History log of /linux-master/fs/cachefiles/interface.c
Revision Date Author Comments
# 3c5ecfe1 19-Nov-2023 Jia Zhu <zhujia.zj@bytedance.com>

cachefiles: extract ondemand info field from cachefiles_object

We'll introduce a @work_struct field for @object in subsequent patches,
it will enlarge the size of @object.
As the result of that, this commit extracts ondemand info field from
@object.

Signed-off-by: Jia Zhu <zhujia.zj@bytedance.com>
Link: https://lore.kernel.org/r/20231120041422.75170-3-zhujia.zj@bytedance.com
Reviewed-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>


# abf08576 12-Jan-2023 Christian Brauner <brauner@kernel.org>

fs: port vfs_*() helpers to struct mnt_idmap

Convert to struct mnt_idmap.

Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.

Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.

Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.

Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>


# 324b954a 25-Apr-2022 Jeffle Xu <jefflexu@linux.alibaba.com>

cachefiles: notify the user daemon when withdrawing cookie

Notify the user daemon that cookie is going to be withdrawn, providing a
hint that the associated anonymous fd can be closed.

Be noted that this is only a hint. The user daemon may close the
associated anonymous fd when receiving the CLOSE request, then it will
receive another anonymous fd when the cookie gets looked up. Or it may
ignore the CLOSE request, and keep writing data through the anonymous
fd. However the next time the cookie gets looked up, the user daemon
will still receive another new anonymous fd.

Signed-off-by: Jeffle Xu <jefflexu@linux.alibaba.com>
Acked-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/20220425122143.56815-5-jefflexu@linux.alibaba.com
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>


# b08968f1 03-Mar-2022 David Howells <dhowells@redhat.com>

cachefiles: Fix incorrect length to fallocate()

When cachefiles_shorten_object() calls fallocate() to shape the cache
file to match the DIO size, it passes the total file size it wants to
achieve, not the amount of zeros that should be inserted. Since this is
meant to preallocate that amount of storage for the file, it can cause
the cache to fill up the disk and hit ENOSPC.

Fix this by passing the length actually required to go from the current
EOF to the desired EOF.

Fixes: 7623ed6772de ("cachefiles: Implement cookie resize for truncate")
Reported-by: Jeffle Xu <jefflexu@linux.alibaba.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/164630854858.3665356.17419701804248490708.stgit@warthog.procyon.org.uk # v1
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# 7623ed67 21-Oct-2021 David Howells <dhowells@redhat.com>

cachefiles: Implement cookie resize for truncate

Implement resizing an object, using truncate and/or fallocate to adjust the
object.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819646631.215744.13819016478175576761.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906952877.143852.4140962906331914859.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967162168.1823006.5941985259926902274.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021560394.640689.9972155785508094960.stgit@warthog.procyon.org.uk/ # v4


# 287fd611 21-Oct-2021 David Howells <dhowells@redhat.com>

cachefiles: Implement begin and end I/O operation

Implement the methods for beginning and ending an I/O operation.

When called to begin an I/O operation, we are guaranteed that the cookie
has reached a certain stage (we're called by fscache after it has done a
suitable wait).

If a file is available, we paste a ref over into the cache resources for
the I/O routines to use. This means that the object can be invalidated
whilst the I/O is ongoing without the need to synchronise as the file
pointer in the object is replaced, but the file pointer in the cache
resources is unaffected.

Ending the operation just requires ditching any refs we have and dropping
the access guarantee that fscache got for us on the cookie.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819645033.215744.2199344081658268312.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906951916.143852.9531384743995679857.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967161222.1823006.4461476204800357263.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021559030.640689.3684291785218094142.stgit@warthog.procyon.org.uk/ # v4


# 1f08c925 21-Oct-2021 David Howells <dhowells@redhat.com>

cachefiles: Implement backing file wrangling

Implement the wrangling of backing files, including the following pieces:

(1) Lookup and creation of a file on disk, using a tmpfile if the file
isn't yet present. The file is then opened, sized for DIO and the
file handle is attached to the cachefiles_object struct. The inode is
marked to indicate that it's in use by a kernel service.

(2) Invalidation of an object, creating a tmpfile and switching the file
pointer in the cachefiles object.

(3) Committing a file to disk, including setting the coherency xattr on it
and, if necessary, creating a hard link to it.

Note that this would be a good place to use Omar Sandoval's vfs_link()
with AT_LINK_REPLACE[1] as I may have to unlink an old file before I
can link a tmpfile into place.

(4) Withdrawal of open objects when a cache is being withdrawn or a cookie
is relinquished. This involves committing or discarding the file.

Changes
=======
ver #2:
- Fix logging of wrong error[1].

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/20211203094950.GA2480@kili/ [1]
Link: https://lore.kernel.org/r/163819644097.215744.4505389616742411239.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906949512.143852.14222856795032602080.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967158526.1823006.17482695321424642675.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021557060.640689.16373541458119269871.stgit@warthog.procyon.org.uk/ # v4


# df98e87f 17-Nov-2021 David Howells <dhowells@redhat.com>

cachefiles: Implement object lifecycle funcs

Implement allocate, get, see and put functions for the cachefiles_object
struct. The members of the struct we're going to need are also added.

Additionally, implement a lifecycle tracepoint.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819639457.215744.4600093239395728232.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906939569.143852.3594314410666551982.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967148857.1823006.6332962598220464364.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021547762.640689.8422781599594931000.stgit@warthog.procyon.org.uk/ # v4


# fe2140e2 21-Oct-2021 David Howells <dhowells@redhat.com>

cachefiles: Implement volume support

Implement support for creating the directory layout for a volume on disk
and setting up and withdrawing volume caching.

Each volume has a directory named for the volume key under the root of the
cache (prefixed with an 'I' to indicate to cachefilesd that it's an index)
and then creates a bunch of hash bucket subdirectories under that (named as
'@' plus a hex number) in which cookie files will be created.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819635314.215744.13081522301564537723.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906936397.143852.17788457778396467161.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967143860.1823006.7185205806080225038.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021545212.640689.5064821392307582927.stgit@warthog.procyon.org.uk/ # v4


# d1065b0a 26-Nov-2021 David Howells <dhowells@redhat.com>

cachefiles: Implement cache registration and withdrawal

Do the following:

(1) Fill out cachefiles_daemon_add_cache() so that it sets up the cache
directories and registers the cache with cachefiles.

(2) Add a function to do the top-level part of cache withdrawal and
unregistration.

(3) Add a function to sync a cache.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819633175.215744.10857127598041268340.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906935445.143852.15545194974036410029.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967142904.1823006.244055483596047072.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021543872.640689.14370017789605073222.stgit@warthog.procyon.org.uk/ # v4


# 850cba06 30-Oct-2021 David Howells <dhowells@redhat.com>

cachefiles: Delete the cachefiles driver pending rewrite

Delete the code from the cachefiles driver to make it easier to rewrite and
resubmit in a logical manner.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819577641.215744.12718114397770666596.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906883770.143852.4149714614981373410.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967076066.1823006.7175712134577687753.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021483619.640689.7586546280515844702.stgit@warthog.procyon.org.uk/ # v4


# 8beabdde 19-Oct-2020 David Howells <dhowells@redhat.com>

cachefiles: Change %p in format strings to something else

Change plain %p in format strings in cachefiles code to something more
useful, since %p is now hashed before printing and thus no longer matches
the contents of an oops register dump.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/160588476042.3465195.6837847445880367183.stgit@warthog.procyon.org.uk/ # rfc
Link: https://lore.kernel.org/r/162431200692.2908479.9253374494073633778.stgit@warthog.procyon.org.uk/


# 26aaeffc 22-Feb-2021 David Howells <dhowells@redhat.com>

fscache, cachefiles: Add alternate API to use kiocb for read/write to cache

Add an alternate API by which the cache can be accessed through a kiocb,
doing async DIO, rather than using the current API that tells the cache
where all the pages are.

The new API is intended to be used in conjunction with the netfs helper
library. A filesystem must pick one or the other and not mix them.

Filesystems wanting to use the new API must #define FSCACHE_USE_NEW_IO_API
before #including the header. This prevents them from continuing to use
the old API at the same time as there are incompatibilities in how the
PG_fscache page bit is used.

Changes:
v6:
- Provide a routine to shape a write so that the start and length can be
aligned for DIO[3].

v4:
- Use the vfs_iocb_iter_read/write() helpers[1]
- Move initial definition of fscache_begin_read_operation() here.
- Remove a commented-out line[2]
- Combine ki->term_func calls in cachefiles_read_complete()[2].
- Remove explicit NULL initialiser[2].
- Remove extern on func decl[2].
- Put in param names on func decl[2].
- Remove redundant else[2].
- Fill out the kdoc comment for fscache_begin_read_operation().
- Rename fs/fscache/page2.c to io.c to match later patches.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-and-tested-by: Jeff Layton <jlayton@kernel.org>
Tested-by: Dave Wysochanski <dwysocha@redhat.com>
Tested-By: Marc Dionne <marc.dionne@auristor.com>
cc: Christoph Hellwig <hch@lst.de>
cc: linux-cachefs@redhat.com
cc: linux-afs@lists.infradead.org
cc: linux-nfs@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: ceph-devel@vger.kernel.org
cc: v9fs-developer@lists.sourceforge.net
cc: linux-fsdevel@vger.kernel.org
Link: https://lore.kernel.org/r/20210216102614.GA27555@lst.de/ [1]
Link: https://lore.kernel.org/r/20210216084230.GA23669@lst.de/ [2]
Link: https://lore.kernel.org/r/161781047695.463527.7463536103593997492.stgit@warthog.procyon.org.uk/ [3]
Link: https://lore.kernel.org/r/161118142558.1232039.17993829899588971439.stgit@warthog.procyon.org.uk/ # rfc
Link: https://lore.kernel.org/r/161161037850.2537118.8819808229350326503.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/161340402057.1303470.8038373593844486698.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/161539545919.286939.14573472672781434757.stgit@warthog.procyon.org.uk/ # v4
Link: https://lore.kernel.org/r/161653801477.2770958.10543270629064934227.stgit@warthog.procyon.org.uk/ # v5
Link: https://lore.kernel.org/r/161789084517.6155.12799689829859169640.stgit@warthog.procyon.org.uk/ # v6


# 2f221d6f 21-Jan-2021 Christian Brauner <christian.brauner@ubuntu.com>

attr: handle idmapped mounts

When file attributes are changed most filesystems rely on the
setattr_prepare(), setattr_copy(), and notify_change() helpers for
initialization and permission checking. Let them handle idmapped mounts.
If the inode is accessed through an idmapped mount map it into the
mount's user namespace. Afterwards the checks are identical to
non-idmapped mounts. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.

Helpers that perform checks on the ia_uid and ia_gid fields in struct
iattr assume that ia_uid and ia_gid are intended values and have already
been mapped correctly at the userspace-kernelspace boundary as we
already do today. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.

Link: https://lore.kernel.org/r/20210121131959.646623-8-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>


# b4d0d230 20-May-2019 Thomas Gleixner <tglx@linutronix.de>

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 36

Based on 1 normalized pattern(s):

this program is free software you can redistribute it and or modify
it under the terms of the gnu general public licence as published by
the free software foundation either version 2 of the licence or at
your option any later version

extracted by the scancode license scanner the SPDX license identifier

GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 114 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>


# ee1235a9 04-Apr-2018 David Howells <dhowells@redhat.com>

fscache: Pass object size in rather than calling back for it

Pass the object size in to fscache_acquire_cookie() and
fscache_write_page() rather than the netfs providing a callback by which it
can be received. This makes it easier to update the size of the object
when a new page is written that extends the object.

The current object size is also passed by fscache to the check_aux
function, obviating the need to store it in the aux data.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Anna Schumaker <anna.schumaker@netapp.com>
Tested-by: Steve Dickson <steved@redhat.com>


# 402cb8dd 04-Apr-2018 David Howells <dhowells@redhat.com>

fscache: Attach the index key and aux data to the cookie

Attach copies of the index key and auxiliary data to the fscache cookie so
that:

(1) The callbacks to the netfs for this stuff can be eliminated. This
can simplify things in the cache as the information is still
available, even after the cache has relinquished the cookie.

(2) Simplifies the locking requirements of accessing the information as we
don't have to worry about the netfs object going away on us.

(3) The cache can do lazy updating of the coherency information on disk.
As long as the cache is flushed before reboot/poweroff, there's no
need to update the coherency info on disk every time it changes.

(4) Cookies can be hashed or put in a tree as the index key is easily
available. This allows:

(a) Checks for duplicate cookies can be made at the top fscache layer
rather than down in the bowels of the cache backend.

(b) Caching can be added to a netfs object that has a cookie if the
cache is brought online after the netfs object is allocated.

A certain amount of space is made in the cookie for inline copies of the
data, but if it won't fit there, extra memory will be allocated for it.

The downside of this is that live cache operation requires more memory.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Anna Schumaker <anna.schumaker@netapp.com>
Tested-by: Steve Dickson <steved@redhat.com>


# a18feb55 04-Apr-2018 David Howells <dhowells@redhat.com>

fscache: Add tracepoints

Add some tracepoints to fscache:

(*) fscache_cookie - Tracks a cookie's usage count.

(*) fscache_netfs - Logs registration of a network filesystem, including
the pointer to the cookie allocated.

(*) fscache_acquire - Logs cookie acquisition.

(*) fscache_relinquish - Logs cookie relinquishment.

(*) fscache_enable - Logs enablement of a cookie.

(*) fscache_disable - Logs disablement of a cookie.

(*) fscache_osm - Tracks execution of states in the object state machine.

and cachefiles:

(*) cachefiles_ref - Tracks a cachefiles object's usage count.

(*) cachefiles_lookup - Logs result of lookup_one_len().

(*) cachefiles_mkdir - Logs result of vfs_mkdir().

(*) cachefiles_create - Logs result of vfs_create().

(*) cachefiles_unlink - Logs calls to vfs_unlink().

(*) cachefiles_rename - Logs calls to vfs_rename().

(*) cachefiles_mark_active - Logs an object becoming active.

(*) cachefiles_wait_active - Logs a wait for an old object to be
destroyed.

(*) cachefiles_mark_inactive - Logs an object becoming inactive.

(*) cachefiles_mark_buried - Logs the burial of an object.

Signed-off-by: David Howells <dhowells@redhat.com>


# a818101d 09-Aug-2016 David Howells <dhowells@redhat.com>

cachefiles: Fix attempt to read i_blocks after deleting file [ver #2]

An NULL-pointer dereference happens in cachefiles_mark_object_inactive()
when it tries to read i_blocks so that it can tell the cachefilesd daemon
how much space it's making available.

The problem is that cachefiles_drop_object() calls
cachefiles_mark_object_inactive() after calling cachefiles_delete_object()
because the object being marked active staves off attempts to (re-)use the
file at that filename until after it has been deleted. This means that
d_inode is NULL by the time we come to try to access it.

To fix the problem, have the caller of cachefiles_mark_object_inactive()
supply the number of blocks freed up.

Without this, the following oops may occur:

BUG: unable to handle kernel NULL pointer dereference at 0000000000000098
IP: [<ffffffffa06c5cc1>] cachefiles_mark_object_inactive+0x61/0xb0 [cachefiles]
...
CPU: 11 PID: 527 Comm: kworker/u64:4 Tainted: G I ------------ 3.10.0-470.el7.x86_64 #1
Hardware name: Hewlett-Packard HP Z600 Workstation/0B54h, BIOS 786G4 v03.19 03/11/2011
Workqueue: fscache_object fscache_object_work_func [fscache]
task: ffff880035edaf10 ti: ffff8800b77c0000 task.ti: ffff8800b77c0000
RIP: 0010:[<ffffffffa06c5cc1>] cachefiles_mark_object_inactive+0x61/0xb0 [cachefiles]
RSP: 0018:ffff8800b77c3d70 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8800bf6cc400 RCX: 0000000000000034
RDX: 0000000000000000 RSI: ffff880090ffc710 RDI: ffff8800bf761ef8
RBP: ffff8800b77c3d88 R08: 2000000000000000 R09: 0090ffc710000000
R10: ff51005d2ff1c400 R11: 0000000000000000 R12: ffff880090ffc600
R13: ffff8800bf6cc520 R14: ffff8800bf6cc400 R15: ffff8800bf6cc498
FS: 0000000000000000(0000) GS:ffff8800bb8c0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 0000000000000098 CR3: 00000000019ba000 CR4: 00000000000007e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Stack:
ffff880090ffc600 ffff8800bf6cc400 ffff8800867df140 ffff8800b77c3db0
ffffffffa06c48cb ffff880090ffc600 ffff880090ffc180 ffff880090ffc658
ffff8800b77c3df0 ffffffffa085d846 ffff8800a96b8150 ffff880090ffc600
Call Trace:
[<ffffffffa06c48cb>] cachefiles_drop_object+0x6b/0xf0 [cachefiles]
[<ffffffffa085d846>] fscache_drop_object+0xd6/0x1e0 [fscache]
[<ffffffffa085d615>] fscache_object_work_func+0xa5/0x200 [fscache]
[<ffffffff810a605b>] process_one_work+0x17b/0x470
[<ffffffff810a6e96>] worker_thread+0x126/0x410
[<ffffffff810a6d70>] ? rescuer_thread+0x460/0x460
[<ffffffff810ae64f>] kthread+0xcf/0xe0
[<ffffffff810ae580>] ? kthread_create_on_node+0x140/0x140
[<ffffffff81695418>] ret_from_fork+0x58/0x90
[<ffffffff810ae580>] ? kthread_create_on_node+0x140/0x140

The oopsing code shows:

callq 0xffffffff810af6a0 <wake_up_bit>
mov 0xf8(%r12),%rax
mov 0x30(%rax),%rax
mov 0x98(%rax),%rax <---- oops here
lock add %rax,0x130(%rbx)

where this is:

d_backing_inode(object->dentry)->i_blocks

Fixes: a5b3a80b899bda0f456f1246c4c5a1191ea01519 (CacheFiles: Provide read-and-reset release counters for cachefilesd)
Reported-by: Jianhong Yin <jiyin@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Steve Dickson <steved@redhat.com>
cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>


# 480ce08a 20-May-2016 Yan, Zheng <zyan@redhat.com>

FS-Cache: make check_consistency callback return int

__fscache_check_consistency() calls check_consistency() callback
and return the callback's return value. But the return type of
check_consistency() is bool. So __fscache_check_consistency()
return 1 if the cache is inconsistent. This is inconsistent with
the document.

Signed-off-by: Yan, Zheng <zyan@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>


# a5b3a80b 01-Feb-2016 David Howells <dhowells@redhat.com>

CacheFiles: Provide read-and-reset release counters for cachefilesd

Provide read-and-reset objects- and blocks-released counters for cachefilesd
to use to work out whether there's anything new that can be culled.

One of the problems cachefilesd has is that if all the objects in the cache
are pinned by inodes lying dormant in the kernel inode cache, there isn't
anything for it to cull. In such a case, it just spins around walking the
filesystem tree and scanning for something to cull. This eats up a lot of
CPU time.

By telling cachefilesd if there have been any releases, the daemon can
sleep until there is the possibility of something to do.

cachefilesd finds this information by the following means:

(1) When the control fd is read, the kernel presents a list of values of
interest. "freleased=N" and "breleased=N" are added to this list to
indicate the number of files released and number of blocks released
since the last read call. At this point the counters are reset.

(2) POLLIN is signalled if the number of files released becomes greater
than 0.

Note that by 'released' it just means that the kernel has released its
interest in those files for the moment, not necessarily that the files
should be deleted from the cache.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>


# 5955102c 22-Jan-2016 Al Viro <viro@zeniv.linux.org.uk>

wrappers for ->i_mutex access

parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).

Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>


# 466b77bc 17-Mar-2015 David Howells <dhowells@redhat.com>

VFS: fs/cachefiles: d_backing_inode() annotations

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>


# 5153bc81 06-Mar-2015 David Howells <dhowells@redhat.com>

VFS: Cachefiles should perform fs modifications on the top layer only

Cachefiles should perform fs modifications (eg. vfs_unlink()) on the top layer
only and should not attempt to alter the lower layer.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>


# ce40fa78 28-Jan-2015 David Howells <dhowells@redhat.com>

Cachefiles: Fix up scripted S_ISDIR/S_ISREG/S_ISLNK conversions

Fix up the following scripted S_ISDIR/S_ISREG/S_ISLNK conversions (or lack
thereof) in cachefiles:

(1) Cachefiles mostly wants to use d_can_lookup() rather than d_is_dir() as
it doesn't want to deal with automounts in its cache.

(2) Coccinelle didn't find S_IS* expressions in ASSERT() statements in
cachefiles.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>


# a3b7c004 30-Sep-2014 David Howells <dhowells@redhat.com>

CacheFiles: Handle object being killed before being set up

If a cache object gets killed whilst in the process of being set up - for
instance if the netfs relinquishes the cookie that the object is associated
with - then the object's state machine will transit to the DROP_OBJECT state
without necessarily going through the LOOKUP_OBJECT or CREATE_OBJECT states.

This is a problem for CacheFiles because cachefiles_drop_object() assumes that
object->dentry will be set upon reaching the DROP_OBJECT state and has an
ASSERT() to that effect (see the oops below) - but object->dentry doesn't get
set until the LOOKUP_OBJECT or CREATE_OBJECT states (and not always then if
they fail).

To fix this, just make the dentry cleanup in cachefiles_drop_object()
conditional on the dentry actually being set and remove the assertion.

CacheFiles: Assertion failed
------------[ cut here ]------------
kernel BUG at .../fs/cachefiles/namei.c:425!
...
Workqueue: fscache_object fscache_object_work_func [fscache]
...
RIP: ... cachefiles_delete_object+0xcd/0x110 [cachefiles]
...
Call Trace:
[<ffffffffa043280f>] ? cachefiles_drop_object+0xff/0x130 [cachefiles]
[<ffffffffa02ac511>] ? fscache_drop_object+0xd1/0x1d0 [fscache]
[<ffffffffa02ac697>] ? fscache_object_work_func+0x87/0x210 [fscache]
[<ffffffff81080635>] ? process_one_work+0x155/0x450
[<ffffffff81081c44>] ? worker_thread+0x114/0x370
[<ffffffff81081b30>] ? manage_workers.isra.21+0x2c0/0x2c0
[<ffffffff81087fcc>] ? kthread+0xbc/0xe0
[<ffffffff81087f10>] ? flush_kthread_worker+0xa0/0xa0
[<ffffffff8150638c>] ? ret_from_fork+0x7c/0xb0
[<ffffffff81087f10>] ? flush_kthread_worker+0xa0/0xa0

Reported-by: Manuel Schölling <manuel.schoelling@gmx.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>


# 0227d6ab 06-Jun-2014 Fabian Frederick <fabf@skynet.be>

fs/cachefiles: replace kerror by pr_err

Also add pr_fmt in internal.h

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# 4e1eb883 06-Jun-2014 Fabian Frederick <fabf@skynet.be>

FS/CACHEFILES: convert printk to pr_foo()

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# 27ac0ffe 20-Sep-2011 J. Bruce Fields <bfields@redhat.com>

locks: break delegations on any attribute modification

NFSv4 uses leases to guarantee that clients can cache metadata as well
as data.

Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz>
Cc: David Howells <dhowells@redhat.com>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Dustin Kirkland <dustin.kirkland@gazzang.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>


# 94d30ae9 20-Sep-2013 David Howells <dhowells@redhat.com>

FS-Cache: Provide the ability to enable/disable cookies

Provide the ability to enable and disable fscache cookies. A disabled cookie
will reject or ignore further requests to:

Acquire a child cookie
Invalidate and update backing objects
Check the consistency of a backing object
Allocate storage for backing page
Read backing pages
Write to backing pages

but still allows:

Checks/waits on the completion of already in-progress objects
Uncaching of pages
Relinquishment of cookies

Two new operations are provided:

(1) Disable a cookie:

void fscache_disable_cookie(struct fscache_cookie *cookie,
bool invalidate);

If the cookie is not already disabled, this locks the cookie against other
dis/enablement ops, marks the cookie as being disabled, discards or
invalidates any backing objects and waits for cessation of activity on any
associated object.

This is a wrapper around a chunk split out of fscache_relinquish_cookie(),
but it reinitialises the cookie such that it can be reenabled.

All possible failures are handled internally. The caller should consider
calling fscache_uncache_all_inode_pages() afterwards to make sure all page
markings are cleared up.

(2) Enable a cookie:

void fscache_enable_cookie(struct fscache_cookie *cookie,
bool (*can_enable)(void *data),
void *data)

If the cookie is not already enabled, this locks the cookie against other
dis/enablement ops, invokes can_enable() and, if the cookie is not an
index cookie, will begin the procedure of acquiring backing objects.

The optional can_enable() function is passed the data argument and returns
a ruling as to whether or not enablement should actually be permitted to
begin.

All possible failures are handled internally. The cookie will only be
marked as enabled if provisional backing objects are allocated.

A later patch will introduce these to NFS. Cookie enablement during nfs_open()
is then contingent on i_writecount <= 0. can_enable() checks for a race
between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie
handling and allows us to get rid of open(O_RDONLY) accidentally introducing
caching to an inode that's open for writing already.

One operation has its API modified:

(3) Acquire a cookie.

struct fscache_cookie *fscache_acquire_cookie(
struct fscache_cookie *parent,
const struct fscache_cookie_def *def,
void *netfs_data,
bool enable);

This now has an additional argument that indicates whether the requested
cookie should be enabled by default. It doesn't need the can_enable()
function because the caller must prevent multiple calls for the same netfs
object and it doesn't need to take the enablement lock because no one else
can get at the cookie before this returns.

Signed-off-by: David Howells <dhowells@redhat.com


# 5002d7be 21-Aug-2013 David Howells <dhowells@redhat.com>

CacheFiles: Implement interface to check cache consistency

Implement the FS-Cache interface to check the consistency of a cache object in
CacheFiles.

Original-author: Hongyi Jia <jiayisuse@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Hongyi Jia <jiayisuse@gmail.com>
cc: Milosz Tanski <milosz@adfin.com>


# 2144bc78 15-May-2013 Haicheng Li <haicheng.li@linux.intel.com>

cachefiles: remove unused macro list_to_page()

Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>


# 1362729b 10-May-2013 David Howells <dhowells@redhat.com>

FS-Cache: Simplify cookie retention for fscache_objects, fixing oops

Simplify the way fscache cache objects retain their cookie. The way I
implemented the cookie storage handling made synchronisation a pain (ie. the
object state machine can't rely on the cookie actually still being there).

Instead of the the object being detached from the cookie and the cookie being
freed in __fscache_relinquish_cookie(), we defer both operations:

(*) The detachment of the object from the list in the cookie now takes place
in fscache_drop_object() and is thus governed by the object state machine
(fscache_detach_from_cookie() has been removed).

(*) The release of the cookie is now in fscache_object_destroy() - which is
called by the cache backend just before it frees the object.

This means that the fscache_cookie struct is now available to the cache all the
way through from ->alloc_object() to ->drop_object() and ->put_object() -
meaning that it's no longer necessary to take object->lock to guarantee access.

However, __fscache_relinquish_cookie() doesn't wait for the object to go all
the way through to destruction before letting the netfs proceed. That would
massively slow down the netfs. Since __fscache_relinquish_cookie() leaves the
cookie around, in must therefore break all attachments to the netfs - which
includes ->def, ->netfs_data and any outstanding page read/writes.

To handle this, struct fscache_cookie now has an n_active counter:

(1) This starts off initialised to 1.

(2) Any time the cache needs to get at the netfs data, it calls
fscache_use_cookie() to increment it - if it is not zero. If it was zero,
then access is not permitted.

(3) When the cache has finished with the data, it calls fscache_unuse_cookie()
to decrement it. This does a wake-up on it if it reaches 0.

(4) __fscache_relinquish_cookie() decrements n_active and then waits for it to
reach 0. The initialisation to 1 in step (1) ensures that we only get
wake ups when we're trying to get rid of the cookie.

This leaves __fscache_relinquish_cookie() a lot simpler.


***
This fixes a problem in the current code whereby if fscache_invalidate() is
followed sufficiently quickly by fscache_relinquish_cookie() then it is
possible for __fscache_relinquish_cookie() to have detached the cookie from the
object and cleared the pointer before a thread is dispatched to process the
invalidation state in the object state machine.

Since the pending write clearance was deferred to the invalidation state to
make it asynchronous, we need to either wait in relinquishment for the stores
tree to be cleared in the invalidation state or we need to handle the clearance
in relinquishment.

Further, if the relinquishment code does clear the tree, then the invalidation
state need to make the clearance contingent on still having the cookie to hand
(since that's where the tree is rooted) and we have to prevent the cookie from
disappearing for the duration.

This can lead to an oops like the following:

BUG: unable to handle kernel NULL pointer dereference at 000000000000000c
...
RIP: 0010:[<ffffffff8151023e>] _spin_lock+0xe/0x30
...
CR2: 000000000000000c ...
...
Process kslowd002 (...)
....
Call Trace:
[<ffffffffa01c3278>] fscache_invalidate_writes+0x38/0xd0 [fscache]
[<ffffffff810096f0>] ? __switch_to+0xd0/0x320
[<ffffffff8105e759>] ? find_busiest_queue+0x69/0x150
[<ffffffff8110ddd4>] ? slow_work_enqueue+0x104/0x180
[<ffffffffa01c1303>] fscache_object_slow_work_execute+0x5e3/0x9d0 [fscache]
[<ffffffff81096b67>] ? bit_waitqueue+0x17/0xd0
[<ffffffff8110e233>] slow_work_execute+0x233/0x310
[<ffffffff8110e515>] slow_work_thread+0x205/0x360
[<ffffffff81096ca0>] ? autoremove_wake_function+0x0/0x40
[<ffffffff8110e310>] ? slow_work_thread+0x0/0x360
[<ffffffff81096936>] kthread+0x96/0xa0
[<ffffffff8100c0ca>] child_rip+0xa/0x20
[<ffffffff810968a0>] ? kthread+0x0/0xa0
[<ffffffff8100c0c0>] ? child_rip+0x0/0x20

The parameter to fscache_invalidate_writes() was object->cookie which is NULL.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>


# caaef690 10-May-2013 David Howells <dhowells@redhat.com>

FS-Cache: Fix object state machine to have separate work and wait states

Fix object state machine to have separate work and wait states as that makes
it easier to envision.

There are now three kinds of state:

(1) Work state. This is an execution state. No event processing is performed
by a work state. The function attached to a work state returns a pointer
indicating the next state to which the OSM should transition. Returning
NO_TRANSIT repeats the current state, but goes back to the scheduler
first.

(2) Wait state. This is an event processing state. No execution is
performed by a wait state. Wait states are just tables of "if event X
occurs, clear it and transition to state Y". The dispatcher returns to
the scheduler if none of the events in which the wait state has an
interest are currently pending.

(3) Out-of-band state. This is a special work state. Transitions to normal
states can be overridden when an unexpected event occurs (eg. I/O error).
Instead the dispatcher disables and clears the OOB event and transits to
the specified work state. This then acts as an ordinary work state,
though object->state points to the overridden destination. Returning
NO_TRANSIT resumes the overridden transition.

In addition, the states have names in their definitions, so there's no need for
tables of state names. Further, the EV_REQUEUE event is no longer necessary as
that is automatic for work states.

Since the states are now separate structs rather than values in an enum, it's
not possible to use comparisons other than (non-)equality between them, so use
some object->flags to indicate what phase an object is in.

The EV_RELEASE, EV_RETIRE and EV_WITHDRAW events have been squished into one
(EV_KILL). An object flag now carries the information about retirement.

Similarly, the RELEASING, RECYCLING and WITHDRAWING states have been merged
into an KILL_OBJECT state and additional states have been added for handling
waiting dependent objects (JUMPSTART_DEPS and KILL_DEPENDENTS).

A state has also been added for synchronising with parent object initialisation
(WAIT_FOR_PARENT) and another for initiating look up (PARENT_READY).

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Milosz Tanski <milosz@adfin.com>
Acked-by: Jeff Layton <jlayton@redhat.com>


# 1f372dff 13-Dec-2012 David Howells <dhowells@redhat.com>

FS-Cache: Mark cancellation of in-progress operation

Mark as cancelled an operation that is in progress rather than pending at the
time it is cancelled, and call fscache_complete_op() to cancel an operation so
that blocked ops can be started.

Signed-off-by: David Howells <dhowells@redhat.com>


# 9dc8d9bf 20-Dec-2012 David Howells <dhowells@redhat.com>

CacheFiles: Implement invalidation

Implement invalidation for CacheFiles. This is in two parts:

(1) Provide an invalidation method (which just truncates the backing file).

(2) Abort attempts to copy anything read from the backing file whilst
invalidation is in progress.

Question: CacheFiles uses truncation in a couple of places. It has been using
notify_change() rather than sys_truncate() or something similar. This means
it bypasses a bunch of checks and suchlike that it possibly should be making
(security, file locking, lease breaking, vfsmount write). Should it be using
vfs_truncate() as added by a preceding patch or should it use notify_write()
and assume that anyone poking around in the cache files on disk gets
everything they deserve?

Signed-off-by: David Howells <dhowells@redhat.com>


# 5f4f9f4a 20-Dec-2012 David Howells <dhowells@redhat.com>

CacheFiles: Downgrade the requirements passed to the allocator

Downgrade the requirements passed to the allocator in the gfp flags parameter.
FS-Cache/CacheFiles can handle OOM conditions simply by aborting the attempt to
store an object or a page in the cache.

Signed-off-by: David Howells <dhowells@redhat.com>


# ff01bb48 16-Sep-2011 Al Viro <viro@zeniv.linux.org.uk>

fs: move code out of buffer.c

Move invalidate_bdev, block_sync_page into fs/block_dev.c. Export
kill_bdev as well, so brd doesn't have to open code it. Reduce
buffer_head.h requirement accordingly.

Removed a rather large comment from invalidate_bdev, as it looked a bit
obsolete to bother moving. The small comment replacing it says enough.

Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>


# 25985edc 30-Mar-2011 Lucas De Marchi <lucas.demarchi@profusion.mobi>

Fix common misspellings

Fixes generated by 'codespell' and manually reviewed.

Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>


# 5a0e3ad6 24-Mar-2010 Tejun Heo <tj@kernel.org>

include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h

percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.

2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).

* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>


# 14e69647 19-Nov-2009 David Howells <dhowells@redhat.com>

CacheFiles: Don't log lookup/create failing with ENOBUFS

Don't log the CacheFiles lookup/create object routined failing with ENOBUFS as
under high memory load or high cache load they can do this quite a lot. This
error simply means that the requested object cannot be created on disk due to
lack of space, or due to failure of the backing filesystem to find sufficient
resources.

Signed-off-by: David Howells <dhowells@redhat.com>


# fee096de 19-Nov-2009 David Howells <dhowells@redhat.com>

CacheFiles: Catch an overly long wait for an old active object

Catch an overly long wait for an old, dying active object when we want to
replace it with a new one. The probability is that all the slow-work threads
are hogged, and the delete can't get a look in.

What we do instead is:

(1) if there's nothing in the slow work queue, we sleep until either the dying
object has finished dying or there is something in the slow work queue
behind which we can queue our object.

(2) if there is something in the slow work queue, we return ETIMEDOUT to
fscache_lookup_object(), which then puts us back on the slow work queue,
presumably behind the deletion that we're blocked by. We are then
deferred for a while until we work our way back through the queue -
without blocking a slow-work thread unnecessarily.

A backtrace similar to the following may appear in the log without this patch:

INFO: task kslowd004:5711 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
kslowd004 D 0000000000000000 0 5711 2 0x00000080
ffff88000340bb80 0000000000000046 ffff88002550d000 0000000000000000
ffff88002550d000 0000000000000007 ffff88000340bfd8 ffff88002550d2a8
000000000000ddf0 00000000000118c0 00000000000118c0 ffff88002550d2a8
Call Trace:
[<ffffffff81058e21>] ? trace_hardirqs_on+0xd/0xf
[<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
[<ffffffffa011c4e1>] cachefiles_wait_bit+0x9/0xd [cachefiles]
[<ffffffff81353153>] __wait_on_bit+0x43/0x76
[<ffffffff8111ae39>] ? ext3_xattr_get+0x1ec/0x270
[<ffffffff813531ef>] out_of_line_wait_on_bit+0x69/0x74
[<ffffffffa011c4d8>] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
[<ffffffff8104c125>] ? wake_bit_function+0x0/0x2e
[<ffffffffa011bc79>] cachefiles_mark_object_active+0x203/0x23b [cachefiles]
[<ffffffffa011c209>] cachefiles_walk_to_object+0x558/0x827 [cachefiles]
[<ffffffffa011a429>] cachefiles_lookup_object+0xac/0x12a [cachefiles]
[<ffffffffa00aa1e9>] fscache_lookup_object+0x1c7/0x214 [fscache]
[<ffffffffa00aafc5>] fscache_object_state_machine+0xa5/0x52d [fscache]
[<ffffffffa00ab4ac>] fscache_object_slow_work_execute+0x5f/0xa0 [fscache]
[<ffffffff81082093>] slow_work_execute+0x18f/0x2d1
[<ffffffff8108239a>] slow_work_thread+0x1c5/0x308
[<ffffffff8104c0f1>] ? autoremove_wake_function+0x0/0x34
[<ffffffff810821d5>] ? slow_work_thread+0x0/0x308
[<ffffffff8104be91>] kthread+0x7a/0x82
[<ffffffff8100beda>] child_rip+0xa/0x20
[<ffffffff8100b87c>] ? restore_args+0x0/0x30
[<ffffffff8104be17>] ? kthread+0x0/0x82
[<ffffffff8100bed0>] ? child_rip+0x0/0x20
1 lock held by kslowd004/5711:
#0: (&sb->s_type->i_mutex_key#7/1){+.+.+.}, at: [<ffffffffa011be64>] cachefiles_walk_to_object+0x1b3/0x827 [cachefiles]

Signed-off-by: David Howells <dhowells@redhat.com>


# a17754fb 19-Nov-2009 David Howells <dhowells@redhat.com>

CacheFiles: Don't write a full page if there's only a partial page to cache

cachefiles_write_page() writes a full page to the backing file for the last
page of the netfs file, even if the netfs file's last page is only a partial
page.

This causes the EOF on the backing file to be extended beyond the EOF of the
netfs, and thus the backing file will be truncated by cachefiles_attr_changed()
called from cachefiles_lookup_object().

So we need to limit the write we make to the backing file on that last page
such that it doesn't push the EOF too far.

Also, if a backing file that has a partial page at the end is expanded, we
discard the partial page and refetch it on the basis that we then have a hole
in the file with invalid data, and should the power go out... A better way to
deal with this could be to record a note that the partial page contains invalid
data until the correct data is written into it.

This isn't a problem for netfs's that discard the whole backing file if the
file size changes (such as NFS).

Signed-off-by: David Howells <dhowells@redhat.com>


# 4fbf4291 19-Nov-2009 David Howells <dhowells@redhat.com>

FS-Cache: Allow the current state of all objects to be dumped

Allow the current state of all fscache objects to be dumped by doing:

cat /proc/fs/fscache/objects

By default, all objects and all fields will be shown. This can be restricted
by adding a suitable key to one of the caller's keyrings (such as the session
keyring):

keyctl add user fscache:objlist "<restrictions>" @s

The <restrictions> are:

K Show hexdump of object key (don't show if not given)
A Show hexdump of object aux data (don't show if not given)

And paired restrictions:

C Show objects that have a cookie
c Show objects that don't have a cookie
B Show objects that are busy
b Show objects that aren't busy
W Show objects that have pending writes
w Show objects that don't have pending writes
R Show objects that have outstanding reads
r Show objects that don't have outstanding reads
S Show objects that have slow work queued
s Show objects that don't have slow work queued

If neither side of a restriction pair is given, then both are implied. For
example:

keyctl add user fscache:objlist KB @s

shows objects that are busy, and lists their object keys, but does not dump
their auxiliary data. It also implies "CcWwRrSs", but as 'B' is given, 'b' is
not implied.

Signed-off-by: David Howells <dhowells@redhat.com>


# 5af7926f 05-May-2009 Christoph Hellwig <hch@lst.de>

enforce ->sync_fs is only called for rw superblock

Make sure a superblock really is writeable by checking MS_RDONLY
under s_umount. sync_filesystems needed some re-arragement for
that, but all but one sync_filesystem caller had the correct locking
already so that we could add that check there. cachefiles grew
s_umount locking.

I've also added a WARN_ON to sync_filesystem to assert this for
future callers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>


# 60b0680f 27-Apr-2009 Jan Kara <jack@suse.cz>

vfs: Rename fsync_super() to sync_filesystem() (version 4)

Rename the function so that it better describe what it really does. Also
remove the unnecessary include of buffer_head.h.

Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>


# 9ae326a6 03-Apr-2009 David Howells <dhowells@redhat.com>

CacheFiles: A cache that backs onto a mounted filesystem

Add an FS-Cache cache-backend that permits a mounted filesystem to be used as a
backing store for the cache.

CacheFiles uses a userspace daemon to do some of the cache management - such as
reaping stale nodes and culling. This is called cachefilesd and lives in
/sbin. The source for the daemon can be downloaded from:

http://people.redhat.com/~dhowells/cachefs/cachefilesd.c

And an example configuration from:

http://people.redhat.com/~dhowells/cachefs/cachefilesd.conf

The filesystem and data integrity of the cache are only as good as those of the
filesystem providing the backing services. Note that CacheFiles does not
attempt to journal anything since the journalling interfaces of the various
filesystems are very specific in nature.

CacheFiles creates a misc character device - "/dev/cachefiles" - that is used
to communication with the daemon. Only one thing may have this open at once,
and whilst it is open, a cache is at least partially in existence. The daemon
opens this and sends commands down it to control the cache.

CacheFiles is currently limited to a single cache.

CacheFiles attempts to maintain at least a certain percentage of free space on
the filesystem, shrinking the cache by culling the objects it contains to make
space if necessary - see the "Cache Culling" section. This means it can be
placed on the same medium as a live set of data, and will expand to make use of
spare space and automatically contract when the set of data requires more
space.

============
REQUIREMENTS
============

The use of CacheFiles and its daemon requires the following features to be
available in the system and in the cache filesystem:

- dnotify.

- extended attributes (xattrs).

- openat() and friends.

- bmap() support on files in the filesystem (FIBMAP ioctl).

- The use of bmap() to detect a partial page at the end of the file.

It is strongly recommended that the "dir_index" option is enabled on Ext3
filesystems being used as a cache.

=============
CONFIGURATION
=============

The cache is configured by a script in /etc/cachefilesd.conf. These commands
set up cache ready for use. The following script commands are available:

(*) brun <N>%
(*) bcull <N>%
(*) bstop <N>%
(*) frun <N>%
(*) fcull <N>%
(*) fstop <N>%

Configure the culling limits. Optional. See the section on culling
The defaults are 7% (run), 5% (cull) and 1% (stop) respectively.

The commands beginning with a 'b' are file space (block) limits, those
beginning with an 'f' are file count limits.

(*) dir <path>

Specify the directory containing the root of the cache. Mandatory.

(*) tag <name>

Specify a tag to FS-Cache to use in distinguishing multiple caches.
Optional. The default is "CacheFiles".

(*) debug <mask>

Specify a numeric bitmask to control debugging in the kernel module.
Optional. The default is zero (all off). The following values can be
OR'd into the mask to collect various information:

1 Turn on trace of function entry (_enter() macros)
2 Turn on trace of function exit (_leave() macros)
4 Turn on trace of internal debug points (_debug())

This mask can also be set through sysfs, eg:

echo 5 >/sys/modules/cachefiles/parameters/debug

==================
STARTING THE CACHE
==================

The cache is started by running the daemon. The daemon opens the cache device,
configures the cache and tells it to begin caching. At that point the cache
binds to fscache and the cache becomes live.

The daemon is run as follows:

/sbin/cachefilesd [-d]* [-s] [-n] [-f <configfile>]

The flags are:

(*) -d

Increase the debugging level. This can be specified multiple times and
is cumulative with itself.

(*) -s

Send messages to stderr instead of syslog.

(*) -n

Don't daemonise and go into background.

(*) -f <configfile>

Use an alternative configuration file rather than the default one.

===============
THINGS TO AVOID
===============

Do not mount other things within the cache as this will cause problems. The
kernel module contains its own very cut-down path walking facility that ignores
mountpoints, but the daemon can't avoid them.

Do not create, rename or unlink files and directories in the cache whilst the
cache is active, as this may cause the state to become uncertain.

Renaming files in the cache might make objects appear to be other objects (the
filename is part of the lookup key).

Do not change or remove the extended attributes attached to cache files by the
cache as this will cause the cache state management to get confused.

Do not create files or directories in the cache, lest the cache get confused or
serve incorrect data.

Do not chmod files in the cache. The module creates things with minimal
permissions to prevent random users being able to access them directly.

=============
CACHE CULLING
=============

The cache may need culling occasionally to make space. This involves
discarding objects from the cache that have been used less recently than
anything else. Culling is based on the access time of data objects. Empty
directories are culled if not in use.

Cache culling is done on the basis of the percentage of blocks and the
percentage of files available in the underlying filesystem. There are six
"limits":

(*) brun
(*) frun

If the amount of free space and the number of available files in the cache
rises above both these limits, then culling is turned off.

(*) bcull
(*) fcull

If the amount of available space or the number of available files in the
cache falls below either of these limits, then culling is started.

(*) bstop
(*) fstop

If the amount of available space or the number of available files in the
cache falls below either of these limits, then no further allocation of
disk space or files is permitted until culling has raised things above
these limits again.

These must be configured thusly:

0 <= bstop < bcull < brun < 100
0 <= fstop < fcull < frun < 100

Note that these are percentages of available space and available files, and do
_not_ appear as 100 minus the percentage displayed by the "df" program.

The userspace daemon scans the cache to build up a table of cullable objects.
These are then culled in least recently used order. A new scan of the cache is
started as soon as space is made in the table. Objects will be skipped if
their atimes have changed or if the kernel module says it is still using them.

===============
CACHE STRUCTURE
===============

The CacheFiles module will create two directories in the directory it was
given:

(*) cache/

(*) graveyard/

The active cache objects all reside in the first directory. The CacheFiles
kernel module moves any retired or culled objects that it can't simply unlink
to the graveyard from which the daemon will actually delete them.

The daemon uses dnotify to monitor the graveyard directory, and will delete
anything that appears therein.

The module represents index objects as directories with the filename "I..." or
"J...". Note that the "cache/" directory is itself a special index.

Data objects are represented as files if they have no children, or directories
if they do. Their filenames all begin "D..." or "E...". If represented as a
directory, data objects will have a file in the directory called "data" that
actually holds the data.

Special objects are similar to data objects, except their filenames begin
"S..." or "T...".

If an object has children, then it will be represented as a directory.
Immediately in the representative directory are a collection of directories
named for hash values of the child object keys with an '@' prepended. Into
this directory, if possible, will be placed the representations of the child
objects:

INDEX INDEX INDEX DATA FILES
========= ========== ================================= ================
cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400
cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...DB1ry
cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...N22ry
cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...FP1ry

If the key is so long that it exceeds NAME_MAX with the decorations added on to
it, then it will be cut into pieces, the first few of which will be used to
make a nest of directories, and the last one of which will be the objects
inside the last directory. The names of the intermediate directories will have
'+' prepended:

J1223/@23/+xy...z/+kl...m/Epqr

Note that keys are raw data, and not only may they exceed NAME_MAX in size,
they may also contain things like '/' and NUL characters, and so they may not
be suitable for turning directly into a filename.

To handle this, CacheFiles will use a suitably printable filename directly and
"base-64" encode ones that aren't directly suitable. The two versions of
object filenames indicate the encoding:

OBJECT TYPE PRINTABLE ENCODED
=============== =============== ===============
Index "I..." "J..."
Data "D..." "E..."
Special "S..." "T..."

Intermediate directories are always "@" or "+" as appropriate.

Each object in the cache has an extended attribute label that holds the object
type ID (required to distinguish special objects) and the auxiliary data from
the netfs. The latter is used to detect stale objects in the cache and update
or retire them.

Note that CacheFiles will erase from the cache any file it doesn't recognise or
any file of an incorrect type (such as a FIFO file or a device file).

==========================
SECURITY MODEL AND SELINUX
==========================

CacheFiles is implemented to deal properly with the LSM security features of
the Linux kernel and the SELinux facility.

One of the problems that CacheFiles faces is that it is generally acting on
behalf of a process, and running in that process's context, and that includes a
security context that is not appropriate for accessing the cache - either
because the files in the cache are inaccessible to that process, or because if
the process creates a file in the cache, that file may be inaccessible to other
processes.

The way CacheFiles works is to temporarily change the security context (fsuid,
fsgid and actor security label) that the process acts as - without changing the
security context of the process when it the target of an operation performed by
some other process (so signalling and suchlike still work correctly).

When the CacheFiles module is asked to bind to its cache, it:

(1) Finds the security label attached to the root cache directory and uses
that as the security label with which it will create files. By default,
this is:

cachefiles_var_t

(2) Finds the security label of the process which issued the bind request
(presumed to be the cachefilesd daemon), which by default will be:

cachefilesd_t

and asks LSM to supply a security ID as which it should act given the
daemon's label. By default, this will be:

cachefiles_kernel_t

SELinux transitions the daemon's security ID to the module's security ID
based on a rule of this form in the policy.

type_transition <daemon's-ID> kernel_t : process <module's-ID>;

For instance:

type_transition cachefilesd_t kernel_t : process cachefiles_kernel_t;

The module's security ID gives it permission to create, move and remove files
and directories in the cache, to find and access directories and files in the
cache, to set and access extended attributes on cache objects, and to read and
write files in the cache.

The daemon's security ID gives it only a very restricted set of permissions: it
may scan directories, stat files and erase files and directories. It may
not read or write files in the cache, and so it is precluded from accessing the
data cached therein; nor is it permitted to create new files in the cache.

There are policy source files available in:

http://people.redhat.com/~dhowells/fscache/cachefilesd-0.8.tar.bz2

and later versions. In that tarball, see the files:

cachefilesd.te
cachefilesd.fc
cachefilesd.if

They are built and installed directly by the RPM.

If a non-RPM based system is being used, then copy the above files to their own
directory and run:

make -f /usr/share/selinux/devel/Makefile
semodule -i cachefilesd.pp

You will need checkpolicy and selinux-policy-devel installed prior to the
build.

By default, the cache is located in /var/fscache, but if it is desirable that
it should be elsewhere, than either the above policy files must be altered, or
an auxiliary policy must be installed to label the alternate location of the
cache.

For instructions on how to add an auxiliary policy to enable the cache to be
located elsewhere when SELinux is in enforcing mode, please see:

/usr/share/doc/cachefilesd-*/move-cache.txt

When the cachefilesd rpm is installed; alternatively, the document can be found
in the sources.

==================
A NOTE ON SECURITY
==================

CacheFiles makes use of the split security in the task_struct. It allocates
its own task_security structure, and redirects current->act_as to point to it
when it acts on behalf of another process, in that process's context.

The reason it does this is that it calls vfs_mkdir() and suchlike rather than
bypassing security and calling inode ops directly. Therefore the VFS and LSM
may deny the CacheFiles access to the cache data because under some
circumstances the caching code is running in the security context of whatever
process issued the original syscall on the netfs.

Furthermore, should CacheFiles create a file or directory, the security
parameters with that object is created (UID, GID, security label) would be
derived from that process that issued the system call, thus potentially
preventing other processes from accessing the cache - including CacheFiles's
cache management daemon (cachefilesd).

What is required is to temporarily override the security of the process that
issued the system call. We can't, however, just do an in-place change of the
security data as that affects the process as an object, not just as a subject.
This means it may lose signals or ptrace events for example, and affects what
the process looks like in /proc.

So CacheFiles makes use of a logical split in the security between the
objective security (task->sec) and the subjective security (task->act_as). The
objective security holds the intrinsic security properties of a process and is
never overridden. This is what appears in /proc, and is what is used when a
process is the target of an operation by some other process (SIGKILL for
example).

The subjective security holds the active security properties of a process, and
may be overridden. This is not seen externally, and is used whan a process
acts upon another object, for example SIGKILLing another process or opening a
file.

LSM hooks exist that allow SELinux (or Smack or whatever) to reject a request
for CacheFiles to run in a context of a specific security label, or to create
files and directories with another security label.

This documentation is added by the patch to:

Documentation/filesystems/caching/cachefiles.txt

Signed-Off-By: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>