * * !!! * Various systems require different alignments for mutexes (the worst we've * seen so far is 16-bytes on some HP architectures). Malloc(3) is assumed * to return reasonable alignment, all other mutex users must ensure proper * alignment locally. */ #ifndef MUTEX_ALIGN #define MUTEX_ALIGN sizeof(unsigned int) #endif /* * Mutex destruction defaults to a no-op. */ #ifndef MUTEX_DESTROY #define MUTEX_DESTROY(x) #endif /* * Mutex pause defaults to a no-op. */ #ifndef MUTEX_PAUSE #define MUTEX_PAUSE #endif /* * If no native atomic support is available then use mutexes to * emulate atomic increment, decrement, and compare-and-exchange. * The address of the atomic value selects which of a small number * of mutexes to use to protect the updates. * The number of mutexes should be somewhat larger than the number of * processors in the system in order to minimize unnecessary contention. * It defaults to 8 to handle most small (1-4) cpu systems, if it hasn't * already been defined (e.g. in db_config.h) */ #if !defined(HAVE_ATOMIC_SUPPORT) && defined(HAVE_MUTEX_SUPPORT) && \ !defined(MAX_ATOMIC_MUTEXES) #define MAX_ATOMIC_MUTEXES 1 #endif /* * DB_MUTEXMGR -- * The mutex manager encapsulates the mutex system. */ struct __db_mutexmgr { /* These fields are never updated after creation, so not protected. */ DB_ENV *dbenv; /* Environment */ REGINFO reginfo; /* Region information */ void *mutex_array; /* Base of the mutex array */ }; /* Macros to lock/unlock the mutex region as a whole. */ #define MUTEX_SYSTEM_LOCK(dbenv) \ MUTEX_LOCK(dbenv, ((DB_MUTEXREGION *) \ (dbenv)->mutex_handle->reginfo.primary)->mtx_region) #define MUTEX_SYSTEM_UNLOCK(dbenv) \ MUTEX_UNLOCK(dbenv, ((DB_MUTEXREGION *) \ (dbenv)->mutex_handle->reginfo.primary)->mtx_region) /* * DB_MUTEXREGION -- * The primary mutex data structure in the shared memory region. */ typedef struct __db_mutexregion { /* These fields are initialized at create time and never modified. */ roff_t mutex_off_alloc;/* Offset of mutex array */ roff_t mutex_off; /* Adjusted offset of mutex array */ size_t mutex_size; /* Size of the aligned mutex */ roff_t thread_off; /* Offset of the thread area. */ db_mutex_t mtx_region; /* Region mutex. */ /* Protected using the region mutex. */ u_int32_t mutex_next; /* Next free mutex */ #if !defined(HAVE_ATOMIC_SUPPORT) && defined(HAVE_MUTEX_SUPPORT) /* Mutexes for emulating atomic operations. */ db_mutex_t mtx_atomic[MAX_ATOMIC_MUTEXES]; #endif DB_MUTEX_STAT stat; /* Mutex statistics */ } DB_MUTEXREGION; #ifdef HAVE_MUTEX_SUPPORT struct __db_mutex_t { /* Mutex. */ #ifdef MUTEX_FIELDS MUTEX_FIELDS /* Opaque thread mutex structures. */ #endif #ifndef HAVE_MUTEX_FCNTL #if defined(HAVE_MUTEX_HYBRID) || \ (defined(HAVE_SHARED_LATCHES) && !defined(HAVE_MUTEX_PTHREADS)) /* * For hybrid and test-and-set shared latches it is a counter: * 0 means it is free, * -1 is exclusively locked, * > 0 is the number of shared readers. * Pthreads shared latches use pthread_rwlock instead. */ db_atomic_t sharecount; tsl_t tas; #elif !defined(MUTEX_FIELDS) /* * This is the Test and Set flag for exclusive latches (mutexes): * there is a free value (often 0, 1, or -1) and a set value. */ tsl_t tas; #endif #endif #ifdef HAVE_MUTEX_HYBRID volatile u_int32_t wait; /* Count of waiters. */ #endif pid_t pid; /* Process owning mutex */ db_threadid_t tid; /* Thread owning mutex */ db_mutex_t mutex_next_link; /* Linked list of free mutexes. */ #ifdef HAVE_STATISTICS int alloc_id; /* Allocation ID. */ u_int32_t mutex_set_wait; /* Granted after wait. */ u_int32_t mutex_set_nowait; /* Granted without waiting. */ #ifdef HAVE_SHARED_LATCHES u_int32_t mutex_set_rd_wait; /* Granted shared lock after wait. */ u_int32_t mutex_set_rd_nowait; /* Granted shared lock w/out waiting. */ #endif #ifdef HAVE_MUTEX_HYBRID u_int32_t hybrid_wait; u_int32_t hybrid_wakeup; /* for counting spurious wakeups */ #endif #endif /* * A subset of the flag arguments for __mutex_alloc(). * * Flags should be an unsigned integer even if it's not required by * the possible flags values, getting a single byte on some machines * is expensive, and the mutex structure is a MP hot spot. */ volatile u_int32_t flags; /* MUTEX_XXX */ }; #endif /* Macro to get a reference to a specific mutex. */ #define MUTEXP_SET(mtxmgr, indx) \ ((DB_MUTEX *)((u_int8_t *)mtxmgr->mutex_array + \ (indx) * ((DB_MUTEXREGION *)mtxmgr->reginfo.primary)->mutex_size)) /* Inverse of the above: get the mutex index from a mutex pointer */ #define MUTEXP_GET(mtxmgr, mutexp) \ (((u_int8_t *) (mutexp) - (u_int8_t *)mtxmgr->mutex_array) / \ ((DB_MUTEXREGION *)mtxmgr->reginfo.primary)->mutex_size) /* * Check that a particular mutex is exclusively held at least by someone, not * necessarily the current thread. */ #ifdef HAVE_MUTEX_SUPPORT #define MUTEX_IS_OWNED(env, mutex) \ (mutex == MUTEX_INVALID || !MUTEX_ON(env) || \ F_ISSET(env->dbenv, DB_ENV_NOLOCKING) || \ F_ISSET(MUTEXP_SET(env->mutex_handle, mutex), DB_MUTEX_LOCKED)) #else #define MUTEX_IS_OWNED(env, mutex) 0 #endif #if defined(HAVE_MUTEX_HYBRID) || defined(DB_WIN32) || \ (defined(HAVE_SHARED_LATCHES) && !defined(HAVE_MUTEX_PTHREADS)) #define MUTEXP_IS_BUSY(mutexp) \ (F_ISSET(mutexp, DB_MUTEX_SHARED) ? \ (atomic_read(&(mutexp)->sharecount) != 0) : \ F_ISSET(mutexp, DB_MUTEX_LOCKED)) #define MUTEXP_BUSY_FIELD(mutexp) \ (F_ISSET(mutexp, DB_MUTEX_SHARED) ? \ (atomic_read(&(mutexp)->sharecount)) : (mutexp)->flags) #else /* Pthread_rwlocks don't have an low-cost 'is it being shared?' predicate. */ #define MUTEXP_IS_BUSY(mutexp) (F_ISSET((mutexp), DB_MUTEX_LOCKED)) #define MUTEXP_BUSY_FIELD(mutexp) ((mutexp)->flags) #endif #define MUTEX_IS_BUSY(env, mutex) \ (mutex == MUTEX_INVALID || !MUTEX_ON(env) || \ F_ISSET(env->dbenv, DB_ENV_NOLOCKING) || \ MUTEXP_IS_BUSY(MUTEXP_SET(env->mutex_handle, mutex))) #define MUTEX_REQUIRED(env, mutex) \ DB_ASSERT(env, MUTEX_IS_OWNED(env, mutex)) #define MUTEX_REQUIRED_READ(env, mutex) \ DB_ASSERT(env, MUTEX_IS_OWNED(env, mutex) || MUTEX_IS_BUSY(env, mutex)) /* * Test and set (and thus hybrid) shared latches use compare & exchange * to acquire; the others the mutex-setting primitive defined above. */ #ifdef LOAD_ACTUAL_MUTEX_CODE #if defined(HAVE_SHARED_LATCHES) /* This is the value of the 'sharecount' of an exclusively held tas latch. * The particular value is not special; it is just unlikely to be caused * by releasing or acquiring a shared latch too many times. */ #define MUTEX_SHARE_ISEXCLUSIVE (-1024) /* * Get an exclusive lock on a possibly sharable latch. We use the native * MUTEX_SET() operation for non-sharable latches; it usually is faster. */ #define MUTEXP_ACQUIRE(mutexp) \ (F_ISSET(mutexp, DB_MUTEX_SHARED) ? \ atomic_compare_exchange(env, \ &(mutexp)->sharecount, 0, MUTEX_SHARE_ISEXCLUSIVE) : \ MUTEX_SET(&(mutexp)->tas)) #else #define MUTEXP_ACQUIRE(mutexp) MUTEX_SET(&(mutexp)->tas) #endif #ifndef MEMBAR_ENTER #define MEMBAR_ENTER() #define MEMBAR_EXIT() #endif #endif #if defined(__cplusplus) } #endif #endif /* !_DB_MUTEX_INT_H_ */