History log of /linux-master/include/linux/secretmem.h
Revision Date Author Comments
# 65291dcf 26-Mar-2024 David Hildenbrand <david@redhat.com>

mm/secretmem: fix GUP-fast succeeding on secretmem folios

folio_is_secretmem() currently relies on secretmem folios being LRU
folios, to save some cycles.

However, folios might reside in a folio batch without the LRU flag set, or
temporarily have their LRU flag cleared. Consequently, the LRU flag is
unreliable for this purpose.

In particular, this is the case when secretmem_fault() allocates a fresh
page and calls filemap_add_folio()->folio_add_lru(). The folio might be
added to the per-cpu folio batch and won't get the LRU flag set until the
batch was drained using e.g., lru_add_drain().

Consequently, folio_is_secretmem() might not detect secretmem folios and
GUP-fast can succeed in grabbing a secretmem folio, crashing the kernel
when we would later try reading/writing to the folio, because the folio
has been unmapped from the directmap.

Fix it by removing that unreliable check.

Link: https://lkml.kernel.org/r/20240326143210.291116-2-david@redhat.com
Fixes: 1507f51255c9 ("mm: introduce memfd_secret system call to create "secret" memory areas")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: xingwei lee <xrivendell7@gmail.com>
Reported-by: yue sun <samsun1006219@gmail.com>
Closes: https://lore.kernel.org/lkml/CABOYnLyevJeravW=QrH0JUPYEcDN160aZFb7kwndm-J2rmz0HQ@mail.gmail.com/
Debugged-by: Miklos Szeredi <miklos@szeredi.hu>
Tested-by: Miklos Szeredi <mszeredi@redhat.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 8f9ff2de 22-Aug-2023 Matthew Wilcox (Oracle) <willy@infradead.org>

secretmem: convert page_is_secretmem() to folio_is_secretmem()

The only caller already has a folio, so use it to save calling
compound_head() in PageLRU() and remove a use of page->mapping.

Link: https://lkml.kernel.org/r/20230822202335.179081-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 79f9bc58 18-Oct-2021 Sean Christopherson <seanjc@google.com>

mm/secretmem: fix NULL page->mapping dereference in page_is_secretmem()

Check for a NULL page->mapping before dereferencing the mapping in
page_is_secretmem(), as the page's mapping can be nullified while gup()
is running, e.g. by reclaim or truncation.

BUG: kernel NULL pointer dereference, address: 0000000000000068
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 6 PID: 4173897 Comm: CPU 3/KVM Tainted: G W
RIP: 0010:internal_get_user_pages_fast+0x621/0x9d0
Code: <48> 81 7a 68 80 08 04 bc 0f 85 21 ff ff 8 89 c7 be
RSP: 0018:ffffaa90087679b0 EFLAGS: 00010046
RAX: ffffe3f37905b900 RBX: 00007f2dd561e000 RCX: ffffe3f37905b934
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffe3f37905b900
...
CR2: 0000000000000068 CR3: 00000004c5898003 CR4: 00000000001726e0
Call Trace:
get_user_pages_fast_only+0x13/0x20
hva_to_pfn+0xa9/0x3e0
try_async_pf+0xa1/0x270
direct_page_fault+0x113/0xad0
kvm_mmu_page_fault+0x69/0x680
vmx_handle_exit+0xe1/0x5d0
kvm_arch_vcpu_ioctl_run+0xd81/0x1c70
kvm_vcpu_ioctl+0x267/0x670
__x64_sys_ioctl+0x83/0xa0
do_syscall_64+0x56/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae

Link: https://lkml.kernel.org/r/20211007231502.3552715-1-seanjc@google.com
Fixes: 1507f51255c9 ("mm: introduce memfd_secret system call to create "secret" memory areas")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reported-by: Darrick J. Wong <djwong@kernel.org>
Reported-by: Stephen <stephenackerman16@gmail.com>
Tested-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# 9a436f8f 07-Jul-2021 Mike Rapoport <rppt@kernel.org>

PM: hibernate: disable when there are active secretmem users

It is unsafe to allow saving of secretmem areas to the hibernation
snapshot as they would be visible after the resume and this essentially
will defeat the purpose of secret memory mappings.

Prevent hibernation whenever there are active secret memory users.

Link: https://lkml.kernel.org/r/20210518072034.31572-6-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: Hagen Paul Pfeifer <hagen@jauu.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Palmer Dabbelt <palmerdabbelt@google.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tycho Andersen <tycho@tycho.ws>
Cc: Will Deacon <will@kernel.org>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# 1507f512 07-Jul-2021 Mike Rapoport <rppt@kernel.org>

mm: introduce memfd_secret system call to create "secret" memory areas

Introduce "memfd_secret" system call with the ability to create memory
areas visible only in the context of the owning process and not mapped not
only to other processes but in the kernel page tables as well.

The secretmem feature is off by default and the user must explicitly
enable it at the boot time.

Once secretmem is enabled, the user will be able to create a file
descriptor using the memfd_secret() system call. The memory areas created
by mmap() calls from this file descriptor will be unmapped from the kernel
direct map and they will be only mapped in the page table of the processes
that have access to the file descriptor.

Secretmem is designed to provide the following protections:

* Enhanced protection (in conjunction with all the other in-kernel
attack prevention systems) against ROP attacks. Seceretmem makes
"simple" ROP insufficient to perform exfiltration, which increases the
required complexity of the attack. Along with other protections like
the kernel stack size limit and address space layout randomization which
make finding gadgets is really hard, absence of any in-kernel primitive
for accessing secret memory means the one gadget ROP attack can't work.
Since the only way to access secret memory is to reconstruct the missing
mapping entry, the attacker has to recover the physical page and insert
a PTE pointing to it in the kernel and then retrieve the contents. That
takes at least three gadgets which is a level of difficulty beyond most
standard attacks.

* Prevent cross-process secret userspace memory exposures. Once the
secret memory is allocated, the user can't accidentally pass it into the
kernel to be transmitted somewhere. The secreremem pages cannot be
accessed via the direct map and they are disallowed in GUP.

* Harden against exploited kernel flaws. In order to access secretmem,
a kernel-side attack would need to either walk the page tables and
create new ones, or spawn a new privileged uiserspace process to perform
secrets exfiltration using ptrace.

The file descriptor based memory has several advantages over the
"traditional" mm interfaces, such as mlock(), mprotect(), madvise(). File
descriptor approach allows explicit and controlled sharing of the memory
areas, it allows to seal the operations. Besides, file descriptor based
memory paves the way for VMMs to remove the secret memory range from the
userspace hipervisor process, for instance QEMU. Andy Lutomirski says:

"Getting fd-backed memory into a guest will take some possibly major
work in the kernel, but getting vma-backed memory into a guest without
mapping it in the host user address space seems much, much worse."

memfd_secret() is made a dedicated system call rather than an extension to
memfd_create() because it's purpose is to allow the user to create more
secure memory mappings rather than to simply allow file based access to
the memory. Nowadays a new system call cost is negligible while it is way
simpler for userspace to deal with a clear-cut system calls than with a
multiplexer or an overloaded syscall. Moreover, the initial
implementation of memfd_secret() is completely distinct from
memfd_create() so there is no much sense in overloading memfd_create() to
begin with. If there will be a need for code sharing between these
implementation it can be easily achieved without a need to adjust user
visible APIs.

The secret memory remains accessible in the process context using uaccess
primitives, but it is not exposed to the kernel otherwise; secret memory
areas are removed from the direct map and functions in the
follow_page()/get_user_page() family will refuse to return a page that
belongs to the secret memory area.

Once there will be a use case that will require exposing secretmem to the
kernel it will be an opt-in request in the system call flags so that user
would have to decide what data can be exposed to the kernel.

Removing of the pages from the direct map may cause its fragmentation on
architectures that use large pages to map the physical memory which
affects the system performance. However, the original Kconfig text for
CONFIG_DIRECT_GBPAGES said that gigabyte pages in the direct map "... can
improve the kernel's performance a tiny bit ..." (commit 00d1c5e05736
("x86: add gbpages switches")) and the recent report [1] showed that "...
although 1G mappings are a good default choice, there is no compelling
evidence that it must be the only choice". Hence, it is sufficient to
have secretmem disabled by default with the ability of a system
administrator to enable it at boot time.

Pages in the secretmem regions are unevictable and unmovable to avoid
accidental exposure of the sensitive data via swap or during page
migration.

Since the secretmem mappings are locked in memory they cannot exceed
RLIMIT_MEMLOCK. Since these mappings are already locked independently
from mlock(), an attempt to mlock()/munlock() secretmem range would fail
and mlockall()/munlockall() will ignore secretmem mappings.

However, unlike mlock()ed memory, secretmem currently behaves more like
long-term GUP: secretmem mappings are unmovable mappings directly consumed
by user space. With default limits, there is no excessive use of
secretmem and it poses no real problem in combination with
ZONE_MOVABLE/CMA, but in the future this should be addressed to allow
balanced use of large amounts of secretmem along with ZONE_MOVABLE/CMA.

A page that was a part of the secret memory area is cleared when it is
freed to ensure the data is not exposed to the next user of that page.

The following example demonstrates creation of a secret mapping (error
handling is omitted):

fd = memfd_secret(0);
ftruncate(fd, MAP_SIZE);
ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

[1] https://lore.kernel.org/linux-mm/213b4567-46ce-f116-9cdf-bbd0c884eb3c@linux.intel.com/

[akpm@linux-foundation.org: suppress Kconfig whine]

Link: https://lkml.kernel.org/r/20210518072034.31572-5-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Hagen Paul Pfeifer <hagen@jauu.net>
Acked-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Palmer Dabbelt <palmerdabbelt@google.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tycho Andersen <tycho@tycho.ws>
Cc: Will Deacon <will@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>