History log of /linux-master/fs/xfs/xfs_buf_item.c
Revision Date Author Comments
# d4c75a1b 15-Jan-2024 Dave Chinner <dchinner@redhat.com>

xfs: convert remaining kmem_free() to kfree()

The remaining callers of kmem_free() are freeing heap memory, so
we can convert them directly to kfree() and get rid of kmem_free()
altogether.

This conversion was done with:

$ for f in `git grep -l kmem_free fs/xfs`; do
> sed -i s/kmem_free/kfree/ $f
> done
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>


# 49292576 15-Jan-2024 Dave Chinner <dchinner@redhat.com>

xfs: convert kmem_free() for kvmalloc users to kvfree()

Start getting rid of kmem_free() by converting all the cases where
memory can come from vmalloc interfaces to calling kvfree()
directly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>


# 10634530 15-Jan-2024 Dave Chinner <dchinner@redhat.com>

xfs: convert kmem_zalloc() to kzalloc()

There's no reason to keep the kmem_zalloc() around anymore, it's
just a thin wrapper around kmalloc(), so lets get rid of it.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>


# 89a4bf0d 04-Jun-2023 Dave Chinner <dchinner@redhat.com>

xfs: buffer pins need to hold a buffer reference

When a buffer is unpinned by xfs_buf_item_unpin(), we need to access
the buffer after we've dropped the buffer log item reference count.
This opens a window where we can have two racing unpins for the
buffer item (e.g. shutdown checkpoint context callback processing
racing with journal IO iclog completion processing) and both attempt
to access the buffer after dropping the BLI reference count. If we
are unlucky, the "BLI freed" context wins the race and frees the
buffer before the "BLI still active" case checks the buffer pin
count.

This results in a use after free that can only be triggered
in active filesystem shutdown situations.

To fix this, we need to ensure that buffer existence extends beyond
the BLI reference count checks and until the unpin processing is
complete. This implies that a buffer pin operation must also take a
buffer reference to ensure that the buffer cannot be freed until the
buffer unpin processing is complete.

Reported-by: yangerkun <yangerkun@huawei.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 575689fc 30-Nov-2022 Guo Xuenan <guoxuenan@huawei.com>

xfs: fix super block buf log item UAF during force shutdown

xfs log io error will trigger xlog shut down, and end_io worker call
xlog_state_shutdown_callbacks to unpin and release the buf log item.
The race condition is that when there are some thread doing transaction
commit and happened not to be intercepted by xlog_is_shutdown, then,
these log item will be insert into CIL, when unpin and release these
buf log item, UAF will occur. BTW, add delay before `xlog_cil_commit`
can increase recurrence probability.

The following call graph actually encountered this bad situation.
fsstress io end worker kworker/0:1H-216
xlog_ioend_work
->xlog_force_shutdown
->xlog_state_shutdown_callbacks
->xlog_cil_process_committed
->xlog_cil_committed
->xfs_trans_committed_bulk
->xfs_trans_apply_sb_deltas ->li_ops->iop_unpin(lip, 1);
->xfs_trans_getsb
->_xfs_trans_bjoin
->xfs_buf_item_init
->if (bip) { return 0;} //relog
->xlog_cil_commit
->xlog_cil_insert_items //insert into CIL
->xfs_buf_ioend_fail(bp);
->xfs_buf_ioend
->xfs_buf_item_done
->xfs_buf_item_relse
->xfs_buf_item_free

when cil push worker gather percpu cil and insert super block buf log item
into ctx->log_items then uaf occurs.

==================================================================
BUG: KASAN: use-after-free in xlog_cil_push_work+0x1c8f/0x22f0
Write of size 8 at addr ffff88801800f3f0 by task kworker/u4:4/105

CPU: 0 PID: 105 Comm: kworker/u4:4 Tainted: G W
6.1.0-rc1-00001-g274115149b42 #136
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Workqueue: xfs-cil/sda xlog_cil_push_work
Call Trace:
<TASK>
dump_stack_lvl+0x4d/0x66
print_report+0x171/0x4a6
kasan_report+0xb3/0x130
xlog_cil_push_work+0x1c8f/0x22f0
process_one_work+0x6f9/0xf70
worker_thread+0x578/0xf30
kthread+0x28c/0x330
ret_from_fork+0x1f/0x30
</TASK>

Allocated by task 2145:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_slab_alloc+0x54/0x60
kmem_cache_alloc+0x14a/0x510
xfs_buf_item_init+0x160/0x6d0
_xfs_trans_bjoin+0x7f/0x2e0
xfs_trans_getsb+0xb6/0x3f0
xfs_trans_apply_sb_deltas+0x1f/0x8c0
__xfs_trans_commit+0xa25/0xe10
xfs_symlink+0xe23/0x1660
xfs_vn_symlink+0x157/0x280
vfs_symlink+0x491/0x790
do_symlinkat+0x128/0x220
__x64_sys_symlink+0x7a/0x90
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Freed by task 216:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
__kasan_slab_free+0x105/0x1a0
kmem_cache_free+0xb6/0x460
xfs_buf_ioend+0x1e9/0x11f0
xfs_buf_item_unpin+0x3d6/0x840
xfs_trans_committed_bulk+0x4c2/0x7c0
xlog_cil_committed+0xab6/0xfb0
xlog_cil_process_committed+0x117/0x1e0
xlog_state_shutdown_callbacks+0x208/0x440
xlog_force_shutdown+0x1b3/0x3a0
xlog_ioend_work+0xef/0x1d0
process_one_work+0x6f9/0xf70
worker_thread+0x578/0xf30
kthread+0x28c/0x330
ret_from_fork+0x1f/0x30

The buggy address belongs to the object at ffff88801800f388
which belongs to the cache xfs_buf_item of size 272
The buggy address is located 104 bytes inside of
272-byte region [ffff88801800f388, ffff88801800f498)

The buggy address belongs to the physical page:
page:ffffea0000600380 refcount:1 mapcount:0 mapping:0000000000000000
index:0xffff88801800f208 pfn:0x1800e
head:ffffea0000600380 order:1 compound_mapcount:0 compound_pincount:0
flags: 0x1fffff80010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff)
raw: 001fffff80010200 ffffea0000699788 ffff88801319db50 ffff88800fb50640
raw: ffff88801800f208 000000000015000a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
ffff88801800f280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88801800f300: fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff88801800f380: fc fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff88801800f400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88801800f480: fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc fc
==================================================================
Disabling lock debugging due to kernel taint

Signed-off-by: Guo Xuenan <guoxuenan@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>


# d86142dd 17-Mar-2022 Dave Chinner <dchinner@redhat.com>

xfs: log items should have a xlog pointer, not a mount

Log items belong to the log, not the xfs_mount. Convert the mount
pointer in the log item to a xlog pointer in preparation for
upcoming log centric changes to the log items.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>


# 182696fb 12-Oct-2021 Darrick J. Wong <djwong@kernel.org>

xfs: rename _zone variables to _cache

Now that we've gotten rid of the kmem_zone_t typedef, rename the
variables to _cache since that's what they are.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>


# e7720afa 27-Sep-2021 Darrick J. Wong <djwong@kernel.org>

xfs: remove kmem_zone typedef

Remove these typedefs by referencing kmem_cache directly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>


# 9343ee76 18-Aug-2021 Dave Chinner <dchinner@redhat.com>

xfs: convert bp->b_bn references to xfs_buf_daddr()

Stop directly referencing b_bn in code outside the buffer cache, as
b_bn is supposed to be used only as an internal cache index.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>


# 75c8c50f 18-Aug-2021 Dave Chinner <dchinner@redhat.com>

xfs: replace XFS_FORCED_SHUTDOWN with xfs_is_shutdown

Remove the shouty macro and instead use the inline function that
matches other state/feature check wrapper naming. This conversion
was done with sed.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>


# 38c26bfd 18-Aug-2021 Dave Chinner <dchinner@redhat.com>

xfs: replace xfs_sb_version checks with feature flag checks

Convert the xfs_sb_version_hasfoo() to checks against
mp->m_features. Checks of the superblock itself during disk
operations (e.g. in the read/write verifiers and the to/from disk
formatters) are not converted - they operate purely on the
superblock state. Everything else should use the mount features.

Large parts of this conversion were done with sed with commands like
this:

for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do
sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f
done

With manual cleanups for things like "xfs_has_extflgbit" and other
little inconsistencies in naming.

The result is ia lot less typing to check features and an XFS binary
size reduced by a bit over 3kB:

$ size -t fs/xfs/built-in.a
text data bss dec hex filenam
before 1130866 311352 484 1442702 16038e (TOTALS)
after 1127727 311352 484 1439563 15f74b (TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>


# e53d3aa0 21-Jun-2021 Brian Foster <bfoster@redhat.com>

xfs: remove dead stale buf unpin handling code

This code goes back to a time when transaction commits wrote
directly to iclogs. The associated log items were pinned, written to
the log, and then "uncommitted" if some part of the log write had
failed. This uncommit sequence called an ->iop_unpin_remove()
handler that was eventually folded into ->iop_unpin() via the remove
parameter. The log subsystem has since changed significantly in that
transactions commit to the CIL instead of direct to iclogs, though
log items must still be aborted in the event of an eventual log I/O
error. However, the context for a log item abort is now asynchronous
from transaction commit, which means the committing transaction has
been freed by this point in time and the transaction uncommit
sequence of events is no longer relevant.

Further, since stale buffers remain locked at transaction commit
through unpin, we can be certain that the buffer is not associated
with any transaction when the unpin callback executes. Remove this
unused hunk of code and replace it with an assertion that the buffer
is disassociated from transaction context.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>


# 84d8949e 21-Jun-2021 Brian Foster <bfoster@redhat.com>

xfs: hold buffer across unpin and potential shutdown processing

The special processing used to simulate a buffer I/O failure on fs
shutdown has a difficult to reproduce race that can result in a use
after free of the associated buffer. Consider a buffer that has been
committed to the on-disk log and thus is AIL resident. The buffer
lands on the writeback delwri queue, but is subsequently locked,
committed and pinned by another transaction before submitted for
I/O. At this point, the buffer is stuck on the delwri queue as it
cannot be submitted for I/O until it is unpinned. A log checkpoint
I/O failure occurs sometime later, which aborts the bli. The unpin
handler is called with the aborted log item, drops the bli reference
count, the pin count, and falls into the I/O failure simulation
path.

The potential problem here is that once the pin count falls to zero
in ->iop_unpin(), xfsaild is free to retry delwri submission of the
buffer at any time, before the unpin handler even completes. If
delwri queue submission wins the race to the buffer lock, it
observes the shutdown state and simulates the I/O failure itself.
This releases both the bli and delwri queue holds and frees the
buffer while xfs_buf_item_unpin() sits on xfs_buf_lock() waiting to
run through the same failure sequence. This problem is rare and
requires many iterations of fstest generic/019 (which simulates disk
I/O failures) to reproduce.

To avoid this problem, grab a hold on the buffer before the log item
is unpinned if the associated item has been aborted and will require
a simulated I/O failure. The hold is already required for the
simulated I/O failure, so the ordering simply guarantees the unpin
handler access to the buffer before it is unpinned and thus
processed by the AIL. This particular ordering is required so long
as the AIL does not acquire a reference on the bli, which is the
long term solution to this problem.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>


# 5f9b4b0d 18-Jun-2021 Dave Chinner <dchinner@redhat.com>

xfs: xfs_log_force_lsn isn't passed a LSN

In doing an investigation into AIL push stalls, I was looking at the
log force code to see if an async CIL push could be done instead.
This lead me to xfs_log_force_lsn() and looking at how it works.

xfs_log_force_lsn() is only called from inode synchronisation
contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn
value as the LSN to sync the log to. This gets passed to
xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the
journal, and then used by xfs_log_force_lsn() to flush the iclogs to
the journal.

The problem is that ip->i_itemp->ili_last_lsn does not store a
log sequence number. What it stores is passed to it from the
->iop_committing method, which is called by xfs_log_commit_cil().
The value this passes to the iop_committing method is the CIL
context sequence number that the item was committed to.

As it turns out, xlog_cil_force_lsn() converts the sequence to an
actual commit LSN for the related context and returns that to
xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn"
variable that contained a sequence with an actual LSN and then uses
that to sync the iclogs.

This caused me some confusion for a while, even though I originally
wrote all this code a decade ago. ->iop_committing is only used by
a couple of log item types, and only inode items use the sequence
number it is passed.

Let's clean up the API, CIL structures and inode log item to call it
a sequence number, and make it clear that the high level code is
using CIL sequence numbers and not on-disk LSNs for integrity
synchronisation purposes.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>


# 19f4e7cc 18-Jun-2021 Dave Chinner <dchinner@redhat.com>

xfs: Fix CIL throttle hang when CIL space used going backwards

A hang with tasks stuck on the CIL hard throttle was reported and
largely diagnosed by Donald Buczek, who discovered that it was a
result of the CIL context space usage decrementing in committed
transactions once the hard throttle limit had been hit and processes
were already blocked. This resulted in the CIL push not waking up
those waiters because the CIL context was no longer over the hard
throttle limit.

The surprising aspect of this was the CIL space usage going
backwards regularly enough to trigger this situation. Assumptions
had been made in design that the relogging process would only
increase the size of the objects in the CIL, and so that space would
only increase.

This change and commit message fixes the issue and documents the
result of an audit of the triggers that can cause the CIL space to
go backwards, how large the backwards steps tend to be, the
frequency in which they occur, and what the impact on the CIL
accounting code is.

Even though the CIL ctx->space_used can go backwards, it will only
do so if the log item is already logged to the CIL and contains a
space reservation for it's entire logged state. This is tracked by
the shadow buffer state on the log item. If the item is not
previously logged in the CIL it has no shadow buffer nor log vector,
and hence the entire size of the logged item copied to the log
vector is accounted to the CIL space usage. i.e. it will always go
up in this case.

If the item has a log vector (i.e. already in the CIL) and the size
decreases, then the existing log vector will be overwritten and the
space usage will go down. This is the only condition where the space
usage reduces, and it can only occur when an item is already tracked
in the CIL. Hence we are safe from CIL space usage underruns as a
result of log items decreasing in size when they are relogged.

Typically this reduction in CIL usage occurs from metadata blocks
being free, such as when a btree block merge occurs or a directory
enter/xattr entry is removed and the da-tree is reduced in size.
This generally results in a reduction in size of around a single
block in the CIL, but also tends to increase the number of log
vectors because the parent and sibling nodes in the tree needs to be
updated when a btree block is removed. If a multi-level merge
occurs, then we see reduction in size of 2+ blocks, but again the
log vector count goes up.

The other vector is inode fork size changes, which only log the
current size of the fork and ignore the previously logged size when
the fork is relogged. Hence if we are removing items from the inode
fork (dir/xattr removal in shortform, extent record removal in
extent form, etc) the relogged size of the inode for can decrease.

No other log items can decrease in size either because they are a
fixed size (e.g. dquots) or they cannot be relogged (e.g. relogging
an intent actually creates a new intent log item and doesn't relog
the old item at all.) Hence the only two vectors for CIL context
size reduction are relogging inode forks and marking buffers active
in the CIL as stale.

Long story short: the majority of the code does the right thing and
handles the reduction in log item size correctly, and only the CIL
hard throttle implementation is problematic and needs fixing. This
patch makes that fix, as well as adds comments in the log item code
that result in items shrinking in size when they are relogged as a
clear reminder that this can and does happen frequently.

The throttle fix is based upon the change Donald proposed, though it
goes further to ensure that once the throttle is activated, it
captures all tasks until the CIL push issues a wakeup, regardless of
whether the CIL space used has gone back under the throttle
threshold.

This ensures that we prevent tasks reducing the CIL slightly under
the throttle threshold and then making more changes that push it
well over the throttle limit. This is acheived by checking if the
throttle wait queue is already active as a condition of throttling.
Hence once we start throttling, we continue to apply the throttle
until the CIL context push wakes everything on the wait queue.

We can use waitqueue_active() for the waitqueue manipulations and
checks as they are all done under the ctx->xc_push_lock. Hence the
waitqueue has external serialisation and we can safely peek inside
the wait queue without holding the internal waitqueue locks.

Many thanks to Donald for his diagnostic and analysis work to
isolate the cause of this hang.

Reported-and-tested-by: Donald Buczek <buczek@molgen.mpg.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>


# 929f8b0d 22-Mar-2021 Dave Chinner <dchinner@redhat.com>

xfs: optimise xfs_buf_item_size/format for contiguous regions

We process the buf_log_item bitmap one set bit at a time with
xfs_next_bit() so we can detect if a region crosses a memcpy
discontinuity in the buffer data address. This has massive overhead
on large buffers (e.g. 64k directory blocks) because we do a lot of
unnecessary checks and xfs_buf_offset() calls.

For example, 16-way concurrent create workload on debug kernel
running CPU bound has this at the top of the profile at ~120k
create/s on 64kb directory block size:

20.66% [kernel] [k] xfs_dir3_leaf_check_int
7.10% [kernel] [k] memcpy
6.22% [kernel] [k] xfs_next_bit
3.55% [kernel] [k] xfs_buf_offset
3.53% [kernel] [k] xfs_buf_item_format
3.34% [kernel] [k] __pv_queued_spin_lock_slowpath
3.04% [kernel] [k] do_raw_spin_lock
2.84% [kernel] [k] xfs_buf_item_size_segment.isra.0
2.31% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
1.36% [kernel] [k] xfs_log_commit_cil

(debug checks hurt large blocks)

The only buffers with discontinuities in the data address are
unmapped buffers, and they are only used for inode cluster buffers
and only for logging unlinked pointers. IOWs, it is -rare- that we
even need to detect a discontinuity in the buffer item formatting
code.

Optimise all this by using xfs_contig_bits() to find the size of
the contiguous regions, then test for a discontiunity inside it. If
we find one, do the slow "bit at a time" method we do now. If we
don't, then just copy the entire contiguous range in one go.

Profile now looks like:

25.26% [kernel] [k] xfs_dir3_leaf_check_int
9.25% [kernel] [k] memcpy
5.01% [kernel] [k] __pv_queued_spin_lock_slowpath
2.84% [kernel] [k] do_raw_spin_lock
2.22% [kernel] [k] __raw_callee_save___pv_queued_spin_unlock
1.88% [kernel] [k] xfs_buf_find
1.53% [kernel] [k] memmove
1.47% [kernel] [k] xfs_log_commit_cil
....
0.34% [kernel] [k] xfs_buf_item_format
....
0.21% [kernel] [k] xfs_buf_offset
....
0.16% [kernel] [k] xfs_contig_bits
....
0.13% [kernel] [k] xfs_buf_item_size_segment.isra.0

So the bit scanning over for the dirty region tracking for the
buffer log items is basically gone. Debug overhead hurts even more
now...

Perf comparison

dir block creates unlink
size (kb) time rate time

Original 4 4m08s 220k 5m13s
Original 64 7m21s 115k 13m25s
Patched 4 3m59s 230k 5m03s
Patched 64 6m23s 143k 12m33s

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>


# c81ea11e 22-Mar-2021 Dave Chinner <dchinner@redhat.com>

xfs: xfs_buf_item_size_segment() needs to pass segment offset

Otherwise it doesn't correctly calculate the number of vectors
in a logged buffer that has a contiguous map that gets split into
multiple regions because the range spans discontigous memory.

Probably never been hit in practice - we don't log contiguous ranges
on unmapped buffers (inode clusters).

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>


# accc661b 22-Mar-2021 Dave Chinner <dchinner@redhat.com>

xfs: reduce buffer log item shadow allocations

When we modify btrees repeatedly, we regularly increase the size of
the logged region by a single chunk at a time (per transaction
commit). This results in the CIL formatting code having to
reallocate the log vector buffer every time the buffer dirty region
grows. Hence over a typical 4kB btree buffer, we might grow the log
vector 4096/128 = 32x over a short period where we repeatedly add
or remove records to/from the buffer over a series of running
transaction. This means we are doing 32 memory allocations and frees
over this time during a performance critical path in the journal.

The amount of space tracked in the CIL for the object is calculated
during the ->iop_format() call for the buffer log item, but the
buffer memory allocated for it is calculated by the ->iop_size()
call. The size callout determines the size of the buffer, the format
call determines the space used in the buffer.

Hence we can oversize the buffer space required in the size
calculation without impacting the amount of space used and accounted
to the CIL for the changes being logged. This allows us to reduce
the number of allocations by rounding up the buffer size to allow
for future growth. This can safe a substantial amount of CPU time in
this path:

- 46.52% 2.02% [kernel] [k] xfs_log_commit_cil
- 44.49% xfs_log_commit_cil
- 30.78% _raw_spin_lock
- 30.75% do_raw_spin_lock
30.27% __pv_queued_spin_lock_slowpath

(oh, ouch!)
....
- 1.05% kmem_alloc_large
- 1.02% kmem_alloc
0.94% __kmalloc

This overhead here us what this patch is aimed at. After:

- 0.76% kmem_alloc_large
- 0.75% kmem_alloc
0.70% __kmalloc

The size of 512 bytes is based on the bitmap chunk size being 128
bytes and that random directory entry updates almost never require
more than 3-4 128 byte regions to be logged in the directory block.

The other observation is for per-ag btrees. When we are inserting
into a new btree block, we'll pack it from the front. Hence the
first few records land in the first 128 bytes so we log only 128
bytes, the next 8-16 records land in the second region so now we log
256 bytes. And so on. If we are doing random updates, it will only
allocate every 4 random 128 byte regions that are dirtied instead of
every single one.

Any larger than 512 bytes and I noticed an increase in memory
footprint in my scalability workloads. Any less than this and I
didn't really see any significant benefit to CPU usage.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>


# e8222613 16-Dec-2020 Dave Chinner <dchinner@redhat.com>

xfs: remove xfs_buf_t typedef

Prepare for kernel xfs_buf alignment by getting rid of the
xfs_buf_t typedef from userspace.

[darrick: This patch is a port of a userspace patch removing the
xfs_buf_t typedef in preparation to make the userspace xfs_buf code
behave more like its kernel counterpart.]

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# 22c10589 01-Sep-2020 Christoph Hellwig <hch@lst.de>

xfs: remove xlog_recover_iodone

The log recovery I/O completion handler does not substancially differ from
the normal one except for the fact that it:

a) never retries failed writes
b) can have log items that aren't on the AIL
c) never has inode/dquot log items attached and thus don't need to
handle them

Add conditionals for (a) and (b) to the ioend code, while (c) doesn't
need special handling anyway.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# b840e2ad 01-Sep-2020 Christoph Hellwig <hch@lst.de>

xfs: use xfs_buf_item_relse in xfs_buf_item_done

Reuse xfs_buf_item_relse instead of duplicating it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 664ffb8a 01-Sep-2020 Christoph Hellwig <hch@lst.de>

xfs: move the buffer retry logic to xfs_buf.c

Move the buffer retry state machine logic to xfs_buf.c and call it once
from xfs_ioend instead of duplicating it three times for the three kinds
of buffers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 12e164aa 01-Sep-2020 Christoph Hellwig <hch@lst.de>

xfs: refactor the buf ioend disposition code

Handle the no-error case in xfs_buf_iodone_error as well, and to clarify
the code rename the function, use the actual enum type as return value
and then switch on it in the callers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# b63da6c8 05-Aug-2020 Randy Dunlap <rdunlap@infradead.org>

xfs: delete duplicated words + other fixes

Delete repeated words in fs/xfs/.
{we, that, the, a, to, fork}
Change "it it" to "it is" in one location.

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
To: linux-fsdevel@vger.kernel.org
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: linux-xfs@vger.kernel.org
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 32a2b11f 22-Jul-2020 Carlos Maiolino <cmaiolino@redhat.com>

xfs: Remove kmem_zone_zalloc() usage

Use kmem_cache_zalloc() directly.

With the exception of xlog_ticket_alloc() which will be dealt on the
next patch for readability.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# 8464e650 13-Jul-2020 YueHaibing <yuehaibing@huawei.com>

xfs: remove duplicated include from xfs_buf_item.c

Remove duplicated include.

Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>


# 48d55e2a 29-Jun-2020 Dave Chinner <dchinner@redhat.com>

xfs: attach inodes to the cluster buffer when dirtied

Rather than attach inodes to the cluster buffer just when we are
doing IO, attach the inodes to the cluster buffer when they are
dirtied. The means the buffer always carries a list of dirty inodes
that reference it, and we can use that list to make more fundamental
changes to inode writeback that aren't otherwise possible.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 298f7bec 29-Jun-2020 Dave Chinner <dchinner@redhat.com>

xfs: pin inode backing buffer to the inode log item

When we dirty an inode, we are going to have to write it disk at
some point in the near future. This requires the inode cluster
backing buffer to be present in memory. Unfortunately, under severe
memory pressure we can reclaim the inode backing buffer while the
inode is dirty in memory, resulting in stalling the AIL pushing
because it has to do a read-modify-write cycle on the cluster
buffer.

When we have no memory available, the read of the cluster buffer
blocks the AIL pushing process, and this causes all sorts of issues
for memory reclaim as it requires inode writeback to make forwards
progress. Allocating a cluster buffer causes more memory pressure,
and results in more cluster buffers to be reclaimed, resulting in
more RMW cycles to be done in the AIL context and everything then
backs up on AIL progress. Only the synchronous inode cluster
writeback in the the inode reclaim code provides some level of
forwards progress guarantees that prevent OOM-killer rampages in
this situation.

Fix this by pinning the inode backing buffer to the inode log item
when the inode is first dirtied (i.e. in xfs_trans_log_inode()).
This may mean the first modification of an inode that has been held
in cache for a long time may block on a cluster buffer read, but
we can do that in transaction context and block safely until the
buffer has been allocated and read.

Once we have the cluster buffer, the inode log item takes a
reference to it, pinning it in memory, and attaches it to the log
item for future reference. This means we can always grab the cluster
buffer from the inode log item when we need it.

When the inode is finally cleaned and removed from the AIL, we can
drop the reference the inode log item holds on the cluster buffer.
Once all inodes on the cluster buffer are clean, the cluster buffer
will be unpinned and it will be available for memory reclaim to
reclaim again.

This avoids the issues with needing to do RMW cycles in the AIL
pushing context, and hence allows complete non-blocking inode
flushing to be performed by the AIL pushing context.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 3536b61e 29-Jun-2020 Dave Chinner <dchinner@redhat.com>

xfs: unwind log item error flagging

When an buffer IO error occurs, we want to mark all
the log items attached to the buffer as failed. Open code
the error handling loop so that we can modify the flagging for the
different types of objects directly and independently of each other.

This also allows us to remove the ->iop_error method from the log
item operations.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 428947e9 29-Jun-2020 Dave Chinner <dchinner@redhat.com>

xfs: handle buffer log item IO errors directly

Currently when a buffer with attached log items has an IO error
it called ->iop_error for each attched log item. These all call
xfs_set_li_failed() to handle the error, but we are about to change
the way log items manage buffers. hence we first need to remove the
per-item dependency on buffer handling done by xfs_set_li_failed().

We already have specific buffer type IO completion routines, so move
the log item error handling out of the generic error handling and
into the log item specific functions so we can implement per-type
error handling easily.

This requires a more complex return value from the error handling
code so that we can take the correct action the failure handling
requires. This results in some repeated boilerplate in the
functions, but that can be cleaned up later once all the changes
cascade through this code.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 2ef3f7f5 29-Jun-2020 Dave Chinner <dchinner@redhat.com>

xfs: get rid of log item callbacks

They are not used anymore, so remove them from the log item and the
buffer iodone attachment interfaces.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# fec671cd 29-Jun-2020 Dave Chinner <dchinner@redhat.com>

xfs: clean up the buffer iodone callback functions

Now that we've sorted inode and dquot buffers, we can apply the same
cleanups to dirty buffers with buffer log items. They only have one
callback, too, so we don't need the log item callback. Collapse the
iodone functions and remove all the now unnecessary infrastructure
around callback processing.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 6f5de180 29-Jun-2020 Dave Chinner <dchinner@redhat.com>

xfs: use direct calls for dquot IO completion

Similar to inodes, we can call the dquot IO completion functions
directly from the buffer completion code, removing another user of
log item callbacks for IO completion processing.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# aac855ab 29-Jun-2020 Dave Chinner <dchinner@redhat.com>

xfs: make inode IO completion buffer centric

Having different io completion callbacks for different inode states
makes things complex. We can detect if the inode is stale via the
XFS_ISTALE flag in IO completion, so we don't need a special
callback just for this.

This means inodes only have a single iodone callback, and inode IO
completion is entirely buffer centric at this point. Hence we no
longer need to use a log item callback at all as we can just call
xfs_iflush_done() directly from the buffer completions and walk the
buffer log item list to complete the all inodes under IO.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# a7e134ef 29-Jun-2020 Dave Chinner <dchinner@redhat.com>

xfs: clean up whacky buffer log item list reinit

When we've emptied the buffer log item list, it does a list_del_init
on itself to reset it's pointers to itself. This is unnecessary as
the list is already empty at this point - it was a left-over
fragment from the list_head conversion of the buffer log item list.
Remove them.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# b01d1461 29-Jun-2020 Dave Chinner <dchinner@redhat.com>

xfs: call xfs_buf_iodone directly

All unmarked dirty buffers should be in the AIL and have log items
attached to them. Hence when they are written, we will run a
callback to remove the item from the AIL if appropriate. Now that
we've handled inode and dquot buffers, all remaining calls are to
xfs_buf_iodone() and so we can hard code this rather than use an
indirect call.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 0c7e5afb 29-Jun-2020 Dave Chinner <david@fromorbit.com>

xfs: mark dquot buffers in cache

dquot buffers always have write IO callbacks, so by marking them
directly we can avoid needing to attach ->b_iodone functions to
them. This avoids an indirect call, and makes future modifications
much simpler.

This is largely a rearrangement of the code at this point - no IO
completion functionality changes at this point, just how the
code is run is modified.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# f593bf14 29-Jun-2020 Dave Chinner <dchinner@redhat.com>

xfs: mark inode buffers in cache

Inode buffers always have write IO callbacks, so by marking them
directly we can avoid needing to attach ->b_iodone functions to
them. This avoids an indirect call, and makes future modifications
much simpler.

While this is largely a refactor of existing functionality, we
broaden the scope of the flag to beyond where inodes are explicitly
attached because future changes need to know what type of log items
are attached to the buffer. Adding this buffer flag may invoke the
inode iodone callback in cases where it wouldn't have been
previously, but this is not a functional change because the callback
is identical to the normal buffer write iodone callback when inodes
are not attached.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 2b3cf093 06-May-2020 Brian Foster <bfoster@redhat.com>

xfs: combine xfs_trans_ail_[remove|delete]()

Now that the functions and callers of
xfs_trans_ail_[remove|delete]() have been fixed up appropriately,
the only difference between the two is the shutdown behavior. There
are only a few callers of the _remove() variant, so make the
shutdown conditional on the parameter and combine the two functions.

Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 6af0479d 06-May-2020 Brian Foster <bfoster@redhat.com>

xfs: drop unused shutdown parameter from xfs_trans_ail_remove()

The shutdown parameter of xfs_trans_ail_remove() is no longer used.
The remaining callers use it for items that legitimately might not
be in the AIL or from contexts where AIL state has already been
checked. Remove the unnecessary parameter and fix up the callers.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 849274c1 06-May-2020 Brian Foster <bfoster@redhat.com>

xfs: acquire ->ail_lock from xfs_trans_ail_delete()

Several callers acquire the lock just prior to the call. Callers
that require ->ail_lock for other purposes already check IN_AIL
state and thus don't require the additional shutdown check in the
helper. Push the lock down into xfs_trans_ail_delete(), open code
the instances that still acquire it, and remove the unnecessary ailp
parameter.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# f9bccfcc 06-May-2020 Brian Foster <bfoster@redhat.com>

xfs: refactor ratelimited buffer error messages into helper

XFS has some inconsistent log message rate limiting with respect to
buffer alerts. The metadata I/O error notification uses the generic
ratelimited alert, the buffer push code uses a custom rate limit and
the similar quiesce time failure checks are not rate limited at all
(when they should be).

The custom rate limit defined in the buf item code is specifically
crafted for buffer alerts. It is more aggressive than generic rate
limiting code because it must accommodate a high frequency of I/O
error events in a relative short timeframe.

Factor out the custom rate limit state from the buf item code into a
per-buftarg rate limit so various alerts are limited based on the
target. Define a buffer alert helper function and use it for the
buffer alerts that are already ratelimited.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 54b3b1f6 06-May-2020 Brian Foster <bfoster@redhat.com>

xfs: factor out buffer I/O failure code

We use the same buffer I/O failure code in a few different places.
It's not much code, but it's not necessarily self-explanatory.
Factor it into a helper and document it in one place.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# cb6ad099 06-May-2020 Brian Foster <bfoster@redhat.com>

xfs: refactor failed buffer resubmission into xfsaild

Flush locked log items whose underlying buffers fail metadata
writeback are tagged with a special flag to indicate that the flush
lock is already held. This is currently implemented in the type
specific ->iop_push() callback, but the processing required for such
items is not type specific because we're only doing basic state
management on the underlying buffer.

Factor the failed log item handling out of the inode and dquot
->iop_push() callbacks and open code the buffer resubmit helper into
a single helper called from xfsaild_push_item(). This provides a
generic mechanism for handling failed metadata buffer writeback with
a bit less code.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# b81b79f4 18-Mar-2020 Christoph Hellwig <hch@lst.de>

xfs: add a new xfs_sb_version_has_v3inode helper

Add a new wrapper to check if a file system supports the v3 inode format
with a larger dinode core. Previously we used xfs_sb_version_hascrc for
that, which is technically correct but a little confusing to read.

Also move xfs_dinode_good_version next to xfs_sb_version_has_v3inode
so that we have one place that documents the superblock version to
inode version relationship.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Chandan Rajendra <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# cdbcf82b 23-Jan-2020 Darrick J. Wong <darrick.wong@oracle.com>

xfs: fix xfs_buf_ioerror_alert location reporting

Instead of passing __func__ to the error reporting function, let's use
the return address builtins so that the messages actually tell you which
higher level function called the buffer functions. This was previously
true for the xfs_buf_read callers, but not for the xfs_trans_read_buf
callers.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>


# 8a6453a8 13-Jan-2020 Darrick J. Wong <darrick.wong@oracle.com>

xfs: check log iovec size to make sure it's plausibly a buffer log format

When log recovery is processing buffer log items, we should check that
the incoming iovec actually describes a region of memory large enough to
contain the log format and the dirty map.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>


# c3d5f0c2 07-Jan-2020 Darrick J. Wong <darrick.wong@oracle.com>

xfs: complain if anyone tries to create a too-large buffer log item

Complain if someone calls xfs_buf_item_init on a buffer that is larger
than the dirty bitmap can handle, or tries to log a region that's past
the end of the dirty bitmap.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>


# c64dd49b 08-Jan-2020 Darrick J. Wong <darrick.wong@oracle.com>

xfs: clean up xfs_buf_item_get_format return value

The only thing that can cause a nonzero return from
xfs_buf_item_get_format is if the kmem_alloc fails, which it can't.
Get rid of all the unnecessary error handling.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>


# 826f7e34 17-Dec-2019 Brian Foster <bfoster@redhat.com>

xfs: use bitops interface for buf log item AIL flag check

The xfs_log_item flags were converted to atomic bitops as of commit
22525c17ed ("xfs: log item flags are racy"). The assert check for
AIL presence in xfs_buf_item_relse() still uses the old value based
check. This likely went unnoticed as XFS_LI_IN_AIL evaluates to 0
and causes the assert to unconditionally pass. Fix up the check.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Fixes: 22525c17ed ("xfs: log item flags are racy")
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 377bcd5f 14-Nov-2019 Carlos Maiolino <cmaiolino@redhat.com>

xfs: Remove kmem_zone_free() wrapper

We can remove it now, without needing to rework the KM_ flags.

Use kmem_cache_free() directly.

Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 12025460 06-Nov-2019 Darrick J. Wong <darrick.wong@oracle.com>

xfs: "optimize" buffer item log segment bitmap setting

Optimize the setting of full words of bits in xfs_buf_item_log_segment.
The optimization is purely within the bug triage process. No functional
changes.

Coverity-id: 1446793
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>


# 707e0dda 26-Aug-2019 Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>

fs: xfs: Remove KM_NOSLEEP and KM_SLEEP.

Since no caller is using KM_NOSLEEP and no callee branches on KM_SLEEP,
we can remove KM_NOSLEEP and replace KM_SLEEP with 0.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 250d4b4c 28-Jun-2019 Eric Sandeen <sandeen@sandeen.net>

xfs: remove unused header files

There are many, many xfs header files which are included but
unneeded (or included twice) in the xfs code, so remove them.

nb: xfs_linux.h includes about 9 headers for everyone, so those
explicit includes get removed by this. I'm not sure what the
preference is, but if we wanted explicit includes everywhere,
a followup patch could remove those xfs_*.h includes from
xfs_linux.h and move them into the files that need them.
Or it could be left as-is.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 95cf0e4a 28-Jun-2019 Christoph Hellwig <hch@lst.de>

xfs: remove a pointless comment duplicated above all xfs_item_ops instances

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# efe2330f 28-Jun-2019 Christoph Hellwig <hch@lst.de>

xfs: remove the xfs_log_item_t typedef

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# ddf92053 28-Jun-2019 Christoph Hellwig <hch@lst.de>

xfs: split iop_unlock

The iop_unlock method is called when comitting or cancelling a
transaction. In the latter case, the transaction may or may not be
aborted. While there is no known problem with the current code in
practice, this implementation is limited in that any log item
implementation that might want to differentiate between a commit and a
cancellation must rely on the aborted state. The aborted bit is only
set when the cancelled transaction is dirty, however. This means that
there is no way to distinguish between a commit and a clean transaction
cancellation.

For example, intent log items currently rely on this distinction. The
log item is either transferred to the CIL on commit or released on
transaction cancel. There is currently no possibility for a clean intent
log item in a transaction, but if that state is ever introduced a cancel
of such a transaction will immediately result in memory leaks of the
associated log item(s). This is an interface deficiency and landmine.

To clean this up, replace the iop_unlock method with an iop_release
method that is specific to transaction cancel. The existing
iop_committing method occurs at the same time as iop_unlock in the
commit path and there is no need for two separate callbacks here.
Overload the iop_committing method with the current commit time
iop_unlock implementations to eliminate the need for the latter and
further simplify the interface.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# e8b78db7 28-Jun-2019 Christoph Hellwig <hch@lst.de>

xfs: don't require log items to implement optional methods

Just check if they are present first.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# dbd329f1 28-Jun-2019 Christoph Hellwig <hch@lst.de>

xfs: add struct xfs_mount pointer to struct xfs_buf

We need to derive the mount pointer from a buffer in a lot of place.
Add a direct pointer to short cut the pointer chasing.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 5467b34b 28-Jun-2019 Darrick J. Wong <darrick.wong@oracle.com>

xfs: move xfs_ino_geometry to xfs_shared.h

The inode geometry structure isn't related to ondisk format; it's
support for the mount structure. Move it to xfs_shared.h.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>


# 4d09807f 12-Apr-2019 Brian Foster <bfoster@redhat.com>

xfs: fix use after free in buf log item unlock assert

The xfs_buf_log_item ->iop_unlock() callback asserts that the buffer
is unlocked when either non-stale or aborted. This assert occurs
after the bli refcount has been dropped and the log item potentially
freed. The aborted check is thus a potential use after free. This
problem has been reproduced with KASAN enabled via generic/475.

Fix up xfs_buf_item_unlock() to query aborted state before the bli
reference is dropped to prevent a potential use after free.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# d43aaf16 19-Nov-2018 Dave Chinner <dchinner@redhat.com>

xfs: fix transient reference count error in xfs_buf_resubmit_failed_buffers

When retrying a failed inode or dquot buffer,
xfs_buf_resubmit_failed_buffers() clears all the failed flags from
the inde/dquot log items. In doing so, it also drops all the
reference counts on the buffer that the failed log items hold. This
means it can drop all the active references on the buffer and hence
free the buffer before it queues it for write again.

Putting the buffer on the delwri queue takes a reference to the
buffer (so that it hangs around until it has been written and
completed), but this goes bang if the buffer has already been freed.

Hence we need to add the buffer to the delwri queue before we remove
the failed flags from the log items attached to the buffer to ensure
it always remains referenced during the resubmit process.

Reported-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 95808459 28-Sep-2018 Brian Foster <bfoster@redhat.com>

xfs: refactor xfs_buf_log_item reference count handling

The xfs_buf_log_item structure has a reference counter with slightly
tricky semantics. In the common case, a buffer is logged and
committed in a transaction, committed to the on-disk log (added to
the AIL) and then finally written back and removed from the AIL. The
bli refcount covers two potentially overlapping timeframes:

1. the bli is held in an active transaction
2. the bli is pinned by the log

The caveat to this approach is that the reference counter does not
purely dictate the lifetime of the bli. IOW, when a dirty buffer is
physically logged and unpinned, the bli refcount may go to zero as
the log item is inserted into the AIL. Only once the buffer is
written back can the bli finally be freed.

The above semantics means that it is not enough for the various
refcount decrementing contexts to release the bli on decrement to
zero. xfs_trans_brelse(), transaction commit (->iop_unlock()) and
unpin (->iop_unpin()) must all drop the associated reference and
make additional checks to determine if the current context is
responsible for freeing the item.

For example, if a transaction holds but does not dirty a particular
bli, the commit may drop the refcount to zero. If the bli itself is
clean, it is also not AIL resident and must be freed at this time.
The same is true for xfs_trans_brelse(). If the transaction dirties
a bli and then aborts or an unpin results in an abort due to a log
I/O error, the last reference count holder is expected to explicitly
remove the item from the AIL and release it (since an abort means
filesystem shutdown and metadata writeback will never occur).

This leads to fairly complex checks being replicated in a few
different places. Since ->iop_unlock() and xfs_trans_brelse() are
nearly identical, refactor the logic into a common helper that
implements and documents the semantics in one place. This patch does
not change behavior.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# d9183105 28-Sep-2018 Brian Foster <bfoster@redhat.com>

xfs: don't unlock invalidated buf on aborted tx commit

xfstests generic/388,475 occasionally reproduce assertion failures
in xfs_buf_item_unpin() when the final bli reference is dropped on
an invalidated buffer and the buffer is not locked as it is expected
to be. Invalidated buffers should remain locked on transaction
commit until the final unpin, at which point the buffer is removed
from the AIL and the bli is freed since stale buffers are not
written back.

The assert failures are associated with filesystem shutdown,
typically due to log I/O errors injected by the test. The
problematic situation can occur if the shutdown happens to cause a
race between an active transaction that has invalidated a particular
buffer and an I/O error on a log buffer that contains the bli
associated with the same (now stale) buffer.

Both transaction and log contexts acquire a bli reference. If the
transaction has already invalidated the buffer by the time the I/O
error occurs and ends up aborting due to shutdown, the transaction
and log hold the last two references to a stale bli. If the
transaction cancel occurs first, it treats the buffer as non-stale
due to the aborted state: the bli reference is dropped and the
buffer is released/unlocked. The log buffer I/O error handling
eventually calls into xfs_buf_item_unpin(), drops the final
reference to the bli and treats it as stale. The buffer wasn't left
locked by xfs_buf_item_unlock(), however, so the assert fails and
the buffer is double unlocked. The latter problem is mitigated by
the fact that the fs is shutdown and no further damage is possible.

->iop_unlock() of an invalidated buffer should behave consistently
with respect to the bli refcount, regardless of aborted state. If
the refcount remains elevated on commit, we know the bli is awaiting
an unpin (since it can't be in another transaction) and will be
handled appropriately on log buffer completion. If the final bli
reference of an invalidated buffer is dropped in ->iop_unlock(), we
can assume the transaction has aborted because invalidation implies
a dirty transaction. In the non-abort case, the log would have
acquired a bli reference in ->iop_pin() and prevented bli release at
->iop_unlock() time. In the abort case the item must be freed and
buffer unlocked because it wasn't pinned by the log.

Rework xfs_buf_item_unlock() to simplify the currently circuitous
and duplicate logic and leave invalidated buffers locked based on
bli refcount, regardless of aborted state. This ensures that a
pinned, stale buffer is always found locked when eventually
unpinned.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 9bb54cb5 07-Jun-2018 Dave Chinner <dchinner@redhat.com>

xfs: clean up MIN/MAX

Get rid of the MIN/MAX macros and just use the native min/max macros
directly in the XFS code.

Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 0b61f8a4 05-Jun-2018 Dave Chinner <dchinner@redhat.com>

xfs: convert to SPDX license tags

Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}

/^ \* This program is free software/ {
hdr = 2.0;
next
}

/any later version./ {
tag = "GPL-2.0+"
next
}

/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}

/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}

/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}

// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# e6631f85 09-May-2018 Dave Chinner <dchinner@redhat.com>

xfs: get rid of the log item descriptor

It's just a connector between a transaction and a log item. There's
a 1:1 relationship between a log item descriptor and a log item,
and a 1:1 relationship between a log item descriptor and a
transaction. Both relationships are created and terminated at the
same time, so why do we even have the descriptor?

Replace it with a specific list_head in the log item and a new
log item dirtied flag to replace the XFS_LID_DIRTY flag.

Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[darrick: fix up deferred agfl intent finish_item use of LID_DIRTY]
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 1a2ebf83 09-May-2018 Dave Chinner <dchinner@redhat.com>

xfs: add some more debug checks to buffer log item reuse

Just to make sure the item isn't associated with another
transaction when we try to reuse it.

Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 22525c17 09-May-2018 Dave Chinner <dchinner@redhat.com>

xfs: log item flags are racy

The log item flags contain a field that is protected by the AIL
lock - the XFS_LI_IN_AIL flag. We use non-atomic RMW operations to
set and clear these flags, but most of the updates and checks are
not done with the AIL lock held and so are susceptible to update
races.

Fix this by changing the log item flags to use atomic bitops rather
than be reliant on the AIL lock for update serialisation.

Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 57e80956 07-Mar-2018 Matthew Wilcox <willy@infradead.org>

xfs: Rename xa_ elements to ail_

This is a simple rename, except that xa_ail becomes ail_head.

Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 643c8c05 24-Jan-2018 Carlos Maiolino <cmaiolino@redhat.com>

Use list_head infra-structure for buffer's log items list

Now that buffer's b_fspriv has been split, just replace the current
singly linked list of xfs_log_items, by the list_head infrastructure.

Also, remove the xfs_log_item argument from xfs_buf_resubmit_failed_buffers(),
there is no need for this argument, once the log items can be walked
through the list_head in the buffer.

Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: minor style cleanups]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# fb1755a6 24-Jan-2018 Carlos Maiolino <cmaiolino@redhat.com>

Split buffer's b_fspriv field

By splitting the b_fspriv field into two different fields (b_log_item
and b_li_list). It's possible to get rid of an old ABI workaround, by
using the new b_log_item field to store xfs_buf_log_item separated from
the log items attached to the buffer, which will be linked in the new
b_li_list field.

This way, there is no more need to reorder the log items list to place
the buf_log_item at the beginning of the list, simplifying a bit the
logic to handle buffer IO.

This also opens the possibility to change buffer's log items list into a
proper list_head.

b_log_item field is still defined as a void *, because it is still used
by the log buffers to store xlog_in_core structures, and there is no
need to add an extra field on xfs_buf just for xlog_in_core.

Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: minor style changes]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 70a20655 24-Jan-2018 Carlos Maiolino <cmaiolino@redhat.com>

Get rid of xfs_buf_log_item_t typedef

Take advantage of the rework on xfs_buf log items list, to get rid of
ths typedef for xfs_buf_log_item.

This patch also fix some indentation alignment issues found along the way.

Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 7bf7a193 31-Aug-2017 Darrick J. Wong <darrick.wong@oracle.com>

xfs: fix compiler warnings

Fix up all the compiler warnings that have crept in.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>


# e9385cc6 29-Aug-2017 Brian Foster <bfoster@redhat.com>

xfs: ordered buffer log items are never formatted

Ordered buffers pass through the logging infrastructure without ever
being written to the log. The way this works is that the ordered
buffer status is transferred to the log vector at commit time via
the ->iop_size() callback. In xlog_cil_insert_format_items(),
ordered log vectors bypass ->iop_format() processing altogether.

Therefore it is unnecessary for xfs_buf_item_format() to handle
ordered buffers. Remove the unnecessary logic and assert that an
ordered buffer never reaches this point.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 6453c65d 29-Aug-2017 Brian Foster <bfoster@redhat.com>

xfs: remove unnecessary dirty bli format check for ordered bufs

xfs_buf_item_unlock() historically checked the dirty state of the
buffer by manually checking the buffer log formats for dirty
segments. The introduction of ordered buffers invalidated this check
because ordered buffers have dirty bli's but no dirty (logged)
segments. The check was updated to accommodate ordered buffers by
looking at the bli state first and considering the blf only if the
bli is clean.

This logic is safe but unnecessary. There is no valid case where the
bli is clean yet the blf has dirty segments. The bli is set dirty
whenever the blf is logged (via xfs_trans_log_buf()) and the blf is
cleared in the only place BLI_DIRTY is cleared (xfs_trans_binval()).

Remove the conditional blf dirty checks and replace with an assert
that should catch any discrepencies between bli and blf dirty
states. Refactor the old blf dirty check into a helper function to
be used by the assert.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# a4f6cf6b 29-Aug-2017 Brian Foster <bfoster@redhat.com>

xfs: open-code xfs_buf_item_dirty()

It checks a single flag and has one caller. It probably isn't worth
its own function.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# d3a304b6 08-Aug-2017 Carlos Maiolino <cmaiolino@redhat.com>

xfs: Properly retry failed inode items in case of error during buffer writeback

When a buffer has been failed during writeback, the inode items into it
are kept flush locked, and are never resubmitted due the flush lock, so,
if any buffer fails to be written, the items in AIL are never written to
disk and never unlocked.

This causes unmount operation to hang due these items flush locked in AIL,
but this also causes the items in AIL to never be written back, even when
the IO device comes back to normal.

I've been testing this patch with a DM-thin device, creating a
filesystem larger than the real device.

When writing enough data to fill the DM-thin device, XFS receives ENOSPC
errors from the device, and keep spinning on xfsaild (when 'retry
forever' configuration is set).

At this point, the filesystem can not be unmounted because of the flush locked
items in AIL, but worse, the items in AIL are never retried at all
(once xfs_inode_item_push() will skip the items that are flush locked),
even if the underlying DM-thin device is expanded to the proper size.

This patch fixes both cases, retrying any item that has been failed
previously, using the infra-structure provided by the previous patch.

Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 0b80ae6e 08-Aug-2017 Carlos Maiolino <cmaiolino@redhat.com>

xfs: Add infrastructure needed for error propagation during buffer IO failure

With the current code, XFS never re-submit a failed buffer for IO,
because the failed item in the buffer is kept in the flush locked state
forever.

To be able to resubmit an log item for IO, we need a way to mark an item
as failed, if, for any reason the buffer which the item belonged to
failed during writeback.

Add a new log item callback to be used after an IO completion failure
and make the needed clean ups.

Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 3d4b4a3e 14-Jun-2017 Brian Foster <bfoster@redhat.com>

xfs: remove bli from AIL before release on transaction abort

When a buffer is modified, logged and committed, it ultimately ends
up sitting on the AIL with a dirty bli waiting for metadata
writeback. If another transaction locks and invalidates the buffer
(freeing an inode chunk, for example) in the meantime, the bli is
flagged as stale, the dirty state is cleared and the bli remains in
the AIL.

If a shutdown occurs before the transaction that has invalidated the
buffer is committed, the transaction is ultimately aborted. The log
items are flagged as such and ->iop_unlock() handles the aborted
items. Because the bli is clean (due to the invalidation),
->iop_unlock() unconditionally releases it. The log item may still
reside in the AIL, however, which means the I/O completion handler
may still run and attempt to access it. This results in assert
failure due to the release of the bli while still present in the AIL
and a subsequent NULL dereference and panic in the buffer I/O
completion handling. This can be reproduced by running generic/388
in repetition.

To avoid this problem, update xfs_buf_item_unlock() to first check
whether the bli is aborted and if so, remove it from the AIL before
it is released. This ensures that the bli is no longer accessed
during the shutdown sequence after it has been freed.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 4dd2eb633 03-Feb-2017 Hou Tao <houtao1@huawei.com>

xfs: reset b_first_retry_time when clear the retry status of xfs_buf_t

After successful IO or permanent error, b_first_retry_time also
needs to be cleared, else the invalid first retry time will be
used by the next retry check.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>


# 77169812 13-Sep-2016 Eric Sandeen <sandeen@redhat.com>

xfs: normalize "infinite" retries in error configs

As it stands today, the "fail immediately" vs. "retry forever"
values for max_retries and retry_timeout_seconds in the xfs metadata
error configurations are not consistent.

A retry_timeout_seconds of 0 means "retry forever," but a
max_retries of 0 means "fail immediately."

retry_timeout_seconds < 0 is disallowed, while max_retries == -1
means "retry forever."

Make this consistent across the error configs, such that a value of
0 means "fail immediately" (i.e. wait 0 seconds, or retry 0 times),
and a value of -1 always means "retry forever."

This makes retry_timeout a signed long to accommodate the -1, even
though it stores jiffies. Given our limit of a 1 day maximum
timeout, this should be sufficient even at much higher HZ values
than we have available today.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 79c350e4 13-Sep-2016 Xie XiuQi <xiexiuqi@huawei.com>

xfs: fix signed integer overflow

Use 1U for unsigned int to avoid a overflow warning from UBSAN.

[ 31.910858] UBSAN: Undefined behaviour in fs/xfs/xfs_buf_item.c:889:25
[ 31.911252] signed integer overflow:
[ 31.911478] -2147483648 - 1 cannot be represented in type 'int'
[ 31.911846] CPU: 1 PID: 1011 Comm: tuned Tainted: G B ---- ------- 3.10.0-327.28.3.el7.x86_64 #1
[ 31.911857] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 01/07/2011
[ 31.911866] 1ffff1004069cd3b 0000000076bec3fd ffff8802034e69a0 ffffffff81ee3140
[ 31.911883] ffff8802034e69b8 ffffffff81ee31fd ffffffffa0ad79e0 ffff8802034e6b20
[ 31.911898] ffffffff81ee46e2 0000002d515470c0 0000000000000001 0000000041b58ab3
[ 31.911913] Call Trace:
[ 31.911932] [<ffffffff81ee3140>] dump_stack+0x1e/0x20
[ 31.911947] [<ffffffff81ee31fd>] ubsan_epilogue+0x12/0x55
[ 31.911964] [<ffffffff81ee46e2>] handle_overflow+0x1ba/0x215
[ 31.912083] [<ffffffff81ee4798>] __ubsan_handle_sub_overflow+0x2a/0x31
[ 31.912204] [<ffffffffa08676fb>] xfs_buf_item_log+0x34b/0x3f0 [xfs]
[ 31.912314] [<ffffffffa0880490>] xfs_trans_log_buf+0x120/0x260 [xfs]
[ 31.912402] [<ffffffffa079a890>] xfs_btree_log_recs+0x80/0xc0 [xfs]
[ 31.912490] [<ffffffffa07a29f8>] xfs_btree_delrec+0x11a8/0x2d50 [xfs]
[ 31.913589] [<ffffffffa07a86f9>] xfs_btree_delete+0xc9/0x260 [xfs]
[ 31.913762] [<ffffffffa075b5cf>] xfs_free_ag_extent+0x63f/0xe20 [xfs]
[ 31.914339] [<ffffffffa075ec0f>] xfs_free_extent+0x2af/0x3e0 [xfs]
[ 31.914641] [<ffffffffa0801b2b>] xfs_bmap_finish+0x32b/0x4b0 [xfs]
[ 31.914841] [<ffffffffa083c2e7>] xfs_itruncate_extents+0x3b7/0x740 [xfs]
[ 31.915216] [<ffffffffa08342fa>] xfs_setattr_size+0x60a/0x860 [xfs]
[ 31.915471] [<ffffffffa08345ea>] xfs_vn_setattr+0x9a/0xe0 [xfs]
[ 31.915590] [<ffffffff8149ad38>] notify_change+0x5c8/0x8a0
[ 31.915607] [<ffffffff81450f22>] do_truncate+0x122/0x1d0
[ 31.915640] [<ffffffff8147beee>] do_last+0x15de/0x2c80
[ 31.915707] [<ffffffff8147d777>] path_openat+0x1e7/0xcc0
[ 31.915802] [<ffffffff81480824>] do_filp_open+0xa4/0x160
[ 31.915848] [<ffffffff81453127>] do_sys_open+0x1b7/0x3f0
[ 31.915879] [<ffffffff81453392>] SyS_open+0x32/0x40
[ 31.915897] [<ffffffff81f08989>] system_call_fastpath+0x16/0x1b

[ 240.086809] UBSAN: Undefined behaviour in fs/xfs/xfs_buf_item.c:866:34
[ 240.086820] signed integer overflow:
[ 240.086830] -2147483648 - 1 cannot be represented in type 'int'
[ 240.086846] CPU: 1 PID: 12969 Comm: rm Tainted: G B ---- ------- 3.10.0-327.28.3.el7.x86_64 #1
[ 240.086857] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 01/07/2011
[ 240.086868] 1ffff10040491def 00000000e2ea59c1 ffff88020248ef40 ffffffff81ee3140
[ 240.086885] ffff88020248ef58 ffffffff81ee31fd ffffffffa0ad79e0 ffff88020248f0c0
[ 240.086901] ffffffff81ee46e2 0000002d02488000 0000000000000001 0000000041b58ab3
[ 240.086915] Call Trace:
[ 240.086938] [<ffffffff81ee3140>] dump_stack+0x1e/0x20
[ 240.086953] [<ffffffff81ee31fd>] ubsan_epilogue+0x12/0x55
[ 240.086971] [<ffffffff81ee46e2>] handle_overflow+0x1ba/0x215
...

Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# b1c5ebb2 21-Jul-2016 Dave Chinner <dchinner@redhat.com>

xfs: allocate log vector buffers outside CIL context lock

One of the problems we currently have with delayed logging is that
under serious memory pressure we can deadlock memory reclaim. THis
occurs when memory reclaim (such as run by kswapd) is reclaiming XFS
inodes and issues a log force to unpin inodes that are dirty in the
CIL.

The CIL is pushed, but this will only occur once it gets the CIL
context lock to ensure that all committing transactions are complete
and no new transactions start being committed to the CIL while the
push switches to a new context.

The deadlock occurs when the CIL context lock is held by a
committing process that is doing memory allocation for log vector
buffers, and that allocation is then blocked on memory reclaim
making progress. Memory reclaim, however, is blocked waiting for
a log force to make progress, and so we effectively deadlock at this
point.

To solve this problem, we have to move the CIL log vector buffer
allocation outside of the context lock so that memory reclaim can
always make progress when it needs to force the log. The problem
with doing this is that a CIL push can take place while we are
determining if we need to allocate a new log vector buffer for
an item and hence the current log vector may go away without
warning. That means we canot rely on the existing log vector being
present when we finally grab the context lock and so we must have a
replacement buffer ready to go at all times.

To ensure this, introduce a "shadow log vector" buffer that is
always guaranteed to be present when we gain the CIL context lock
and format the item. This shadow buffer may or may not be used
during the formatting, but if the log item does not have an existing
log vector buffer or that buffer is too small for the new
modifications, we swap it for the new shadow buffer and format
the modifications into that new log vector buffer.

The result of this is that for any object we modify more than once
in a given CIL checkpoint, we double the memory required
to track dirty regions in the log. For single modifications then
we consume the shadow log vectorwe allocate on commit, and that gets
consumed by the checkpoint. However, if we make multiple
modifications, then the second transaction commit will allocate a
shadow log vector and hence we will end up with double the memory
usage as only one of the log vectors is consumed by the CIL
checkpoint. The remaining shadow vector will be freed when th elog
item is freed.

This can probably be optimised in future - access to the shadow log
vector is serialised by the object lock (as opposited to the active
log vector, which is controlled by the CIL context lock) and so we
can probably free shadow log vector from some objects when the log
item is marked clean on removal from the AIL.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 5539d367 19-Jul-2016 Eric Sandeen <sandeen@sandeen.net>

xfs: don't reset b_retries to 0 on every failure

With the code as it stands today, b_retries never increments because
it gets reset to 0 in the error callback.

Remove that, and fix a similar problem where the first retry time
was constantly being overwritten, which defeated the timeout tunable
as well. We now only set first retry time if a non-zero timeout is
set, to match the behavior of only incrementing retries if a retry
value is set.

This way max retries & timeouts consistently take effect after a
tunable is set, rather than acting retroactively on a buffer which
has failed at some point in the past and has accumulated state from
those prior failures.

Thanks to dchinner for talking through this with me.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 0b4db5df 19-Jul-2016 Eric Sandeen <sandeen@sandeen.net>

xfs: remove extraneous buffer flag changes

Fix up a couple places where extra flag manipulation occurs.

In the first case we clear XBF_ASYNC and then immediately reset it -
so don't bother clearing in the first place.

In the 2nd case we are at a point in the function where the buffer
must already be async, so there is no need to reset it.

Add consistent spacing around the " | " while we're at it.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# a3916e52 01-Jun-2016 Brian Foster <bfoster@redhat.com>

xfs: fix broken multi-fsb buffer logging

Multi-block buffers are logged based on buffer offset in
xfs_trans_log_buf(). xfs_buf_item_log() ultimately walks each mapping in
the buffer and marks the associated range to be logged in the
xfs_buf_log_format bitmap for that mapping. This code is broken,
however, in that it marks the actual buffer offsets of the associated
range in each bitmap rather than shifting to the byte range for that
particular mapping.

For example, on a 4k fsb fs, buffer offset 4096 refers to the first byte
of the second mapping in the buffer. This means byte 0 of the second log
format bitmap should be tagged as dirty. Instead, the current code marks
byte offset 4096 of the second log format bitmap, which is invalid and
potentially out of range of the mapping.

As a result of this, the log item format code invoked at transaction
commit time is not be able to correctly identify what parts of the
buffer to copy into log vectors. This can lead to NULL log vector
pointer dereferences in CIL push context if the item format code was not
able to locate any dirty ranges at all. This crash has been reproduced
on a 4k FSB filesystem using 16k directory blocks where an unlink
operation happened not to log anything in the first block of the
mapping. The logged offsets were all over 4k, marked as such in the
subsequent log format mappings, and thus left the transaction with an
xfs_log_item that is marked DIRTY but without any logged regions.

Further, even when the logged regions are marked correctly in the buffer
log format bitmaps, the format code doesn't copy the correct ranges of
the buffer into the log. This means that any logged region beyond the
first block of a multi-block buffer is subject to corruption after a
crash and log recovery sequence. This is due to a failure to convert the
mapping bm_len field from basic blocks to bytes in the buffer offset
tracking code in xfs_buf_item_format().

Update xfs_buf_item_log() to convert buffer offsets to segment relative
offsets when logging multi-block buffers. This ensures that the modified
regions of a buffer are logged correctly and avoids the aforementioned
crash. Also update xfs_buf_item_format() to correctly track the source
offset into the buffer for the log vector formatting code. This ensures
that the correct data is copied into the log.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# e6b3bb78 17-May-2016 Carlos Maiolino <cmaiolino@redhat.com>

xfs: add "fail at unmount" error handling configuration

If we take "retry forever" literally on metadata IO errors, we can
hang at unmount, once it retries those writes forever. This is the
default behavior, unfortunately.

Add an error configuration option for this behavior and default it
to "fail" so that an unmount will trigger actuall errors, a shutdown
and allow the unmount to succeed. It will be noisy, though, as it
will log the errors and shutdown that occurs.

To fix this, we need to mark the filesystem as being in the process
of unmounting. Do this with a mount flag that is added at the
appropriate time (i.e. before the blocking AIL sync). We also need
to add this flag if mount fails after the initial phase of log
recovery has been run.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# a5ea70d2 17-May-2016 Carlos Maiolino <cmaiolino@redhat.com>

xfs: add configuration of error failure speed

On reception of an error, we can fail immediately, perform some
bound amount of retries or retry indefinitely. The current behaviour
we have is to retry forever.

However, we'd like the ability to choose how long the filesystem
should try after an error, it can either fail immediately, retry a
few times, or retry forever. This is implemented by using
max_retries sysfs attribute, to hold the amount of times we allow
the filesystem to retry after an error. Being -1 a special case
where the filesystem will retry indefinitely.

Add both a maximum retry count and a retry timeout so that we can
bound by time and/or physical IO attempts.

Finally, plumb these into xfs_buf_iodone error processing so that
the error behaviour follows the selected configuration.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# df309390 17-May-2016 Carlos Maiolino <cmaiolino@redhat.com>

xfs: add configurable error support to metadata buffers

With the error configuration handle for async metadata write errors
in place, we can now add initial support to the IO error processing
in xfs_buf_iodone_error().

Add an infrastructure function to look up the configuration handle,
and rearrange the error handling to prepare the way for different
error handling conigurations to be used.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 5cfd28b6 09-Feb-2016 Dave Chinner <dchinner@redhat.com>

xfs: remove XBF_STALE flag wrapper macros

They only set/clear/check a flag, no need for obfuscating this
with a macro.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 1157b32c 09-Feb-2016 Dave Chinner <dchinner@redhat.com>

xfs: remove XBF_ASYNC flag wrapper macros

They only set/clear/check a flag, no need for obfuscating this
with a macro.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# b0388bf1 09-Feb-2016 Dave Chinner <dchinner@redhat.com>

xfs: remove XBF_DONE flag wrapper macros

They only set/clear/check a flag, no need for obfuscating this
with a macro.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# f79af0b9 24-Aug-2015 Dave Chinner <dchinner@redhat.com>

xfs: fix non-debug build warnings

There seem to be a couple of new set-but-unused build warnings
that gcc 4.9.3 is now warning about. These are not regressions, just
the compiler being more picky.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 146e54b7 18-Aug-2015 Brian Foster <bfoster@redhat.com>

xfs: add helper to conditionally remove items from the AIL

Several areas of code duplicate a pattern where we take the AIL lock,
check whether an item is in the AIL and remove it if so. Create a new
helper for this pattern and use it where appropriate.

Signed-off-by: Brian Foster <bfoster@redhat.com>


# fdadf267 23-Feb-2015 Eric Sandeen <sandeen@sandeen.net>

xfs: clarify async write failure ratelimit message

Today, when the "failing async writes" get ratelimited, we see:

XFS:: 62836 callbacks suppressed

Aside from the extra ":" it's not entirely clear which message is being
suppressed, especially if other messages or ratelimits are happening
at the same time. Clarify this as i.e.:

XFS (dm-11): Failing async write on buffer block 0x140090. Retrying async write.
XFS: Failing async write: 62836 callbacks suppressed

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 0d612fb5 21-Jan-2015 Dave Chinner <dchinner@redhat.com>

xfs: ensure buffer types are set correctly

Jan Kara reported that log recovery was finding buffers with invalid
types in them. This should not happen, and indicates a bug in the
logging of buffers. To catch this, add asserts to the buffer
formatting code to ensure that the buffer type is in range when the
transaction is committed.

We don't set a type on buffers being marked stale - they are not
going to get replayed, the format item exists only for recovery to
be able to prevent replay of the buffer, so the type does not
matter. Hence that needs special casing here.

cc: <stable@vger.kernel.org> # 3.10 to current
Reported-by: Jan Kara <jack@suse.cz>
Tested-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 77af574e 23-Dec-2014 Eric Sandeen <sandeen@redhat.com>

xfs: remove extra newlines from xfs messages

xfs_warn() and friends add a newline by default, but some
messages add another one.

Particularly for the failing write message below, this can
waste a lot of console real estate!

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 4fb6e8ad 27-Nov-2014 Christoph Hellwig <hch@lst.de>

xfs: merge xfs_ag.h into xfs_format.h

More on-disk format consolidation. A few declarations that weren't on-disk
format related move into better suitable spots.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 595bff75 01-Oct-2014 Dave Chinner <dchinner@redhat.com>

xfs: introduce xfs_buf_submit[_wait]

There is a lot of cookie-cutter code that looks like:

if (shutdown)
handle buffer error
xfs_buf_iorequest(bp)
error = xfs_buf_iowait(bp)
if (error)
handle buffer error

spread through XFS. There's significant complexity now in
xfs_buf_iorequest() to specifically handle this sort of synchronous
IO pattern, but there's all sorts of nasty surprises in different
error handling code dependent on who owns the buffer references and
the locks.

Pull this pattern into a single helper, where we can hide all the
synchronous IO warts and hence make the error handling for all the
callers much saner. This removes the need for a special extra
reference to protect IO completion processing, as we can now hold a
single reference across dispatch and waiting, simplifying the sync
IO smeantics and error handling.

In doing this, also rename xfs_buf_iorequest to xfs_buf_submit and
make it explicitly handle on asynchronous IO. This forces all users
to be switched specifically to one interface or the other and
removes any ambiguity between how the interfaces are to be used. It
also means that xfs_buf_iowait() goes away.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# e8aaba9a 01-Oct-2014 Dave Chinner <dchinner@redhat.com>

xfs: xfs_buf_ioend and xfs_buf_iodone_work duplicate functionality

We do some work in xfs_buf_ioend, and some work in
xfs_buf_iodone_work, but much of that functionality is the same.
This work can all be done in a single function, leaving
xfs_buf_iodone just a wrapper to determine if we should execute it
by workqueue or directly. hence rename xfs_buf_iodone_work to
xfs_buf_ioend(), and add a new xfs_buf_ioend_async() for places that
need async processing.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 02cc1876 23-Sep-2014 Dave Chinner <david@fromorbit.com>

xfs: xfs_buf_write_fail_rl_state can be static

Fix sparse warning introduced by commit ac8809f9 ("xfs: abort
metadata writeback on permanent errors").

Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 2451337d 24-Jun-2014 Dave Chinner <dchinner@redhat.com>

xfs: global error sign conversion

Convert all the errors the core XFs code to negative error signs
like the rest of the kernel and remove all the sign conversion we
do in the interface layers.

Errors for conversion (and comparison) found via searches like:

$ git grep " E" fs/xfs
$ git grep "return E" fs/xfs
$ git grep " E[A-Z].*;$" fs/xfs

Negation points found via searches like:

$ git grep "= -[a-z,A-Z]" fs/xfs
$ git grep "return -[a-z,A-D,F-Z]" fs/xfs
$ git grep " -[a-z].*;" fs/xfs

[ with some bits I missed from Brian Foster ]

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 36de9556 06-Jun-2014 Dave Chinner <dchinner@redhat.com>

xfs: kill xfs_buf_geterror()

Most of the callers are just calling ASSERT(!xfs_buf_geterror())
which means they are checking for bp->b_error == 0. If bp is null in
this case, we will assert fail, and hence it's no different in
result to oopsing because of a null bp. In some cases, errors have
already been checked for or the function returning the buffer can't
return a buffer with an error, so it's just a redundant assert.
Either way, the assert can either be removed.

The other two non-assert callers can just test for a buffer and
error properly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 72b0636b 14-Apr-2014 Eric Sandeen <sandeen@redhat.com>

xfs: remove unused bip arg from xfs_buf_item_log_segment()

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 492185ef 06-Feb-2014 Jie Liu <jeff.liu@oracle.com>

xfs: remove XFS_TRANS_DEBUG dead code

Remove the leftover XFS_TRANS_DEBUG dead code following the previous
cleaning up of it in commits ec47eb6b0b450.

Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# ac8809f9 11-Dec-2013 Dave Chinner <dchinner@redhat.com>

xfs: abort metadata writeback on permanent errors

If we are doing aysnc writeback of metadata, we can get write errors
but have nobody to report them to. At the moment, we simply attempt
to reissue the write from io completion in the hope that it's a
transient error.

When it's not a transient error, the buffer is stuck forever in
this loop, and we cannot break out of it. Eventually, unmount will
hang because the AIL cannot be emptied and everything goes downhill
from them.

To solve this problem, only retry the write IO once before aborting
it. We don't throw the buffer away because some transient errors can
last minutes (e.g. FC path failover) or even hours (thin
provisioned devices that have run out of backing space) before they
go away. Hence we really want to keep trying until we can't try any
more.

Because the buffer was not cleaned, however, it does not get removed
from the AIL and hence the next pass across the AIL will start IO on
it again. As such, we still get the "retry forever" semantics that
we currently have, but we allow other access to the buffer in the
mean time. Meanwhile the filesystem can continue to modify the
buffer and relog it, so the IO errors won't hang the log or the
filesystem.

Now when we are pushing the AIL, we can see all these "permanent IO
error" buffers and we can issue a warning about failures before we
retry the IO. We can also catch these buffers when unmounting an
issue a corruption warning, too.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>


# bde7cff6 12-Dec-2013 Christoph Hellwig <hch@infradead.org>

xfs: format log items write directly into the linear CIL buffer

Instead of setting up pointers to memory locations in iop_format which then
get copied into the CIL linear buffer after return move the copy into
the individual inode items. This avoids the need to always have a memory
block in the exact same layout that gets written into the log around, and
allow the log items to be much more flexible in their in-memory layouts.

The only caveat is that we need to properly align the data for each
iovec so that don't have structures misaligned in subsequent iovecs.

Note that all log item format routines now need to be careful to modify
the copy of the item that was placed into the CIL after calls to
xlog_copy_iovec instead of the in-memory copy.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 1234351c 12-Dec-2013 Christoph Hellwig <hch@infradead.org>

xfs: introduce xlog_copy_iovec

Add a helper to abstract out filling the log iovecs in the log item
format handlers. This will allow us to change the way we do the log
item formatting more easily.

The copy in the name is a bit confusing for now as it just assigns a
pointer and lets the CIL code perform the copy, but that will change
soon.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 7aeb7222 12-Dec-2013 Christoph Hellwig <hch@infradead.org>

xfs: refactor xfs_buf_item_format_segment

Add two helpers to make the code more readable.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 632b89e8 29-Oct-2013 Dave Chinner <dchinner@redhat.com>

xfs: fix static and extern sparse warnings

The kbuild test robot indicated that there were some new sparse
warnings in fs/xfs/xfs_dquot_buf.c. Actually, there were a lot more
that is wasn't warning about, so fix them all up.

Reported-by: kbuild test robot
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 239880ef 22-Oct-2013 Dave Chinner <dchinner@redhat.com>

xfs: decouple log and transaction headers

xfs_trans.h has a dependency on xfs_log.h for a couple of
structures. Most code that does transactions doesn't need to know
anything about the log, but this dependency means that they have to
include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header
files and clean up the includes to be in dependency order.

In doing this, remove the direct include of xfs_trans_reserve.h from
xfs_trans.h so that we remove the dependency between xfs_trans.h and
xfs_mount.h. Hence the xfs_trans.h include can be moved to the
indicate the actual dependencies other header files have on it.

Note that these are kernel only header files, so this does not
translate to any userspace changes at all.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 48852358 24-Sep-2013 Dave Chinner <dchinner@redhat.com>

xfs: lock the AIL before removing the buffer item

Regression introduced by commit 46f9d2e ("xfs: aborted buf items can
be in the AIL") which fails to lock the AIL before removing the
item. Spinlock debugging throws a warning about this.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 46f9d2eb 03-Sep-2013 Dave Chinner <dchinner@redhat.com>

xfs: aborted buf items can be in the AIL.

Saw this on generic/270 after a DQALLOC transaction overrun
shutdown:

XFS: Assertion failed: !(bip->bli_item.li_flags & XFS_LI_IN_AIL), file: fs/xfs/xfs_buf_item.c, line: 952
.....
xfs_buf_item_relse+0x4f/0xd0
xfs_buf_item_unlock+0x1b4/0x1e0
xfs_trans_free_items+0x7d/0xb0
xfs_trans_cancel+0x13c/0x1b0
xfs_symlink+0x37e/0xa60
....

When a transaction abort occured.

If we are aborting a transaction and trigger this code path, then
the item may be dirty. If the item is dirty, then it may be in the
AIL. Hence if we are aborting, we need to check if the item is in
the AIL and remove it before freeing it.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 2ad01f53 12-Aug-2013 Dave Chinner <dchinner@redhat.com>

xfs: use reference counts to free clean buffer items

When a transaction is cancelled and the buffer log item is clean in
the transaction, the buffer log item is unconditionally freed. If
the log item is in the AIL, however, this leads to a use after free
condition as the item still has other users.

In this case, xfs_buf_item_relse() should only be called on clean
buffer items if the reference count has dropped to zero. This
ensures only the last user frees the item.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 166d1368 12-Aug-2013 Dave Chinner <dchinner@redhat.com>

xfs: return log item size in IOP_SIZE

To begin optimising the CIL commit process, we need to have IOP_SIZE
return both the number of vectors and the size of the data pointed
to by the vectors. This enables us to calculate the size ofthe
memory allocation needed before the formatting step and reduces the
number of memory allocations per item by one.

While there, kill the IOP_SIZE macro.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# ddf6ad01 27-Jun-2013 Dave Chinner <david@fromorbit.com>

xfs: Use inode create transaction

Replace the use of buffer based logging of inode initialisation,
uses the new logical form to describe the range to be initialised
in recovery. We continue to "log" the inode buffers to push them
into the AIL and ensure that the inode create transaction is not
removed from the log before the inode buffers are written to disk.

Update the transaction identifier and reservations to match the
changed implementation.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 5f6bed76 27-Jun-2013 Dave Chinner <david@fromorbit.com>

xfs: Introduce an ordered buffer item

If we have a buffer that we have modified but we do not wish to
physically log in a transaction (e.g. we've logged a logical
change), we still need to ensure that transactional integrity is
maintained. Hence we must not move the tail of the log past the
transaction that the buffer is associated with before the buffer is
written to disk.

This means these special buffers still need to be included in the
transaction and added to the AIL just like a normal buffer, but we
do not want the modifications to the buffer written into the
transaction. IOWs, what we want is an "ordered buffer" that
maintains the same transactional life cycle as a physically logged
buffer, just without the transcribing of the modifications to the
log.

Hence we need to flag the buffer as an "ordered buffer" to avoid
including it in vector size calculations or formatting during the
transaction. Once the transaction is committed, the buffer appears
for all intents to be the same as a physically logged buffer as it
transitions through the log and AIL.

Relogging will also work just fine for such an ordered buffer - the
logical transaction will be replayed before the subsequent
modifications that relog the buffer, so everything will be
reconstructed correctly by recovery.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 7d2ffe80 27-May-2013 Dave Chinner <dchinner@redhat.com>

xfs: fix split buffer vector log recovery support

A long time ago in a galaxy far away....

.. the was a commit made to fix some ilinux specific "fragmented
buffer" log recovery problem:

http://oss.sgi.com/cgi-bin/gitweb.cgi?p=archive/xfs-import.git;a=commitdiff;h=b29c0bece51da72fb3ff3b61391a391ea54e1603

That problem occurred when a contiguous dirty region of a buffer was
split across across two pages of an unmapped buffer. It's been a
long time since that has been done in XFS, and the changes to log
the entire inode buffers for CRC enabled filesystems has
re-introduced that corner case.

And, of course, it turns out that the above commit didn't actually
fix anything - it just ensured that log recovery is guaranteed to
fail when this situation occurs. And now for the gory details.

xfstest xfs/085 is failing with this assert:

XFS (vdb): bad number of regions (0) in inode log format
XFS: Assertion failed: 0, file: fs/xfs/xfs_log_recover.c, line: 1583

Largely undocumented factoid #1: Log recovery depends on all log
buffer format items starting with this format:

struct foo_log_format {
__uint16_t type;
__uint16_t size;
....

As recoery uses the size field and assumptions about 32 bit
alignment in decoding format items. So don't pay much attention to
the fact log recovery thinks that it decoding an inode log format
item - it just uses them to determine what the size of the item is.

But why would it see a log format item with a zero size? Well,
luckily enough xfs_logprint uses the same code and gives the same
error, so with a bit of gdb magic, it turns out that it isn't a log
format that is being decoded. What logprint tells us is this:

Oper (130): tid: a0375e1a len: 28 clientid: TRANS flags: none
BUF: #regs: 2 start blkno: 144 (0x90) len: 16 bmap size: 2 flags: 0x4000
Oper (131): tid: a0375e1a len: 4096 clientid: TRANS flags: none
BUF DATA
----------------------------------------------------------------------------
Oper (132): tid: a0375e1a len: 4096 clientid: TRANS flags: none
xfs_logprint: unknown log operation type (4e49)
**********************************************************************
* ERROR: data block=2 *
**********************************************************************

That we've got a buffer format item (oper 130) that has two regions;
the format item itself and one dirty region. The subsequent region
after the buffer format item and it's data is them what we are
tripping over, and the first bytes of it at an inode magic number.
Not a log opheader like there is supposed to be.

That means there's a problem with the buffer format item. It's dirty
data region is 4096 bytes, and it contains - you guessed it -
initialised inodes. But inode buffers are 8k, not 4k, and we log
them in their entirety. So something is wrong here. The buffer
format item contains:

(gdb) p /x *(struct xfs_buf_log_format *)in_f
$22 = {blf_type = 0x123c, blf_size = 0x2, blf_flags = 0x4000,
blf_len = 0x10, blf_blkno = 0x90, blf_map_size = 0x2,
blf_data_map = {0xffffffff, 0xffffffff, .... }}

Two regions, and a signle dirty contiguous region of 64 bits. 64 *
128 = 8k, so this should be followed by a single 8k region of data.
And the blf_flags tell us that the type of buffer is a
XFS_BLFT_DINO_BUF. It contains inodes. And because it doesn't have
the XFS_BLF_INODE_BUF flag set, that means it's an inode allocation
buffer. So, it should be followed by 8k of inode data.

But we know that the next region has a header of:

(gdb) p /x *ohead
$25 = {oh_tid = 0x1a5e37a0, oh_len = 0x100000, oh_clientid = 0x69,
oh_flags = 0x0, oh_res2 = 0x0}

and so be32_to_cpu(oh_len) = 0x1000 = 4096 bytes. It's simply not
long enough to hold all the logged data. There must be another
region. There is - there's a following opheader for another 4k of
data that contains the other half of the inode cluster data - the
one we assert fail on because it's not a log format header.

So why is the second part of the data not being accounted to the
correct buffer log format structure? It took a little more work with
gdb to work out that the buffer log format structure was both
expecting it to be there but hadn't accounted for it. It was at that
point I went to the kernel code, as clearly this wasn't a bug in
xfs_logprint and the kernel was writing bad stuff to the log.

First port of call was the buffer item formatting code, and the
discontiguous memory/contiguous dirty region handling code
immediately stood out. I've wondered for a long time why the code
had this comment in it:

vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
vecp->i_len = nbits * XFS_BLF_CHUNK;
vecp->i_type = XLOG_REG_TYPE_BCHUNK;
/*
* You would think we need to bump the nvecs here too, but we do not
* this number is used by recovery, and it gets confused by the boundary
* split here
* nvecs++;
*/
vecp++;

And it didn't account for the extra vector pointer. The case being
handled here is that a contiguous dirty region lies across a
boundary that cannot be memcpy()d across, and so has to be split
into two separate operations for xlog_write() to perform.

What this code assumes is that what is written to the log is two
consecutive blocks of data that are accounted in the buf log format
item as the same contiguous dirty region and so will get decoded as
such by the log recovery code.

The thing is, xlog_write() knows nothing about this, and so just
does it's normal thing of adding an opheader for each vector. That
means the 8k region gets written to the log as two separate regions
of 4k each, but because nvecs has not been incremented, the buf log
format item accounts for only one of them.

Hence when we come to log recovery, we process the first 4k region
and then expect to come across a new item that starts with a log
format structure of some kind that tells us whenteh next data is
going to be. Instead, we hit raw buffer data and things go bad real
quick.

So, the commit from 2002 that commented out nvecs++ is just plain
wrong. It breaks log recovery completely, and it would seem the only
reason this hasn't been since then is that we don't log large
contigous regions of multi-page unmapped buffers very often. Never
would be a closer estimate, at least until the CRC code came along....

So, lets fix that by restoring the nvecs accounting for the extra
region when we hit this case.....

.... and there's the problemin log recovery it is apparently working
around:

XFS: Assertion failed: i == item->ri_total, file: fs/xfs/xfs_log_recover.c, line: 2135

Yup, xlog_recover_do_reg_buffer() doesn't handle contigous dirty
regions being broken up into multiple regions by the log formatting
code. That's an easy fix, though - if the number of contiguous dirty
bits exceeds the length of the region being copied out of the log,
only account for the number of dirty bits that region covers, and
then loop again and copy more from the next region. It's a 2 line
fix.

Now xfstests xfs/085 passes, we have one less piece of mystery
code, and one more important piece of knowledge about how to
structure new log format items..

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>

(cherry picked from commit 709da6a61aaf12181a8eea8443919ae5fc1b731d)


# 709da6a6 27-May-2013 Dave Chinner <dchinner@redhat.com>

xfs: fix split buffer vector log recovery support

A long time ago in a galaxy far away....

.. the was a commit made to fix some ilinux specific "fragmented
buffer" log recovery problem:

http://oss.sgi.com/cgi-bin/gitweb.cgi?p=archive/xfs-import.git;a=commitdiff;h=b29c0bece51da72fb3ff3b61391a391ea54e1603

That problem occurred when a contiguous dirty region of a buffer was
split across across two pages of an unmapped buffer. It's been a
long time since that has been done in XFS, and the changes to log
the entire inode buffers for CRC enabled filesystems has
re-introduced that corner case.

And, of course, it turns out that the above commit didn't actually
fix anything - it just ensured that log recovery is guaranteed to
fail when this situation occurs. And now for the gory details.

xfstest xfs/085 is failing with this assert:

XFS (vdb): bad number of regions (0) in inode log format
XFS: Assertion failed: 0, file: fs/xfs/xfs_log_recover.c, line: 1583

Largely undocumented factoid #1: Log recovery depends on all log
buffer format items starting with this format:

struct foo_log_format {
__uint16_t type;
__uint16_t size;
....

As recoery uses the size field and assumptions about 32 bit
alignment in decoding format items. So don't pay much attention to
the fact log recovery thinks that it decoding an inode log format
item - it just uses them to determine what the size of the item is.

But why would it see a log format item with a zero size? Well,
luckily enough xfs_logprint uses the same code and gives the same
error, so with a bit of gdb magic, it turns out that it isn't a log
format that is being decoded. What logprint tells us is this:

Oper (130): tid: a0375e1a len: 28 clientid: TRANS flags: none
BUF: #regs: 2 start blkno: 144 (0x90) len: 16 bmap size: 2 flags: 0x4000
Oper (131): tid: a0375e1a len: 4096 clientid: TRANS flags: none
BUF DATA
----------------------------------------------------------------------------
Oper (132): tid: a0375e1a len: 4096 clientid: TRANS flags: none
xfs_logprint: unknown log operation type (4e49)
**********************************************************************
* ERROR: data block=2 *
**********************************************************************

That we've got a buffer format item (oper 130) that has two regions;
the format item itself and one dirty region. The subsequent region
after the buffer format item and it's data is them what we are
tripping over, and the first bytes of it at an inode magic number.
Not a log opheader like there is supposed to be.

That means there's a problem with the buffer format item. It's dirty
data region is 4096 bytes, and it contains - you guessed it -
initialised inodes. But inode buffers are 8k, not 4k, and we log
them in their entirety. So something is wrong here. The buffer
format item contains:

(gdb) p /x *(struct xfs_buf_log_format *)in_f
$22 = {blf_type = 0x123c, blf_size = 0x2, blf_flags = 0x4000,
blf_len = 0x10, blf_blkno = 0x90, blf_map_size = 0x2,
blf_data_map = {0xffffffff, 0xffffffff, .... }}

Two regions, and a signle dirty contiguous region of 64 bits. 64 *
128 = 8k, so this should be followed by a single 8k region of data.
And the blf_flags tell us that the type of buffer is a
XFS_BLFT_DINO_BUF. It contains inodes. And because it doesn't have
the XFS_BLF_INODE_BUF flag set, that means it's an inode allocation
buffer. So, it should be followed by 8k of inode data.

But we know that the next region has a header of:

(gdb) p /x *ohead
$25 = {oh_tid = 0x1a5e37a0, oh_len = 0x100000, oh_clientid = 0x69,
oh_flags = 0x0, oh_res2 = 0x0}

and so be32_to_cpu(oh_len) = 0x1000 = 4096 bytes. It's simply not
long enough to hold all the logged data. There must be another
region. There is - there's a following opheader for another 4k of
data that contains the other half of the inode cluster data - the
one we assert fail on because it's not a log format header.

So why is the second part of the data not being accounted to the
correct buffer log format structure? It took a little more work with
gdb to work out that the buffer log format structure was both
expecting it to be there but hadn't accounted for it. It was at that
point I went to the kernel code, as clearly this wasn't a bug in
xfs_logprint and the kernel was writing bad stuff to the log.

First port of call was the buffer item formatting code, and the
discontiguous memory/contiguous dirty region handling code
immediately stood out. I've wondered for a long time why the code
had this comment in it:

vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
vecp->i_len = nbits * XFS_BLF_CHUNK;
vecp->i_type = XLOG_REG_TYPE_BCHUNK;
/*
* You would think we need to bump the nvecs here too, but we do not
* this number is used by recovery, and it gets confused by the boundary
* split here
* nvecs++;
*/
vecp++;

And it didn't account for the extra vector pointer. The case being
handled here is that a contiguous dirty region lies across a
boundary that cannot be memcpy()d across, and so has to be split
into two separate operations for xlog_write() to perform.

What this code assumes is that what is written to the log is two
consecutive blocks of data that are accounted in the buf log format
item as the same contiguous dirty region and so will get decoded as
such by the log recovery code.

The thing is, xlog_write() knows nothing about this, and so just
does it's normal thing of adding an opheader for each vector. That
means the 8k region gets written to the log as two separate regions
of 4k each, but because nvecs has not been incremented, the buf log
format item accounts for only one of them.

Hence when we come to log recovery, we process the first 4k region
and then expect to come across a new item that starts with a log
format structure of some kind that tells us whenteh next data is
going to be. Instead, we hit raw buffer data and things go bad real
quick.

So, the commit from 2002 that commented out nvecs++ is just plain
wrong. It breaks log recovery completely, and it would seem the only
reason this hasn't been since then is that we don't log large
contigous regions of multi-page unmapped buffers very often. Never
would be a closer estimate, at least until the CRC code came along....

So, lets fix that by restoring the nvecs accounting for the extra
region when we hit this case.....

.... and there's the problemin log recovery it is apparently working
around:

XFS: Assertion failed: i == item->ri_total, file: fs/xfs/xfs_log_recover.c, line: 2135

Yup, xlog_recover_do_reg_buffer() doesn't handle contigous dirty
regions being broken up into multiple regions by the log formatting
code. That's an easy fix, though - if the number of contiguous dirty
bits exceeds the length of the region being copied out of the log,
only account for the number of dirty bits that region covers, and
then loop again and copy more from the next region. It's a 2 line
fix.

Now xfstests xfs/085 passes, we have one less piece of mystery
code, and one more important piece of knowledge about how to
structure new log format items..

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 5337fe9b 11-Feb-2013 Brian Foster <bfoster@redhat.com>

xfs: recheck buffer pinned status after push trylock failure

The buffer pinned check and trylock sequence in xfs_buf_item_push()
can race with an active transaction on marking the buffer pinned.
This can result in the buffer becoming pinned and stale after the
initial check and the trylock failure, but before the check in
xfs_buf_trylock() that issues a log force. If the log force is
issued from this context, a spinlock recursion occurs on xa_lock.

Prepare xfs_buf_item_push() to handle the race by detecting a
pinned buffer after the trylock failure so xfsaild issues a log
force from a safe context. This, along with various previous fixes,
renders the log force in xfs_buf_trylock() redundant.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 9f87832a 21-Jan-2013 Dave Chinner <dchinner@redhat.com>

xfs: fix shutdown hang on invalid inode during create

When the new inode verify in xfs_iread() fails, the create
transaction is aborted and a shutdown occurs. The subsequent unmount
then hangs in xfs_wait_buftarg() on a buffer that has an elevated
hold count. Debug showed that it was an AGI buffer getting stuck:

[ 22.576147] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 22.976213] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 23.376206] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 23.776325] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck

The trace of this buffer leading up to the shutdown (trimmed for
brevity) looks like:

xfs_buf_init: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_get_map
xfs_buf_get: bno 0x2 len 0x200 hold 1 caller xfs_buf_read_map
xfs_buf_read: bno 0x2 len 0x200 hold 1 caller xfs_trans_read_buf_map
xfs_buf_iorequest: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_iorequest
xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_iorequest
xfs_buf_iowait: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_ioerror: bno 0x2 len 0x200 hold 1 caller xfs_buf_bio_end_io
xfs_buf_iodone: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_ioend
xfs_buf_iowait_done: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_item_init
xfs_trans_read_buf: bno 0x2 len 0x200 hold 2 recur 0 refcount 1
xfs_trans_brelse: bno 0x2 len 0x200 hold 2 recur 0 refcount 1
xfs_buf_item_relse: bno 0x2 nblks 0x1 hold 2 caller xfs_trans_brelse
xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_relse
xfs_buf_unlock: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse
xfs_buf_rele: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse
xfs_buf_trylock: bno 0x2 nblks 0x1 hold 2 caller _xfs_buf_find
xfs_buf_find: bno 0x2 len 0x200 hold 2 caller xfs_buf_get_map
xfs_buf_get: bno 0x2 len 0x200 hold 2 caller xfs_buf_read_map
xfs_buf_read: bno 0x2 len 0x200 hold 2 caller xfs_trans_read_buf_map
xfs_buf_hold: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_init
xfs_trans_read_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1
xfs_trans_log_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1
xfs_buf_item_unlock: bno 0x2 len 0x200 hold 3 flags DIRTY liflags ABORTED
xfs_buf_unlock: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock
xfs_buf_rele: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock

And that is the AGI buffer from cold cache read into memory to
transaction abort. You can see at transaction abort the bli is dirty
and only has a single reference. The item is not pinned, and it's
not in the AIL. Hence the only reference to it is this transaction.

The problem is that the xfs_buf_item_unlock() call is dropping the
last reference to the xfs_buf_log_item attached to the buffer (which
holds a reference to the buffer), but it is not freeing the
xfs_buf_log_item. Hence nothing will ever release the buffer, and
the unmount hangs waiting for this reference to go away.

The fix is simple - xfs_buf_item_unlock needs to detect the last
reference going away in this case and free the xfs_buf_log_item to
release the reference it holds on the buffer.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 3b19034d 21-Jan-2013 Dave Chinner <dchinner@redhat.com>

xfs: fix shutdown hang on invalid inode during create

When the new inode verify in xfs_iread() fails, the create
transaction is aborted and a shutdown occurs. The subsequent unmount
then hangs in xfs_wait_buftarg() on a buffer that has an elevated
hold count. Debug showed that it was an AGI buffer getting stuck:

[ 22.576147] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 22.976213] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 23.376206] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 23.776325] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck

The trace of this buffer leading up to the shutdown (trimmed for
brevity) looks like:

xfs_buf_init: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_get_map
xfs_buf_get: bno 0x2 len 0x200 hold 1 caller xfs_buf_read_map
xfs_buf_read: bno 0x2 len 0x200 hold 1 caller xfs_trans_read_buf_map
xfs_buf_iorequest: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_iorequest
xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_iorequest
xfs_buf_iowait: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_ioerror: bno 0x2 len 0x200 hold 1 caller xfs_buf_bio_end_io
xfs_buf_iodone: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_ioend
xfs_buf_iowait_done: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_item_init
xfs_trans_read_buf: bno 0x2 len 0x200 hold 2 recur 0 refcount 1
xfs_trans_brelse: bno 0x2 len 0x200 hold 2 recur 0 refcount 1
xfs_buf_item_relse: bno 0x2 nblks 0x1 hold 2 caller xfs_trans_brelse
xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_relse
xfs_buf_unlock: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse
xfs_buf_rele: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse
xfs_buf_trylock: bno 0x2 nblks 0x1 hold 2 caller _xfs_buf_find
xfs_buf_find: bno 0x2 len 0x200 hold 2 caller xfs_buf_get_map
xfs_buf_get: bno 0x2 len 0x200 hold 2 caller xfs_buf_read_map
xfs_buf_read: bno 0x2 len 0x200 hold 2 caller xfs_trans_read_buf_map
xfs_buf_hold: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_init
xfs_trans_read_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1
xfs_trans_log_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1
xfs_buf_item_unlock: bno 0x2 len 0x200 hold 3 flags DIRTY liflags ABORTED
xfs_buf_unlock: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock
xfs_buf_rele: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock

And that is the AGI buffer from cold cache read into memory to
transaction abort. You can see at transaction abort the bli is dirty
and only has a single reference. The item is not pinned, and it's
not in the AIL. Hence the only reference to it is this transaction.

The problem is that the xfs_buf_item_unlock() call is dropping the
last reference to the xfs_buf_log_item attached to the buffer (which
holds a reference to the buffer), but it is not freeing the
xfs_buf_log_item. Hence nothing will ever release the buffer, and
the unmount hangs waiting for this reference to go away.

The fix is simple - xfs_buf_item_unlock needs to detect the last
reference going away in this case and free the xfs_buf_log_item to
release the reference it holds on the buffer.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 91e4bac0 04-Dec-2012 Mark Tinguely <tinguely@sgi.com>

xfs: fix the multi-segment log buffer format

Per Dave Chinner suggestion, this patch:
1) Corrects the detection of whether a multi-segment buffer is
still tracking data.
2) Clears all the buffer log formats for a multi-segment buffer.

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 2d0e9df5 04-Dec-2012 Mark Tinguely <tinguely@sgi.com>

xfs: fix segment in xfs_buf_item_format_segment

Not every segment in a multi-segment buffer is dirty in a
transaction and they will not be outputted. The assert in
xfs_buf_item_format_segment() that checks for the at least
one chunk of data in the segment to be used is not necessary
true for multi-segmented buffers.

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 0f22f9d0 04-Dec-2012 Mark Tinguely <tinguely@sgi.com>

xfs: rename bli_format to avoid confusion with bli_formats

Rename the bli_format structure to __bli_format to avoid
accidently confusing them with the bli_formats pointer.

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# ec47eb6b 04-Dec-2012 Mark Tinguely <tinguely@sgi.com>

xfs remove the XFS_TRANS_DEBUG routines

Remove the XFS_TRANS_DEBUG routines. They are no longer appropriate
and have not been used in years

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# c883d0c4 04-Dec-2012 Mark Tinguely <tinguely@sgi.com>

xfs: fix the multi-segment log buffer format

Per Dave Chinner suggestion, this patch:
1) Corrects the detection of whether a multi-segment buffer is
still tracking data.
2) Clears all the buffer log formats for a multi-segment buffer.

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 820a554f 04-Dec-2012 Mark Tinguely <tinguely@sgi.com>

xfs: fix segment in xfs_buf_item_format_segment

Not every segment in a multi-segment buffer is dirty in a
transaction and they will not be outputted. The assert in
xfs_buf_item_format_segment() that checks for the at least
one chunk of data in the segment to be used is not necessary
true for multi-segmented buffers.

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# b9438173 04-Dec-2012 Mark Tinguely <tinguely@sgi.com>

xfs: rename bli_format to avoid confusion with bli_formats

Rename the bli_format structure to __bli_format to avoid
accidently confusing them with the bli_formats pointer.

Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 03b1293e 01-Nov-2012 Dave Chinner <david@fromorbit.com>

xfs: fix buffer shudown reference count mismatch

When we shut down the filesystem, we have to unpin and free all the
buffers currently active in the CIL. To do this we unpin and remove
them in one operation as a result of a failed iclogbuf write. For
buffers, we do this removal via a simultated IO completion of after
marking the buffer stale.

At the time we do this, we have two references to the buffer - the
active LRU reference and the buf log item. The LRU reference is
removed by marking the buffer stale, and the active CIL reference is
by the xfs_buf_iodone() callback that is run by
xfs_buf_do_callbacks() during ioend processing (via the bp->b_iodone
callback).

However, ioend processing requires one more reference - that of the
IO that it is completing. We don't have this reference, so we free
the buffer prematurely and use it after it is freed. For buffers
marked with XBF_ASYNC, this leads to assert failures in
xfs_buf_rele() on debug kernels because the b_hold count is zero.

Fix this by making sure we take the necessary IO reference before
starting IO completion processing on the stale buffer, and set the
XBF_ASYNC flag to ensure that IO completion processing removes all
the active references from the buffer to ensure it is fully torn
down.

Cc: <stable@vger.kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 137fff09 01-Nov-2012 Dave Chinner <david@fromorbit.com>

xfs: fix buffer shudown reference count mismatch

When we shut down the filesystem, we have to unpin and free all the
buffers currently active in the CIL. To do this we unpin and remove
them in one operation as a result of a failed iclogbuf write. For
buffers, we do this removal via a simultated IO completion of after
marking the buffer stale.

At the time we do this, we have two references to the buffer - the
active LRU reference and the buf log item. The LRU reference is
removed by marking the buffer stale, and the active CIL reference is
by the xfs_buf_iodone() callback that is run by
xfs_buf_do_callbacks() during ioend processing (via the bp->b_iodone
callback).

However, ioend processing requires one more reference - that of the
IO that it is completing. We don't have this reference, so we free
the buffer prematurely and use it after it is freed. For buffers
marked with XBF_ASYNC, this leads to assert failures in
xfs_buf_rele() on debug kernels because the b_hold count is zero.

Fix this by making sure we take the necessary IO reference before
starting IO completion processing on the stale buffer, and set the
XBF_ASYNC flag to ensure that IO completion processing removes all
the active references from the buffer to ensure it is fully torn
down.

Cc: <stable@vger.kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 1632dcc9 13-Jul-2012 Christoph Hellwig <hch@infradead.org>

xfs: do not call xfs_bdstrat_cb in xfs_buf_iodone_callbacks

xfs_bdstrat_cb only adds a check for a shutdown filesystem over
xfs_buf_iorequest, but xfs_buf_iodone_callbacks just checked for a shut down
filesystem a little earlier. In addition the shutdown handling in
xfs_bdstrat_cb is not very suitable for this caller.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# a2dcf5df 13-Jul-2012 Christoph Hellwig <hch@infradead.org>

xfs: do not call xfs_bdstrat_cb in xfs_buf_iodone_callbacks

xfs_bdstrat_cb only adds a check for a shutdown filesystem over
xfs_buf_iorequest, but xfs_buf_iodone_callbacks just checked for a shut down
filesystem a little earlier. In addition the shutdown handling in
xfs_bdstrat_cb is not very suitable for this caller.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 372cc85e 22-Jun-2012 Dave Chinner <dchinner@redhat.com>

xfs: support discontiguous buffers in the xfs_buf_log_item

discontigous buffer in separate buffer format structures. This means log
recovery will recover all the changes on a per segment basis without
requiring any knowledge of the fact that it was logged from a
compound buffer.

To do this, we need to be able to determine what buffer segment any
given offset into the compound buffer sits over. This enables us to
translate the dirty bitmap in the number of separate buffer format
structures required.

We also need to be able to determine the number of bitmap elements
that a given buffer segment has, as this determines the size of the
buffer format structure. Hence we need to be able to determine the
both the start offset into the buffer and the length of a given
segment to be able to calculate this.

With this information, we can preallocate, build and format the
correct log vector array for each segment in a compound buffer to
appear exactly the same as individually logged buffers in the log.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 77c1a08f 22-Jun-2012 Dave Chinner <dchinner@redhat.com>

xfs: struct xfs_buf_log_format isn't variable sized.

The struct xfs_buf_log_format wants to think the dirty bitmap is
variable sized. In fact, it is variable size on disk simply due to
the way we map it from the in-memory structure, but we still just
use a fixed size memory allocation for the in-memory structure.

Hence it makes no sense to set the function up as a variable sized
structure when we already know it's maximum size, and we always
allocate it as such. Simplify the structure by making the dirty
bitmap a fixed sized array and just using the size of the structure
for the allocation size.

This will make it much simpler to allocate and manipulate an array
of format structures for discontiguous buffer support.

The previous struct xfs_buf_log_item size according to
/proc/slabinfo was 224 bytes. pahole doesn't give the same size
because of the variable size definition. With this modification,
pahole reports the same as /proc/slabinfo:

/* size: 224, cachelines: 4, members: 6 */

Because the xfs_buf_log_item size is now determined by the maximum
supported block size we introduce a dependency on xfs_alloc_btree.h.
Avoid this dependency by moving the idefines for the maximum block
sizes supported to xfs_types.h with all the other max/min type
defines to avoid any new dependencies.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 60a34607 22-Apr-2012 Dave Chinner <dchinner@redhat.com>

xfs: move xfsagino_t to xfs_types.h

Untangle the header file includes a bit by moving the definition of
xfs_agino_t to xfs_types.h. This removes the dependency that xfs_ag.h has on
xfs_inum.h, meaning we don't need to include xfs_inum.h everywhere we include
xfs_ag.h.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# aa0e8833 22-Apr-2012 Dave Chinner <david@fromorbit.com>

xfs: use blocks for storing the desired IO size

Now that we pass block counts everywhere, and index buffers by block
number and length in units of blocks, convert the desired IO size
into block counts rather than bytes. Convert the code to use block
counts, and those that need byte counts get converted at the time of
use.

Rename the b_desired_count variable to something closer to it's
purpose - b_io_length - as it is only used to specify the length of
an IO for a subset of the buffer. The only time this is used is for
log IO - both writing iclogs and during log recovery. In all other
cases, the b_io_length matches b_length, and hence a lot of code
confuses the two. e.g. the buf item code uses the io count
exclusively when it should be using the buffer length. Fix these
apprpriately as they are found.

Also, remove the XFS_BUF_{SET_}COUNT() macros that are just wrappers
around the desired IO length. They only serve to make the code
shouty loud, don't actually add any real value, and are often used
incorrectly.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 04913fdd 22-Apr-2012 Dave Chinner <dchinner@redhat.com>

xfs: pass shutdown method into xfs_trans_ail_delete_bulk

xfs_trans_ail_delete_bulk() can be called from different contexts so
if the item is not in the AIL we need different shutdown for each
context. Pass in the shutdown method needed so the correct action
can be taken.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 43ff2122 22-Apr-2012 Christoph Hellwig <hch@infradead.org>

xfs: on-stack delayed write buffer lists

Queue delwri buffers on a local on-stack list instead of a per-buftarg one,
and write back the buffers per-process instead of by waking up xfsbufd.

This is now easily doable given that we have very few places left that write
delwri buffers:

- log recovery:
Only done at mount time, and already forcing out the buffers
synchronously using xfs_flush_buftarg

- quotacheck:
Same story.

- dquot reclaim:
Writes out dirty dquots on the LRU under memory pressure. We might
want to look into doing more of this via xfsaild, but it's already
more optimal than the synchronous inode reclaim that writes each
buffer synchronously.

- xfsaild:
This is the main beneficiary of the change. By keeping a local list
of buffers to write we reduce latency of writing out buffers, and
more importably we can remove all the delwri list promotions which
were hitting the buffer cache hard under sustained metadata loads.

The implementation is very straight forward - xfs_buf_delwri_queue now gets
a new list_head pointer that it adds the delwri buffers to, and all callers
need to eventually submit the list using xfs_buf_delwi_submit or
xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are
skipped in xfs_buf_delwri_queue, assuming they already are on another delwri
list. The biggest change to pass down the buffer list was done to the AIL
pushing. Now that we operate on buffers the trylock, push and pushbuf log
item methods are merged into a single push routine, which tries to lock the
item, and if possible add the buffer that needs writeback to the buffer list.
This leads to much simpler code than the previous split but requires the
individual IOP_PUSH instances to unlock and reacquire the AIL around calls
to blocking routines.

Given that xfsailds now also handle writing out buffers, the conditions for
log forcing and the sleep times needed some small changes. The most
important one is that we consider an AIL busy as long we still have buffers
to push, and the other one is that we do increment the pushed LSN for
buffers that are under flushing at this moment, but still count them towards
the stuck items for restart purposes. Without this we could hammer on stuck
items without ever forcing the log and not make progress under heavy random
delete workloads on fast flash storage devices.

[ Dave Chinner:
- rebase on previous patches.
- improved comments for XBF_DELWRI_Q handling
- fix XBF_ASYNC handling in queue submission (test 106 failure)
- rename delwri submit function buffer list parameters for clarity
- xfs_efd_item_push() should return XFS_ITEM_PINNED ]

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 960c60af 22-Apr-2012 Christoph Hellwig <hch@infradead.org>

xfs: do not add buffers to the delwri queue until pushed

Instead of adding buffers to the delwri list as soon as they are logged,
even if they can't be written until commited because they are pinned
defer adding them to the delwri list until xfsaild pushes them. This
makes the code more similar to other log items and prepares for writing
buffers directly from xfsaild.

The complication here is that we need to fail buffers that were added
but not logged yet in xfs_buf_item_unpin, borrowing code from
xfs_bioerror.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>


# 272e42b2 28-Oct-2011 Christoph Hellwig <hch@infradead.org>

xfs: constify xfs_item_ops

The log item ops aren't nessecarily the biggest exploit vector, but marking
them const is easy enough. Also remove the unused xfs_item_ops_t typedef
while we're at it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>


# b38505b0 10-Oct-2011 Christoph Hellwig <hch@infradead.org>

xfs: use xfs_ioerror_alert in xfs_buf_iodone_callbacks

Use xfs_ioerror_alert instead of opencoding a very similar error
message.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>


# af5c4bee 10-Oct-2011 Christoph Hellwig <hch@infradead.org>

xfs: remove buffers from the delwri list in xfs_buf_stale

For each call to xfs_buf_stale we call xfs_buf_delwri_dequeue either
directly before or after it, or are guaranteed by the surrounding
conditionals that we are never called on delwri buffers. Simply
this situation by moving the call to xfs_buf_delwri_dequeue into
xfs_buf_stale.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>


# c867cb61 10-Oct-2011 Christoph Hellwig <hch@infradead.org>

xfs: remove XFS_BUF_STALE and XFS_BUF_SUPER_STALE

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 61551f1e 23-Aug-2011 Christoph Hellwig <hch@infradead.org>

xfs: call xfs_buf_delwri_queue directly

Unify the ways we add buffers to the delwri queue by always calling
xfs_buf_delwri_queue directly. The xfs_bdwrite functions is removed and
opencoded in its callers, and the two places setting XBF_DELWRI while a
buffer is locked and expecting xfs_buf_unlock to pick it up are converted
to call xfs_buf_delwri_queue directly, too. Also replace the
XFS_BUF_UNDELAYWRITE macro with direct calls to xfs_buf_delwri_dequeue
to make the explicit queuing/dequeuing more obvious.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 17b38471 11-Oct-2011 Christoph Hellwig <hch@infradead.org>

xfs: force the log if we encounter pinned buffers in .iop_pushbuf

We need to check for pinned buffers even in .iop_pushbuf given that inode
items flush into the same buffers that may be pinned directly due operations
on the unlinked inode list operating directly on buffers. To do this add a
return value to .iop_pushbuf that tells the AIL push about this and use
the existing log force mechanisms to unpin it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Stefan Priebe <s.priebe@profihost.ag>
Tested-by: Stefan Priebe <s.priebe@profihost.ag>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 9e978d8f 29-Jul-2011 Ajeet Yadav <ajeet.yadav.77@gmail.com>

"xfs: fix error handling for synchronous writes" revisited

xfs: fix for hang during synchronous buffer write error

If removed storage while synchronous buffer write underway,
"xfslogd" hangs.

Detailed log http://oss.sgi.com/archives/xfs/2011-07/msg00740.html

Related work bfc60177f8ab509bc225becbb58f7e53a0e33e81
"xfs: fix error handling for synchronous writes"

Given that xfs_bwrite actually does the shutdown already after
waiting for the b_iodone completion and given that we actually
found that calling xfs_force_shutdown from inside
xfs_buf_iodone_callbacks was a major contributor the problem
it better to drop this call.

Signed-off-by: Ajeet Yadav <ajeet.yadav.77@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# c35a549c 22-Jul-2011 Chandra Seetharaman <sekharan@us.ibm.com>

xfs: Remove the macro XFS_BUFTARG_NAME

Remove the definition and usages of the macro XFS_BUFTARG_NAME.

Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 49074c06 22-Jul-2011 Chandra Seetharaman <sekharan@us.ibm.com>

xfs: Remove the macro XFS_BUF_TARGET

Remove the definition and usages of the macro XFS_BUF_TARGET

Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 811e64c7 22-Jul-2011 Chandra Seetharaman <sekharan@us.ibm.com>

Replace the macro XFS_BUF_ISPINNED with helper xfs_buf_ispinned

Replace the macro XFS_BUF_ISPINNED with an inline helper function
xfs_buf_ispinned, and change all its usages.

Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 62926044 22-Jul-2011 Chandra Seetharaman <sekharan@us.ibm.com>

xfs: Remove the macro XFS_BUF_PTR

Remove the definition and usages of the macro XFS_BUF_PTR.

Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 0095a21e 22-Jul-2011 Chandra Seetharaman <sekharan@us.ibm.com>

xfs: Remove macro XFS_BUF_SET_START

Remove the definition and usage of the macro XFS_BUF_SET_START.

Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 72790aa1 22-Jul-2011 Chandra Seetharaman <sekharan@us.ibm.com>

xfs: Remove macro XFS_BUF_HOLD

Remove the definition and usage of the macro XFS_BUF_HOLD

Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# b75e40a4 22-Jul-2011 Chandra Seetharaman <sekharan@us.ibm.com>

xfs: Remove macro XFS_BUF_BUSY and family

Remove the definitions and uses of the macros XFS_BUF_BUSY,
XFS_BUF_UNBUSY, and XFS_BUF_ISBUSY.

Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 5a52c2a58 22-Jul-2011 Chandra Seetharaman <sekharan@us.ibm.com>

xfs: Remove the macro XFS_BUF_ERROR and family

Remove the definitions and usage of the macros XFS_BUF_ERROR,
XFS_BUF_GETERROR and XFS_BUF_ISERROR.

Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# cb669ca5 13-Jul-2011 Christoph Hellwig <hch@lst.de>

xfs: remove wrappers around b_iodone

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# adadbeef 13-Jul-2011 Christoph Hellwig <hch@lst.de>

xfs: remove wrappers around b_fspriv

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# bf9d9013 13-Jul-2011 Christoph Hellwig <hch@lst.de>

xfs: add a proper transaction pointer to struct xfs_buf

Replace the typeless b_fspriv2 and the ugly macros around it with a properly
typed transaction pointer. As a fallout the log buffer state debug checks
are also removed. We could have kept them using casts, but as they do
not have a real purpose we can as well just remove them.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# 0c842ad4 08-Jul-2011 Christoph Hellwig <hch@lst.de>

xfs: clean up buffer locking helpers

Rename xfs_buf_cond_lock and reverse it's return value to fit most other
trylock operations in the Kernel and XFS (with the exception of down_trylock,
after which xfs_buf_cond_lock was modelled), and replace xfs_buf_lock_val
with an xfs_buf_islocked for use in asserts, or and opencoded variant in
tracing. remove the XFS_BUF_* wrappers for all the locking helpers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# 25985edc 30-Mar-2011 Lucas De Marchi <lucas.demarchi@profusion.mobi>

Fix common misspellings

Fixes generated by 'codespell' and manually reviewed.

Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>


# 0b932ccc 06-Mar-2011 Dave Chinner <dchinner@redhat.com>

xfs: Convert remaining cmn_err() callers to new API

Once converted, kill the remainder of the cmn_err() interface.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>


# e34a314c 26-Jan-2011 Dave Chinner <dchinner@redhat.com>

xfs: fix efi item leak on forced shutdown

After test 139, kmemleak shows:

unreferenced object 0xffff880078b405d8 (size 400):
comm "xfs_io", pid 4904, jiffies 4294909383 (age 1186.728s)
hex dump (first 32 bytes):
60 c1 17 79 00 88 ff ff 60 c1 17 79 00 88 ff ff `..y....`..y....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff81afb04d>] kmemleak_alloc+0x2d/0x60
[<ffffffff8115c6cf>] kmem_cache_alloc+0x13f/0x2b0
[<ffffffff814aaa97>] kmem_zone_alloc+0x77/0xf0
[<ffffffff814aab2e>] kmem_zone_zalloc+0x1e/0x50
[<ffffffff8147cd6b>] xfs_efi_init+0x4b/0xb0
[<ffffffff814a4ee8>] xfs_trans_get_efi+0x58/0x90
[<ffffffff81455fab>] xfs_bmap_finish+0x8b/0x1d0
[<ffffffff814851b4>] xfs_itruncate_finish+0x2c4/0x5d0
[<ffffffff814a970f>] xfs_setattr+0x8df/0xa70
[<ffffffff814b5c7b>] xfs_vn_setattr+0x1b/0x20
[<ffffffff8117dc00>] notify_change+0x170/0x2e0
[<ffffffff81163bf6>] do_truncate+0x66/0xa0
[<ffffffff81163d0b>] sys_ftruncate+0xdb/0xe0
[<ffffffff8103a002>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff

The cause of the leak is that the "remove" parameter of IOP_UNPIN()
is never set when a CIL push is aborted. This means that the EFI
item is never freed if it was in the push being cancelled. The
problem is specific to delayed logging, but has uncovered a couple
of problems with the handling of IOP_UNPIN(remove).

Firstly, we cannot safely call xfs_trans_del_item() from IOP_UNPIN()
in the CIL commit failure path or the iclog write failure path
because for delayed loging we have no transaction context. Hence we
must only call xfs_trans_del_item() if the log item being unpinned
has an active log item descriptor.

Secondly, xfs_trans_uncommit() does not handle log item descriptor
freeing during the traversal of log items on a transaction. It can
reference a freed log item descriptor when unpinning an EFI item.
Hence it needs to use a safe list traversal method to allow items to
be removed from the transaction during IOP_UNPIN().

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>


# bfc60177 07-Jan-2011 Christoph Hellwig <hch@infradead.org>

xfs: fix error handling for synchronous writes

If we get an IO error on a synchronous superblock write, we attach an
error release function to it so that when the last reference goes away
the release function is called and the buffer is invalidated and
unlocked. The buffer is left locked until the release function is
called so that other concurrent users of the buffer will be locked out
until the buffer error is fully processed.

Unfortunately, for the superblock buffer the filesyetm itself holds a
reference to the buffer which prevents the reference count from
dropping to zero and the release function being called. As a result,
once an IO error occurs on a sync write, the buffer will never be
unlocked and all future attempts to lock the buffer will hang.

To make matters worse, this problems is not unique to such buffers;
if there is a concurrent _xfs_buf_find() running, the lookup will grab
a reference to the buffer and then wait on the buffer lock, preventing
the reference count from ever falling to zero and hence unlocking the
buffer.

As such, the whole b_relse function implementation is broken because it
cannot rely on the buffer reference count falling to zero to unlock the
errored buffer. The synchronous write error path is the only path that
uses this callback - it is used to ensure that the synchronous waiter
gets the buffer error before the error state is cleared from the buffer
by the release function.

Given that the only sychronous buffer writes now go through xfs_bwrite
and the error path in question can only occur for a write of a dirty,
logged buffer, we can move most of the b_relse processing to happen
inline in xfs_buf_iodone_callbacks, just like a normal I/O completion.
In addition to that we make sure the error is not cleared in
xfs_buf_iodone_callbacks, so that xfs_bwrite can reliably check it.
Given that xfs_bwrite keeps the buffer locked until it has waited for
it and checked the error this allows to reliably propagate the error
to the caller, and make sure that the buffer is reliably unlocked.

Given that xfs_buf_iodone_callbacks was the only instance of the
b_relse callback we can remove it entirely.

Based on earlier patches by Dave Chinner and Ajeet Yadav.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Ajeet Yadav <ajeet.yadav.77@gmail.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>


# c90821a2 02-Dec-2010 Dave Chinner <dchinner@redhat.com>

xfs: consume iodone callback items on buffers as they are processed

To allow buffer iodone callbacks to consume multiple items off the
callback list, first we need to convert the xfs_buf_do_callbacks()
to consume items and always pull the next item from the head of the
list.

The means the item list walk is never dependent on knowing the
next item on the list and hence allows callbacks to remove items
from the list as well. This allows callbacks to do bulk operations
by scanning the list for identical callbacks, consuming them all
and then processing them in bulk, negating the need for multiple
callbacks of that type.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>


# 1a1a3e97 06-Oct-2010 Christoph Hellwig <hch@infradead.org>

xfs: remove xfs_buf wrappers

Stop having two different names for many buffer functions and use
the more descriptive xfs_buf_* names directly.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# ebad861b 21-Sep-2010 Dave Chinner <dchinner@redhat.com>

xfs: store xfs_mount in the buftarg instead of in the xfs_buf

Each buffer contains both a buftarg pointer and a mount pointer. If
we add a mount pointer into the buftarg, we can avoid needing the
b_mount field in every buffer and grab it from the buftarg when
needed instead. This shrinks the xfs_buf by 8 bytes.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>


# 939d723b 20-Jul-2010 Christoph Hellwig <hch@infradead.org>

xfs: kill the b_strat callback in xfs_buf

The b_strat callback is used by xfs_buf_iostrategy to perform additional
checks before submitting a buffer. It is used in xfs_bwrite and when
writing out delayed buffers. In xfs_bwrite it we can de-virtualize the
call easily as b_strat is set a few lines above the call to
xfs_buf_iostrategy. For the delayed buffers the rationale is a bit
more complicated:

- there are three callers of xfs_buf_delwri_queue, which places buffers
on the delwri list:
(1) xfs_bdwrite - this sets up b_strat, so it's fine
(2) xfs_buf_iorequest. None of the callers can have XBF_DELWRI set:
- xlog_bdstrat is only used for log buffers, which are never delwri
- _xfs_buf_read explicitly clears the delwri flag
- xfs_buf_iodone_work retries log buffers only
- xfsbdstrat - only used for reads, superblock writes without the
delwri flag, log I/O and file zeroing with explicitly allocated
buffers.
- xfs_buf_iostrategy - only calls xfs_buf_iorequest if b_strat is
not set
(3) xfs_buf_unlock
- only puts the buffer on the delwri list if the DELWRI flag is
already set. The DELWRI flag is only ever set in xfs_bwrite,
xfs_buf_iodone_callbacks, or xfs_trans_log_buf. For
xfs_buf_iodone_callbacks and xfs_trans_log_buf we require
an initialized buf item, which means b_strat was set to
xfs_bdstrat_cb in xfs_buf_item_init.

Conclusion: we can just get rid of the callback and replace it with
explicit calls to xfs_bdstrat_cb.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>


# 4e0d5f92 23-Jun-2010 Christoph Hellwig <hch@infradead.org>

xfs: fix the xfs_log_iovec i_addr type

By making this member a void pointer we can get rid of a lot of pointless
casts.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# 4d16e924 23-Jun-2010 Christoph Hellwig <hch@infradead.org>

xfs: simplify buffer pinning

Get rid of the xfs_buf_pin/xfs_buf_unpin/xfs_buf_ispin helpers and opencode
them in their only callers, just like we did for the inode pinning a while
ago. Also remove duplicate trace points - the bufitem tracepoints cover
all the information that is present in a buffer tracepoint.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# ca30b2a7 23-Jun-2010 Christoph Hellwig <hch@infradead.org>

xfs: give li_cb callbacks the correct prototype

Stop the function pointer casting madness and give all the li_cb instances
correct prototype.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# 7bfa31d8 23-Jun-2010 Christoph Hellwig <hch@infradead.org>

xfs: give xfs_item_ops methods the correct prototypes

Stop the function pointer casting madness and give all the xfs_item_ops the
correct prototypes.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# 9412e318 23-Jun-2010 Christoph Hellwig <hch@infradead.org>

xfs: merge iop_unpin_remove into iop_unpin

The unpin_remove item operation instances always share most of the
implementation with the respective unpin implementation. So instead
of keeping two different entry points add a remove flag to the unpin
operation and share the code more easily.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# e98c414f 23-Jun-2010 Christoph Hellwig <hch@infradead.org>

xfs: simplify log item descriptor tracking

Currently we track log item descriptor belonging to a transaction using a
complex opencoded chunk allocator. This code has been there since day one
and seems to work around the lack of an efficient slab allocator.

This patch replaces it with dynamically allocated log item descriptors
from a dedicated slab pool, linked to the transaction by a linked list.

This allows to greatly simplify the log item descriptor tracking to the
point where it's just a couple hundred lines in xfs_trans.c instead of
a separate file. The external API has also been simplified while we're
at it - the xfs_trans_add_item and xfs_trans_del_item functions to add/
delete items from a transaction have been simplified to the bare minium,
and the xfs_trans_find_item function is replaced with a direct dereference
of the li_desc field. All debug code walking the list of log items in
a transaction is down to a simple list_for_each_entry.

Note that we could easily use a singly linked list here instead of the
double linked list from list.h as the fastpath only does deletion from
sequential traversal. But given that we don't have one available as
a library function yet I use the list.h functions for simplicity.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# 288699fe 23-Jun-2010 Christoph Hellwig <hch@infradead.org>

xfs: drop dmapi hooks

Dmapi support was never merged upstream, but we still have a lot of hooks
bloating XFS for it, all over the fast pathes of the filesystem.

This patch drops over 700 lines of dmapi overhead. If we'll ever get HSM
support in mainline at least the namespace events can be done much saner
in the VFS instead of the individual filesystem, so it's not like this
is much help for future work.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>


# ccf7c23f 20-May-2010 Dave Chinner <dchinner@redhat.com>

xfs: Ensure inode allocation buffers are fully replayed

With delayed logging, we can get inode allocation buffers in the
same transaction inode unlink buffers. We don't currently mark inode
allocation buffers in the log, so inode unlink buffers take
precedence over allocation buffers.

The result is that when they are combined into the same checkpoint,
only the unlinked inode chain fields are replayed, resulting in
uninitialised inode buffers being detected when the next inode
modification is replayed.

To fix this, we need to ensure that we do not set the inode buffer
flag in the buffer log item format flags if the inode allocation has
not already hit the log. To avoid requiring a change to log
recovery, we really need to make this a modification that relies
only on in-memory sate.

We can do this by checking during buffer log formatting (while the
CIL cannot be flushed) if we are still in the same sequence when we
commit the unlink transaction as the inode allocation transaction.
If we are, then we do not add the inode buffer flag to the buffer
log format item flags. This means the entire buffer will be
replayed, not just the unlinked fields. We do this while
CIL flusheѕ are locked out to ensure that we don't race with the
sequence numbers changing and hence fail to put the inode buffer
flag in the buffer format flags when we really need to.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# c1155410 06-May-2010 Dave Chinner <dchinner@redhat.com>

xfs: Clean up XFS_BLI_* flag namespace

Clean up the buffer log format (XFS_BLI_*) flags because they have a
polluted namespace. They XFS_BLI_ prefix is used for both in-memory
and on-disk flag feilds, but have overlapping values for different
flags. Rename the buffer log format flags to use the XFS_BLF_*
prefix to avoid confusing them with the in-memory XFS_BLI_* prefixed
flags.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 64fc35de 06-May-2010 Dave Chinner <dchinner@redhat.com>

xfs: modify buffer item reference counting

The buffer log item reference counts used to take referenceѕ for every
transaction, similar to the pin counting. This is symmetric (like the
pin/unpin) with respect to transaction completion, but with dleayed logging
becomes assymetric as the pinning becomes assymetric w.r.t. transaction
completion.

To make both cases the same, allow the buffer pinning to take a reference to
the buffer log item and always drop the reference the transaction has on it
when being unlocked. This is balanced correctly because the unpin operation
always drops a reference to the log item. Hence reference counting becomes
symmetric w.r.t. item pinning as well as w.r.t active transactions and as a
result the reference counting model remain consistent between normal and
delayed logging.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 8e123850 07-Mar-2010 Dave Chinner <dchinner@redhat.com>

xfs: remove stale parameter from ->iop_unpin method

The staleness of a object being unpinned can be directly derived
from the object itself - there is no need to extract it from the
object then pass it as a parameter into IOP_UNPIN().

This means we can kill the XFS_LID_BUF_STALE flag - it is set,
checked and cleared in the same places XFS_BLI_STALE flag in the
xfs_buf_log_item so it is now redundant and hence safe to remove.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>


# 43f5efc5 22-Mar-2010 Dave Chinner <dchinner@redhat.com>

xfs: factor log item initialisation

Each log item type does manual initialisation of the log item.
Delayed logging introduces new fields that need initialisation, so
factor all the open coded initialisation into a common function
first.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>


# d808f617 01-Feb-2010 Dave Chinner <david@fromorbit.com>

xfs: Don't issue buffer IO direct from AIL push V2

All buffers logged into the AIL are marked as delayed write.
When the AIL needs to push the buffer out, it issues an async write of the
buffer. This means that IO patterns are dependent on the order of
buffers in the AIL.

Instead of flushing the buffer, promote the buffer in the delayed
write list so that the next time the xfsbufd is run the buffer will
be flushed by the xfsbufd. Return the state to the xfsaild that the
buffer was promoted so that the xfsaild knows that it needs to cause
the xfsbufd to run to flush the buffers that were promoted.

Using the xfsbufd for issuing the IO allows us to dispatch all
buffer IO from the one queue. This means that we can make much more
enlightened decisions on what order to flush buffers to disk as
we don't have multiple places issuing IO. Optimisations to xfsbufd
will be in a future patch.

Version 2
- kill XFS_ITEM_FLUSHING as it is now unused.

Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>


# 4139b3b3 19-Jan-2010 Christoph Hellwig <hch@infradead.org>

xfs: kill XLOG_VEC_SET_TYPE

This macro only obsfucates the log item type assignments, so kill it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 0b1b213f 14-Dec-2009 Christoph Hellwig <hch@infradead.org>

xfs: event tracing support

Convert the old xfs tracing support that could only be used with the
out of tree kdb and xfsidbg patches to use the generic event tracer.

To use it make sure CONFIG_EVENT_TRACING is enabled and then enable
all xfs trace channels by:

echo 1 > /sys/kernel/debug/tracing/events/xfs/enable

or alternatively enable single events by just doing the same in one
event subdirectory, e.g.

echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable

or set more complex filters, etc. In Documentation/trace/events.txt
all this is desctribed in more detail. To reads the events do a

cat /sys/kernel/debug/tracing/trace

Compared to the last posting this patch converts the tracing mostly to
the one tracepoint per callsite model that other users of the new
tracing facility also employ. This allows a very fine-grained control
of the tracing, a cleaner output of the traces and also enables the
perf tool to use each tracepoint as a virtual performance counter,
allowing us to e.g. count how often certain workloads git various
spots in XFS. Take a look at

http://lwn.net/Articles/346470/

for some examples.

Also the btree tracing isn't included at all yet, as it will require
additional core tracing features not in mainline yet, I plan to
deliver it later.

And the really nice thing about this patch is that it actually removes
many lines of code while adding this nice functionality:

fs/xfs/Makefile | 8
fs/xfs/linux-2.6/xfs_acl.c | 1
fs/xfs/linux-2.6/xfs_aops.c | 52 -
fs/xfs/linux-2.6/xfs_aops.h | 2
fs/xfs/linux-2.6/xfs_buf.c | 117 +--
fs/xfs/linux-2.6/xfs_buf.h | 33
fs/xfs/linux-2.6/xfs_fs_subr.c | 3
fs/xfs/linux-2.6/xfs_ioctl.c | 1
fs/xfs/linux-2.6/xfs_ioctl32.c | 1
fs/xfs/linux-2.6/xfs_iops.c | 1
fs/xfs/linux-2.6/xfs_linux.h | 1
fs/xfs/linux-2.6/xfs_lrw.c | 87 --
fs/xfs/linux-2.6/xfs_lrw.h | 45 -
fs/xfs/linux-2.6/xfs_super.c | 104 ---
fs/xfs/linux-2.6/xfs_super.h | 7
fs/xfs/linux-2.6/xfs_sync.c | 1
fs/xfs/linux-2.6/xfs_trace.c | 75 ++
fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++
fs/xfs/linux-2.6/xfs_vnode.h | 4
fs/xfs/quota/xfs_dquot.c | 110 ---
fs/xfs/quota/xfs_dquot.h | 21
fs/xfs/quota/xfs_qm.c | 40 -
fs/xfs/quota/xfs_qm_syscalls.c | 4
fs/xfs/support/ktrace.c | 323 ---------
fs/xfs/support/ktrace.h | 85 --
fs/xfs/xfs.h | 16
fs/xfs/xfs_ag.h | 14
fs/xfs/xfs_alloc.c | 230 +-----
fs/xfs/xfs_alloc.h | 27
fs/xfs/xfs_alloc_btree.c | 1
fs/xfs/xfs_attr.c | 107 ---
fs/xfs/xfs_attr.h | 10
fs/xfs/xfs_attr_leaf.c | 14
fs/xfs/xfs_attr_sf.h | 40 -
fs/xfs/xfs_bmap.c | 507 +++------------
fs/xfs/xfs_bmap.h | 49 -
fs/xfs/xfs_bmap_btree.c | 6
fs/xfs/xfs_btree.c | 5
fs/xfs/xfs_btree_trace.h | 17
fs/xfs/xfs_buf_item.c | 87 --
fs/xfs/xfs_buf_item.h | 20
fs/xfs/xfs_da_btree.c | 3
fs/xfs/xfs_da_btree.h | 7
fs/xfs/xfs_dfrag.c | 2
fs/xfs/xfs_dir2.c | 8
fs/xfs/xfs_dir2_block.c | 20
fs/xfs/xfs_dir2_leaf.c | 21
fs/xfs/xfs_dir2_node.c | 27
fs/xfs/xfs_dir2_sf.c | 26
fs/xfs/xfs_dir2_trace.c | 216 ------
fs/xfs/xfs_dir2_trace.h | 72 --
fs/xfs/xfs_filestream.c | 8
fs/xfs/xfs_fsops.c | 2
fs/xfs/xfs_iget.c | 111 ---
fs/xfs/xfs_inode.c | 67 --
fs/xfs/xfs_inode.h | 76 --
fs/xfs/xfs_inode_item.c | 5
fs/xfs/xfs_iomap.c | 85 --
fs/xfs/xfs_iomap.h | 8
fs/xfs/xfs_log.c | 181 +----
fs/xfs/xfs_log_priv.h | 20
fs/xfs/xfs_log_recover.c | 1
fs/xfs/xfs_mount.c | 2
fs/xfs/xfs_quota.h | 8
fs/xfs/xfs_rename.c | 1
fs/xfs/xfs_rtalloc.c | 1
fs/xfs/xfs_rw.c | 3
fs/xfs/xfs_trans.h | 47 +
fs/xfs/xfs_trans_buf.c | 62 -
fs/xfs/xfs_vnodeops.c | 8
70 files changed, 2151 insertions(+), 2592 deletions(-)

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>


# 4fdc7781 21-Dec-2008 Lachlan McIlroy <lachlan@redback.melbourne.sgi.com>

[XFS] Remove XFS_BUF_SHUT() and friends

Code does nothing so remove it.

Reviewed-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>


# 15ac08a8 09-Dec-2008 Christoph Hellwig <hch@infradead.org>

[XFS] replace b_fspriv with b_mount

Replace the b_fspriv pointer and it's ugly accessors with a properly types
xfs_mount pointer. Also switch log reocvery over to it instead of using
b_fspriv for the mount pointer.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>


# 783a2f65 30-Oct-2008 David Chinner <david@fromorbit.com>

[XFS] Finish removing the mount pointer from the AIL API

Change all the remaining AIL API functions that are passed struct
xfs_mount pointers to pass pointers directly to the struct xfs_ail being
used. With this conversion, all external access to the AIL is via the
struct xfs_ail. Hence the operation and referencing of the AIL is almost
entirely independent of the xfs_mount that is using it - it is now much
more tightly tied to the log and the items it is tracking in the log than
it is tied to the xfs_mount.

SGI-PV: 988143

SGI-Modid: xfs-linux-melb:xfs-kern:32353a

Signed-off-by: David Chinner <david@fromorbit.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>


# fc1829f3 30-Oct-2008 David Chinner <david@fromorbit.com>

[XFS] Add ail pointer into log items

Add an xfs_ail pointer to log items so that the log items can reference
the AIL directly during callbacks without needed a struct xfs_mount.

SGI-PV: 988143

SGI-Modid: xfs-linux-melb:xfs-kern:32352a

Signed-off-by: David Chinner <david@fromorbit.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>


# c7e8f268 30-Oct-2008 David Chinner <david@fromorbit.com>

[XFS] Move the AIL lock into the struct xfs_ail

Bring the ail lock inside the struct xfs_ail. This means the AIL can be
entirely manipulated via the struct xfs_ail rather than needing both the
struct xfs_mount and the struct xfs_ail.

SGI-PV: 988143

SGI-Modid: xfs-linux-melb:xfs-kern:32350a

Signed-off-by: David Chinner <david@fromorbit.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>


# e1f5dbd7 17-Sep-2008 Lachlan McIlroy <lachlan@sgi.com>

[XFS] Fix use-after-free with buffers

We have a use-after-free issue where log completions access buffers via
the buffer log item and the buffer has already been freed. Fix this by
taking a reference on the buffer when attaching the buffer log item and
release the hold when the buffer log item is detached and we no longer
need the buffer. Also create a new function xfs_buf_item_free() to combine
some common code.

SGI-PV: 985757

SGI-Modid: xfs-linux-melb:xfs-kern:32025a

Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>


# 5695ef46 13-Aug-2008 Lachlan McIlroy <lachlan@sgi.com>

[XFS] Use KM_NOFS for debug trace buffers

Use KM_NOFS to prevent recursion back into the filesystem which can cause
deadlocks.

In the case of xfs_iread() we hold the lock on the inode cluster buffer
while allocating memory for the trace buffers. If we recurse back into XFS
to flush data that may require a transaction to allocate extents which
needs log space. This can deadlock with the xfsaild thread which can't
push the tail of the log because it is trying to get the inode cluster
buffer lock.

SGI-PV: 981498

SGI-Modid: xfs-linux-melb:xfs-kern:31838a

Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>


# b4dd330b 13-Aug-2008 David Chinner <david@fromorbit.com>

[XFS] replace the XFS buf iodone semaphore with a completion

The xfs_buf_t b_iodonesema is really just a semaphore that wants to be a
completion. Change it to a completion and remove the last user of the
sema_t from XFS.

SGI-PV: 981498

SGI-Modid: xfs-linux-melb:xfs-kern:31815a

Signed-off-by: David Chinner <david@fromorbit.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>


# f0e2d93c 19-May-2008 Denys Vlasenko <vda.linux@googlemail.com>

[XFS] Remove unused arg from kmem_free()

kmem_free() function takes (ptr, size) arguments but doesn't actually use
second one.

This patch removes size argument from all callsites.

SGI-PV: 981498
SGI-Modid: xfs-linux-melb:xfs-kern:31050a

Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>


# db7a19f2 09-Apr-2008 David Chinner <dgc@sgi.com>

[XFS] Ensure xfs_bawrite() errors are checked.

xfs_bawrite() can return immediate error status on async writes. Unlike
xfsbdstrat() we don't ever check the error on the buffer after the call,
so we currently do not catch errors at all here. Ensure we catch and
propagate or warn to the syslog about up-front async write errors.

SGI-PV: 980084
SGI-Modid: xfs-linux-melb:xfs-kern:30824a

Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Niv Sardi <xaiki@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>


# 287f3dad 11-Oct-2007 Donald Douwsma <donaldd@sgi.com>

[XFS] Unwrap AIL_LOCK

SGI-PV: 970382
SGI-Modid: xfs-linux-melb:xfs-kern:29739a

Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Tim Shimmin <tes@sgi.com>


# da353b0d 27-Aug-2007 David Chinner <dgc@sgi.com>

[XFS] Radix tree based inode caching

One of the perpetual scaling problems XFS has is indexing it's incore
inodes. We currently uses hashes and the default hash sizes chosen can
only ever be a tradeoff between memory consumption and the maximum
realistic size of the cache.

As a result, anyone who has millions of inodes cached on a filesystem
needs to tunes the size of the cache via the ihashsize mount option to
allow decent scalability with inode cache operations.

A further problem is the separate inode cluster hash, whose size is based
on the ihashsize but is smaller, and so under certain conditions (sparse
cluster cache population) this can become a limitation long before the
inode hash is causing issues.

The following patchset removes the inode hash and cluster hash and
replaces them with radix trees to avoid the scalability limitations of the
hashes. It also reduces the size of the inodes by 3 pointers....

SGI-PV: 969561
SGI-Modid: xfs-linux-melb:xfs-kern:29481a

Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>


# 24ad33ff 28-Jun-2007 Eric Sandeen <sandeen@sandeen.net>

[XFS] Kill off xfs_count_bits

xfs_count_bits is only called once, and is then compared to 0. IOW, what
it really wants to know is, is the bitmap empty. This can be done more
simply, certainly.

SGI-PV: 966503
SGI-Modid: xfs-linux-melb:xfs-kern:28944a

Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>


# 7989cb8e 10-Feb-2007 David Chinner <dgc@sgi.com>

[XFS] Keep stack usage down for 4k stacks by using noinline.

gcc-4.1 and more recent aggressively inline static functions which
increases XFS stack usage by ~15% in critical paths. Prevent this from
occurring by adding noinline to the STATIC definition.

Also uninline some functions that are too large to be inlined and were
causing problems with CONFIG_FORCED_INLINING=y.

Finally, clean up all the different users of inline, __inline and
__inline__ and put them under one STATIC_INLINE macro. For debug kernels
the STATIC_INLINE macro uninlines those functions.

SGI-PV: 957159
SGI-Modid: xfs-linux-melb:xfs-kern:27585a

Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: David Chatterton <chatz@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>


# 065d312e 27-Sep-2006 Eric Sandeen <sandeen@sandeen.net>

[XFS] Remove unused iop_abort log item operation

SGI-PV: 955302
SGI-Modid: xfs-linux-melb:xfs-kern:26747a

Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>


# 43129c16 27-Sep-2006 Eric Sandeen <sandeen@sandeen.net>

[XFS] Remove a couple of unused BUF macros

SGI-PV: 955302
SGI-Modid: xfs-linux-melb:xfs-kern:26746a

Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Nathan Scott <nathans@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>


# f6c2d1fa 19-Jun-2006 Nathan Scott <nathans@sgi.com>

[XFS] Remove version 1 directory code. Never functioned on Linux, just
pure bloat.

SGI-PV: 952969
SGI-Modid: xfs-linux-melb:xfs-kern:26251a

Signed-off-by: Nathan Scott <nathans@sgi.com>


# b6574520 08-Jun-2006 Nathan Scott <nathans@sgi.com>

[XFS] Portability changes: remove prdev, stick to one diagnostic
interface.

SGI-PV: 953338
SGI-Modid: xfs-linux-melb:xfs-kern:26103a

Signed-off-by: Nathan Scott <nathans@sgi.com>


# 7d04a335 08-Jun-2006 Nathan Scott <nathans@sgi.com>

[XFS] Shutdown the filesystem if all device paths have gone. Made
shutdown vop flags consistent with sync vop flags declarations too.

SGI-PV: 939911
SGI-Modid: xfs-linux-melb:xfs-kern:26096a

Signed-off-by: Nathan Scott <nathans@sgi.com>


# c41564b5 28-Mar-2006 Nathan Scott <nathans@sgi.com>

[XFS] We really suck at spulling. Thanks to Chris Pascoe for fixing all
these typos.

SGI-PV: 904196
SGI-Modid: xfs-linux-melb:xfs-kern:25539a

Signed-off-by: Nathan Scott <nathans@sgi.com>


# 7b718769 01-Nov-2005 Nathan Scott <nathans@sgi.com>

[XFS] Update license/copyright notices to match the prefered SGI
boilerplate.

SGI-PV: 913862
SGI-Modid: xfs-linux:xfs-kern:23903a

Signed-off-by: Nathan Scott <nathans@sgi.com>


# a844f451 01-Nov-2005 Nathan Scott <nathans@sgi.com>

[XFS] Remove xfs_macros.c, xfs_macros.h, rework headers a whole lot.

SGI-PV: 943122
SGI-Modid: xfs-linux:xfs-kern:23901a

Signed-off-by: Nathan Scott <nathans@sgi.com>


# 7e9c6396 02-Sep-2005 Tim Shimmin <tes@sgi.com>

[XFS] 929956 add log debugging and tracing info

SGI-PV: 931456
SGI-Modid: xfs-linux:xfs-kern:23155a

Signed-off-by: Tim Shimmin <tes@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>


# ba0f32d4 20-Jun-2005 Christoph Hellwig <hch@sgi.com>

[XFS] mark various symbols static Patch from Adrian Bunk

SGI-PV: 936255
SGI-Modid: xfs-linux:xfs-kern:192760a

Signed-off-by: Christoph Hellwig <hch@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>


# 1da177e4 16-Apr-2005 Linus Torvalds <torvalds@ppc970.osdl.org>

Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!