History log of /linux-master/arch/x86/include/asm/time.h
Revision Date Author Comments
# ad1a4830 17-May-2023 Arnd Bergmann <arnd@arndb.de>

init: consolidate prototypes in linux/init.h

The init/main.c file contains some extern declarations for functions
defined in architecture code, and it defines some other functions that are
called from architecture code with a custom prototype. Both of those
result in warnings with 'make W=1':

init/calibrate.c:261:37: error: no previous prototype for 'calibrate_delay_is_known' [-Werror=missing-prototypes]
init/main.c:790:20: error: no previous prototype for 'mem_encrypt_init' [-Werror=missing-prototypes]
init/main.c:792:20: error: no previous prototype for 'poking_init' [-Werror=missing-prototypes]
arch/arm64/kernel/irq.c:122:13: error: no previous prototype for 'init_IRQ' [-Werror=missing-prototypes]
arch/arm64/kernel/time.c:55:13: error: no previous prototype for 'time_init' [-Werror=missing-prototypes]
arch/x86/kernel/process.c:935:13: error: no previous prototype for 'arch_post_acpi_subsys_init' [-Werror=missing-prototypes]
init/calibrate.c:261:37: error: no previous prototype for 'calibrate_delay_is_known' [-Werror=missing-prototypes]
kernel/fork.c:991:20: error: no previous prototype for 'arch_task_cache_init' [-Werror=missing-prototypes]

Add prototypes for all of these in include/linux/init.h or another
appropriate header, and remove the duplicate declarations from
architecture specific code.

[sfr@canb.auug.org.au: declare time_init_early()]
Link: https://lkml.kernel.org/r/20230519124311.5167221c@canb.auug.org.au
Link: https://lkml.kernel.org/r/20230517131102.934196-12-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# efc8b329 21-Dec-2022 Paul E. McKenney <paulmck@kernel.org>

clocksource: Verify HPET and PMTMR when TSC unverified

On systems with two or fewer sockets, when the boot CPU has CONSTANT_TSC,
NONSTOP_TSC, and TSC_ADJUST, clocksource watchdog verification of the
TSC is disabled. This works well much of the time, but there is the
occasional production-level system that meets all of these criteria, but
which still has a TSC that skews significantly from atomic-clock time.
This is usually attributed to a firmware or hardware fault. Yes, the
various NTP daemons do express their opinions of userspace-to-atomic-clock
time skew, but they put them in various places, depending on the daemon
and distro in question. It would therefore be good for the kernel to
have some clue that there is a problem.

The old behavior of marking the TSC unstable is a non-starter because a
great many workloads simply cannot tolerate the overheads and latencies
of the various non-TSC clocksources. In addition, NTP-corrected systems
sometimes can tolerate significant kernel-space time skew as long as
the userspace time sources are within epsilon of atomic-clock time.

Therefore, when watchdog verification of TSC is disabled, enable it for
HPET and PMTMR (AKA ACPI PM timer). This provides the needed in-kernel
time-skew diagnostic without degrading the system's performance.

Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Waiman Long <longman@redhat.com>
Cc: <x86@kernel.org>
Tested-by: Feng Tang <feng.tang@intel.com>


# c8c40767 28-Jun-2019 Thomas Gleixner <tglx@linutronix.de>

x86/timer: Skip PIT initialization on modern chipsets

Recent Intel chipsets including Skylake and ApolloLake have a special
ITSSPRC register which allows the 8254 PIT to be gated. When gated, the
8254 registers can still be programmed as normal, but there are no IRQ0
timer interrupts.

Some products such as the Connex L1430 and exone go Rugged E11 use this
register to ship with the PIT gated by default. This causes Linux to fail
to boot:

Kernel panic - not syncing: IO-APIC + timer doesn't work! Boot with
apic=debug and send a report.

The panic happens before the framebuffer is initialized, so to the user, it
appears as an early boot hang on a black screen.

Affected products typically have a BIOS option that can be used to enable
the 8254 and make Linux work (Chipset -> South Cluster Configuration ->
Miscellaneous Configuration -> 8254 Clock Gating), however it would be best
to make Linux support the no-8254 case.

Modern sytems allow to discover the TSC and local APIC timer frequencies,
so the calibration against the PIT is not required. These systems have
always running timers and the local APIC timer works also in deep power
states.

So the setup of the PIT including the IO-APIC timer interrupt delivery
checks are a pointless exercise.

Skip the PIT setup and the IO-APIC timer interrupt checks on these systems,
which avoids the panic caused by non ticking PITs and also speeds up the
boot process.

Thanks to Daniel for providing the changelog, initial analysis of the
problem and testing against a variety of machines.

Reported-by: Daniel Drake <drake@endlessm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: linux@endlessm.com
Cc: rafael.j.wysocki@intel.com
Cc: hdegoede@redhat.com
Link: https://lkml.kernel.org/r/20190628072307.24678-1-drake@endlessm.com


# b2441318 01-Nov-2017 Greg Kroah-Hartman <gregkh@linuxfoundation.org>

License cleanup: add SPDX GPL-2.0 license identifier to files with no license

Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.

For non */uapi/* files that summary was:

SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139

and resulted in the first patch in this series.

If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:

SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930

and resulted in the second patch in this series.

- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:

SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1

and that resulted in the third patch in this series.

- when the two scanners agreed on the detected license(s), that became
the concluded license(s).

- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.

- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).

- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.

- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct

This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>


# 16f871bc 01-Jun-2011 Ralf Baechle <ralf@linux-mips.org>

x86: i8253: Consolidate definitions of global_clock_event

There are multiple declarations of global_clock_event in header files
specific to particular clock event implementations. Consolidate them
in <asm/time.h> and make sure all users include that header.

Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Venkatesh Pallipadi (Venki) <venki@google.com>
Link: http://lkml.kernel.org/r/20110601180610.762763451@duck.linux-mips.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>


# 7bd867df 09-Sep-2009 Feng Tang <feng.tang@intel.com>

x86: Move get/set_wallclock to x86_platform_ops

get/set_wallclock() have already a set of platform dependent
implementations (default, EFI, paravirt). MRST will add another
variant.

Moving them to platform ops simplifies the existing code and minimizes
the effort to integrate new variants.

Signed-off-by: Feng Tang <feng.tang@intel.com>
LKML-Reference: <new-submission>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>


# 08047c4f 20-Aug-2009 Thomas Gleixner <tglx@linutronix.de>

x86: Move calibrate_cpu to tsc.c

Move the code where it's only user is. Also we need to look whether
this hardwired hackery might interfere with perfcounters.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>


# 845b3944 19-Aug-2009 Thomas Gleixner <tglx@linutronix.de>

x86: Add timer_init to x86_init_ops

The timer init code is convoluted with several quirks and the paravirt
timer chooser. Figuring out which code path is actually taken is not
for the faint hearted.

Move the numaq TSC quirk to tsc_pre_init x86_init_ops function and
replace the paravirt time chooser and the remaining x86 quirk with a
simple x86_init_ops function.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>


# 1965aae3 22-Oct-2008 H. Peter Anvin <hpa@zytor.com>

x86: Fix ASM_X86__ header guards

Change header guards named "ASM_X86__*" to "_ASM_X86_*" since:

a. the double underscore is ugly and pointless.
b. no leading underscore violates namespace constraints.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>


# bb898558 17-Aug-2008 Al Viro <viro@zeniv.linux.org.uk>

x86, um: ... and asm-x86 move

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>