• Home
  • History
  • Annotate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/lib/zlib_deflate/

Lines Matching refs:tree

13  *      Each code tree is stored in a compressed form which is itself
88 /* The static literal tree. Since the bit lengths are imposed, there is no
90 * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
95 /* The static distance tree. (Actually a trivial tree since all codes use
115 const ct_data *static_tree; /* static tree or NULL */
118 int elems; /* max number of elements in the tree */
137 static void pqdownheap (deflate_state *s, ct_data *tree, int k);
139 static void gen_codes (ct_data *tree, int max_code, ush *bl_count);
141 static void scan_tree (deflate_state *s, ct_data *tree, int max_code);
142 static void send_tree (deflate_state *s, ct_data *tree, int max_code);
156 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
157 /* Send a code of the given tree. c and tree must not have side effects */
160 # define send_code(s, c, tree) \
162 send_bits(s, tree[c].Code, tree[c].Len); }
228 int n; /* iterates over tree elements */
234 /* number of codes at each bit length for an optimal tree */
271 /* Construct the codes of the static literal tree */
279 * tree construction to get a canonical Huffman tree (longest code
284 /* The static distance tree is trivial: */
293 * Initialize the tree data structures for a new zlib stream.
330 int n; /* iterates over tree elements */
343 /* Index within the heap array of least frequent node in the Huffman tree */
350 #define pqremove(s, tree, top) \
354 pqdownheap(s, tree, SMALLEST); \
358 * Compares to subtrees, using the tree depth as tie breaker when
361 #define smaller(tree, n, m, depth) \
362 (tree[n].Freq < tree[m].Freq || \
363 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
366 * Restore the heap property by moving down the tree starting at node k,
373 ct_data *tree, /* the tree to restore */
382 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
386 if (smaller(tree, v, s->heap[j], s->depth)) break;
391 /* And continue down the tree, setting j to the left son of k */
398 * Compute the optimal bit lengths for a tree and update the total bit length
401 * above are the tree nodes sorted by increasing frequency.
409 tree_desc *desc /* the tree descriptor */
412 ct_data *tree = desc->dyn_tree;
419 int n, m; /* iterate over the tree elements */
428 * overflow in the case of the bit length tree).
430 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
434 bits = tree[tree[n].Dad].Len + 1;
436 tree[n].Len = (ush)bits;
437 /* We overwrite tree[n].Dad which is no longer needed */
444 f = tree[n].Freq;
457 s->bl_count[bits]--; /* move one leaf down the tree */
476 if (tree[m].Len != (unsigned) bits) {
477 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
478 s->opt_len += ((long)bits - (long)tree[m].Len)
479 *(long)tree[m].Freq;
480 tree[m].Len = (ush)bits;
488 * Generate the codes for a given tree and bit counts (which need not be
491 * the given tree and the field len is set for all tree elements.
492 * OUT assertion: the field code is set for all tree elements of non
496 ct_data *tree, /* the tree to decorate */
520 int len = tree[n].Len;
523 tree[n].Code = bi_reverse(next_code[len]++, len);
525 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
526 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
531 * Construct one Huffman tree and assigns the code bit strings and lengths.
533 * IN assertion: the field freq is set for all tree elements.
540 tree_desc *desc /* the tree descriptor */
543 ct_data *tree = desc->dyn_tree;
557 if (tree[n].Freq != 0) {
561 tree[n].Len = 0;
572 tree[node].Freq = 1;
579 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
582 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
584 /* Construct the Huffman tree by repeatedly combining the least two
587 node = elems; /* next internal node of the tree */
589 pqremove(s, tree, n); /* n = node of least frequency */
596 tree[node].Freq = tree[n].Freq + tree[m].Freq;
598 tree[n].Dad = tree[m].Dad = (ush)node;
600 if (tree == s->bl_tree) {
602 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
607 pqdownheap(s, tree, SMALLEST);
619 gen_codes ((ct_data *)tree, max_code, s->bl_count);
623 * Scan a literal or distance tree to determine the frequencies of the codes
624 * in the bit length tree.
628 ct_data *tree, /* the tree to be scanned */
632 int n; /* iterates over all tree elements */
635 int nextlen = tree[0].Len; /* length of next code */
641 tree[max_code+1].Len = (ush)0xffff; /* guard */
644 curlen = nextlen; nextlen = tree[n+1].Len;
669 * Send a literal or distance tree in compressed form, using the codes in
674 ct_data *tree, /* the tree to be scanned */
678 int n; /* iterates over all tree elements */
681 int nextlen = tree[0].Len; /* length of next code */
686 /* tree[max_code+1].Len = -1; */ /* guard already set */
690 curlen = nextlen; nextlen = tree[n+1].Len;
721 * Construct the Huffman tree for the bit lengths and return the index in
734 /* Build the bit length tree: */
736 /* opt_len now includes the length of the tree representations, except
747 /* Update opt_len to include the bit length tree and counts */
757 * lengths of the bit length codes, the literal tree and the distance tree.
762 int lcodes, /* number of codes for each tree */
763 int dcodes, /* number of codes for each tree */
764 int blcodes /* number of codes for each tree */
780 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
782 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
783 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
785 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
786 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
881 * the compressed block data, excluding the tree representations.
884 /* Build the bit length tree for the above two trees, and get the index
1020 ct_data *ltree, /* literal tree */
1021 ct_data *dtree /* distance tree */