History log of /linux-master/net/rxrpc/call_event.c
Revision Date Author Comments
# 4b68137a 01-Feb-2024 David Howells <dhowells@redhat.com>

rxrpc: Extract useful fields from a received ACK to skb priv data

Extract useful fields from a received ACK packet into the skb private data
early on in the process of parsing incoming packets. This makes the ACK
fields available even before we've matched the ACK up to a call and will
allow us to deal with path MTU discovery probe responses even after the
relevant call has been completed.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org


# 37473e41 31-Jan-2024 David Howells <dhowells@redhat.com>

rxrpc: Clean up the resend algorithm

Clean up the DATA packet resending algorithm to retransmit packets as we
come across them whilst walking the transmission buffer rather than queuing
them for retransmission at the end. This can be done as ACK parsing - and
thus the discarding of successful packets - is now done in the same thread
rather than separately in softirq context and a locked section is no longer
required.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org


# 153f90a0 30-Jan-2024 David Howells <dhowells@redhat.com>

rxrpc: Use ktimes for call timeout tracking and set the timer lazily

Track the call timeouts as ktimes rather than jiffies as the latter's
granularity is too high and only set the timer at the end of the event
handling function.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org


# 12a66e77 30-Jan-2024 David Howells <dhowells@redhat.com>

rxrpc: Differentiate PING ACK transmission traces.

There are three points that transmit PING ACKs and all of them use the same
trace string. Change two of them to use different strings.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org


# a711d976 29-Feb-2024 David Howells <dhowells@redhat.com>

rxrpc: Don't permit resending after all Tx packets acked

Once all the packets transmitted as part of a call have been acked, don't
permit any resending.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org


# 3e0b83ee 29-Feb-2024 David Howells <dhowells@redhat.com>

rxrpc: Parse received packets before dealing with timeouts

Parse the received packets before going and processing timeouts as the
timeouts may be reset by the reception of a packet.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org


# 99afb28c 30-Jan-2024 David Howells <dhowells@redhat.com>

rxrpc: Move rxrpc_send_ACK() to output.c with rxrpc_send_ack_packet()

Move rxrpc_send_ACK() to output.c to so that it is with
rxrpc_send_ack_packet() prior to merging the two.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org


# 693f9c13 29-Jan-2024 David Howells <dhowells@redhat.com>

rxrpc: Remove atomic handling on some fields only used in I/O thread

call->tx_transmitted and call->acks_prev_seq don't need to be managed with
cmpxchg() and barriers as it's only used within the singular I/O thread.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org


# d73f3a74 30-Jan-2024 David Howells <dhowells@redhat.com>

rxrpc: Strip barriers and atomics off of timer tracking

Strip the atomic ops and barriering off of the call timer tracking as this
is handled solely within the I/O thread, except for expect_term_by which is
set by sendmsg().

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org


# 12bdff73 29-Jan-2024 David Howells <dhowells@redhat.com>

rxrpc: Convert rxrpc_txbuf::flags into a mask and don't use atomics

Convert the transmission buffer flags into a mask and use | and & rather
than bitops functions (atomic ops are not required as only the I/O thread
can manipulate them once submitted for transmission).

The bottom byte can then correspond directly to the Rx protocol header
flags.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org


# ba132d84 29-Jan-2024 David Howells <dhowells@redhat.com>

rxrpc: Record the Tx serial in the rxrpc_txbuf and retransmit trace

Each Rx protocol packet contains a per-connection monotonically increasing
serial number used to correlate outgoing messages with their replies -
something that can be used for RTT calculation.

Note this value in the rxrpc_txbuf struct in addition to the wire header
and then log it in the rxrpc_retransmit trace for reference.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org


# 41b7fa15 02-Feb-2024 David Howells <dhowells@redhat.com>

rxrpc: Fix counting of new acks and nacks

Fix the counting of new acks and nacks when parsing a packet - something
that is used in congestion control.

As the code stands, it merely notes if there are any nacks whereas what we
really should do is compare the previous SACK table to the new one,
assuming we get two successive ACK packets with nacks in them. However, we
really don't want to do that if we can avoid it as the tables might not
correspond directly as one may be shifted from the other - something that
will only get harder to deal with once extended ACK tables come into full
use (with a capacity of up to 8192).

Instead, count the number of nacks shifted out of the old SACK, the number
of nacks retained in the portion still active and the number of new acks
and nacks in the new table then calculate what we need.

Note this ends up a bit of an estimate as the Rx protocol allows acks to be
withdrawn by the receiver and packets requested to be retransmitted.

Fixes: d57a3a151660 ("rxrpc: Save last ACK's SACK table rather than marking txbufs")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>


# e7870cf1 02-Feb-2024 David Howells <dhowells@redhat.com>

rxrpc: Fix delayed ACKs to not set the reference serial number

Fix the construction of delayed ACKs to not set the reference serial number
as they can't be used as an RTT reference.

Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: "David S. Miller" <davem@davemloft.net>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: linux-afs@lists.infradead.org
cc: netdev@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>


# 5bbf9533 17-Oct-2022 David Howells <dhowells@redhat.com>

rxrpc: De-atomic call->ackr_window and call->ackr_nr_unacked

call->ackr_window doesn't need to be atomic as ACK generation and ACK
transmission are now done in the same thread, so drop the atomic64 handling
and split it into two separate members.

Similarly, call->ackr_nr_unacked doesn't need to be atomic now either.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 84e28aa5 17-Oct-2022 David Howells <dhowells@redhat.com>

rxrpc: Generate extra pings for RTT during heavy-receive call

When doing a call that has a single transmitted data packet and a massive
amount of received data packets, we only ping for one RTT sample, which
means we don't get a good reading on it.

Fix this by converting occasional IDLE ACKs into PING ACKs to elicit a
response.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 96b4059f 27-Oct-2022 David Howells <dhowells@redhat.com>

rxrpc: Remove call->state_lock

All the setters of call->state are now in the I/O thread and thus the state
lock is now unnecessary.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 2d689424 11-Nov-2022 David Howells <dhowells@redhat.com>

rxrpc: Move call state changes from sendmsg to I/O thread

Move all the call state changes that are made in rxrpc_sendmsg() to the I/O
thread. This is a step towards removing the call state lock.

This requires the switch to the RXRPC_CALL_CLIENT_AWAIT_REPLY and
RXRPC_CALL_SERVER_SEND_REPLY states to be done when the last packet is
decanted from ->tx_sendmsg to ->tx_buffer in the I/O thread, not when it is
added to ->tx_sendmsg by sendmsg().

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 57af281e 06-Oct-2022 David Howells <dhowells@redhat.com>

rxrpc: Tidy up abort generation infrastructure

Tidy up the abort generation infrastructure in the following ways:

(1) Create an enum and string mapping table to list the reasons an abort
might be generated in tracing.

(2) Replace the 3-char string with the values from (1) in the places that
use that to log the abort source. This gets rid of a memcpy() in the
tracepoint.

(3) Subsume the rxrpc_rx_eproto tracepoint with the rxrpc_abort tracepoint
and use values from (1) to indicate the trace reason.

(4) Always make a call to an abort function at the point of the abort
rather than stashing the values into variables and using goto to get
to a place where it reported. The C optimiser will collapse the calls
together as appropriate. The abort functions return a value that can
be returned directly if appropriate.

Note that this extends into afs also at the points where that generates an
abort. To aid with this, the afs sources need to #define
RXRPC_TRACE_ONLY_DEFINE_ENUMS before including the rxrpc tracing header
because they don't have access to the rxrpc internal structures that some
of the tracepoints make use of.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 03fc55ad 12-Oct-2022 David Howells <dhowells@redhat.com>

rxrpc: Only disconnect calls in the I/O thread

Only perform call disconnection in the I/O thread to reduce the locking
requirement.

This is the first part of a fix for a race that exists between call
connection and call disconnection whereby the data transmission code adds
the call to the peer error distribution list after the call has been
disconnected (say by the rxrpc socket getting closed).

The fix is to complete the process of moving call connection, data
transmission and call disconnection into the I/O thread and thus forcibly
serialising them.

Note that the issue may predate the overhaul to an I/O thread model that
were included in the merge window for v6.2, but the timing is very much
changed by the change given below.

Fixes: cf37b5987508 ("rxrpc: Move DATA transmission into call processor work item")
Reported-by: syzbot+c22650d2844392afdcfd@syzkaller.appspotmail.com
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# a343b174 12-Oct-2022 David Howells <dhowells@redhat.com>

rxrpc: Only set/transmit aborts in the I/O thread

Only set the abort call completion state in the I/O thread and only
transmit ABORT packets from there. rxrpc_abort_call() can then be made to
actually send the packet.

Further, ABORT packets should only be sent if the call has been exposed to
the network (ie. at least one attempted DATA transmission has occurred for
it).

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# b0346843 30-Jan-2020 David Howells <dhowells@redhat.com>

rxrpc: Transmit ACKs at the point of generation

For ACKs generated inside the I/O thread, transmit the ACK at the point of
generation. Where the ACK is generated outside of the I/O thread, it's
offloaded to the I/O thread to transmit it.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 5086d9a9 11-Nov-2022 David Howells <dhowells@redhat.com>

rxrpc: Move the cwnd degradation after transmitting packets

When we've gone for >1RTT without transmitting a packet, we should reduce
the ssthresh and cut the cwnd by half (as suggested in RFC2861 sec 3.1).

However, we may receive ACK packets in a batch and the first of these may
cut the cwnd, preventing further transmission, and each subsequent one cuts
the cwnd yet further, reducing it to the floor and killing performance.

Fix this by moving the cwnd reset to after doing the transmission and
resetting the base time such that we don't cut the cwnd by half again for
at least another RTT.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 32cf8edb 11-Nov-2022 David Howells <dhowells@redhat.com>

rxrpc: Trace/count transmission underflows and cwnd resets

Add a tracepoint to log when a cwnd reset occurs due to lack of
transmission on a call.

Add stat counters to count transmission underflows (ie. when we have tx
window space, but sendmsg doesn't manage to keep up), cwnd resets and
transmission failures.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 3dd9c8b5 24-Jan-2020 David Howells <dhowells@redhat.com>

rxrpc: Remove the _bh annotation from all the spinlocks

None of the spinlocks in rxrpc need a _bh annotation now as the RCU
callback routines no longer take spinlocks and the bulk of the packet
wrangling code is now run in the I/O thread, not softirq context.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 5e6ef4f1 23-Jan-2020 David Howells <dhowells@redhat.com>

rxrpc: Make the I/O thread take over the call and local processor work

Move the functions from the call->processor and local->processor work items
into the domain of the I/O thread.

The call event processor, now called from the I/O thread, then takes over
the job of cranking the call state machine, processing incoming packets and
transmitting DATA, ACK and ABORT packets. In a future patch,
rxrpc_send_ACK() will transmit the ACK on the spot rather than queuing it
for later transmission.

The call event processor becomes purely received-skb driven. It only
transmits things in response to events. We use "pokes" to queue a dummy
skb to make it do things like start/resume transmitting data. Timer expiry
also results in pokes.

The connection event processor, becomes similar, though crypto events, such
as dealing with CHALLENGE and RESPONSE packets is offloaded to a work item
to avoid doing crypto in the I/O thread.

The local event processor is removed and VERSION response packets are
generated directly from the packet parser. Similarly, ABORTs generated in
response to protocol errors will be transmitted immediately rather than
being pushed onto a queue for later transmission.

Changes:
========
ver #2)
- Fix a couple of introduced lock context imbalances.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# cf37b598 31-Mar-2022 David Howells <dhowells@redhat.com>

rxrpc: Move DATA transmission into call processor work item

Move DATA transmission into the call processor work item. In a future
patch, this will be called from the I/O thread rather than being itsown
work item.

This will allow DATA transmission to be driven directly by incoming ACKs,
pokes and timers as those are processed.

The Tx queue is also split: The queue of packets prepared by sendmsg is now
places in call->tx_sendmsg and the packet dispatcher decants the packets
into call->tx_buffer as space becomes available in the transmission
window. This allows sendmsg to run ahead of the available space to try and
prevent an underflow in transmission.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 446b3e14 10-Oct-2022 David Howells <dhowells@redhat.com>

rxrpc: Move packet reception processing into I/O thread

Split the packet input handler to make the softirq side just dump the
received packet into the local endpoint receive queue and then call the
remainder of the input function from the I/O thread.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 3feda9d6 25-Nov-2022 David Howells <dhowells@redhat.com>

rxrpc: Don't hold a ref for call timer or workqueue

Currently, rxrpc gives the call timer a ref on the call when it starts it
and this is passed along to the workqueue by the timer expiration function.
The problem comes when queue_work() fails (ie. the work item is already
queued): the timer routine must put the ref - but this may cause the
cleanup code to run.

This has the unfortunate effect that the cleanup code may then be run in
softirq context - which means that any spinlocks it might need to touch
have to be guarded to disable softirqs (ie. they need a "_bh" suffix).

Fix this by:

(1) Don't give a ref to the timer.

(2) Making the expiration function not do anything if the refcount is 0.
Note that this is more of an optimisation.

(3) Make sure that the cleanup routine waits for timer to complete.

However, this has a consequence that timer cannot give a ref to the work
item. Therefore the following fixes are also necessary:

(4) Don't give a ref to the work item.

(5) Make the work item return asap if it sees the ref count is 0.

(6) Make sure that the cleanup routine waits for the work item to
complete.

Unfortunately, neither the timer nor the work item can simply get around
the problem by just using refcount_inc_not_zero() as the waits would still
have to be done, and there would still be the possibility of having to put
the ref in the expiration function.

Note the call work item is going to go away with the work being transferred
to the I/O thread, so the wait in (6) will become obsolete.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 9a36a6bc 21-Oct-2022 David Howells <dhowells@redhat.com>

rxrpc: trace: Don't use __builtin_return_address for sk_buff tracing

In rxrpc tracing, use enums to generate lists of points of interest rather
than __builtin_return_address() for the sk_buff tracepoint.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# cb0fc0c9 21-Oct-2022 David Howells <dhowells@redhat.com>

rxrpc: trace: Don't use __builtin_return_address for rxrpc_call tracing

In rxrpc tracing, use enums to generate lists of points of interest rather
than __builtin_return_address() for the rxrpc_call tracepoint

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 0fde882f 21-Oct-2022 David Howells <dhowells@redhat.com>

rxrpc: trace: Don't use __builtin_return_address for rxrpc_local tracing

In rxrpc tracing, use enums to generate lists of points of interest rather
than __builtin_return_address() for the rxrpc_local tracepoint

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 2cc80086 19-Oct-2022 David Howells <dhowells@redhat.com>

rxrpc: Drop rxrpc_conn_parameters from rxrpc_connection and rxrpc_bundle

Remove the rxrpc_conn_parameters struct from the rxrpc_connection and
rxrpc_bundle structs and emplace the members directly. These are going to
get filled in from the rxrpc_call struct in future.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 49df54a6 28-Nov-2022 David Howells <dhowells@redhat.com>

rxrpc: Fix call leak

When retransmitting a packet, rxrpc_resend() shouldn't be attaching a ref
to the call to the txbuf as that pins the call and prevents the call from
clearing the packet buffer.

Signed-off-by: David Howells <dhowells@redhat.com>
Fixes: d57a3a151660 ("rxrpc: Save last ACK's SACK table rather than marking txbufs")
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# d57a3a15 07-May-2022 David Howells <dhowells@redhat.com>

rxrpc: Save last ACK's SACK table rather than marking txbufs

Improve the tracking of which packets need to be transmitted by saving the
last ACK packet that we receive that has a populated soft-ACK table rather
than marking packets. Then we can step through the soft-ACK table and look
at the packets we've transmitted beyond that to determine which packets we
might want to retransmit.

We also look at the highest serial number that has been acked to try and
guess which packets we've transmitted the peer is likely to have seen. If
necessary, we send a ping to retrieve that number.

One downside that might be a problem is that we can't then compare the
previous acked/unacked state so easily in rxrpc_input_soft_acks() - which
is a potential problem for the slow-start algorithm.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 4e76bd40 06-May-2022 David Howells <dhowells@redhat.com>

rxrpc: Remove call->lock

call->lock is no longer necessary, so remove it.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# a4ea4c47 31-Mar-2022 David Howells <dhowells@redhat.com>

rxrpc: Don't use a ring buffer for call Tx queue

Change the way the Tx queueing works to make the following ends easier to
achieve:

(1) The filling of packets, the encryption of packets and the transmission
of packets can be handled in parallel by separate threads, rather than
rxrpc_sendmsg() allocating, filling, encrypting and transmitting each
packet before moving onto the next one.

(2) Get rid of the fixed-size ring which sets a hard limit on the number
of packets that can be retained in the ring. This allows the number
of packets to increase without having to allocate a very large ring or
having variable-sized rings.

[Note: the downside of this is that it's then less efficient to locate
a packet for retransmission as we then have to step through a list and
examine each buffer in the list.]

(3) Allow the filler/encrypter to run ahead of the transmission window.

(4) Make it easier to do zero copy UDP from the packet buffers.

(5) Make it easier to do zero copy from userspace to the packet buffers -
and thence to UDP (only if for unauthenticated connections).

To that end, the following changes are made:

(1) Use the new rxrpc_txbuf struct instead of sk_buff for keeping packets
to be transmitted in. This allows them to be placed on multiple
queues simultaneously. An sk_buff isn't really necessary as it's
never passed on to lower-level networking code.

(2) Keep the transmissable packets in a linked list on the call struct
rather than in a ring. As a consequence, the annotation buffer isn't
used either; rather a flag is set on the packet to indicate ackedness.

(3) Use the RXRPC_CALL_TX_LAST flag to indicate that the last packet to be
transmitted has been queued. Add RXRPC_CALL_TX_ALL_ACKED to indicate
that all packets up to and including the last got hard acked.

(4) Wire headers are now stored in the txbuf rather than being concocted
on the stack and they're stored immediately before the data, thereby
allowing zerocopy of a single span.

(5) Don't bother with instant-resend on transmission failure; rather,
leave it for a timer or an ACK packet to trigger.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 530403d9 30-Jan-2020 David Howells <dhowells@redhat.com>

rxrpc: Clean up ACK handling

Clean up the rxrpc_propose_ACK() function. If deferred PING ACK proposal
is split out, it's only really needed for deferred DELAY ACKs. All other
ACKs, bar terminal IDLE ACK are sent immediately. The deferred IDLE ACK
submission can be handled by conversion of a DELAY ACK into an IDLE ACK if
there's nothing to be SACK'd.

Also, because there's a delay between an ACK being generated and being
transmitted, it's possible that other ACKs of the same type will be
generated during that interval. Apart from the ACK time and the serial
number responded to, most of the ACK body, including window and SACK
parameters, are not filled out till the point of transmission - so we can
avoid generating a new ACK if there's one pending that will cover the SACK
data we need to convey.

Therefore, don't propose a new DELAY or IDLE ACK for a call if there's one
already pending.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 72f0c6fb 30-Jan-2020 David Howells <dhowells@redhat.com>

rxrpc: Allocate ACK records at proposal and queue for transmission

Allocate rxrpc_txbuf records for ACKs and put onto a queue for the
transmitter thread to dispatch.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# f2a676d1 11-May-2022 David Howells <dhowells@redhat.com>

rxrpc: Record statistics about ACK types

Record statistics about the different types of ACKs that have been
transmitted and received and the number of ACKs that have been filled out
and transmitted or that have been skipped.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# b0154246 11-May-2022 David Howells <dhowells@redhat.com>

rxrpc: Add stats procfile and DATA packet stats

Add a procfile, /proc/net/rxrpc/stats, to display some statistics about
what rxrpc has been doing. Writing a blank line to the stats file will
clear the increment-only counters. Allocated resource counters don't get
cleared.

Add some counters to count various things about DATA packets, including the
number created, transmitted and retransmitted and the number received, the
number of ACK-requests markings and the number of jumbo packets received.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org


# 214a9dc7 05-Apr-2022 David Howells <dhowells@redhat.com>

rxrpc: Fix calc of resend age

Fix the calculation of the resend age to add a microsecond value as
microseconds, not nanoseconds.

Signed-off-by: David Howells <dhowells@redhat.com>


# 114af61f 21-May-2022 David Howells <dhowells@redhat.com>

rxrpc: Don't try to resend the request if we're receiving the reply

rxrpc has a timer to trigger resending of unacked data packets in a call.
This is not cancelled when a client call switches to the receive phase on
the basis that most calls don't last long enough for it to ever expire.
However, if it *does* expire after we've started to receive the reply, we
shouldn't then go into trying to retransmit or pinging the server to find
out if an ack got lost.

Fix this by skipping the resend code if we're into receiving the reply to a
client call.

Fixes: 17926a79320a ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-afs@lists.infradead.org
Signed-off-by: David S. Miller <davem@davemloft.net>


# de696c47 21-May-2022 David Howells <dhowells@redhat.com>

rxrpc, afs: Fix selection of abort codes

The RX_USER_ABORT code should really only be used to indicate that the user
of the rxrpc service (ie. userspace) implicitly caused a call to be aborted
- for instance if the AF_RXRPC socket is closed whilst the call was in
progress. (The user may also explicitly abort a call and specify the abort
code to use).

Change some of the points of generation to use other abort codes instead:

(1) Abort the call with RXGEN_SS_UNMARSHAL or RXGEN_CC_UNMARSHAL if we see
ENOMEM and EFAULT during received data delivery and abort with
RX_CALL_DEAD in the default case.

(2) Abort with RXGEN_SS_MARSHAL if we get ENOMEM whilst trying to send a
reply.

(3) Abort with RX_CALL_DEAD if we stop hearing from the peer if we had
heard from the peer and abort with RX_CALL_TIMEOUT if we hadn't.

(4) Abort with RX_CALL_DEAD if we try to disconnect a call that's not
completed successfully or been aborted.

Reported-by: Jeffrey Altman <jaltman@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Signed-off-by: David S. Miller <davem@davemloft.net>


# 4a7f62f9 30-Mar-2022 David Howells <dhowells@redhat.com>

rxrpc: Fix call timer start racing with call destruction

The rxrpc_call struct has a timer used to handle various timed events
relating to a call. This timer can get started from the packet input
routines that are run in softirq mode with just the RCU read lock held.
Unfortunately, because only the RCU read lock is held - and neither ref or
other lock is taken - the call can start getting destroyed at the same time
a packet comes in addressed to that call. This causes the timer - which
was already stopped - to get restarted. Later, the timer dispatch code may
then oops if the timer got deallocated first.

Fix this by trying to take a ref on the rxrpc_call struct and, if
successful, passing that ref along to the timer. If the timer was already
running, the ref is discarded.

The timer completion routine can then pass the ref along to the call's work
item when it queues it. If the timer or work item where already
queued/running, the extra ref is discarded.

Fixes: a158bdd3247b ("rxrpc: Fix call timeouts")
Reported-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Tested-by: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Link: http://lists.infradead.org/pipermail/linux-afs/2022-March/005073.html
Link: https://lore.kernel.org/r/164865115696.2943015.11097991776647323586.stgit@warthog.procyon.org.uk
Signed-off-by: Paolo Abeni <pabeni@redhat.com>


# 2c13c05c 21-Jan-2022 David Howells <dhowells@redhat.com>

rxrpc: Adjust retransmission backoff

Improve retransmission backoff by only backing off when we retransmit data
packets rather than when we set the lost ack timer.

To this end:

(1) In rxrpc_resend(), use rxrpc_get_rto_backoff() when setting the
retransmission timer and only tell it that we are retransmitting if we
actually have things to retransmit.

Note that it's possible for the retransmission algorithm to race with
the processing of a received ACK, so we may see no packets needing
retransmission.

(2) In rxrpc_send_data_packet(), don't bump the backoff when setting the
ack_lost_at timer, as it may then get bumped twice.

With this, when looking at one particular packet, the retransmission
intervals were seen to be 1.5ms, 2ms, 3ms, 5ms, 9ms, 17ms, 33ms, 71ms,
136ms, 264ms, 544ms, 1.088s, 2.1s, 4.2s and 8.3s.

Fixes: c410bf01933e ("rxrpc: Fix the excessive initial retransmission timeout")
Suggested-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Tested-by: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/164138117069.2023386.17446904856843997127.stgit@warthog.procyon.org.uk/
Signed-off-by: David S. Miller <davem@davemloft.net>


# 02c28dff 17-Jun-2020 David Howells <dhowells@redhat.com>

rxrpc: Fix afs large storage transmission performance drop

Commit 2ad6691d988c, which moved the modification of the status annotation
for a packet in the Tx buffer prior to the retransmission moved the state
clearance, but managed to lose the bit that set it to UNACK.

Consequently, if a retransmission occurs, the packet is accidentally
changed to the ACK state (ie. 0) by masking it off, which means that the
packet isn't counted towards the tally of newly-ACK'd packets if it gets
hard-ACK'd. This then prevents the congestion control algorithm from
recovering properly.

Fix by reinstating the change of state to UNACK.

Spotted by the generic/460 xfstest.

Fixes: 2ad6691d988c ("rxrpc: Fix race between incoming ACK parser and retransmitter")
Signed-off-by: David Howells <dhowells@redhat.com>


# 2ad6691d 11-Jun-2020 David Howells <dhowells@redhat.com>

rxrpc: Fix race between incoming ACK parser and retransmitter

There's a race between the retransmission code and the received ACK parser.
The problem is that the retransmission loop has to drop the lock under
which it is iterating through the transmission buffer in order to transmit
a packet, but whilst the lock is dropped, the ACK parser can crank the Tx
window round and discard the packets from the buffer.

The retransmission code then updated the annotations for the wrong packet
and a later retransmission thought it had to retransmit a packet that
wasn't there, leading to a NULL pointer dereference.

Fix this by:

(1) Moving the annotation change to before we drop the lock prior to
transmission. This means we can't vary the annotation depending on
the outcome of the transmission, but that's fine - we'll retransmit
again later if it failed now.

(2) Skipping the packet if the skb pointer is NULL.

The following oops was seen:

BUG: kernel NULL pointer dereference, address: 000000000000002d
Workqueue: krxrpcd rxrpc_process_call
RIP: 0010:rxrpc_get_skb+0x14/0x8a
...
Call Trace:
rxrpc_resend+0x331/0x41e
? get_vtime_delta+0x13/0x20
rxrpc_process_call+0x3c0/0x4ac
process_one_work+0x18f/0x27f
worker_thread+0x1a3/0x247
? create_worker+0x17d/0x17d
kthread+0xe6/0xeb
? kthread_delayed_work_timer_fn+0x83/0x83
ret_from_fork+0x1f/0x30

Fixes: 248f219cb8bc ("rxrpc: Rewrite the data and ack handling code")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 5ac0d622 03-Jun-2020 David Howells <dhowells@redhat.com>

rxrpc: Fix missing notification

Under some circumstances, rxrpc will fail a transmit a packet through the
underlying UDP socket (ie. UDP sendmsg returns an error). This may result
in a call getting stuck.

In the instance being seen, where AFS tries to send a probe to the Volume
Location server, tracepoints show the UDP Tx failure (in this case returing
error 99 EADDRNOTAVAIL) and then nothing more:

afs_make_vl_call: c=0000015d VL.GetCapabilities
rxrpc_call: c=0000015d NWc u=1 sp=rxrpc_kernel_begin_call+0x106/0x170 [rxrpc] a=00000000dd89ee8a
rxrpc_call: c=0000015d Gus u=2 sp=rxrpc_new_client_call+0x14f/0x580 [rxrpc] a=00000000e20e4b08
rxrpc_call: c=0000015d SEE u=2 sp=rxrpc_activate_one_channel+0x7b/0x1c0 [rxrpc] a=00000000e20e4b08
rxrpc_call: c=0000015d CON u=2 sp=rxrpc_kernel_begin_call+0x106/0x170 [rxrpc] a=00000000e20e4b08
rxrpc_tx_fail: c=0000015d r=1 ret=-99 CallDataNofrag

The problem is that if the initial packet fails and the retransmission
timer hasn't been started, the call is set to completed and an error is
returned from rxrpc_send_data_packet() to rxrpc_queue_packet(). Though
rxrpc_instant_resend() is called, this does nothing because the call is
marked completed.

So rxrpc_notify_socket() isn't called and the error is passed back up to
rxrpc_send_data(), rxrpc_kernel_send_data() and thence to afs_make_call()
and afs_vl_get_capabilities() where it is simply ignored because it is
assumed that the result of a probe will be collected asynchronously.

Fileserver probing is similarly affected via afs_fs_get_capabilities().

Fix this by always issuing a notification in __rxrpc_set_call_completion()
if it shifts a call to the completed state, even if an error is also
returned to the caller through the function return value.

Also put in a little bit of optimisation to avoid taking the call
state_lock and disabling softirqs if the call is already in the completed
state and remove some now redundant rxrpc_notify_socket() calls.

Fixes: f5c17aaeb2ae ("rxrpc: Calls should only have one terminal state")
Reported-by: Gerry Seidman <gerry@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>


# c410bf01 11-May-2020 David Howells <dhowells@redhat.com>

rxrpc: Fix the excessive initial retransmission timeout

rxrpc currently uses a fixed 4s retransmission timeout until the RTT is
sufficiently sampled. This can cause problems with some fileservers with
calls to the cache manager in the afs filesystem being dropped from the
fileserver because a packet goes missing and the retransmission timeout is
greater than the call expiry timeout.

Fix this by:

(1) Copying the RTT/RTO calculation code from Linux's TCP implementation
and altering it to fit rxrpc.

(2) Altering the various users of the RTT to make use of the new SRTT
value.

(3) Replacing the use of rxrpc_resend_timeout to use the calculated RTO
value instead (which is needed in jiffies), along with a backoff.

Notes:

(1) rxrpc provides RTT samples by matching the serial numbers on outgoing
DATA packets that have the RXRPC_REQUEST_ACK set and PING ACK packets
against the reference serial number in incoming REQUESTED ACK and
PING-RESPONSE ACK packets.

(2) Each packet that is transmitted on an rxrpc connection gets a new
per-connection serial number, even for retransmissions, so an ACK can
be cross-referenced to a specific trigger packet. This allows RTT
information to be drawn from retransmitted DATA packets also.

(3) rxrpc maintains the RTT/RTO state on the rxrpc_peer record rather than
on an rxrpc_call because many RPC calls won't live long enough to
generate more than one sample.

(4) The calculated SRTT value is in units of 8ths of a microsecond rather
than nanoseconds.

The (S)RTT and RTO values are displayed in /proc/net/rxrpc/peers.

Fixes: 17926a79320a ([AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both"")
Signed-off-by: David Howells <dhowells@redhat.com>


# 987db9f7 19-Aug-2019 David Howells <dhowells@redhat.com>

rxrpc: Use the tx-phase skb flag to simplify tracing

Use the previously-added transmit-phase skbuff private flag to simplify the
socket buffer tracing a bit. Which phase the skbuff comes from can now be
divined from the skb rather than having to be guessed from the call state.

We can also reduce the number of rxrpc_skb_trace values by eliminating the
difference between Tx and Rx in the symbols.

Signed-off-by: David Howells <dhowells@redhat.com>


# e8c3af6b 09-Aug-2019 David Howells <dhowells@redhat.com>

rxrpc: Don't bother generating maxSkew in the ACK packet

Don't bother generating maxSkew in the ACK packet as it has been obsolete
since AFS 3.1.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeffrey Altman <jaltman@auristor.com>


# 2874c5fd 27-May-2019 Thomas Gleixner <tglx@linutronix.de>

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152

Based on 1 normalized pattern(s):

this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version

extracted by the scancode license scanner the SPDX license identifier

GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>


# c7e86acf 01-Nov-2018 David Howells <dhowells@redhat.com>

rxrpc: Fix lockup due to no error backoff after ack transmit error

If the network becomes (partially) unavailable, say by disabling IPv6, the
background ACK transmission routine can get itself into a tizzy by
proposing immediate ACK retransmission. Since we're in the call event
processor, that happens immediately without returning to the workqueue
manager.

The condition should clear after a while when either the network comes back
or the call times out.

Fix this by:

(1) When re-proposing an ACK on failed Tx, don't schedule it immediately.
This will allow a certain amount of time to elapse before we try
again.

(2) Enforce a return to the workqueue manager after a certain number of
iterations of the call processing loop.

(3) Add a backoff delay that increases the delay on deferred ACKs by a
jiffy per failed transmission to a limit of HZ. The backoff delay is
cleared on a successful return from kernel_sendmsg().

(4) Cancel calls immediately if the opening sendmsg fails. The layer
above can arrange retransmission or rotate to another server.

Fixes: 248f219cb8bc ("rxrpc: Rewrite the data and ack handling code")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# f597a579 01-Aug-2018 YueHaibing <yuehaibing@huawei.com>

rxrpc: remove redundant variables 'sp' and 'did_discard'

Variables 'sp' and 'did_discard' are being assigned,
but are never used, hence they are redundant and can be removed.

fix following warning:

net/rxrpc/call_event.c:165:25: warning: variable 'sp' set but not used [-Wunused-but-set-variable]
net/rxrpc/conn_client.c:1054:7: warning: variable 'did_discard' set but not used [-Wunused-but-set-variable]

Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: David Howells <dhowells@redhat.com>


# 1a025028 02-Jun-2018 David Howells <dhowells@redhat.com>

rxrpc: Fix handling of call quietly cancelled out on server

Sometimes an in-progress call will stop responding on the fileserver when
the fileserver quietly cancels the call with an internally marked abort
(RX_CALL_DEAD), without sending an ABORT to the client.

This causes the client's call to eventually expire from lack of incoming
packets directed its way, which currently leads to it being cancelled
locally with ETIME. Note that it's not currently clear as to why this
happens as it's really hard to reproduce.

The rotation policy implement by kAFS, however, doesn't differentiate
between ETIME meaning we didn't get any response from the server and ETIME
meaning the call got cancelled mid-flow. The latter leads to an oops when
fetching data as the rotation partially resets the afs_read descriptor,
which can result in a cleared page pointer being dereferenced because that
page has already been filled.

Handle this by the following means:

(1) Set a flag on a call when we receive a packet for it.

(2) Store the highest packet serial number so far received for a call
(bearing in mind this may wrap).

(3) If, when the "not received anything recently" timeout expires on a
call, we've received at least one packet for a call and the connection
as a whole has received packets more recently than that call, then
cancel the call locally with ECONNRESET rather than ETIME.

This indicates that the call was definitely in progress on the server.

(4) In kAFS, if the rotation algorithm sees ECONNRESET rather than ETIME,
don't try the next server, but rather abort the call.

This avoids the oops as we don't try to reuse the afs_read struct.
Rather, as-yet ungotten pages will be reread at a later data.

Also:

(5) Add an rxrpc tracepoint to log detection of the call being reset.

Without this, I occasionally see an oops like the following:

general protection fault: 0000 [#1] SMP PTI
...
RIP: 0010:_copy_to_iter+0x204/0x310
RSP: 0018:ffff8800cae0f828 EFLAGS: 00010206
RAX: 0000000000000560 RBX: 0000000000000560 RCX: 0000000000000560
RDX: ffff8800cae0f968 RSI: ffff8800d58b3312 RDI: 0005080000000000
RBP: ffff8800cae0f968 R08: 0000000000000560 R09: ffff8800ca00f400
R10: ffff8800c36f28d4 R11: 00000000000008c4 R12: ffff8800cae0f958
R13: 0000000000000560 R14: ffff8800d58b3312 R15: 0000000000000560
FS: 00007fdaef108080(0000) GS:ffff8800ca680000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fb28a8fa000 CR3: 00000000d2a76002 CR4: 00000000001606e0
Call Trace:
skb_copy_datagram_iter+0x14e/0x289
rxrpc_recvmsg_data.isra.0+0x6f3/0xf68
? trace_buffer_unlock_commit_regs+0x4f/0x89
rxrpc_kernel_recv_data+0x149/0x421
afs_extract_data+0x1e0/0x798
? afs_wait_for_call_to_complete+0xc9/0x52e
afs_deliver_fs_fetch_data+0x33a/0x5ab
afs_deliver_to_call+0x1ee/0x5e0
? afs_wait_for_call_to_complete+0xc9/0x52e
afs_wait_for_call_to_complete+0x12b/0x52e
? wake_up_q+0x54/0x54
afs_make_call+0x287/0x462
? afs_fs_fetch_data+0x3e6/0x3ed
? rcu_read_lock_sched_held+0x5d/0x63
afs_fs_fetch_data+0x3e6/0x3ed
afs_fetch_data+0xbb/0x14a
afs_readpages+0x317/0x40d
__do_page_cache_readahead+0x203/0x2ba
? ondemand_readahead+0x3a7/0x3c1
ondemand_readahead+0x3a7/0x3c1
generic_file_buffered_read+0x18b/0x62f
__vfs_read+0xdb/0xfe
vfs_read+0xb2/0x137
ksys_read+0x50/0x8c
do_syscall_64+0x7d/0x1a0
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Note the weird value in RDI which is a result of trying to kmap() a NULL
page pointer.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 59299aa1 30-Mar-2018 Marc Dionne <marc.dionne@auristor.com>

rxrpc: Fix resend event time calculation

Commit a158bdd3 ("rxrpc: Fix call timeouts") reworked the time calculation
for the next resend event. For this calculation, "oldest" will be before
"now", so ktime_sub(oldest, now) will yield a negative value. When passed
to nsecs_to_jiffies which expects an unsigned value, the end result will be
a very large value, and a resend event scheduled far into the future. This
could cause calls to stall if some packets were lost.

Fix by ordering the arguments to ktime_sub correctly.

Fixes: a158bdd3247b ("rxrpc: Fix call timeouts")
Signed-off-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>


# f82eb88b 30-Mar-2018 David Howells <dhowells@redhat.com>

rxrpc: Fix a bit of time confusion

The rxrpc_reduce_call_timer() function should be passed the 'current time'
in jiffies, not the current ktime time. It's confusing in rxrpc_resend
because that has to deal with both. Pass the correct current time in.

Note that this only affects the trace produced and not the functioning of
the code.

Fixes: a158bdd3247b ("rxrpc: Fix call timeouts")
Signed-off-by: David Howells <dhowells@redhat.com>


# 827efed6 27-Mar-2018 David Howells <dhowells@redhat.com>

rxrpc: Trace resend

Add a tracepoint to trace packet resend events and to dump the Tx
annotation buffer for added illumination.

Signed-off-by: David Howells <dhowells@rdhat.com>


# 282ef472 28-Nov-2017 Gustavo A. R. Silva <garsilva@embeddedor.com>

rxrpc: Fix variable overwrite

Values assigned to both variable resend_at and ack_at are overwritten
before they can be used.

The correct fix here is to add 'now' to the previously computed value in
resend_at and ack_at.

Addresses-Coverity-ID: 1462262
Addresses-Coverity-ID: 1462263
Addresses-Coverity-ID: 1462264
Fixes: beb8e5e4f38c ("rxrpc: Express protocol timeouts in terms of RTT")
Link: https://marc.info/?i=17004.1511808959%40warthog.procyon.org.uk
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Signed-off-by: David Howells <dhowells@redhat.com>


# 3d7682af 29-Nov-2017 David Howells <dhowells@redhat.com>

rxrpc: Clean up whitespace

Clean up some whitespace from rxrpc.

Signed-off-by: David Howells <dhowells@redhat.com>


# 415f44e4 24-Nov-2017 David Howells <dhowells@redhat.com>

rxrpc: Add keepalive for a call

We need to transmit a packet every so often to act as a keepalive for the
peer (which has a timeout from the last time it received a packet) and also
to prevent any intervening firewalls from closing the route.

Do this by resetting a timer every time we transmit a packet. If the timer
ever expires, we transmit a PING ACK packet and thereby also elicit a PING
RESPONSE ACK from the other side - which prevents our last-rx timeout from
expiring.

The timer is set to 1/6 of the last-rx timeout so that we can detect the
other side going away if it misses 6 replies in a row.

This is particularly necessary for servers where the processing of the
service function may take a significant amount of time.

Signed-off-by: David Howells <dhowells@redhat.com>


# bd1fdf8c 24-Nov-2017 David Howells <dhowells@redhat.com>

rxrpc: Add a timeout for detecting lost ACKs/lost DATA

Add an extra timeout that is set/updated when we send a DATA packet that
has the request-ack flag set. This allows us to detect if we don't get an
ACK in response to the latest flagged packet.

The ACK packet is adjudged to have been lost if it doesn't turn up within
2*RTT of the transmission.

If the timeout occurs, we schedule the sending of a PING ACK to find out
the state of the other side. If a new DATA packet is ready to go sooner,
we cancel the sending of the ping and set the request-ack flag on that
instead.

If we get back a PING-RESPONSE ACK that indicates a lower tx_top than what
we had at the time of the ping transmission, we adjudge all the DATA
packets sent between the response tx_top and the ping-time tx_top to have
been lost and retransmit immediately.

Rather than sending a PING ACK, we could just pick a DATA packet and
speculatively retransmit that with request-ack set. It should result in
either a REQUESTED ACK or a DUPLICATE ACK which we can then use in lieu the
a PING-RESPONSE ACK mentioned above.

Signed-off-by: David Howells <dhowells@redhat.com>


# beb8e5e4 24-Nov-2017 David Howells <dhowells@redhat.com>

rxrpc: Express protocol timeouts in terms of RTT

Express protocol timeouts for data retransmission and deferred ack
generation in terms on RTT rather than specified timeouts once we have
sufficient RTT samples.

For the moment, this requires just one RTT sample to be able to use this
for ack deferral and two for data retransmission.

The data retransmission timeout is set at RTT*1.5 and the ACK deferral
timeout is set at RTT.

Note that the calculated timeout is limited to a minimum of 4ns to make
sure it doesn't happen too quickly.

Signed-off-by: David Howells <dhowells@redhat.com>


# a158bdd3 24-Nov-2017 David Howells <dhowells@redhat.com>

rxrpc: Fix call timeouts

Fix the rxrpc call expiration timeouts and make them settable from
userspace. By analogy with other rx implementations, there should be three
timeouts:

(1) "Normal timeout"

This is set for all calls and is triggered if we haven't received any
packets from the peer in a while. It is measured from the last time
we received any packet on that call. This is not reset by any
connection packets (such as CHALLENGE/RESPONSE packets).

If a service operation takes a long time, the server should generate
PING ACKs at a duration that's substantially less than the normal
timeout so is to keep both sides alive. This is set at 1/6 of normal
timeout.

(2) "Idle timeout"

This is set only for a service call and is triggered if we stop
receiving the DATA packets that comprise the request data. It is
measured from the last time we received a DATA packet.

(3) "Hard timeout"

This can be set for a call and specified the maximum lifetime of that
call. It should not be specified by default. Some operations (such
as volume transfer) take a long time.

Allow userspace to set/change the timeouts on a call with sendmsg, using a
control message:

RXRPC_SET_CALL_TIMEOUTS

The data to the message is a number of 32-bit words, not all of which need
be given:

u32 hard_timeout; /* sec from first packet */
u32 idle_timeout; /* msec from packet Rx */
u32 normal_timeout; /* msec from data Rx */

This can be set in combination with any other sendmsg() that affects a
call.

Signed-off-by: David Howells <dhowells@redhat.com>


# dcbefc30 02-Nov-2017 David Howells <dhowells@redhat.com>

rxrpc: Fix call expiry handling

Fix call expiry handling in the following ways

(1) If all the request data from a client call is acked, don't send a
follow up IDLE ACK with firstPacket == 1 and previousPacket == 0 as
this appears to fool some servers into thinking everything has been
accepted.

(2) Never send an abort back to the server once it has ACK'd all the
request packets; rather just try to reuse the channel for the next
call. The first request DATA packet of the next call on the same
channel will implicitly ACK the entire reply of the dead call - even
if we haven't transmitted it yet.

(3) Don't send RX_CALL_TIMEOUT in an ABORT packet, librx uses abort codes
to pass local errors to the caller in addition to remote errors, and
this is meant to be local only.

The following also need to be addressed in future patches:

(4) Service calls should send PING ACKs as 'keep alives' if the server is
still processing the call.

(5) VERSION REPLY packets should be sent to the peers of service
connections to act as keep-alives. This is used to keep firewall
routes in place. The AFS CM should enable this.

Signed-off-by: David Howells <dhowells@redhat.com>


# 3a92789a 06-Apr-2017 David Howells <dhowells@redhat.com>

rxrpc: Use negative error codes in rxrpc_call struct

Use negative error codes in struct rxrpc_call::error because that's what
the kernel normally deals with and to make the code consistent. We only
turn them positive when transcribing into a cmsg for userspace recvmsg.

Signed-off-by: David Howells <dhowells@redhat.com>


# 9749fd2b 06-Oct-2016 David Howells <dhowells@redhat.com>

rxrpc: Need to produce an ACK for service op if op takes a long time

We need to generate a DELAY ACK from the service end of an operation if we
start doing the actual operation work and it takes longer than expected.
This will hard-ACK the request data and allow the client to release its
resources.

To make this work:

(1) We have to set the ack timer and propose an ACK when the call moves to
the RXRPC_CALL_SERVER_ACK_REQUEST and clear the pending ACK and cancel
the timer when we start transmitting the reply (the first DATA packet
of the reply implicitly ACKs the request phase).

(2) It must be possible to set the timer when the caller is holding
call->state_lock, so split the lock-getting part of the timer function
out.

(3) Add trace notes for the ACK we're requesting and the timer we clear.

Signed-off-by: David Howells <dhowells@redhat.com>


# 94bc669e 06-Oct-2016 David Howells <dhowells@redhat.com>

rxrpc: Add missing notification

The call's background processor work item needs to notify the socket when
it completes a call so that recvmsg() or the AFS fs can deal with it.
Without this, call expiry isn't handled.

Signed-off-by: David Howells <dhowells@redhat.com>


# d7833d00 06-Oct-2016 David Howells <dhowells@redhat.com>

rxrpc: Queue the call on expiry

When a call expires, it must be queued for the background processor to deal
with otherwise a service call that is improperly terminated will just sit
there awaiting an ACK and won't expire.

Signed-off-by: David Howells <dhowells@redhat.com>


# a5af7e1f 06-Oct-2016 David Howells <dhowells@redhat.com>

rxrpc: Fix loss of PING RESPONSE ACK production due to PING ACKs

Separate the output of PING ACKs from the output of other sorts of ACK so
that if we receive a PING ACK and schedule transmission of a PING RESPONSE
ACK, the response doesn't get cancelled by a PING ACK we happen to be
scheduling transmission of at the same time.

If a PING RESPONSE gets lost, the other side might just sit there waiting
for it and refuse to proceed otherwise.

Signed-off-by: David Howells <dhowells@redhat.com>


# 26cb02aa 06-Oct-2016 David Howells <dhowells@redhat.com>

rxrpc: Fix warning by splitting rxrpc_send_call_packet()

Split rxrpc_send_data_packet() to separate ACK generation (which is more
complicated) from ABORT generation. This simplifies the code a bit and
fixes the following warning:

In file included from ../net/rxrpc/output.c:20:0:
net/rxrpc/output.c: In function 'rxrpc_send_call_packet':
net/rxrpc/ar-internal.h:1187:27: error: 'top' may be used uninitialized in this function [-Werror=maybe-uninitialized]
net/rxrpc/output.c:103:24: note: 'top' was declared here
net/rxrpc/output.c:225:25: error: 'hard_ack' may be used uninitialized in this function [-Werror=maybe-uninitialized]

Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>


# 405dea1d 30-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Fix the call timer handling

The call timer's concept of a call timeout (of which there are three) that
is inactive is that it is the timeout has the same expiration time as the
call expiration timeout (the expiration timer is never inactive). However,
I'm not resetting the timeouts when they expire, leading to repeated
processing of expired timeouts when other timeout events occur.

Fix this by:

(1) Move the timer expiry detection into rxrpc_set_timer() inside the
locked section. This means that if a timeout is set that will expire
immediately, we deal with it immediately.

(2) If a timeout is at or before now then it has expired. When an expiry
is detected, an event is raised, the timeout is automatically
inactivated and the event processor is queued.

(3) If a timeout is at or after the expiry timeout then it is inactive.
Inactive timeouts do not contribute to the timer setting.

(4) The call timer callback can now just call rxrpc_set_timer() to handle
things.

(5) The call processor work function now checks the event flags rather
than checking the timeouts directly.

Signed-off-by: David Howells <dhowells@redhat.com>


# df0adc78 26-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Keep the call timeouts as ktimes rather than jiffies

Keep that call timeouts as ktimes rather than jiffies so that they can be
expressed as functions of RTT.

Signed-off-by: David Howells <dhowells@redhat.com>


# a1767077 29-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Make Tx loss-injection go through normal return and adjust tracing

In rxrpc_send_data_packet() make the loss-injection path return through the
same code as the transmission path so that the RTT determination is
initiated and any future timer shuffling will be done, despite the packet
having been binned.

Whilst we're at it:

(1) Add to the tx_data tracepoint an indication of whether or not we're
retransmitting a data packet.

(2) When we're deciding whether or not to request an ACK, rather than
checking if we're in fast-retransmit mode check instead if we're
retransmitting.

(3) Don't invoke the lose_skb tracepoint when losing a Tx packet as we're
not altering the sk_buff refcount nor are we just seeing it after
getting it off the Tx list.

(4) The rxrpc_skb_tx_lost note is then no longer used so remove it.

(5) rxrpc_lose_skb() no longer needs to deal with rxrpc_skb_tx_lost.

Signed-off-by: David Howells <dhowells@redhat.com>


# 57494343 24-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Implement slow-start

Implement RxRPC slow-start, which is similar to RFC 5681 for TCP. A
tracepoint is added to log the state of the congestion management algorithm
and the decisions it makes.

Notes:

(1) Since we send fixed-size DATA packets (apart from the final packet in
each phase), counters and calculations are in terms of packets rather
than bytes.

(2) The ACK packet carries the equivalent of TCP SACK.

(3) The FLIGHT_SIZE calculation in RFC 5681 doesn't seem particularly
suited to SACK of a small number of packets. It seems that, almost
inevitably, by the time three 'duplicate' ACKs have been seen, we have
narrowed the loss down to one or two missing packets, and the
FLIGHT_SIZE calculation ends up as 2.

(4) In rxrpc_resend(), if there was no data that apparently needed
retransmission, we transmit a PING ACK to ask the peer to tell us what
its Rx window state is.

Signed-off-by: David Howells <dhowells@redhat.com>


# 0d967960 24-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Schedule an ACK if the reply to a client call appears overdue

If we've sent all the request data in a client call but haven't seen any
sign of the reply data yet, schedule an ACK to be sent to the server to
find out if the reply data got lost.

If the server hasn't yet hard-ACK'd the request data, we send a PING ACK to
demand a response to find out whether we need to retransmit.

If the server says it has received all of the data, we send an IDLE ACK to
tell the server that we haven't received anything in the receive phase as
yet.

To make this work, a non-immediate PING ACK must carry a delay. I've chosen
the same as the IDLE ACK for the moment.

Signed-off-by: David Howells <dhowells@redhat.com>


# df0562a7 24-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Delay the resend timer to allow for nsec->jiffies conv error

When determining the resend timer value, we have a value in nsec but the
timer is in jiffies which may be a million or more times more coarse.
nsecs_to_jiffies() rounds down - which means that the resend timeout
expressed as jiffies is very likely earlier than the one expressed as
nanoseconds from which it was derived.

The problem is that rxrpc_resend() gets triggered by the timer, but can't
then find anything to resend yet. It sets the timer again - but gets
kicked off immediately again and again until the nanosecond-based expiry
time is reached and we actually retransmit.

Fix this by adding 1 to the jiffies-based resend_at value to counteract the
rounding and make sure that the timer happens after the nanosecond-based
expiry is passed.

Alternatives would be to adjust the timestamp on the packets to align
with the jiffie scale or to switch back to using jiffie-timestamps.

Signed-off-by: David Howells <dhowells@redhat.com>


# c6672e3f 23-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Add a tracepoint to log which packets will be retransmitted

Add a tracepoint to log in rxrpc_resend() which packets will be
retransmitted. Note that if a positive ACK comes in whilst we have dropped
the lock to retransmit another packet, the actual retransmission may not
happen, though some of the effects will (such as altering the congestion
management).

Signed-off-by: David Howells <dhowells@redhat.com>


# 9c7ad434 23-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Add tracepoint for ACK proposal

Add a tracepoint to log proposed ACKs, including whether the proposal is
used to update a pending ACK or is discarded in favour of an easlier,
higher priority ACK.

Whilst we're at it, get rid of the rxrpc_acks() function and access the
name array directly. We do, however, need to validate the ACK reason
number given to trace_rxrpc_rx_ack() to make sure we don't overrun the
array.

Signed-off-by: David Howells <dhowells@redhat.com>


# fc7ab6d2 23-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Add a tracepoint for the call timer

Add a tracepoint to log call timer initiation, setting and expiry.

Signed-off-by: David Howells <dhowells@redhat.com>


# 01a88f7f 22-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Fix call timer

Fix the call timer in the following ways:

(1) If call->resend_at or call->ack_at are before or equal to the current
time, then ignore that timeout.

(2) If call->expire_at is before or equal to the current time, then don't
set the timer at all (possibly we should queue the call).

(3) Don't skip modifying the timer if timer_pending() is true. This
indicates that the timer is working, not that it has expired and is
running/waiting to run its expiry handler.

Also call rxrpc_set_timer() to start the call timer going rather than
calling add_timer().

Signed-off-by: David Howells <dhowells@redhat.com>


# dfc3da44 22-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Need to start the resend timer on initial transmission

When a DATA packet has its initial transmission, we may need to start or
adjust the resend timer. Without this we end up relying on being sent a
NACK to initiate the resend.

Signed-off-by: David Howells <dhowells@redhat.com>


# 90bd684d 22-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Should be using ktime_add_ms() not ktime_add_ns()

ktime_add_ms() should be used to add the resend time (in ms) rather than
ktime_add_ns().

Signed-off-by: David Howells <dhowells@redhat.com>


# fc943f67 21-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Reduce the number of PING ACKs sent

We don't want to send a PING ACK for every new incoming call as that just
adds to the network traffic. Instead, we send a PING ACK to the first
three that we receive and then once per second thereafter.

This could probably be made adjustable in future.

Signed-off-by: David Howells <dhowells@redhat.com>


# 50235c4b 21-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Obtain RTT data by requesting ACKs on DATA packets

In addition to sending a PING ACK to gain RTT data, we can set the
RXRPC_REQUEST_ACK flag on a DATA packet and get a REQUESTED-ACK ACK. The
ACK packet contains the serial number of the packet it is in response to,
so we can look through the Tx buffer for a matching DATA packet.

This requires that the data packets be stamped with the time of
transmission as a ktime rather than having the resend_at time in jiffies.

This further requires the resend code to do the resend determination in
ktimes and convert to jiffies to set the timer.

Signed-off-by: David Howells <dhowells@redhat.com>


# f07373ea 21-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Add re-sent Tx annotation

Add a Tx-phase annotation for packet buffers to indicate that a buffer has
already been retransmitted. This will be used by future congestion
management. Re-retransmissions of a packet don't affect the congestion
window managment in the same way as initial retransmissions.

Signed-off-by: David Howells <dhowells@redhat.com>


# 5a924b89 21-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Don't store the rxrpc header in the Tx queue sk_buffs

Don't store the rxrpc protocol header in sk_buffs on the transmit queue,
but rather generate it on the fly and pass it to kernel_sendmsg() as a
separate iov. This reduces the amount of storage required.

Note that the security header is still stored in the sk_buff as it may get
encrypted along with the data (and doesn't change with each transmission).

Signed-off-by: David Howells <dhowells@redhat.com>


# 71f3ca40 17-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Improve skb tracing

Improve sk_buff tracing within AF_RXRPC by the following means:

(1) Use an enum to note the event type rather than plain integers and use
an array of event names rather than a big multi ?: list.

(2) Distinguish Rx from Tx packets and account them separately. This
requires the call phase to be tracked so that we know what we might
find in rxtx_buffer[].

(3) Add a parameter to rxrpc_{new,see,get,free}_skb() to indicate the
event type.

(4) A pair of 'rotate' events are added to indicate packets that are about
to be rotated out of the Rx and Tx windows.

(5) A pair of 'lost' events are added, along with rxrpc_lose_skb() for
packet loss injection recording.

Signed-off-by: David Howells <dhowells@redhat.com>


# dfa7d920 17-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Fix retransmission algorithm

Make the retransmission algorithm use for-loops instead of do-loops and
move the counter increments into the for-statement increment slots.

Though the do-loops are slighly more efficient since there will be at least
one pass through the each loop, the counter increments are harder to get
right as the continue-statements skip them.

Without this, if there are any positive acks within the loop, the do-loop
will cycle forever because the counter increment is never done.

Signed-off-by: David Howells <dhowells@redhat.com>


# fabf9201 17-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Remove some whitespace.

Remove a tab that's on a line that should otherwise be blank.

Signed-off-by: David Howells <dhowells@redhat.com>


# 91c2c7b6 13-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: The IDLE ACK packet should use rxrpc_idle_ack_delay

The IDLE ACK packet should use the rxrpc_idle_ack_delay setting when the
timer is set for it.

Signed-off-by: David Howells <dhowells@redhat.com>


# 248f219c 08-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Rewrite the data and ack handling code

Rewrite the data and ack handling code such that:

(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).

(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.

(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.

(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).

(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).

(6) sk_buffs no longer take a ref on their parent call.

To make this work, the following changes are made:

(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.

(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.

Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.

(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).

The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.

The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.

Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.

Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.

(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around

(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.

However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.

(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.

Additional changes:

(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).

(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.

(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.

Future additional changes that will need to be considered:

(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.

(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.

Signed-off-by: David Howells <dhowells@redhat.com>


# 5a42976d 06-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Add tracepoint for working out where aborts happen

Add a tracepoint for working out where local aborts happen. Each
tracepoint call is labelled with a 3-letter code so that they can be
distinguished - and the DATA sequence number is added too where available.

rxrpc_kernel_abort_call() also takes a 3-letter code so that AFS can
indicate the circumstances when it aborts a call.

Signed-off-by: David Howells <dhowells@redhat.com>


# 8d94aa38 07-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Calls shouldn't hold socket refs

rxrpc calls shouldn't hold refs on the sock struct. This was done so that
the socket wouldn't go away whilst the call was in progress, such that the
call could reach the socket's queues.

However, we can mark the socket as requiring an RCU release and rely on the
RCU read lock.

To make this work, we do:

(1) rxrpc_release_call() removes the call's call user ID. This is now
only called from socket operations and not from the call processor:

rxrpc_accept_call() / rxrpc_kernel_accept_call()
rxrpc_reject_call() / rxrpc_kernel_reject_call()
rxrpc_kernel_end_call()
rxrpc_release_calls_on_socket()
rxrpc_recvmsg()

Though it is also called in the cleanup path of
rxrpc_accept_incoming_call() before we assign a user ID.

(2) Pass the socket pointer into rxrpc_release_call() rather than getting
it from the call so that we can get rid of uninitialised calls.

(3) Fix call processor queueing to pass a ref to the work queue and to
release that ref at the end of the processor function (or to pass it
back to the work queue if we have to requeue).

(4) Skip out of the call processor function asap if the call is complete
and don't requeue it if the call is complete.

(5) Clean up the call immediately that the refcount reaches 0 rather than
trying to defer it. Actual deallocation is deferred to RCU, however.

(6) Don't hold socket refs for allocated calls.

(7) Use the RCU read lock when queueing a message on a socket and treat
the call's socket pointer according to RCU rules and check it for
NULL.

We also need to use the RCU read lock when viewing a call through
procfs.

(8) Transmit the final ACK/ABORT to a client call in rxrpc_release_call()
if this hasn't been done yet so that we can then disconnect the call.
Once the call is disconnected, it won't have any access to the
connection struct and the UDP socket for the call work processor to be
able to send the ACK. Terminal retransmission will be handled by the
connection processor.

(9) Release all calls immediately on the closing of a socket rather than
trying to defer this. Incomplete calls will be aborted.

The call refcount model is much simplified. Refs are held on the call by:

(1) A socket's user ID tree.

(2) A socket's incoming call secureq and acceptq.

(3) A kernel service that has a call in progress.

(4) A queued call work processor. We have to take care to put any call
that we failed to queue.

(5) sk_buffs on a socket's receive queue. A future patch will get rid of
this.

Whilst we're at it, we can do:

(1) Get rid of the RXRPC_CALL_EV_RELEASE event. Release is now done
entirely from the socket routines and never from the call's processor.

(2) Get rid of the RXRPC_CALL_DEAD state. Calls now end in the
RXRPC_CALL_COMPLETE state.

(3) Get rid of the rxrpc_call::destroyer work item. Calls are now torn
down when their refcount reaches 0 and then handed over to RCU for
final cleanup.

(4) Get rid of the rxrpc_call::deadspan timer. Calls are cleaned up
immediately they're finished with and don't hang around.
Post-completion retransmission is handled by the connection processor
once the call is disconnected.

(5) Get rid of the dead call expiry setting as there's no longer a timer
to set.

(6) rxrpc_destroy_all_calls() can just check that the call list is empty.

Signed-off-by: David Howells <dhowells@redhat.com>


# fff72429 07-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Improve the call tracking tracepoint

Improve the call tracking tracepoint by showing more differentiation
between some of the put and get events, including:

(1) Getting and putting refs for the socket call user ID tree.

(2) Getting and putting refs for queueing and failing to queue the call
processor work item.

Note that these aren't necessarily used in this patch, but will be taken
advantage of in future patches.

An enum is added for the event subtype numbers rather than coding them
directly as decimal numbers and a table of 3-letter strings is provided
rather than a sequence of ?: operators.

Signed-off-by: David Howells <dhowells@redhat.com>


# 00b5407e 02-Sep-2016 David Howells <dhowells@redhat.com>

rxrpc: Fix uninitialised variable warning

Fix the following uninitialised variable warning:

../net/rxrpc/call_event.c: In function 'rxrpc_process_call':
../net/rxrpc/call_event.c:879:58: warning: 'error' may be used uninitialized in this function [-Wmaybe-uninitialized]
_debug("post net error %d", error);
^

Signed-off-by: David Howells <dhowells@redhat.com>


# ea82aaec 29-Aug-2016 David Howells <dhowells@redhat.com>

rxrpc: Use call->peer rather than going to the connection

Use call->peer rather than call->conn->params.peer as call->conn may become
NULL.

Signed-off-by: David Howells <dhowells@redhat.com>


# e34d4234 30-Aug-2016 David Howells <dhowells@redhat.com>

rxrpc: Trace rxrpc_call usage

Add a trace event for debuging rxrpc_call struct usage.

Signed-off-by: David Howells <dhowells@redhat.com>


# f5c17aae 30-Aug-2016 David Howells <dhowells@redhat.com>

rxrpc: Calls should only have one terminal state

Condense the terminal states of a call state machine to a single state,
plus a separate completion type value. The value is then set, along with
error and abort code values, only when the call is transitioned to the
completion state.

Helpers are provided to simplify this.

Signed-off-by: David Howells <dhowells@redhat.com>


# 45025bce 24-Aug-2016 David Howells <dhowells@redhat.com>

rxrpc: Improve management and caching of client connection objects

Improve the management and caching of client rxrpc connection objects.
From this point, client connections will be managed separately from service
connections because AF_RXRPC controls the creation and re-use of client
connections but doesn't have that luxury with service connections.

Further, there will be limits on the numbers of client connections that may
be live on a machine. No direct restriction will be placed on the number
of client calls, excepting that each client connection can support a
maximum of four concurrent calls.

Note that, for a number of reasons, we don't want to simply discard a
client connection as soon as the last call is apparently finished:

(1) Security is negotiated per-connection and the context is then shared
between all calls on that connection. The context can be negotiated
again if the connection lapses, but that involves holding up calls
whilst at least two packets are exchanged and various crypto bits are
performed - so we'd ideally like to cache it for a little while at
least.

(2) If a packet goes astray, we will need to retransmit a final ACK or
ABORT packet. To make this work, we need to keep around the
connection details for a little while.

(3) The locally held structures represent some amount of setup time, to be
weighed against their occupation of memory when idle.


To this end, the client connection cache is managed by a state machine on
each connection. There are five states:

(1) INACTIVE - The connection is not held in any list and may not have
been exposed to the world. If it has been previously exposed, it was
discarded from the idle list after expiring.

(2) WAITING - The connection is waiting for the number of client conns to
drop below the maximum capacity. Calls may be in progress upon it
from when it was active and got culled.

The connection is on the rxrpc_waiting_client_conns list which is kept
in to-be-granted order. Culled conns with waiters go to the back of
the queue just like new conns.

(3) ACTIVE - The connection has at least one call in progress upon it, it
may freely grant available channels to new calls and calls may be
waiting on it for channels to become available.

The connection is on the rxrpc_active_client_conns list which is kept
in activation order for culling purposes.

(4) CULLED - The connection got summarily culled to try and free up
capacity. Calls currently in progress on the connection are allowed
to continue, but new calls will have to wait. There can be no waiters
in this state - the conn would have to go to the WAITING state
instead.

(5) IDLE - The connection has no calls in progress upon it and must have
been exposed to the world (ie. the EXPOSED flag must be set). When it
expires, the EXPOSED flag is cleared and the connection transitions to
the INACTIVE state.

The connection is on the rxrpc_idle_client_conns list which is kept in
order of how soon they'll expire.

A connection in the ACTIVE or CULLED state must have at least one active
call upon it; if in the WAITING state it may have active calls upon it;
other states may not have active calls.

As long as a connection remains active and doesn't get culled, it may
continue to process calls - even if there are connections on the wait
queue. This simplifies things a bit and reduces the amount of checking we
need do.


There are a couple flags of relevance to the cache:

(1) EXPOSED - The connection ID got exposed to the world. If this flag is
set, an extra ref is added to the connection preventing it from being
reaped when it has no calls outstanding. This flag is cleared and the
ref dropped when a conn is discarded from the idle list.

(2) DONT_REUSE - The connection should be discarded as soon as possible and
should not be reused.


This commit also provides a number of new settings:

(*) /proc/net/rxrpc/max_client_conns

The maximum number of live client connections. Above this number, new
connections get added to the wait list and must wait for an active
conn to be culled. Culled connections can be reused, but they will go
to the back of the wait list and have to wait.

(*) /proc/net/rxrpc/reap_client_conns

If the number of desired connections exceeds the maximum above, the
active connection list will be culled until there are only this many
left in it.

(*) /proc/net/rxrpc/idle_conn_expiry

The normal expiry time for a client connection, provided there are
fewer than reap_client_conns of them around.

(*) /proc/net/rxrpc/idle_conn_fast_expiry

The expedited expiry time, used when there are more than
reap_client_conns of them around.


Note that I combined the Tx wait queue with the channel grant wait queue to
save space as only one of these should be in use at once.

Note also that, for the moment, the service connection cache still uses the
old connection management code.

Signed-off-by: David Howells <dhowells@redhat.com>


# 563ea7d5 23-Aug-2016 David Howells <dhowells@redhat.com>

rxrpc: Calculate serial skew on packet reception

Calculate the serial number skew in the data_ready handler when a packet
has been received and a connection looked up. The skew is cached in the
sk_buff's priority field.

The connection highest received serial number is updated at this time also.
This can be done without locks or atomic instructions because, at this
point, the code is serialised by the socket.

This generates more accurate skew data because if the packet is offloaded
to a work queue before this is determined, more packets may come in,
bumping the highest serial number and thereby increasing the apparent skew.

This also removes some unnecessary atomic ops.

Signed-off-by: David Howells <dhowells@redhat.com>


# df844fd4 23-Aug-2016 David Howells <dhowells@redhat.com>

rxrpc: Use a tracepoint for skb accounting debugging

Use a tracepoint to log various skb accounting points to help in debugging
refcounting errors.

Signed-off-by: David Howells <dhowells@redhat.com>


# 26164e77 23-Aug-2016 David Howells <dhowells@redhat.com>

rxrpc: Remove RXRPC_CALL_PROC_BUSY

Remove RXRPC_CALL_PROC_BUSY as work queue items are now 100% non-reentrant.

Signed-off-by: David Howells <dhowells@redhat.com>


# f9dc5757 08-Aug-2016 David Howells <dhowells@redhat.com>

rxrpc: Don't access connection from call if pointer is NULL

The call state machine processor sets up the message parameters for a UDP
message that it might need to transmit in advance on the basis that there's
a very good chance it's going to have to transmit either an ACK or an
ABORT. This requires it to look in the connection struct to retrieve some
of the parameters.

However, if the call is complete, the call connection pointer may be NULL
to dissuade the processor from transmitting a message. However, there are
some situations where the processor is still going to be called - and it's
still going to set up message parameters whether it needs them or not.

This results in a NULL pointer dereference at:

net/rxrpc/call_event.c:837

To fix this, skip the message pre-initialisation if there's no connection
attached.

Signed-off-by: David Howells <dhowells@redhat.com>


# 372ee163 03-Aug-2016 David Howells <dhowells@redhat.com>

rxrpc: Fix races between skb free, ACK generation and replying

Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.

Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.

To this end, the following changes are made:

(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().

(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().

This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.

The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.

(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.

(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().

Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.

(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.

(6) There are many bits of unmarshalling code where:

ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}

is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:

ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;

(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:

if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;

becomes:

ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;

(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.

Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:

general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 30b515f4 28-Jun-2016 David Howells <dhowells@redhat.com>

rxrpc: Access socket accept queue under right lock

The socket's accept queue (socket->acceptq) should be accessed under
socket->call_lock, not under the connection lock.

Signed-off-by: David Howells <dhowells@redhat.com>


# e653cfe4 04-Apr-2016 David Howells <dhowells@redhat.com>

rxrpc: Release a call's connection ref on call disconnection

When a call is disconnected, clear the call's pointer to the connection and
release the associated ref on that connection. This means that the call no
longer pins the connection and the connection can be discarded even before
the call is.

As the code currently stands, the call struct is effectively pinned by
userspace until userspace has enacted a recvmsg() to retrieve the final
call state as sk_buffs on the receive queue pin the call to which they're
related because:

(1) The rxrpc_call struct contains the userspace ID that recvmsg() has to
include in the control message buffer to indicate which call is being
referred to. This ID must remain valid until the terminal packet is
completely read and must be invalidated immediately at that point as
userspace is entitled to immediately reuse it.

(2) The final ACK to the reply to a client call isn't sent until the last
data packet is entirely read (it's probably worth altering this in
future to be send the ACK as soon as all the data has been received).


This change requires a bit of rearrangement to make sure that the call
isn't going to try and access the connection again after protocol
completion:

(1) Delete the error link earlier when we're releasing the call. Possibly
network errors should be distributed via connections at the cost of
adding in an access to the rxrpc_connection struct.

(2) Remove the call from the connection's call tree before disconnecting
the call. The call tree needs to be removed anyway and incoming
packets delivered by channel pointer instead.

(3) The release call event should be considered last after all other
events have been processed so that we don't need access to the
connection again.

(4) Move the channel_lock taking from rxrpc_release_call() to
rxrpc_disconnect_call() where it will be required in future.

Signed-off-by: David Howells <dhowells@redhat.com>


# 985a5c82 17-Jun-2016 David Howells <dhowells@redhat.com>

rxrpc: Make rxrpc_send_packet() take a connection not a transport

Make rxrpc_send_packet() take a connection not a transport as part of the
phasing out of the rxrpc_transport struct.

Whilst we're at it, rename the function to rxrpc_send_data_packet() to
differentiate it from the other packet sending functions.

Signed-off-by: David Howells <dhowells@redhat.com>


# 85f32278 04-Apr-2016 David Howells <dhowells@redhat.com>

rxrpc: Replace conn->trans->{local,peer} with conn->params.{local,peer}

Replace accesses of conn->trans->{local,peer} with
conn->params.{local,peer} thus making it easier for a future commit to
remove the rxrpc_transport struct.

This also reduces the number of memory accesses involved.

Signed-off-by: David Howells <dhowells@redhat.com>


# 19ffa01c 04-Apr-2016 David Howells <dhowells@redhat.com>

rxrpc: Use structs to hold connection params and protocol info

Define and use a structure to hold connection parameters. This makes it
easier to pass multiple connection parameters around.

Define and use a structure to hold protocol information used to hash a
connection for lookup on incoming packet. Most of these fields will be
disposed of eventually, including the duplicate local pointer.

Whilst we're at it rename "proto" to "family" when referring to a protocol
family.

Signed-off-by: David Howells <dhowells@redhat.com>


# f66d7490 04-Apr-2016 David Howells <dhowells@redhat.com>

rxrpc: Use the peer record to distribute network errors

Use the peer record to distribute network errors rather than the transport
object (which I want to get rid of). An error from a particular peer
terminates all calls on that peer.

For future consideration:

(1) For ICMP-induced errors it might be worth trying to extract the RxRPC
header from the offending packet, if one is returned attached to the
ICMP packet, to better direct the error.

This may be overkill, though, since an ICMP packet would be expected
to be relating to the destination port, machine or network. RxRPC
ABORT and BUSY packets give notice at RxRPC level.

(2) To also abort connection-level communications (such as CHALLENGE
packets) where indicted by an error - but that requires some revamping
of the connection event handling first.

Signed-off-by: David Howells <dhowells@redhat.com>


# 8c3e34a4 12-Jun-2016 David Howells <dhowells@redhat.com>

rxrpc: Rename files matching ar-*.c to git rid of the "ar-" prefix

Rename files matching net/rxrpc/ar-*.c to get rid of the "ar-" prefix.
This will aid splitting those files by making easier to come up with new
names.

Note that the not all files are simply renamed from ar-X.c to X.c. The
following exceptions are made:

(*) ar-call.c -> call_object.c
ar-ack.c -> call_event.c

call_object.c is going to contain the core of the call object
handling. Call event handling is all going to be in call_event.c.

(*) ar-accept.c -> call_accept.c

Incoming call handling is going to be here.

(*) ar-connection.c -> conn_object.c
ar-connevent.c -> conn_event.c

The former file is going to have the basic connection object handling,
but there will likely be some differentiation between client
connections and service connections in additional files later. The
latter file will have all the connection-level event handling.

(*) ar-local.c -> local_object.c

This will have the local endpoint object handling code. The local
endpoint event handling code will later be split out into
local_event.c.

(*) ar-peer.c -> peer_object.c

This will have the peer endpoint object handling code. Peer event
handling code will be placed in peer_event.c (for the moment, there is
none).

(*) ar-error.c -> peer_event.c

This will become the peer event handling code, though for the moment
it's actually driven from the local endpoint's perspective.

Note that I haven't renamed ar-transport.c to transport_object.c as the
intention is to delete it when the rxrpc_transport struct is excised.

The only file that actually has its contents changed is net/rxrpc/Makefile.

net/rxrpc/ar-internal.h will need its section marker comments updating, but
I'll do that in a separate patch to make it easier for git to follow the
history across the rename. I may also want to rename ar-internal.h at some
point - but that would mean updating all the #includes and I'd rather do
that in a separate step.

Signed-off-by: David Howells <dhowells@redhat.com.