Lines Matching refs:rho

2723 Let $\rho = lg(\beta)$ represent the number of bits in a single precision digit.  By further re-arrangement of the equation the final solution is
2727 k < {{2^{\alpha}} \over {\left (2^{2\rho} - 2^{\rho + 1} + 1 \right )}}
4027 extensively in this algorithm and should be precomputed. Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.
4029 For example, let $\beta = 10$ represent the radix. Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$. Let $x = 33$
4059 \textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
4073 \hspace{3mm}5.1 $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
4101 for the Barrett algorithm. Additionally if $n > 1$ and $n$ is odd there will exist a modular inverse $\rho$. $\rho$ must be calculated in
4147 \textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
4160 \hspace{3mm}4.1 $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
4226 To calculate the variable $\rho$ a relatively simple algorithm will be required.
4234 \textbf{Output}. $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
4241 5. $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
4251 This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms. It uses a very interesting trick
4261 This source code computes the value of $\rho$ required to perform Montgomery reduction. It has been modified to avoid performing excess
4693 & calculates the correct value of $\rho$. \\