IASL: ACPI Source Language
Optimizing Compiler and
Disassembler

User Guide

IASL Overview and Compiler Operation

Revision 6.2

July 17, 2015

intel.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The iASL compiler may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copyright © 2000 - 2015 Intel Corporation

*Other brands and names are the property of their respective owners.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Contents

1 Introduction 6
1.1 DOCUMENT STIUCTUIE ...ttt e e e e e s e e 7
1.2 Reference DOCUMENTSuuiiiiiiiiee ettt ettt sttt sbre e e e ennees 7
1.3 DOCUMENT HISTOIY ...ttt e e e e e e e e enebene s 8
1.4 Definition Of TEIMIS ... e e e 9

2 Compiler/Disassembler Overview 10
2.1 Supported EXecution ENVIFONMENLESccviieiiiiiiiiiiiree e sciiieeeeee s s siiveee e e e e e s ennes 10
2.2 ASL COMPIIET ettt e e et r e e e e e e s e anbb e e e e aaeeas 10

22 A |] o 10 1= SRR 10
2.2.2 OULPUL File OPLIONS ..eeviiee e e e e e saraer e e e e e e ennes 10
2.3 AML DISASSEMDIETciiiiiiiie e e 11
P22 T A |] o 10 1= U PEERR 11
2.3.2 OULPUL ettt sttt sttt sttt et ses s st e sesnnnnnnen 11
2.4 Data Table COMPIIETuuiiiie e e e 11
240 INPUL FIIES .ot 12
A O 1011010 | S TP U TP P PP PPRPPUTPPPPPPPPPRIN 12
25 Data Table DiSaSSemMDBIET.......ccoiiiii e 12
251 INPUL FIIES .o 12
T © 1011 o1 | ST PP PR PPUTPPPPPPPPPPIN 12
2.6 TeMPIALE GENETALONceii e ittt e e e e e e e e e e e e e e e anne e eeaaaeeas 12

3 Preprocessor 13
3.1 CommMaNd LINE OPLIONSeuiiiiiieeie ittt e e e e e e s sibbeeeeaae e e e aanes 13
3.2 INtEYEI EXPrESSIONS ...eeiiiiiieiiiitieie ettt e e e et e e e e e e e e anbaeeeeaaaeas 13
3.3 YU o ofe] g (=To [BT =T ox 11V PP UOPEURPR 13

3.3.1 Text Substitution and MaACIOSccooiiiiiiiiiiee i 14
3311 FAETINE. ..o i 14
3.3.1.2 FUNAET ..o 14

3.3.2 Conditional Compilationc.eeevieeiiiiiiiiiiiee e 14
3.3.21 B o e 14
3.3.2.2 21 {0 = S SRR 14
3.3.2.3 FHINAET oo 15
3324 BRI ettt 15
3.3.25 BRI e 15
3.3.2.6 NI ..o 15

3.3.3 INCIUAE FlES ...t 15
3.33.1 #include vs. ASL INCIUAE() .vvvveeeiiiiiiiiiieiiee e 15
3.3.3.2 FNCIUAE .o 15
3.3.33 HNCIUdEDUTTEN ... 16
3.3.34 FHINE . 16

3.3.4 Miscellaneous DiIr€CHIVEScueiiiiiiiiiiiiiiie et 16
3341 FEOITON it 16
3.34.2 FPFAGIMEA i 16
3.34.3 FWATNING ..ottt e e e e e e e 17

4 ASL-AML Subsystem 18
4.1 NS I @0 T ¥ o1 [T RSP 18

4.1.1 Support for Symbolic Operators and Expressions (ASL+)cccccceveennn. 18

(inte!
IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide 'n e

4111 Binary AML Considerationsccccueeiieieniiiiiiiieeee e 20

41.1.2 AML Disassembler NOteS..........occvviiiiiieiiiiee e 20

4.1.2 BUIlt-iN ASL MACTOSeiiiiiiiiiiiiiiiiee ettt 21

4.1.3 Compiler Analysis Phasesccccouviiieiiiiiiiiiiee e 21

4131 General ASL SyntaxX ANalySISc.cooiiiiiiiiieiieaieiiiiieeeee e 21

4.1.3.2 General Semantic ANAlYSISceviiiiiiiiiiiiiie e 21

4.1.3.3 Control Method Semantic Analysis.........ccccceeeiiiiiiiiiinieeees 22

4.1.3.4 Control Method Invocation Analysis.........ccccceevviiiiiiieeeee i, 22

4.1.35 Predefined ACPI NAMEScoooviiiiiiiiiiee e 22

4.1.3.6 RESOUICE DESCIPLOIS....ccivieieeee e e e e e e e 22

4.1.4 Compiler OptimMiZatiONS.........ooiiuiiiiiieie e 23

41.4.1 Named ReferenCesoocuviiiiiieiiiie e 23

4.1.4.2 INTEQEIS .. 23

4.1.4.3 Constant FOIAINGuuvviieeiiiieiee e 23

4.2 ASL-t0-AML DiSASSEMDIET ... 23
4.2.1 Multiple Table DiSassembIyccovvieiiiiiiiiiiieec e 23

4.2.2 EXternal DeCIarationS........c..uoeiiuiiiiiiiiiiee et 24

5 ACPI Data Table Subsystem 25
5.1 Data Table COMPIIETuuiiiieei e e e 25
5.0.1 INPUE FOIMIAL. ...ceititiiiiiiiiiiiiiiiieieteieeetetebetetebebebebebsbabs e bebebsbebebebsbsbsbesssnnnennes 25

5.1.1.1 Ignored FieldsS/CommentsS..........ccuvveeeieiiiiiiiiceee e 26

5.1.2 Data Table Definition Languagecccveeereeeiiiiiiiiiiee e eeciiviee e e 26

5.1.3 INPUL EXGMPIE ottt e e e e e e e 28

5.1.4 Data Types for User-Entered Fieldscccccevviieiiiiiiee e 28

5141 INTEQEIS ... 28

5.1.4.2 INteger EXPreSSIONSuviiiiiieeiiiiieie e 28

5.1.4.3 Flag S et 29

5.1.4.4 SHINGS 1ttt e e e e e e e e e e e aaa e e e nnn 29

5.1.45 BUFEIS e 30

5.1.5 Fields Set AutomatiCally...........ccevveeiiiiiiiiiiiie e 30

5.1.6 Special FielUs........uuiiiiiieiieii e 30

5.1.7 Generic Fields / Generic Data TYPES......uueeiieaiiiiiiiiieeae e eeciieiee e e 31

5.2 Data Table DiSasSemMDBIET........coi i 33
5.2.1 EXaMPIe OULPULoeeiiiieieei et ee e e e e e 33

5.3 ACPI Table Template GENEIALOrccccccuviiiiiiee e eee e 36
6 Compiler/Disassembler Operation 37
6.1 Command LiNE INVOCALIONcoiiiiiiiiiiiiiie et e e e e e 37
6.2 AVAY A1 (o [or=T e RS U] o] o Lo]« SRR 37
6.3 Command LiNE OPLIONSuvviiiiieee e it e e e e e e st e e e e e s s srare e e e e e e s e snnreaeeeaeeeeananes 38
6.3.1 GeNEral OPLiONSuueiiiiiiieiiitie et a e 39

B.3.2 HEIP et 39

LSRG T T o (= o {010t] PPN 40

6.3.4 Errors, Warnings, and Remarks...........cccccceeeeiiivciiiiecnce e 40

6.3.5 AML Bytecode GENEIatiONcevveeeiiiiiiiiiieeeeeeeiiirteeeee e s s e sirnereeee e e e nnanes 40

6.3.6 AML Text OULPUL FIlES ... 41

6.3.6.1 Source Code FileS (-S) .eoeeeiiiiiiiiiieieee e 41

6.3.6.2 Source External Declaration FileS (-i) ..c.eveeevieriiiiiiiiiiiieeeeines 41

6.3.6.3 Hex Source Code FileS (-1)...uuiiiieeiiiiiiiiieee e 41

6.3.6.4 C Offset TabIe (-S0)..uueeiieeeeiiiiiieeie e e e 41

LT R A N 1] o SRR 42

6.3.8 ACPI Data TabIescooii i 42

6.3.9 AML DiSASSEMDIETcciiiiiiiiiiiii e 42

6.3.10 Compiler DebUg OPLiONS.uuuiiiiiaiiiiiiiieee e 43

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

6.4 Compiler OUIPUL EXAMPIEScoiiiiiiiiiieiie et 43
B.4. 1 INPUL ASL oottt nrn e nareeen 43

6.4.2 Output of —tc (make C hex table) Optionccccvivevee i 44

6.4.3 Output of —sc (make C source) OPtioNccccovvvciviirieeeei i e e 45

6.4.4 Output of —ic (make include file) OptioN........cccovvcciiiiiiie e 46

6.4.5 Output of —I (LiStiNG) OPLIONeeeiiiiiiiiiiiiiieee e 46

6.4.6 Output of —Im (Hardware Mapfile) Optioncccveeeeeieiiiiiiiiiiiie e 47

6.4.7 Output of —In (Namespace Listing) Option..........ccuveeeiieiiiiiiiiiiieeee s 48

6.5 UsSINg the DISASSEMDBIETcoiiiiiiiee e 48
6.5.1 Resolving External Control Methodsccccoooiiiiiiiiiiiniiii e 48

6.5.1.1 Standard Disassemblycccvveviieeiiii e 49

6.5.1.2 Disassembly with —e optionccccciiiieiei v, 50

6.5.1.3 Disassembly with both —e and —fe options..........cccccccevvnnnnnenn. 50

6.6 Integration INt0 MS VC++ ENVIFONMENTuevvieeiiiiiiiiiieee et e e e eennene e e e 51
6.6.1 Integration as a CuStOM TOOl........cccoviiuiriiiiieei it e e 51

6.6.2 Integration into a Project Build............ccuueiiiiiiiiii e 52
Generating iASL from Source Code 53
7.1 REQUITEA TOOIS ...ceiiiiiiiee ittt e e e e e e aeeeas 53
7.2 ReqUIred SOUICE COUEooiiiiiiiiiiiiee ettt e e e 53

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

1 Introduction

TheiASL compiler/disassembler is afully-featured trandator for the ACPI Source Language (ASL)
and ACPI binary datatables. As part of the Intel ACPI Component Architecture, the Intel ASL
compiler implements trandlation for the ACPI Source Language (ASL) to the ACPI Machine
Language (AML). The disassembler feature will disassemble compiled AML code back to (near-
original) ASL source code.

The magjor features of theiASL compiler include:
e Full support for the ACPI 5.1 Specification including ASL grammar elements and operators.

e Extensive compiler syntax and semantic error checking, especially in the area of control
methods. This reduces the number of errors that are not discovered until the AML codeis
actualy interpreted (i.e., the compile-time error checking reduces the number of run-time
errors.)

e Anintegrated preprocessor provides C-compatible preprocessor directives and conditional
compilation directives such as #define, #if, #ifdef, #else, etc.

e Multiple types of output files. Besides binary ACPI tables, output options include formatted
listing files with intermixed source, several types of AML files, and error messages.

e Automatic detection and compilation of either ASL source code or ACPI data table source
code.

e Portable code (ANSI C) and source code availability allows the compiler to be easily ported
and run on multiple execution platforms.

e Support for integration with the Microsoft Visual C++ (or similar) development
environments.

e Disassembly of al ACPI tables, including tables that contain AML (DSDT, SSDT) aswell as
ACPI “data’ tables such asthe FADT, MADT, SRAT, €tc.

e Support for compilation of non-AML datatables such asthe FADT, MADT, SRAT, etc.

e Support for ASL language extensions that support symbolic math/logical operators and
eXpressions.

1.1

1.2

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Document Structure

This document consists of these major sections:

Introduction: Contains a brief overview of the iIASL compiler/disassembler, document structure,
related reference documents, and definition of terms used throughout the document

Compile/Disassembler Overview: Compiler subsystems, inputs, outputs, and supported system
environments.

ASL-AML Subsystem: Describesthe ASL compiler and the AML disassembler.

ACPI Data Table Subsystem: Describes the Data Table compiler and the Data Table disassembler.

Compiler/Disassembler Operation: Guide for compiler options and general operation, including
output examples.

Generating iASL from Source Code: Instructions for building theiASL compiler from the open-
source package.

Reference Documents

ACPI documents are available at:
http://uefi.org/specifications

Advanced Configuration and Power Interface Specification, Revision 1.0, December 1, 1996
Advanced Configuration and Power Interface Specification, Revision 1.0a, July 1, 1998
Advanced Configuration and Power Interface Specification, Revision 1.0b, February 8, 1999
Advanced Configuration and Power Interface Specification, Revision 2.0, July 27, 2000
Advanced Configuration and Power |nterface Specification, Revision 2.0a, March 32, 2002
Advanced Configuration and Power Interface Specification, Revision 2.0b, October 11, 2002
Advanced Configuration and Power |nterface Specification, Revision 2.0c, August 23, 2003
Advanced Configuration and Power Interface Specification, Revision 3.0, September 2, 2004
Advanced Configuration and Power Interface Specification, Revision 3.0a, December 30, 2005
Advanced Configuration and Power Interface Specification, Revision 3.0b, October 10, 2006
Advanced Configuration and Power Interface Specification, Revision 4.0, June 16, 2009
Advanced Configuration and Power Interface Specification, Revision 4.0a, April 5, 2010
Advanced Configuration and Power |nterface Specification, Revision 5.0, December, 6, 2011
Advanced Configuration and Power Interface Specification, Revision 5.0a, November, 13, 2013
Advanced Configuration and Power |nterface Specification, Revision 5.1, July 2014

Advanced Configuration and Power Interface Specification, Revision 6.0, April 2015

http://uefi.org/specifications/

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

ACPICA documents are avail able at:
https://www.acpica.org/documentation/

ACPI Component Architecture User Guide and Programmer Reference
iASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

ACPICA and iASL source code is available at:
https://www.acpica.org/downl oads/

IASL Windows binaries are available at:
https://www.acpica.org/downl oads/binary-tools

1.3 Document History

May 2012: Add preprocessor support.

June 2012: Update command line options and descriptions.

January 2013: Add —in flag to ignore ASL/AML NoOp operators/opcodes.

August 2013: Add —fe option for the disassembler.

December 2013: Add —ve option to display compilation errors only, no warnings or remarks.
September 2014: Add —/m option to generate a hardware mapfile.

November 2014: Add support for C-style math/logical operators and expressions. Added new debug
option to prune ASL namespace hierarchy tree.

May 2015: Add the #includebuffer preprocessor directive.

https://www.acpica.org/documentation/
https://www.acpica.org/downloads/
https://www.acpica.org/downloads/binary-tools

1.4

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Definition of Terms

ACPI: Advanced Configuration and Power Interface. An open standard for device configuration and
power management.

ACPICA: ACPI Component Architecture. An open-source implementation of ACPI that is hosted
on many different operating systems.

ACPI Data Table: Any ACPI table that does not contain AML byte code but isinstead simply a
structure of static packed binary data. In practice, any ACPI table other than DSDTs or SSDTSs.

ACPI Table: Generic reference to any of the ACPI-related tables (both AML and Data Tables) that
are presented by the BIOS for consumption by the host operating system.

AML : ACPI Machine Language. A byte code language to be executed by an ACPI/AML interpreter
within the host operating system. Created by translation of ASL code viaan ASL compiler. Defined
by the ACPI specification.

ASL: ACPI Source Language. A higher level language that corresponds to the low level AML byte
code language. ASL source codeistrandated into AML byte code by an ASL compiler. Defined by
the ACPI specification

Binary ACPI Table: An ACPI table that contains either raw AML byte code, or a packed ACPI
DataTable

Data Table Language: A simple language developed to describe the individual fields within an
ACPI DataTable. It isused by both the compiler and disassembler portions of theiASL Data Table
Subsystem.

Disassembler: Inthe ACPI context, atool that will either convert AML byte code back to the
original ASL code, or will convert an ACPI Data Table into aformat that is human-readable.

Hex Table: A table containing datathat isin aformat suitable for translation viaan Assembler, C
compiler, or ASL compiler.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

2

2.1

2.2

221

2.2.2

Compiler/Disassembler Overview

TheiASL compiler/disassembler consists of several distinct subsystems, as described below:
e Anintegrated C-like preprocessor

e AnASL-to-AML compiler that translates ASL code (ACPI Source Language) to AML byte
code (ACPI Machine Language).

e AnACPI Data Table compiler that translates Data Table definitions to binary ACPI tables.
An ACPI Data Tableisany ACPI table that contains only data, not AML byte code.
Examplesinclude the FADT, MADT, SRAT, etc.

e AnAML-to-ASL disassembler that translates compiled AML byte code back to the (nearly)
original ASL source code. This disassembler is used on tables like the DSDT and SSDT.

e An ACPI Data Table disassembler that formats binary ACPI data tablesinto areadable
format. The output of this disassembler can be compiled with the ACPI data table compiler.

e An ACPI table template generator that will emit examples of all known ACPI tables, ina
format similar to the output of the data table disassembler. The output files from the template

generator are intended to be used as the basis or starting point for the development of actual
ACPI tables.

Supported Execution Environments

iASL runs on multiple platforms as a 32-bit or 64-bit application.

Portable code — requires only ANSI C and a compiler generation package such as Bison/Flex or
Y acc/Lex.

Error and warning messages are compatible with Microsoft Visual C++, allowing for integration of
the compiler into the development environment to simplify project building and debug.

TheiASL source codeis distributed with the compiler binaries under the ACPICA source license.
ASL Compiler

Input Files

Existing ACPI ASL source files are fully supported. Enhanced compiler error checking will often
uncover unknown problems in these files.

All ACPI 5.0 ASL additions and new ACPI tables are supported. The compiler fully supports ACPI
5.0.

Output File Options

¢ Preprocessed source code file

10

(ntel)
IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

e AML binary output file

e AML codein C source code form for inclusion into a BIOS project

e AML code in x86 assembly code form for inclusion into a BIOS project

e AML Hex Table output filein either C, ASL, or x86 assembly code as atable initialization
statement.

e Listing file with source file line number, source statements, and intermixed generated AML
code. Include files named in the original source ASL file are expanded within the listing file

e Namespace output file — shows the ACPI namespace that corresponds to the input ASL file
(and al includefiles.)

e Debug parse trace output file — gives atrace of the parser and namespace during the compile.
Used to debug problems in the compiler, or to help add new compiler features.

2.3 AML Disassembler

The AML Disassembler has the capability of reverse trandlating any binary AML table back to
nearly the original ASL code. These are typically DSDTsand SSDTs. It can also disassemble and
format all other known non-AML datatables.

2.3.1 Input Files

The AML Disassembler accepts binary ACPI tables that contain valid AML code. These tables are
the DSDT and any SSDTSs.

These files may be obtained via the acpidump/acpixtract utilities, or some other host-specific tools.

2.3.2 Output

The output is disassembled (or de-compiled) ASL code. The file extension used for these output
filesis.DSL, meaning “disassembled ASL". As opposed to original ASL source code files which
typically have the extension .ASL.

2.4 Data Table Compiler

The Data Table compiler is used to compile the “non-ASL/AML” ACPI tables such asthe FADT,
MADT, SRAT, etc. These tables are not compiled to AML byte code, but are compiled to simple
binary data, usually with the standard ACPI table header (signature, length, checksum, etc.)

Theintent of the Data Table Compiler isto simplify the generation of the many non-ASL ACPI data
tables and to make the generation process less error-prone. The Data Table Compiler knows the
required format for each recognized ACPI table, as well as the exact size and allowable values for
each field within the tables.

11

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

24.1

2.4.2

2.5

251

2.5.2

2.6

Input Files

The Data Table compiler accepts as input files that are in the same or simplified format as the files
emitted by the data table disassembler. An existing ACPI binary data table may be disassembled,
modified, and then recompiled.

Also, the ACPI table template generator may be used to generate template ACPI data tables that can
in turn be used for the basis for additional table development. Thiswould be the preferred starting

point for ACPI table development, since the ACPI table templates contain a valid example of each
table header, table section, and table sub-table as applicable.

Output

e Binary output file

e Hex Tableoutput filein either C, ASL, or x86 assembly code as atable initialization
statement for inclusion into a BIOS project.

Data Table Disassembler

This second part of the disassembler package will extract all datafrom abinary ACPI “data table’
and format it into human readable form. The format of this output is compatible with the Data Table
Compiler, meaning that such ACPI tables may be easily disassembled, modified, and recompiled.

Input Files

The Data Table Disassembler accepts binary ACPI tables that do not contain AML code. These
tablesinclude the FADT, MADT, SRAT, etc.

Output

The output is a disassembled and formatted ACPI table in human-readable format. Thefile
extension used for these filesisaso .DSL, for consistency with the AML disassembler.

Template Generator

TheiASL Template Generator can be used to create ACPI tables from templates that are stored
within the iASL image. These templates can be used as a starting point for the development of any
ACPI table known to the compiler.

12

3

3.1

3.2

3.3

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Preprocessor

iASL contains an integrated preprocessor that is compatible with most C preprocessors, and
implements a large subset of the standard C preprocessor directives

Command Line Options

TheseiASL command line options directly affect the operation of the preprocessor:

-D <synbol > Define synbol for preprocessor use
-l Create preprocessed output file (*.i)
-P Preprocess only and create preprocessor output file (*.i)

-Pn Di sabl e preprocessor

Integer Expressions

Expressions are supported in all fields that require an integer value.

Supported operators (Standard C meanings, in precedence order):

! Logical NOT

~ Bitwise ones compliment (NOT)
* Multiply

/ Divide

% Modulo

+ Add

- Subtract

<< Shift left

>> Shift right

< Lessthan

> Greater than

<= Less than or equal

>= Greater than or equal
== Equal

I= Not Equal

& Bitwise AND

A bitwise Exclusive OR
| Bitwise OR

&& Logical AND

[| Logical OR

Supported Directives

The following directives are supported:

#def i ne
#el i f
#el se
#endi f

13

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

3.3.1

3.3.1.1

3.3.1.2

3.3.2

3.3.2.1

3.3.2.2

#error

#if

#i f def

#i f ndef

#i ncl ude

#i ncl udeBuf f er
#l i ne

#pragma

#undef
#war ni ng

Text Substitution and Macros

#define

Note: At thistime, only text substitution #defines are supported. Full macros (with arguments) are
not supported.

Usage:
#define nametext_to_substitute

Every instance of “name” isreplaced by “text _to_substitue”.

#undef
Usage:
#undef symbol

Removes a previoudly defined symboal, either from a #define or from the —-D command line option.
Conditional Compilation

#if -

Usage:

#if expression

Conditionally compile a block of text. The block isincluded in the compilation if the expression

evaluates to a non-zero value. The standard C operators (+,-,/,*,==, etc.) may be used within the
expression.

#ifdef
Usage:
#ifdef symbol

Conditionally compile a block of text. The block isincluded in the compilation if the symbol is
defined, either from a #define or from the —-D command line option.

14

3.3.2.3

3.3.24

3.3.25

3.3.2.6

3.3.3

3.3.3.1

3.3.3.2

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

#ifndef
Usage:
#ifndef symbol

Conditionally compile a block of text. The block isincluded in the compilation if the symbol is not
defined (opposite from #ifdef.)

#else
Usage:
#else

Conditionally compile a block of text. The block isincluded in the compilation if the result of a
previous #if, #ifdef, #ifndef, or #elif was false.

#elif
Usage:
#elif expression

Combines #else and #if to conditionally compile a block of text.

#endif
Usage:
#endif

Indicates the completion of a #if...#else block.
Include Files

#include vs. ASL Include()

The #include is a preprocessor directive. The included file can contain additional preprocessor
directives.

The ASL Include() operator includes a file during compile time, after the preprocessor has run.
Therefore, it cannot contain any preprocessor directives.

#include
Usage:
#include “filename”

#include <filename>

15

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

3.3.3.3

3.3.34

3.3.4

3.34.1

3.34.2

Include an additional file for compilation. Thisfile is subject to processing by the preprocessor,
unlike the Include() ASL operator, which is only invoked after the preprocessor has compl eted
operation.

#includebuffer

Usage:
#includebuffer “binary_filename” BufferName
#includebuffer <binary_filename> BufferName

Where BufferName is a standard ACPlI NamePath. An ACPI buffer object is created with this name
and the named object can be created anywhere within the ACPl namespace.

This directive alows for the inclusion of binary datainto an ASL file. The binary datais converted
into the ASL declaration of an ACPI Buffer object with the binary data as the buffer initialization
data.

Since #includebuffer is not a standard C or ASL preprocessor directive, the directive can be
bypassed during this early preprocessing viathe _ IASL__ predefined name:

#ifdef __IASL__

#i ncl udebuf f er

#endi f
#line
Usage:
#line value

Changes the internal line number that is used for compiler error and warning messages.
Miscellaneous Directives

#error
Usage:
#error er ror_message

Generates a compiler error.

#pragma

Usage:

#pragma operator

Only “#pragma message” is suppported at this time.
#pragma message “message’ .

Emits the message.

16

(int D,
ln e IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide
3.3.4.3 #warning

Usage:

#warning warning_message

Generates a compiler warning.

17

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

4

4.1

4.1.1

ASL-AML Subsystem

This subsystem consists of tools to compile ASL source code to AML byte code, and disassemble
AML byte code back to the original ASL code.

ASL Compiler

TheiASL compiler fully supports ACPI 5.1. The ASL and AML languages are defined within the
ACPI specification.

Support for Symbolic Operators and Expressions (ASL+)

As an extension to the ASL language, iASL implements support for symbolic (C-style) operators for
math and logical expressions. This can greatly simplify ASL code aswell asimprove readability
and maintainability. These language extensions can exist concurrently with all legacy ASL code and
expressions. ASL with these language extensionsis called ASL +.

The symbolic extensions are 100% compatible with existing AML interpreters, since no new AML
opcodes are created. To implement the extensions, theiASL compiler transforms the symbolic
expressions into the legacy ASL/AML equivalents at compile time.

Full symbolic expressions are supported, along with the standard C precedence and associativity
rules.

Full disassembler support for the symbolic expressionsis provided, and creates a migration path for
existing ASL code viathe disassembly process.

Below isthe full list of the currently supported symbolic operators with examplesto follow.

ASL+ Synt ax Legacy ASL Equi val ent

/1 Math operators

Add (X, Y, 2)
Subtract (X, Y, 2)
Miltiply (X Y, 2)
Divide (X Y, , 2)
Mod (X, Y, 2Z)

NNNNN
L T I B
<< <<=

o\o\x-|+

ShiftLeft (X VY, 2)
ShiftRight (X, Y, 2)

NN
I
V

Vv
<<

And (X, Y, 2)
O (X Y, 2
Xor (X, Y, 2)
Not (X, 2)

XXX XX XX XXX
.

ARZ
<< =<

N N NN
[T T |
l
X

I ncrement (X)
Decrenent (X)

ok
(.

18

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

/1 Logical operators

(X ==Y) LEqual (X, Y)
(X1=Y) LNot Equal (X,)

(X <Y LLess (X, YY)

(X >Y) LG eater (X)

(X <=Y) LLessEqual (X, YY)
(X >=Y) LG eaterEqual (X,)
(X &&Y) LAnd (X, YY)

(X1 V) LO (X V)

("X LNot (X)

/1 Conpound assi gnment operations

1
<

Store (Y, X
Add (X, Y, X
Subtract (X, Y, X)
Multiply (X Y, X
Divide (X Y, , X
Mod (X, Y, X
<<=Y ShiftLeft (X Y, X
Y ShiftRight (X Y, X

And (X, Y, X)

O (X Y, X

Xor (X, Y, X

+

*
[T I T 1|
<< <<=

XX X X X X X X X X X
> Vv N
TVAR

<<=

Examples:

If (LAnd (LAnd (LEqual (II1DO, EIDO), LEqual (IID1, EID1)), LAnd (LEqual
(11D2, EID2), LEqual (11D3, EID3))))
---> if ((11D0 == EIDO) && (11Dl == EIDl) &&

(1''D2 == EID2) && (11D3 == EID3))

If (LAnd (LG eaterEqual (_PR CLVL, One), LLessEqual (_PR CLVL, 0x03)))
---> if ((V_PRCLVL >= 1) & (_PR CLVL <= 3))

If (LO (LEqual (And (RFOH, OxEO), 0x60), LEqual (And (

RFOH, OxEO), 0x40)))

---> if (((RFOH & OXE0) == 0x60) || ((RFOH & OXE0) == 0x40))

ShiftRi ght (And (_SB.1ACE. ECTM O0x00FF0000), 0x10)

---> (_SB. | ACE. ECTM & 0X00FF0000) >> 0x10

If (LAnd (And (1 UBE, One), LGreaterEqual (OSYS, 0x07DC)))

-==> if ((1UBE & 1) && (OSYS >= 0x07DC))

19

L] |~"'
IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide ('nte'
4.1.1.1 Binary AML Considerations

Typically, theiASL compiler will produce identical AML code for both symbolic expressions and
the equivalent legacy ASL code.

For example, consider these two sematically identical statements:

Add (Local 0, ShiftLeft (Tenmp, 3), Locall)

Local1 = Local 0 + (Tenp << 3)

Both of these statements compile to the identical AML code, as shown in the listing below:

11: Add (Local 0O, ShiftLeft (Tenp, 3), Locall)
0000003A: 72 60 rtt
0000003C: 79 54 45 4D 50 OA 03 00 "yTEMP. .. "
00000044: 61 "a"
13: Local 1 = Local 0 + (Tenp << 3)
00000045: 72 60 "rtt
00000047: 79 54 45 4D 50 OA 03 00 "yTEMP. .. "
0000004F: 61c0vuvin.. "a"

411.2 AML Disassembler Notes

The AML disassembler by default produces ASL + code with symbolic operators and expressions. In
fact, thisis the quickest way to convert existing (legacy) ASL code to the ASL+ language.

In general, a disassemble/recompile sequence will produce AML code that isidentical to the
origina AML code. However, there are some cases where thisis not true and the AML code
becomes optimized during the process. For example:

14: Store (Multiply (TEMP, 5), Local 1)
00000050: 70 ... "p"
00000051: 77 54 45 4D 50 OA 05 00 "WIEMP. . . "
00000059: 61 "a"

This code will disassemble to equivalent ASL+ and and then recompile to dightly different AML:
14 Locall = TEMP * 5
00000050: 77 54 45 4D 50 OA 05 61 "WTEMP. . a"
As shown above, the disassembly/recompile process has optimized the original statement to this
legacy ASL equivalent:
18: Mul tiply (TEMP, 5, Locall)

00000062: 77 54 45 4D 50 OA 05 61 "WTEMP. . a"

20

4.1.2

4.1.3

413.1

4.1.3.2

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Built-in ASL Macros

TheiASL compiler implements several macros that are not part of the ACPI specification, but have
been implemented for convenience. These macros are similar to their C equivalents:

__FILE__ - Returnsthe current input (source) filename.

__PATH__ - Returnsthe current full pathname of the input (source) file.
__LINE__ - Returnsthe current line number within the input (source) file.
__DATE___ - Returnsthe current date and time.

__TIASL___ - Alwaysdefined for the iASL compiler. Can be used to differentiate between ASL
compilers and/or other preprocessors such as a C preprocessor.

Example

DefinitionBlock ("dsdt.am ", "DSDT", 2, "Intel", "Tenplate", 0x00000001)
{
Met hod (MAIN, O, NotSerialized)
Store (_FILE__, Debug)

Store (_LINE__, Debug)
Store (_DATE__, Debug)

- execute nmain
Executing \ MAI N

[ACPI Debug] String [0x08] "dsdt.asl"
[ACPI Debug] |nteger 0x0000000000000006
[ACPl Debug] String [0x18] "Thu Jan 13 12:29:44 2011"

Compiler Analysis Phases

General ASL Syntax Analysis

Enhanced ASL syntax checking. Multiple errors and warnings are reported in one compile — the
compiler recoversto the next ASL statement upon detection of a syntax error.

Constants larger than the target data size are flagged as errors. For example, if the target datatypeis

aBYTE, the compiler will rgject any constants larger than OxFF (255). The same error checking is
performed for WORD and DWORD constants.

General Semantic Analysis

All named references to objects are checked for validity. All names (both full ACPlI Namepaths and
4-character Namesegs) must refer to valid declared objects.

21

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

4.1.3.3

4.1.3.4

4.1.35

4.1.3.6

All Fields created within Operation Regions and Buffers are checked for out-of-bounds offset and
length. The minimum access width specified for the field is used when performing this check to
ensure that the field can be properly accessed.

Control Method Semantic Analysis

Method local variables are checked for initialization before use. All locals (LOCALO - LOCAL7)
must be initialized before use. This prevents fatal run-time errors for uninitialized ASL arguments.

Method arguments are checked for validity. For example, a control method defined with 1 argument
can't use ARG4. Again, this prevents fatal run-time errors for uninitialized ASL arguments.

Control method execution paths are analyzed to determine if al return statements are of the same
type — to ensure that either all return statements return a value, or al do not. Thisincludes an
analysisto determine if execution can possibly fall through to the default implicit return (which does

not return avalue) at the end of the method. A warning isissued if some method control paths return
avalue and others do not

Control Method Invocation Analysis

All control method invocations (method calls) are checked for the correct number of argumentsin
all cases, regardless of whether the method is invoked with argument parentheses or not (e.g. both
ABCD() and ABCD). Prevents run-time errors caused by non-existent arguments.

All control methods and invocations are checked to ensure that if areturn value is expected and used
by the method caller, the target method actually returns a value.

Predefined ACPI Names

For al ACPI reserved control methods (such as_STA, TMP, etc.), both the number of arguments
and return types (whether the method must return a value or not) are checked. This prevents missing
operand run-time errors that may not be detected until after the product is shipped.

Predefined names that are defined with arguments or return no value must be implemented as
control methods and are flagged if they are not. Predefined names that may be implemented as static
objectsviathe ASL Name() operator are typechecked.

Reserved names (all names that begin with an underscore are reserved) that are not currently defined
by ACPI are flagged with awarning.

Resource Descriptors

Validation of values for Resource Descriptorsis performed wherever possible.

Address Descriptors: Values for AddressMin, AddressMax, Length, and Granularity are validated:
AddressMax must be greater than or equal to AddressMin

Length must be less than or equal to (Max-Min+1)

If Granularity is non-zero, it must be a power-of-two minus one.

The IsMinFixed and IsMaxFixed parameters are validated against the values given for the

AddressMin, AddressMax, Length, and Granularity. Thisimplements the rules given in Table 6-179
of the ACPI 5.0 specification.

22

4.1.4

4141

4.1.4.2

41.4.3

4.2

4.2.1

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Compiler Optimizations

The compiler implements several optimizations whose primary intent is to reduce the size of the
resulting AML output.

Named References

Namepaths within the ASL can often be optimized to shorter strings than specified by the ASL
programmer. For example, a full pathname can be optimized to a single 4-character ACPI name if
the final name in the path is within the local scope or is along the upward search path to the root
from the local scope. In addition, the carat (*) operator can often be used to optimize Namepaths.

Integers
Certain integers can be optimized to single-byte AML opcodes. These are: 0, 1, and -1. The opcodes

used are Zero, One, and Ones. All other integers are described in AML code using the smallest
representation necessary — either Byte, Word, DWord, or QWord.

Constant Folding

All expressions that can be evaluated at compile-time rather than run time are executed and reduced
to the smplified value. The ASL operators that are supported in this manner are the Type3, Type4,
and Type5 operators defined in the ACPI specification.

TheiASL compiler contains the ACPICA AML interpreter which is used to eval uate these
expressions at compile time.

ASL-to-AML Disassembler

The AML disassembler is used to regenerate the original ASL code from abinary ACPI AML table.
Tablesthat contain AML aretypically the DSDT and any SSDTs.

The disassembler isinvoked by using the —d option of iASL.

Because the AML contains all of the original symbols from the ASL, the AML byte code of abinary
ACPI table can be disassembled back to nearly the original ASL code with only a few caveats.

Multiple Table Disassembly

There is aknown difficulty in disassembling control method invocations for methods that are
external to the table being disassembled. Thisis because there is often insufficient information
within the AML to properly disassemble these method invocations.

Therefore, whenever possible, all DSDTs and SSDTsfor a given machine should be disassembled
together using the —da or —e option. If all SSDTs are included this way, the necessary information
will be available to fully and correctly disassemble the target table.

23

intel.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

4.2.2

For example, to disassemble the DSDT on a machine with multiple SSDTSs:
$ iasl -essdtl.dat,ssdt2.dat,ssdt3.dat -d dsdt. dat

Intel ACPI Conponent Architecture

AML Di sassenbl er version 20100528 [May 28 2010]
Copyright (c) 2000 - 2010 Intel Corporation
Supports ACPl Specification Revision 5.0

Loadi ng Acpi table fromfile DSDT. dat

Acpi table [DSDT] successfully installed and | oaded
Loadi ng Acpl table fromfile ssdtl. dat

Acpi table [SSDT] successfully installed and | oaded
Pass 1 parse of [SSDT]

Pass 2 parse of [SSDT]

Loadi ng Acpi table fromfile ssdt2.dat

Acpi table [SSDT] successfully installed and | oaded
Pass 1 parse of [SSDT]

Pass 2 parse of [SSDT]

Loadi ng Acpi table fromfile ssdt3.dat

Acpi table [SSDT] successfully installed and | oaded
Pass 1 parse of [SSDT]

Pass 2 parse of [SSDT]

Pass 1 parse of [DSDT]

Pass 2 parse of [DSDT]

Par si ng Deferred Opcodes (Methods/ Buf f ers/ Packages/ Regi ons)

Par si ng conpl et ed
Di sassenbly conpleted, witten to "DSDT. dsl"

External Declarations

During disassembly, any ACPI names that cannot be found or resolved within the table under
disassembly are added to alist of externals that are emitted at the start of the table definition block,
as shown below:

DefinitionBlock ("DSDT.am ", "DSDT*, 1, "INTEL ", "EXAWMPLE", 0x06040000)
{

Ext ernal (Z003)
External (_SB . PCl 0. LNKH)

If the object type that is associated with the name can be resolved during the disassembly, thistype
is emitted with the extenal statement also:

External (PETE, |ntQbj)

Ext ernal (HDOS, Met hodOnj) /1 0 Arguments
Ext ernal (ECST, Met hodOnj) /1 1 Arguments
External (PSEN, FieldUnitQbj)

External (C7EN, FieldUnitQbj)

External (_PR _.CPUl, DeviceObj)

External (_PR_.CPU0, DeviceObj)

24

5

5.1

5.1.1

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

ACPI| Data Table Subsystem

This subsystem consists of tools to compile ACPI Data Tables such asthe FADT, MADT, SRAT,
etc., to binary ACPI tables, and to disassemble binary ACPI data tables to formatted and structured
tables in the data table language.

Data Table Compiler

TheiASL Data Table Compiler isintended to compile ACPI datatables (FADT, MADT, etc) to
binary data, to be integrated into a BIOS project.

Data Tables are described in asimple language that is directly compatible with the output of the data
table disassembler. The two goals for thislanguage are simplicity and compatibility with the
disassembler.

Data Table input files are automatically detected and differentiated from ASL files, therefore no
special iASL option isrequired to invoke the data table compiler.

The default output is a binary ACPI datatable. Use one of the iASL options—ta, —tc, or —ts, in order
to create the binary output in an ASCII hex table that is suitable for direct inclusion into aBIOS
project.

On some host operating systems, the iASL data table disassembler and compiler may be used to
disassemble a data table, modify it, then recompileit to a binary file that can be used to override the
original table. This override support depends upon features supported by the host operating system.
This feature would be useful, for example, to repair invalid or incorrect values in an important table
such asthe FADT.

Input Format

The format of theinput file is a series of fields, each of which represents afield in the target ACPI
table. Each field is comprised of afield name and afield value, separated by a colon. The fields
must appear in the exact order in which they are defined for the target ACPI table.

<Fi el dNane> : <Field Val ue>
<Fi el dNanme> : <Fi el d Val ue>

<FiéIdNane> : <Field Val ue>
Both slash-asterisk and slash-slash comments are supported. Blank lines are ignored.

The language itself is defined in the next section. The Field Names (AcpiTableFieldName) that are
available for any given ACPI table can be obtained from the template file generated by the iASL
Template Generator:

i ASL —T <ACPI Tabl e Signature> /1 Cbtain one tenplate
iASL -T all /]l Ootain tenplates for all ACPlI tables

25

intel.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

51.1.1 Ignored Fields/Comments
Comments can be either traditional /* .. */ style or // style.
Additional fieldsthat are ignored (and are essentially comments) are fields surrounded by brackets —
[..]. This allows automatic compatibility with the output of the AML disassembler.
5.1.2 Data Table Definition Language
i
H Root Term
Dat aTabl e : =
Fi el dLi st
i
H Field Terms
Fiel dList :=
Field |

<Fi el d Fi el dLi st >
Field :=

<Fi el dDefiniti on Optional Fi el dConment > |

Conmment Fi el d
Fi el dDefinition :=
/'l Fields for predefined (known) ACPI

<Optional Fiel dNane ‘:’ Fiel dval ue> |

/] Generic data types (used for custom or

tabl es

undefined ACPI tabl es)

<* Ul NT8’ ‘:’ I ntegerExpression> /1 8-bit unsigned integer
<" U NT16’ ‘:’ |IntegerExpression> /1 16-bit unsigned integer
<" U NT24’ ‘:’ |IntegerExpression> /'l 24-bit unsigned integer
<"U'NT32" ‘:’ IntegerExpression> /1 32-bit unsigned integer
<" U NT40" ‘:’ |IntegerExpression> /] 40-bit unsigned integer
<" U NT48 ‘:’ IntegerExpression> /] 48-bit unsigned integer
<"U NT56" ‘:’' |ntegerExpression> /1 56-bit unsigned integer
<"UNT64’ ‘:’ |IntegerExpression> /] 64-bit unsigned integer
<" String’ ‘:’ String> /1l Quoted ASCII string
<'Unicode’ ‘:' String> /1 Quoted ASCI| string -> Unicode string
< Buffer’ ‘:’ ByteConstList> /1 Raw buffer of 8-bit unsigned integers
<AQJD foQuid> /1 I'n QU D format
<'Label’ ‘:’ Label > /1 ASCI| |abel — unquoted string
Opti onal Fi el dNane : =
Not hi ng |
Asci i CharLi st /1 Optional field name/description
Fi el dval ue : =
I nteger Expression | String | Buffer | Flags | Label
Optional Fi el dComment : =
Not hi ng
<'[" AsciiCharList ‘]’>
CommentField : =
<[/’ AsciiCharList NewLine> |
<'/[*' AsciiCharList ‘*/'> |
<'[" AsciiCharList ‘]’>

I/
/| Data Expressions
/1
I nt eger Expression : =
I nteger |
<l| nt eger Expr essi on | nt eger Oper at or

<" (' IntegerExpression ‘)’ >

| nt eger Expressi on> |

26

intel.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

/1
Il Operators below are shown in precedence order. The neani ngs and precedence rul es
/1 are the sanme as the C | anguage. Parentheses have precedence over
/1 all operators.
/1
I nt eger Qperator : =
o o o ot |t Ceg SO
:<,’ |L.>: [<= | t>= | ot== | cr= & | A
& ||
/1
/1 Data Types
/1
String : =
<'”" AsciiCharList ‘">
Buffer :=
Byt eConst Li st
Quid :=
<DWrdConst ‘-’ WirdConst ‘-’ WirdConst ‘-’ WrdConst ‘-’ Const48>
Label :=
Asci i Char Li st
/1
/] Data Terns
/1
Integer :=

Byt eConst | WordConst | Const24 | DwWrdConst | Const40 | Const48 | Const56 |
QnordConst | Label Ref erence

Label Reference : =
<'$ Label >

Fl ags : =
OneBit | TwoBits

ByteConst List :=
Byt eConst |
<Byte Const ‘ ' ByteConstList>

Ascii CharList :=
Not hi ng |
Pri nt abl eAsci i Char
<Print abl eAsci i Char Ascii CharLi st>

11
/1 Term nals
/1

Byt eConst : =
0x00- OXFF
Wor dConst : =
0x0000 - OxFFFF
Const24 : =
0x000000 - OxFFFFFF
DWor dConst : =
0x00000000 - OxFFFFFFFF
Const40 : =
0x0000000000 — OxFFFFFFFFFF
Const48 : =
0x000000000000 — OxFFFFFFFFFFFF
Const56 : =
0x00000000000000 - OXFFFFFFFFFFFFFF
QMor dConst ;-
0x0000000000000000 - OxFFFFFFFFFFFFFFFF

eBit : =
TwoBits : =
0- 3

Pri nt abl eAscii Char : =
0x20 — Ox7E
NewLi ne : =
A n

27

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

5.1.3 Input Example

Input is similar to the output of the Data Table disassembler. The example below shows a portion of
input describing a FADT.

/
Intel ACPI Conponent Architecture
i ASL Conpi |l er/ Di sassenbl er version 20100528

Tenpl ate for [FACP] ACPI Table
Format: [BytelLength] FieldName : HexFi el dval ue
/

k% k% ok Ok F

[004] Sighature : "FACP" // Fixed ACPI Description Table
[004] Tabl e Length : 000000F4

[001] Revi sion : 04

[001] Checksum : 4E

[006] Cem |ID: "INTEL "

[008] Cem Table ID: "TEMPLATE"

[004] Cem Revi si on : 00000000

[004] Asl Conpiler ID: "INTL"

[004] Asl Conpiler Revision : 20100528

[004] FACS Address : 00000001

Each valid, non-comment line in the input file represents a field within the target ACPI table. The
value in brackets (e.g., “[004]") is the required length (in bytes) of the field described on the line. It
is essentially acomment and is not required; thisvalueis created by the iASL template generator for
reference purposes only.

514 Data Types for User-Entered Fields

The following data types are supported:

5141 Integers

All integersin ACPI are unsigned. Four major types of unsigned integers are supported by the
compiler: Bytes, Words, DWords and QWords. In addition, for special cases, there are some odd
sized integers such as 24-bit and 56-hit. The actual required width of an integer is defined by the
ACPI table. If an integer is specified that is numerically larger than the width of the target field
within the input source, an error isissued by the compiler. Integers are expected by the data table
compiler to be entered in hexadecimal with no “hex” prefix.

Examples:

[001] Revision : 04 /1 Byte (8-bit)

[002] C2 Latency : 0000 /1l Word (16-bit)
[004] DSDT Address : 00000001 /1 DwWrd (32-bit)
[008] Address : 0000000000000001 // Qnord (64-bit)

Length of non-power-of-two examples:

[003] Reserved : 000000 /1 24 bits
[007] Capabilities : 00000000000000 /1 56 bits
5.1.4.2 Integer Expressions

Expressions are supported in all fields that require an integer value.
Supported operators (Standard C meanings, in precedence order):

! Logical NOT

28

5.14.3

5.1.4.4

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

~ Bitwise ones compliment (NOT)
* Multiply

/ Divide

% Modulo

+ Add

- Subtract

<< Shift left

>> Shift right

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

== Equal

I= Not Equal

& Bitwise AND

A bitwise Exclusive OR

| Bitwise OR

&& Logical AND

[| Logical OR
Examples:
[001] Revision : 04 * 4 /1 Byte (8-bit)
[002] C2 Latency : 0032 + 8 /1 Word (16-bit)
[004] DSDT Address : 00000001 /] Dwerd (32-bit)
[008] Address : 0000000000000001 // Qmérd (64-bit)
Flags

Many ACPI tables contain flag fields. For these fields, only the individual flag bits need to be
specified to the compiler. The individual bits are aggregated into a single integer of the proper size

by the compiler.

Examples:
[002] Fl ags (decoded bel ow) : 0005
Polarity : 1
Trigger Mde : 1

In this example, only the Polarity and Trigger Mode fields need to be specified to the compiler (as
either zero or one). The compiler then creates the final 16-bit Flags field for the ACPI table.

Strings

Strings must always be surrounded by quotes. The actual string that is generated by the compiler
may or may not be null-terminated, depending on the table definition in the ACPI specification. For
example, the OEM ID and OEM Table ID in the common ACPI table header (shown above) are
fixed at six and eight characters, respectively. They are not necessarily null terminated. Most other
strings, however, are of variable-length and are automatically null terminated by the compiler. If a
string is specified that is too long for a fixed-length string field, an error isissued. String lengths are
specified in the definition for each relevant ACPI table.

Escape sequences within a quoted string are not allowed. The backslash character ‘\' refersto the
root of the ACPI namespace.

Examples:

[008] Cem Table ID: "TEMPLATE" /1 Fixed length

29

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

5.1.4.5

5.1.5

5.1.6

[006] Processor U D String : "\CPUW" /1 Variable |length

Buffers

A buffer istypically used whenever the required binary dataislarger than a QWord, or the data does
not fit exactly into one of the standard integer widths. Examplesinclude UUIDs and byte data
defined by the SLIT table.

Examples:

/1 SLIT entry

[032] Local ity 0: OA 10 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23\
04 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33

// DVAR entry
[002] PCl Path : 1F 07

Each hexadecimal byte should be entered separately, separated by a space. Additional lines may be
specified with the continuation character (‘\').

Fields Set Automatically

There are several types of ACPI table fields that are set automatically by the compiler. This
simplifies the process of ACPI table development by relieving the programmer from these tasks.

Checksums: All ACPI table checksums are computed and inserted automatically. Thisincludes the
main checksum that appearsin the standard ACPI table header, as well as any additional checksum
fields such as the extended checksum that appearsin the ACPI 2.0 RSDP.

Table Lengths: All ACPI table lengths are computed and inserted automatically. This includes the
master table length that appears in the common ACPI table header, and the length of any internal
subtables as applicable.

Examples:

[004] Tabl e Length : 000000F4

[001] Subt abl e Type : 08 <Platform Interrupt Sources>
[001] Length : 10

[001] Subt abl e Type : 01 <Menory Affinity>

[001] Length : 28

Flags: Asdescribed in the previous section, individual flags are aggregated automatically by the
compiler and inserted into the ACPI table as the correctly sized and valued integer.

Compiler 1Ds. The data table compiler automatically insertsthe ID and current revision for iASL
into the common ACPI table header for each table during compilation.

Special Fields

Reserved Fields: All fields that are declared as Reserved by the table definition within the ACPI (or
other) specification should be set to zero.

30

5.1.7

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Table Revision: Thisfield in the common ACPI table header is often very important and defines
the structure of the remaining table. The developer should take care to ensure that thisvalue is
correct and current. Thisfield is not set automatically.

TheiASL table template generator emits tables with a TableRevision that is the latest known value.

Table Signature: There are several table signatures within ACPI that are either different from the
table name, or have unusual length:

FADT — signature is "FACP".
MADT — signature is "APIC".
RSDP — signature is "RSD PTR " (with trailing space)

Generic Fields / Generic Data Types

The following “generic” data types/field names are provided to support tables like the UEFI, which
mostly consist of platform-defined data.

UINTS8 Generates an 8-bit unsigned integer

UINT16 Generates a 16-bit unsigned integer

UINT?24 Generates a 24-bit unsigned integer

UINT32 Generates a 32-bit unsigned integer

UINT40 Generates a 40-bit unsigned integer

UINT48 Generates a 48-bit unsigned integer

UINT56 Generates a 56-bit unsigned integer

UINT64 Generates a 64-bit unsigned integer

String Generates a null-terminated ASCI| string (ASCI1Z)
Unicode Generates a null terminated Unicode (UTF-16) string
Buffer Generates a buffer of 8-bit unsigned integers

GUID Generates an encoded GUID in a 16-byte buffer

L abel Generates a Label at the current location (offset) within the table. Thislabel can

be referenced within integer expressions by prepending the label witha‘$’ sign.

Examples:

Label : StartRecord
U NT8 : 11
U NT16 : $EndRecord - $StartRecord /1 Record | ength
U NT24 : 112233
U NT32 : 11223344
Ul NT56 : 11223344556677
U NT64 : 1122334455667788

String : "This is a string"
Devi cePath : "\ Pci Root (0)\ Pci (0x1f, 1)\ Usb(0,0)"
Uni code : "This string will be encoded to Uni code"

Buffer : AA 01 32 4C 77

GUI D : 11223344-5566- 7788- 99aa- bbccddeef f 00
Label : EndRecord

Example UEFI table with generic data types:

31

intel.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

/*
* Intel ACPlI Conponent Architecture
* i ASL Conpil er/ D sassenbl er version 20101209-32 [Jan 6 2011]
* Copyright (c) 2000 - 2011 Intel Corporation
* Tenplate for [UEFI] ACPlI Table
* Format: [BytelLength] FieldNane : HexFi el dval ue
*/
[004] Signature : "UEFI" /* UEFI Boot Optimzation Table */
[004] Tabl e Length : 00000036
[001] Revision : 01
[001] Checksum: 9B
[006] Cem |ID: "INTEL "
[008] Cem Table ID: "TEMPLATE"
[004] Cem Revi si on : 00000001
[004] As|l Conpiler ID: "INTL"
[004] Asl Conpiler Revision : 20100528
[016] UUI D ldentifier : 03020100-0504-0706- 0809- 0AOBOCODOEOF
[002] Data Offset : 0000

Label : StartRecord

U NT8 : ab

U NT16 : $EndRecord - $StartRecord // length
U NT24 : 123456

U NT32 : 01020304

U NT56 : 11223344556677

U NT64 : 0102030405060708

String : "This is a string"
Devi cePath : "\ PCl O\ ABCD"
Uni code : "Unicode String"

Buffer : 41 42 43 44 45
String : ""

GUI D : 03020100-0504-0706-0809- 0AOBOCODOEOF
Label : EndRecord

32

intel)

5.2

5.2.1

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Data Table Disassembler

The Data Table Disassembler will disassemble and format any ACPI datatable (hon-AML table)
that is supported. The current set of ACPI Data Tables that are supported by the Data Table

disassembler and Data Table compiler are shown below:

APl C (MADT) Mul ti ple APIC Description Table

ASF! Al ert Standard Format table

BOOT Si npl e Boot Fl ag Tabl e

BERT Boot Error Record Table

BGRT Boot Graphics Resource Table

CPEP Corrected PlatformError Polling table
DBGP Debug Port table

DVAR DVA Remappi ng table

DRTM Dynami ¢ Root of Trust for Measurenent table
ECDT Enbedded Control |l er Boot Resources Tabl e
El NJ Error Injection table

ERST Error Record Serialization Table

FACP (FADT) Fi xed ACPlI Description Table

FACS Firmvare ACPI Control Structure

FPDT Fi rmware Performance Data Tabl e

GIDT Generic Tinmer Description Table

HEST Hardware Error Source Tabl e

HPET Hi gh Precision Event Tiner table

MPST Mermory Power State Table

I VRS I1/O Virtualization Reporting Structure
MCFG PCl Menmory Mapped Configuration table
MCHI Managenent Controller Host Interface table
VSCT Maxi mum Syst em Characteristics Table

PCCT Pl at f or m Conmruni cati ons Channel

PMIT Pl at f orm Menory Topol ogy Tabl e

RASF RAS Feature table

RSDP Root System Description Pointer

RSDT Root System Description Table

SBST Smart Battery Specification Table

SLIC Sof twar e Licensing Description Table

SLIT System Local ity Distance |Information Table
SPCR Serial Port Console Redirection table
SPM Server Pl atform Managenent Interface table
SRAT System Resource Affinity Table

TCPA Trusted Computing PlatformAlliance table
UEFI Uefi Boot Optim zation Table

WAET W ndows ACPI Enul at ed devi ces Tabl e

VWDAT Wat chdog Action Table

VWDDT WAt chdog Ti ner Description Table

VDRT Wat chdog Resource Tabl e

XSDT Ext ended System Description Table

These non-AML ACPI data tables can be “disassembled”, meaning that they are formatted with the
individual fieldsand data. While most ACPI tables found in the field are supported, there may exist
afew additional ACPI tables that are not defined in the ACPI specification and are not supported by

the disassembler (or compiler.)

Example Output

Example disassembly of an FADT. This example contains arevision 4 FADT, which contains both

32-bit and 64-bit addresses for the ACPI registers.

/
Intel ACPlI Conponent Architecture
AML Di sassenbl er versi on 20100528

¥k Ok Ok 3k Ok

ACPl Data Table [FACP]

Di sassenbly of FACP.am, Thu Jun 17 13:18:03 2010

33

intel.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Fo

000h
004h
008h
009h
00Ah
010h
018h
01Ch
020h

024h
028h
02Ch
02Dh
02Eh
030h
034h
035h
036h
037h
038h
03Ch
040h
044h
048h
04Ch
050h
054h
058h
059h
05Ah
05Bh
05Ch
05Dh
05Eh
05Fh
060h
062h
064h
066h
068h
069h
06Ah
06Bh
06Ch
06Dh

[06Fh 0111 1]
[070h 0112 4]

rmat :

0000
0004
0008
0009
0010
0016
0024
0028
0032

0036
0040
0044
0045
0046
0048
0052
0053
0054
0055
0056
0060
0064
0068
0072
0076
0080
0084
0088
0089
0090
0091
0092
0093
0094
0095
0096
0098
0100
0102
0104
0105
0106
0107
0108
0109

[HexOf f set Deci mal Of f set Byt eLengt h]

Model

SCl I nterrupt
SM Command Port

pP-State Control

GPEl Base O f set
_CST Support

Duty Cycle O fset

NRPRPRRRERRNNNNRPRRRRER R EREANMMARMNMRNRARRPRREANRPEAN ARMMNOORE AN

Boot Fl ags (decoded bel ow)
Legacy Devices Supported (V2)
8042 Present on ports 60/64 (V2)

VGA Not Present (V4)
MBI Not Supported (V4)
PCl e ASPM Not Supported (V4)

Fl ags (decoded bel ow)

WBI NVD instruction is operational (V1)

WBI NVD fl ushes all caches (V1)
Al CPUs support Cl1 (V1)

C2 works on MP system (V1)
Control Method Power Button (V1)
Control Method Sleep Button (V1)

RTC wake not in fixed reg space (V1)

Use

RTC can wake system from S4 (V1)
32-bit PM Timer (V1)

Docki ng Supported (V1)

Reset Regi ster Supported (V2)
Seal ed Case (V3)

Headl ess - No Video (V3)

native instr after SLP_TYPx (V3)
PCl EXP_WAK Bits Supported (V4)
Use Platform Timer (V4)

RTC_STS valid on S4 wake (V4)
Renot e Power-on capabl e (V4)

Use APIC Cluster Model (V4)

Use API C Physical Destination Mde (V4)

Si ghature :
Tabl e Length :
Revi sion :
Checksum :
Cem | D
Cem Table ID :
Cem Revi sion :
As|l Compiler ID:
Asl Conpiler Revision :

FACS Address :
DSDT Address :

PM Profile :

ACPl Enabl e Val ue :
ACPlI Disable Value :
S4Bl OS Conmand :

PMLA Event Bl ock Address :
PMLB Event Bl ock Address :
PMLA Control Bl ock Address :
PMLB Control Bl ock Address :
PM2 Control Bl ock Address :
PM Ti mer Bl ock Address :
GPEO Bl ock Address :

GPE1 Bl ock Address :

PML Event Bl ock Length :
PML Control Block Length :
PM2 Control Block Length :
PM Ti mer Bl ock Length :

GPEO Bl ock Length :

GPEl1 Bl ock Length :

C2 Latency :

C3 Latency :

CPU Cache Size :
Cache Flush Stride :

Duty Cycle Wdth :

RTC Day Al arm I ndex :
RTC Month Al arm | ndex :
RTC Century I ndex :

Reserved :

Fi el dNarme : Fi el dval ue

" FACP"
000000F4
04

9F

" NTEL"

" EXAVPLE"
00000002
"I NTL"
20100528

78022000
71F61000
00

04 (Enterprise Server)
0009
000000B2
A0

Al

00

00
00000400
00000000
00000404
00000000
00000450
00000408
00000420
00000000

[eleolololololololo) Jolol Jol Jeolo) ol o]

34

074h
074h
075h
076h
077h
078h

080h
081h
084h
08Ch
094h
094h
095h
096h
097h
098h

0AOh
0AOh

IASL

0116 12

0116
0117
0118
0119
0120

0128
0129
0132
0140
0148
0148
0149
0150
0151
0152

0160
0160
0161
0162
0163
0164

0172
0172
0173
0174
0175
0176

0184
0184
0185
0186
0187
0188

0196
0196
0197
0198
0199
0200

0208
0208
0209
0210
0211
0212

0220
0220
0221
0222
0223
0224

0232
0232
0233
0234
0235
0236

ORREREN 0ORRRREN ORRPRREERN ORREREN 0RRERREN ORRPRRERN ORRPREN 0RRPRERRERNOOWR 0R R e

: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Reset Regi ster

Space ID :
Bit Wdth :

Bit O fset

Access Wdth :
Addr ess :

Val ue to cause reset

Reserved :
FACS Address :
DSDT Address :
Bl ock :
Space 1D :
Bit Wdth :

PMLA Event

Bit Offset

Access Wdth
Address :

PMLB Event

Bit O fset

Access Wdth :
Addr ess :

PMLA Contr ol

Bit O fset

Access Wdth :
Address :

PMLB Contr ol

Bit Offset

Access Wdth
Address :

PM2 Control

Bit O fset

Access Wdth :
Addr ess :

PM Ti ner

Bit O fset

Access Wdth :
Address :

GPEO Bl ock :
Space 1D :
Bit Wdth :

Bit Offset

Access Wdth
Address :

GPE1 Bl ock :
Space ID :
Bit Wdth :

Bit O fset

Access Wdth :
Addr ess :

Bl ock :
Space 1D :
Bit Wdth :

Bl ock :
Space ID:
Bit Wdth :

Bl ock :
Space ID :
Bit Wdth :

Bl ock :
Space ID :
Bit Wdth :

Bl ock :
Space ID:
Bit Wdth :

<Generic Address
01 (System O
08

00
01
0000000000000CF9

06

000000
0000000078D22000
0000000071F61000
<Ceneric Address

01 (System O

20

00

02
0000000000000400

<Generic Address
01 (System O
00

00
00
0000000000000000

<Generic Address
01 (System O
10

00
02
0000000000000404

<Ceneric Address
01 (System O
00

00
00
0000000000000000

<Generic Address
01 (System O
08

00
00
0000000000000450

<Generic Address
01 (System O

20

00

03
0000000000000408

<Ceneric Address
01 (System O
80

00
01
0000000000000420

<Generic Address
01 (System O
00

00
00
0000000000000000

Structure>

Structure>

Structure>

Structure>

Structure>

St ruct ur e>

Structure>

Structure>

Structure>

35

intel.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

5.3 ACPI Table Template Generator

The Table Template Generator is used to create examples for each of the supported ACPI tables. It
emits code in aformat similar to the ACPI data table disassembler, and can compiled directly via
the ACPI data table compiler.

These templates contain examples of each possible subtable as applicable to the particular table. The
template can be used as a starting point for actual ACPI table development.

Use"i asl —T al | " to generate atemplate for every supported table

Example Template file for ECDT:
/
Intel ACPI Conponent Architecture

i ASL Conpi |l er/ Di sassenbl er version 20100528

Tenpl ate for [ECDT] ACPlI Table

EE

Fornat: [BytelLength] FieldNane : HexFi el dval ue

/
004 Signature : "ECDT"
004 Tabl e Length : 00000042
001 Revision : 01
001 Checksum: 2D
006 Cem ID: "INTEL "
008 Cem Table ID: "TEMPLATE"
004 Cem Revi sion : 00000001
004 Asl Conpiler ID: "INTL"
004 Asl Conpiler Revision : 20100528
012 Comrand/ St at us Regi ster <Ceneric Address Structure>
001 Space ID: 01 (System O
001 Bit Wdth : 08
001 Bit Offset : 00
001 Access Wdth : 00
008 Address : 0000000000000066
012 Data Register : <Generic Address Structure>
001 Space ID: 01 (System O
001 Bit Wdth : 08

001 Bit Offset : 00

001 Access Wdth : 00

008 Address : 0000000000000062
004 Ul D : 00000000

001 GPE Number 09

001 Narmepath : "*"

36

6

6.1

6.2

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Compiler/Disassembler Operation

TheiASL compiler isacommand line utility that isinvoked to trandate one or more ASL source
filesto corresponding AML binary files or the reverse. The syntax of the various command line
optionsisidentical across all platforms.

Command Line Invocation

The general command line syntax is as follows:

iasl [options] filel, file2, ..fileN

Wildcard Support

Wildcards are supported on al platforms.

On Windows, wildcard support isimplemented within the compiler. For other platforms, it is
expected that the shell or command line interpreter will automatically expand wildcards into the
argv array that is passed to the compiler main().

37

intel.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

6.3 Command Line Options

All compiler options are specified using the single ‘- (minus) prefix, regardless of the platform of
operation. These options are summarized below, and described in detail after.

CGeneral :
-@<file> Specify command file
-1 <dir> Specify additional include directory
-T <sig>| ALL|* Create table tenplate file for ACPl <Sig>
-p <prefix> Specify path/filename prefix for all output files
-V Di spl ay conpiler version
-Vo Enabl e optini zati on comrents
-Vs Di sabl e si gnon
Hel p:
-h Thi s nmessage
-he Di spl ay operators allowed in constant expressions
- hf Di splay help for output filename generation
-hr Di spl ay ACPlI reserved nmethod nanes
- ht Di splay currently supported ACPI table nanes
Pr eprocessor:
-D <synbol > Define synbol for preprocessor use
-l Create preprocessed output file (*.i)
-P Preprocess only and create preprocessor output file (*.i)
-Pn Di sabl e preprocessor
Errors, Warnings, and Remarks:
-va Di sabl e all errors/warnings/renarks
-ve Report only errors (ignore warnings and remarks)
- Vi Less verbose errors and warni ngs for use with |DEs
-vr Di sabl e remarks
-vw <messagei d> Di sabl e specific warning or remark
-wl -w2 -w3 Set warning reporting |evel
-we Report warnings as errors
AML Code Generation (*.am):
-oa Di sable all optimzations (conpatibility node)
- of Di sabl e constant fol di ng
- Oi Di sabl e i nteger optim zation to Zero/ One/ Ones
-on Di sabl e naned reference string optimzation
-cr Di sabl e Resource Descriptor error checking
-in I gnore NoOQp operators
-r <revision> Override tabl e header Revision (1-255)
Optional Source Code Qutput Files:
-sCc -sa Create source file in C or assenbler (*.c or *.asm
-ic -ia Create include file in C or assenbler (*.h or *.inc)
-tc -ta -ts Create hex AML table in C, assenbler, or ASL (*.hex)
-Sso0 Create offset table in C (*.offset.h)

Optional Listing Files:
- Create mixed listing file (ASL source and AM.) (*.Ist)

m Create hardware sunmary nmap file (*.nap)

n Creat e nanmespace file (*.nsp)

s Create conbined source file (expanded includes) (*.src)

Dat a Tabl e Conpiler:
-G Conpil e customtable that contains generic operators
-vt Create verbose tenplate files (full disassenbly)

AML Di sassenbl er:
-d <f1f2 ...> Di sassenbl e or decode binary ACPI tables to file (*.dsl)
(Optional, file type is automatically detected)
-da <f1 f2 ...> Disassenble nultiple tables fromsingle nanespace
-db Do not translate Buffers to Resource Tenpl at es
-dc <f1f2 ...> Di sassenmbl e AML and i medi ately conpile it
(Obtain DSDT fromcurrent systemif no input file)

-dl Emt | egacy ASL code only (no symnbolic operators)

-e <f1f2 ...> I ncl ude ACPI table(s) for external symbol resolution
-fe <file> Specify external synbol declaration file

-in I gnore NoOp opcodes

-vt Dunp binary table data in hex format within output file

38

6.3.1

6.3.2

Debug Opti ons:
- bf

-bs

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Create debug file (full output) (*.txt)
Create debug file (parse tree only) (*.txt)

-bp <dept h> Prune ASL parse tree

-bt <type> hj ect type to be pruned fromthe parse tree

- Ignore errors, force creation of AML output file(s)
-m <si ze> Set internal line buffer size (in Kbytes)

-n Parse only, no output generation

- ot Di splay conpile tines and statistics

-x <l evel > Set debug level for trace output

-Z

Do not insert new conpiler ID for DataTabl es

General Options

These options affect the compiler globally.

-@<file>

-I<dir>

-T <Sig>

-p<prefix>

-hf

-ht

Read additional command line options from a command file. The format of this text
file is one complete option per line.

Specify an additional directory for include files. The directory that contains the
source ASL fileis searched first. Then, any additional directories specified viathis
option are searched. This option may be invoked an unlimited number of times.
Directories are searched in the order they appear on the command line.

Create an ACPI Data Table template file. Use “ALL” for the signature to create
templates for all ACPI tables known by iASL.

Specify the filename prefix used for all output files, including the AML file. (This
option overrides the output filename specified in the DefinitionBlock of the ASL.)

Display compiler version in the format <version_number>-<build_bit_width>
Where:
Version_number isintheformat YYYYMMDD

Build_bit_width is either 32 or 64 and represents the bit width used to generate
the compiler.

Enable optimization commentsin the listing file. A remark/comment is made
wherever an optimization has been performed.

Disable the compiler signon.

Help screen

Display acomplete list of all ASL operators that are allowed in constant expressions
that can be evaluated at compiletime. (Thisisalist of the Type 3, 4, and 5
operators.)

Display help for AML output file name generation.

Display alist of the ACPI predefined names (reserved names.)

Display alist of all supported ACPI tables, both AML and data table.

39

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

6.3.3

6.3.4

6.3.5

Preprocessor

These options affect the integrated preprocessor.

-D <symbol> Define symbal for use by the preprocessor.

-P

-Pn

Save the preprocessor output file (*.i) This file contains the output of the
preprocessor and is used as input to the main compiler.

Preprocess only. Create the preprocessor output file (*.i), but do not invoke the main
compiler.

Disable the preprocessor completely. The input source file is passed directly to the
main compiler.

Errors, Warnings, and Remarks

These options affect the output of errors and warnings.

-va

-vr
-vw <id>
-w<1[2|3>

-we

Disable all errors/warnings'remarks. The compiler signon and compilation summary
information are the only messages.

Report errors only. This option ignores warnings and remarks, and is useful for
recompiling disassembled ASL code to quickly determine the actual errorsin the
code.

Provide less verbose errors and warnings in the format required by the MS VV C++
environment. This allows the automatic mapping of errors and warningsto the line
of ASL source code that caused the message.

Disable all remark messages.

Disable a specific warning or remark. The <id> is emitted with the message.

Set the warning reporting level.

Report all warnings as errors.

AML Bytecode Generation

These options affect the actual AML code that is generated by the compiler.

Disable all optimizations.

Disable the constant folding feature.

Disable integer optimizations to the Zero/One/Ones AML opcodes.

Disable named reference string optimizations.

Disable Resource Descriptor error checking.

Ignore ASL NoOp operators during compilation. —in. Ignorethe NoOp operator

within the ASL source code. Often, the NoOp operator is used as padding for
packages that are changed dynamically by the BIOS. When disassembled and

40

6.3.6

6.3.6.1

6.3.6.2

6.3.6.3

6.3.6.4

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

recompiled, these NoOps will cause syntax errors. This option causes the compiler to
ignore all NoOp statements.

-r<Rev> Set the revision number of the table header, overriding the existing revision.

AML Text Output Files

The compiler always emits abinary AML table. These options allow the compiler to create various
text versions of the AML code to simplify the inclusion of the code into a BIOS project.

Source Code Files (-s)

These options create files that contain the AML in hex format, with a unique label for each line of
the original ASL code. This allows the BIOS to easily dynamically access’'modify the ACPI table.

-sa Create AML in an x86 assembly source code file with the extension .ASM. This
option creates a file with a unique label onthe AML code for each line of ASL code.

-SC Create AML in a C source code file with the extension .C. This option creates afile
with aunique label on the AML code for each line of ASL code.

Source External Declaration Files (-i)

These options create files that contain external declarations for the symbols created by the optionsin
the previous section.

-ia Create an ASM include file (.INC) that contains external declarations for the
symbols produced by the —sa option above.

-ic Create a C header file (.H) that contains external declarations for the symbols
produced by the —sc option above.

Hex Source Code Files (-t)
These options create files that contain the AML codein hex format, in asingle array.

-ta Create a hex table file with the extension .HEX. Thisfile contains raw AML byte
datain hex table format suitable for inclusion into an ASM file.

-tc Create a hex table file with the extension .HEX. Thisfile contains raw AML byte
datain hex table format suitable for inclusion into a C file.

-ts Create a hex table file with the extension .HEX. Thisfile contains raw AML byte
datain an ASL Buffer object format suitable for inclusioninto a ASL file.

C Offset Table (-s0)

This option creates a table of offsets within the output AML table/file for use by the BIOS in order
to implement run-time table modification.

41

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

6.3.7

6.3.8

6.3.9

Listings

These options control the listings that are produced by the compiler (as the result of the compilation
of an ASL file)

-l Create alisting file with the extension .LST. Thisfile contains intermixed ASL
source code and AML byte code so that the AML corresponding to each ASL
statement can be examined.

-Im Create a mapping file with amap of the GPIO/I2C/SPI/UART hardware connections
and the extension .MAP

-In Create a namespace file with a dump of the ACPI namespace and the extension .NSP

-Is Create a combined source file with the extension .SRC. This file combines all

include filesinto asingle, large sourcefile.

ACPI Data Tables

-G Compile a custom table containing “generic” operators. The table is assumed to
contain a standard ACPI table header at the start.

-vt Create verbose template file(s). This option creates the template file(s) with the full
output of the disassembler, include file offsets and summary raw data.

AML Disassembler

These options are used to invoke and control the behavior of the AML disassembler.

-d<f1f2...> Disassemble or decode abinary ACPI to afile (.DSL). Tables that contain AML
code are disassembled back to ASL code. Tablesthat do not contain AML code are
decoded and displayed with a description of each field within the table. Wildcards
are supported.

-da<flf2...> Disassemble All. Load all filesinto a single common namespace, then disassemble
each. Similar to —e option, but disassembles al of the input files. Convenient for
disassembling all AML filesfor a given machine (DSDT plus all SSDTs.)

-db During disassembly, do not disassemble ResourceTemplates. Instead, leave them as
disassembled Buffer objects (hex output).

-dc <f1f2...> Disassemble abinary AML file and immediately compileit.

-dl Emit legacy AML code only. No ASL+ symbolic operators and expressions will be
emitted.

-e<f1f2...> Include these extrabinary AML tablesto assist with external symbol resolution. This
option is very useful when attempting to disassemble atable that contains cross-table
control method invocations. In these cases, it is difficult or impossible to properly
disassemble the method invocation without having the definition of the method
present (the important missing datais the number of arguments). Wildcards are
supported.

-fe <file> Import an external declaration file that defines the external control methods and their
required argument counts. This assists the disassembler in producing correct ASL

42

6.3.10

6.4

6.4.1

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

code. Thisisaworkaround for alimitation of AML code where the disassembler
often cannot determine the number of arguments required for an external control
method and generates incorrect ASL code. Can be used in conjunction with the —e
option.

-in Ignore NoOp opcodes (0xA3) within the AML code being disassembled. Often, the
NoOp opcode is used as padding for packages that are changed dynamically by the
BIOS. When disassembled and recompiled, these NoOps will cause syntax errors.
This option causes the disassembl er to ignore all NoOp opcodes.

-vt Dump the full binary table datain hex format within the output file.

Compiler Debug Options

These options are typically only used to debug the compiler/disassembler itself.

-bf Generate afull debug output file with parser state tracing and parse tree dump. This
option can create large amounts of data.

-bs Generate a debug output file that includes only a parse tree dump

-bp <depth> Prune <depth> levels from the ASL parse tree. Serious ASL debugging only, used to
remove ASL code block in order to locate problem code.

-bt<type> Object types to be removed from the ASL parse tree. Default is Device.
-f Ignore errors, force creation of AML output file(s). Use this option with caution.

-m <size> Set theinitial internal line buffer size (in Kbytes). The buffer is automatically
expanded as necessary, however.

-n Only parse the ASL file, do not generate an AML output file.
-ot Display compile times and miscellaneous statistics.
-x<level> Set the ACPICA debug leve for trace output.

-Z For Data Table compilation, do not insert the compiler 1D, simply pass through the
ID inthe original Data Table source code.

Compiler Output Examples

Input ASL

Example input ASL that is used for the output examples below.

DefinitionBlock ("", "DSDT", 2, "Intel", "EXAMPLE', 1)
{

Name (BSTP, Package() {0,1,2,3})
Met hod (_BST)

Store (BSTP, Debug)
Return (BSTP)

43

intel.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

6.4.2

Output of —tc (make C hex table) Option

Thisisthe output of the —tc option. The entire table is emitted in asingle C array.

/*
* Intel ACPlI Conponent Architecture
* ASL Optim zing Conpiler version 20100331 [Mar 31 2010]
* Copyright (c) 2000 - 2010 Intel Corporation
* Supports ACPl Specification Revision 4.0
* Conpilation of "dsdt.asl" - Tue Apr 27 14:20:41 2010
* C source code out put
* AML code bl ock contains 0x45 bytes
*/

unsi gned char Aml Code[] =
{

0x44, 0x53, 0x44, 0x54, 0x45, 0x00, 0x00, 0x00
0x02, OXED, 0x49, 0x6E, 0x74, 0x65, 0x6C, 0x00
0x45, 0x58, 0x41, 0x4D, 0x50, 0x4C, 0x45, 0x00
0x01, 0x00, 0x00, 0x00, 0x49, Ox4E, 0x54, 0x4C,
0x31, 0x03, 0x10, 0x20, 0x08, 0x42, 0x53, 0x54
0x50, 0x12, 0x08, 0x04, 0x00, 0x01, Ox0A, 0x02
0x0A, 0x03, 0x14, 0x12, Ox5F, 0x42, 0x53, 0x54
0x00, 0x70, 0x42, 0x53, 0x54, 0x50, Ox5B, 0x31
OxA4, 0x42, 0x53, 0x54, 0x50

—~— e~ —

* Ok ok ok k Ok % ok

00000000
00000008
00000010
00000018
00000020
00000028
00000030
00000038
00000040

" pBSTP[1"
" BSTP"

44

intel.
IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

6.4.3 Output of —sc (make C source) Option

Thisisthe output of the —sc option. The table is emitted in multiple C arrays, approximatly one
array per “block” of ASL code. For example, one array is emitted per control method.

/*
* I ntel ACPl Conponent Architecture
* ASL Optim zing Conpiler version 20090730 [Aug 14 2009]
* Copyright (C) 2000 - 2009 Intel Corporation
* Supports ACPl Specification Revision 4.0
*
* Conpilation of "dsdt.asl" - Fri Aug 14 14:59:46 2009
*
*/
/*
* 1...
* 2....DefinitionBlock ("", "DSDT", 2, "Intel", "EXAWPLE"', 1)
*/

unsi gned char DSDT_EXAMPLE_Header [] =
{

0x44, 0x53, 0x44, 0x54, 0x45, 0x00, 0x00, 0x00, /* 00000000 "DSDTE. .." */
0x02, 0xF1, 0x49, 0x6E, 0x74, 0x65, 0x6C, 0x00, /* 00000008 "..Intel." */
0x45, 0x58, 0x41, 0x4D, 0x50, 0x4C, 0x45, 0x00, /* 00000010 "EXAMPLE. " */
0x01, 0x00, 0x00, 0x00, 0x49, 0x4E, 0x54, 0x4C, /* 00000018 "L . INTL" */
0x30, 0x07, 0x09, 0x20, /* 0000001C "0.. " */
H
/*
* 3{
* 4 Narme (BSTP, Package() {0, 1,2, 3})
*/
unsi gned char DSDT_EXAMPLE_BSTP [] =
{
0x08, 0x42, 0x53, 0x54, 0x50, /* 00000021 ". BSTP" */
0x12, 0x08, 0x04, 0x00, 0x01, Ox0A, 0x02, 0x0A, /* 00000029 PP "o
0x03, /* 0000002A oo
H
/*
* 5...
* 6.... Met hod (_BST)
*/
unsi gned char DSDT_EXAMPLE__BST [] =
{
0x14, 0x12, Ox5F, 0x42, 0x53, 0x54, 0x00, /* 00000031 ".._BST." */
/*
8.... Store (BSTP, Debug)
*/
0x70, 0x42, 0x53, 0x54, 0x50, 0x5B, 0x31, /* 00000038 "pBSTP[1" */
/*
* 9.... Ret urn (BSTP)
*/
0xA4, 0x42, 0x53, 0x54, 0x50, /* 0000003D ". BSTP" */
/*
* 10. ... }
* 11....}
* 12. ..
*/
H

45

intel.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

6.4.4 Output of —ic (make include file) Option

Thisisthe output of the—ic option. It creates external declarations for all of the arrays created by the
—sc option above.

Intel ACPI Conponent Architecture

ASL Optim zing Conpiler version 20090730 [Aug 14 2009]
Copyright (C 2000 - 2009 Intel Corporation

Supports ACPl Specification Revision 4.0

* ok ok Ok %k ok *

Conpilation of "dsdt.asl" - Fri Aug 14 15:05:34 2009

*

*/

extern unsigned char DSDT_EXAMPLE_Header [];
extern unsigned char DSDT_EXAMPLE_BSTP [];
extern unsigned char DSDT_EXAMPLE__BST [];

6.4.5 Output of —I (Listing) Option

Thisisastandard listing file with intermixed ASL and AML code.

Intel ACPI Conponent Architecture

ASL Optim zing Conpiler version 20090730 [Aug 14 2009]
Copyright (C) 2000 - 2009 Intel Corporation

Supports ACPl Specification Revision 4.0

Conpi | ation of "dsdt.asl" - Fri Aug 14 15:08:30 2009
1...
2....DefinitionBlock ("", "DSDT", 2, "Intel", "EXAMPLE"', 1)
00000000. .. .44 53 44 54 45 00 00 00 "DSDTE. . . "
00000008....02 F1 49 6E 74 65 6C 00 "..Intel."
00000010....45 58 41 4D 50 4C 45 00 " EXAMPLE. "
00000018....01 00 00 00 49 4E 54 4C R I\
00000020....30 07 09 20 "0.. "
3.4
4., ... Nane (BSTP, Package() {0, 1,2,3})
[****i asl ****]
dsdt . asl 4: Nane (BSTP, Package() {0, 1,2,3})
Optim ze 6033 - AN Integer optimzed to single-byte AML

opcode (Zero)

[****i aSI ****]

dsdt . asl 4: Narme (BSTP, Package() {0,1,2,3})

Optim ze 6033 - N Integer optimzed to single-byte AML
opcode (One)

00000024....08 42 53 54 50 ". BSTP"

00000029....12 08 04 00 01 OA 02 OA o "
00000031....03 o

g: . Met hod (_BST)
00000032....14 12 5F 42 53 54 00 ... ".._BST."
7o, {
8.... Store (BSTP, Debug)
00000039....70 42 53 54 50 5B 31 ... " pBSTP[1"
9.... Ret urn (BSTP)

46

intel.

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

00000040. ... A4 42 53 54 50 " BSTP"
10. ... }
11....}
12. ...

Sumrary of errors and war ni ngs

ASL Optim zing Conpiler version 20090730 [Aug 14 2009]

ASL | nput: dsdt.asl - 13 lines, 178 bytes, 4 keywords
AML Qutput: dsdt.am - 69 bytes, 2 named objects, 2 executabl e opcodes
Conpil ation conplete. 0 Errors, O Warnings, O Remarks, 2 Optim zations

6.4.6

Intel ACPlI Conponent Architecture
ASL Optim zing Conpiler version 20140828-32 [Sep 19 2014]
Copyright (c) 2000 - 2014 Intel Corporation

Output of —Im (Hardware Mapfile) Option

Conpilation of "dsdt.dsl" - Fri Sep 19 09: 43:52 2014

Resource Descriptor Connectivity Map

GPIO Controller: [INT33FC _SB. GPQO /1 Intel Baytrail GPIO Controller
Pin Type Direction Pol arity Dest _HID Destination

0000 Gpiolnt -Interrupt- ActiveBoth INTCFD9 _SB .

0000 Gpiolnt -Interrupt- ActiveBoth INTCFD9 _SB . TBAD

0001 Gpiolnt -Interrupt- ActiveBoth INTCFD9 _SB . TBAD

0002 Gpiolo QutputOnly -Field- _SB .GPM. COUR

0003 Gpiolo QutputOnly -Field- _SB .GPM. COU3

0026 Gpiolo | nput Onl'y 80860F14 \ _SB . SDHC

0026 Gpiolnt -Interrupt- ActiveBoth 80860F14 _SB .SDHC

0028 Gpiolo QutputOnly 80860F14 _SB_. SDHC

0029 Gpiolo QutputOnly 80860F14 _SB_. SDHC

0036 Gpiolo CQutputOnly -No HI D _SB . PClI 0. OTGL

0041 Gpiolo CQutputOnly 10EC5640 _SB .12C2. RTEK

005F Gpiolo QutputOnly -Field- _SB .GPM. TCON

0060 Gpiolnt -Interrupt- ActiveBoth | NTCFD9 \ _SB . TBAD

0064 Gpiolo CQutputOnly MCDO001 \ MDM_

12C Controller: 80860F41 _SB.l12C2 /1 Intel Baytrail 12C Host Controller
Type Address Speed Dest _HI D Destination

I2C 0010 00061A80 INT33BE _SB .12C2. CAML /] Canera Sensor OV5693
12C 001C 00061A80 10EC5640 _SB .l2C2. RTEK /! Realtek |2S Audi o Codec
12C 0048 00061A80 | NT33F0 _SB .l2C2. CAMB /! Canera Sensor MI9ML14
SPI Controller: 80860FOE _SB.SPI1 /1 Intel SPI Controller

Type Address Speed Dest _HID Destination

SPI 0001 007A1200 AUTH2750 \ _SB . SPI 1. FPNT /1 Aut henTec AES2750
UART Controller: 80860F0OA _SB. URT1 /1 Intel Atom UART Controller

Type Address Speed Dest _HID Destination

UART 0000 0001C200 UTKO001 _SB . URT1. UART

UART 0000 0001C200 OBDA8723 _SB . URT1. BTH1

47

(inte!
IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide 'n e

6.4.7

6.5

6.5.1

Output of —In (Namespace Listing) Option

Thisisanamespace listing file.

Intel ACPI Conponent Architecture

ASL Optim zing Conpiler version 20090730 [Aug 14 2009]
Copyright (C) 2000 - 2009 Intel Corporation

Supports ACPl Specification Revision 4.0

Conpi |l ation of "dsdt.asl" - Fri Aug 14 15:08:30 2009
Contents of ACPI Nanmespace

Count Depth Nane - Type

1 1 _GPE - Scope

2 1 _PR_ - Scope

3 1 _SB_ - Device

4 1 _SI_ - Scope

5 1 _TZ_ - Thernal

6 1 _REV - Integer

7 1 ~0S_ - string

8 [1 _G_ - Mutex

9 [1 _0sl - Method

10 1 BSTP - Package [Initial Length 0x04 el enents]
11 [1 BST - Met hod [Code Length 0x0011 byt es]

Nanespace pat hnanes

8|p|8

Using the Disassembler

Resolving External Control Methods

Once compiled, AML code does not contain specific information for the number of argumentsthat a
control method requires. This limitation means that the disassembler often cannot determine the
number of arguments to parse for externally-defined control methods. The end result of this can be
incorrectly generated ASL code that will not compile.

TheiASL disassembler provides two mechanisms to workaround this problem:

1) The—eoption alows additional AML tables (typically SSDTs) to be specified in order to
resolve control methods.

2) The—feoption alows an external declaration file to be imported into the disassembly. Thisfile
contains the definitions (with argument counts) for the external control methods.

In the example that follows, we show the disassembly of aDSDT that has an associated SSDT. The
original ASL code is shown below:

DefinitionBlock ("dsdt.am ", "DSDT", 2, "Intel", "Tenplate", 0x00000001)
{

48

intel.

6.5.1.1

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Ext ernal (EXTS, MethodObj)
External (MrHL, MethodObj)

Met hod (MAIN, O, NotSerialized)
MIHL (1, 2, 3, 4)

EXTS (1, 2, 3)
Return (Zero)

}
}
DefinitionBlock ("ssdt.am ", "SSDT", 2, "Intel", "Tenplate", 0x00000001)
Met hod (EXTS, 3, NotSerialized)
Return (Zero)
}
}

Note that the DSDT invokes two external control methods. MTH1 has 4 arguments and EXTS has 3

arguments. EXTS is defined in the SSDT, but we don’t know where MTH1 is defined.

Standard Disassembly

In this example, we attempt a simple disassembly of the DSDT. Note that the disassembler cannot

resolve the MTH1 and EXTS methods correctly and issues a warning.
> iasl -d dsdt.anl

DefinitionBlock ("dsdt.am ", "DSDT", 2, "Intel", "Tenplate", 0x00000001)
{

/
i ASL Warning: There were 2 external control methods found during
di sassenbly, but additional ACPlI tables to resolve these externals
were not specified. This resulting disassenbler output file may not
conpi | e because the di sassenbl er did not know how many argunents
to assign to these nmethods. To specify the tables needed to resol ve
external control nethod references, use the one of the follow ng
exanpl e i ASL invocati ons:

iasl -e <ssdtl.aml ssdt2.am...> -d <dsdt.anl >

iasl -e <dsdt.am ssdt2.am...> -d <ssdtl.an >

¥k sk ok Ok k% 3k ok Ok F

/

Ext ernal (EXTS, MethodObj) /1 \Warning: Unresol ved Method, guessing 3
argunents (nmay be incorrect, see warning above)

Ext ernal (MrH1, MethodObj) /1 Warning: Unresol ved Met hod, guessing 7
argunents (nay be incorrect, see warning above)

Met hod (MAIN, O, NotSerialized)

MIHL (One, 0x02, 0x03, 0x04, EXTS (One, 0x02, 0x03), Return (
Zer o))

}

Both the invocation of MTH1 and EXTS have been disassembled incorrectly, because the
disassembler does not know the proper number of arguments to parse for either one.

49

intel)

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

6.5.1.2

6.5.1.3

Disassembly with —e option

In this example, we attempt to use the —e option to include the SSDT AML file into the disassembly.
The disassembler finds the method EXTS and disassemblesit correctly. However, the MTH1
method is still unresolved and is not disassembled correctly. An appropriate warning is issued.

» iasl —e ssdt.anl-d dsdt.am

DefinitionBlock ("dsdt.am ", "DSDT", 2, "Intel", "Tenplate", 0x00000001)
{

/
i ASL Warni ng: There were 2 external control methods found during
di sassenbly, but only 1 was resolved (1 unresolved). Additional
ACPl tables are required to properly disassenble the code. This
resulting disassenbler output file may not conpile because the
di sassenbl er did not know how many argunments to assign to the
unr esol ved net hods.
/

Ext ernal (MrHL1, Met hodOnj) /1 Warning: Unresol ved Met hod, guessing 5
argunents (nay be incorrect, see warning above)

L R

External (EXTS, MethodQnj) /1 3 Argunents
Met hod (MAIN, O, NotSerialized)

MIHL (One, 0x02, 0x03, 0x04, EXTS (One, 0x02, 0x03))
Return (Zero)

}

The number of arguments for method MTHL1 is still incorrect as it was not found in the SSDT.

Disassembly with both —e and —fe options

In this example, we will attempt to use the —fe option to fully resolve all external control methods.
First, we create afile named “external.ad” that contains a single line as below:

External (MIHL, MethodOhj, 4)

Note: To generate thisfile, smply copy the list of unresolved externals from the disassembler
output, and add the number of argumentsto the end of the External () statement for each method.

Now, we will invoke the disassembler using the —fe option and specifying “external.ad” asthe
external declaration import file:

» iasl —e ssdt.anl —-fe external.asl -d dsdt.am

Note that now, all control methods have been resolved and the correct number of arguments for each
are known. The DSDT is now disassembled correctly back to the original ASL code:

50

6.6

6.6.1

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

DefinitionBlock ("dsdt.am ", "DSDT", 2, "Intel", "Tenplate", 0x00000001)
{

/* External declarations that were inported from
: the reference file [externals.asl]
Exiernal (MrH1, Met hodObj) /'l 4 Argunents
Ext ernal (EXTS, Met hodOnj) /1 3 Argunents
Met hod (MAIN, O, NotSerialized)
MIH1L (One, 0x02, 0x03, 0x04)

EXTS (One, 0x02, 0x03)
Return (Zero)

Integration Into MS VC++ Environment

This section contains instructions for integrating the iASL compiler into MS VC++ 6.0 devel opment
environment.

Integration as a Custom Tool

This procedure adds the iASL compiler as a custom tool that can be used to compile ASL source
files. The output is sent to the VC output window.

a) Select Tools->Customize.
b) Select the "Tools' tab.

c¢) Scroll down to the bottom of the "Menu Contents" window. There you will see an empty
rectangle. Click in the rectangle to enter a name for thistool.

d) Type"iASL Compiler" in the box and hit enter. Y ou can now edit the other fields for this new
custom tool.

€) Enter the following into the fields:

Command: C.\ Acpi \i asl . exe
Arguments: -e "$(FilePath)"
Initial Directory: "$(FileDir)"

Use Output Window: <Check this option>

"Command" must be the path to wherever you copied the compiler.

51

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

6.6.2

"-g" instructs the compiler to produce messages appropriate for VC.

Quotes around FilePath and FileDir enable spaces in filenames.
f) Select "Close".
These steps will add the compiler to the tools menu as a custom tool. By enabling "Use Output
Window", you can click on error messages in the output window and the source file and source line

will be automatically displayed by VC. Also, you can use F4 to step through the messages and the
corresponding source ling(s).

Integration into a Project Build

The compiler can be integrated into a project build by using it in the “ custom build” step of the
project generation. The commands and arguments should be similar to those described above.

52

v

7.2

IASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide

Generating IASL from Source Code

Generation of the ASL compiler from source code requires these items:

Required Tools

Theflex (or Lex) lexical analyzer generator
The Bison (Yacc replacement) (or Y acc itself) parser generator

An ANSI C compiler

Required Source Code

There are three major source code components that are required to generate the compiler

TheiASL compiler source

The ACPICA Subsystem source. In particular, the Namespace Manager component is used to create
an internal ACPI namespace and symbol table.), and the AML Interpreter is used to evaluate
constant expressions.

The Common source for all ACPI components

ACPICA and iASL source codeis available at https.//www.acpica.org/downloads/

iASL Windows binary is available at https.//www.acpica.org/downloads/binary_tools.php

The source files appear in these directories by default:

Compiler Source: Acpica/Sour ce/Compiler
Common Source: Acpica/Sour ce//Common
Subsystem Source; Acpica/Sour ce/Components/

53

https://www.acpica.org/downloads/
https://www.acpica.org/downloads/binary_tools.php

	1 Introduction
	1.1 Document Structure
	1.2 Reference Documents
	1.3 Document History
	1.4 Definition of Terms

	2 Compiler/Disassembler Overview
	2.1 Supported Execution Environments
	2.2 ASL Compiler
	2.2.1 Input Files
	2.2.2 Output File Options

	2.3 AML Disassembler
	2.3.1 Input Files
	2.3.2 Output

	2.4 Data Table Compiler
	2.4.1 Input Files
	2.4.2 Output

	2.5 Data Table Disassembler
	2.5.1 Input Files
	2.5.2 Output

	2.6 Template Generator

	3 Preprocessor
	3.1 Command Line Options
	3.2 Integer Expressions
	3.3 Supported Directives
	3.3.1 Text Substitution and Macros
	3.3.1.1 #define
	3.3.1.2 #undef

	3.3.2 Conditional Compilation
	3.3.2.1 #if -
	3.3.2.2 #ifdef
	3.3.2.3 #ifndef
	3.3.2.4 #else
	3.3.2.5 #elif
	3.3.2.6 #endif

	3.3.3 Include Files
	3.3.3.1 #include vs. ASL Include()
	3.3.3.2 #include
	3.3.3.3 #includebuffer
	3.3.3.4 #line

	3.3.4 Miscellaneous Directives
	3.3.4.1 #error
	3.3.4.2 #pragma
	3.3.4.3 #warning

	4 ASL-AML Subsystem
	4.1 ASL Compiler
	4.1.1 Support for Symbolic Operators and Expressions (ASL+)
	4.1.1.1 Binary AML Considerations
	4.1.1.2 AML Disassembler Notes

	4.1.2 Built-in ASL Macros
	4.1.3 Compiler Analysis Phases
	4.1.3.1 General ASL Syntax Analysis
	4.1.3.2 General Semantic Analysis
	4.1.3.3 Control Method Semantic Analysis
	4.1.3.4 Control Method Invocation Analysis
	4.1.3.5 Predefined ACPI Names
	4.1.3.6 Resource Descriptors

	4.1.4 Compiler Optimizations
	4.1.4.1 Named References
	4.1.4.2 Integers
	4.1.4.3 Constant Folding

	4.2 ASL-to-AML Disassembler
	4.2.1 Multiple Table Disassembly
	4.2.2 External Declarations

	5 ACPI Data Table Subsystem
	5.1 Data Table Compiler
	5.1.1 Input Format
	5.1.1.1 Ignored Fields/Comments

	5.1.2 Data Table Definition Language
	5.1.3 Input Example
	5.1.4 Data Types for User-Entered Fields
	5.1.4.1 Integers
	5.1.4.2 Integer Expressions
	5.1.4.3 Flags
	5.1.4.4 Strings
	5.1.4.5 Buffers

	5.1.5 Fields Set Automatically
	5.1.6 Special Fields
	5.1.7 Generic Fields / Generic Data Types

	5.2 Data Table Disassembler
	5.2.1 Example Output

	5.3 ACPI Table Template Generator

	6 Compiler/Disassembler Operation
	6.1 Command Line Invocation
	6.2 Wildcard Support
	6.3 Command Line Options
	6.3.1 General Options
	6.3.2 Help
	6.3.3 Preprocessor
	6.3.4 Errors, Warnings, and Remarks
	6.3.5 AML Bytecode Generation
	6.3.6 AML Text Output Files
	6.3.6.1 Source Code Files (-s)
	6.3.6.2 Source External Declaration Files (-i)
	6.3.6.3 Hex Source Code Files (-t)
	6.3.6.4 C Offset Table (-so)

	6.3.7 Listings
	6.3.8 ACPI Data Tables
	6.3.9 AML Disassembler
	6.3.10 Compiler Debug Options

	6.4 Compiler Output Examples
	6.4.1 Input ASL
	6.4.2 Output of –tc (make C hex table) Option
	6.4.3 Output of –sc (make C source) Option
	6.4.4 Output of –ic (make include file) Option
	6.4.5 Output of –l (Listing) Option
	6.4.6 Output of –lm (Hardware Mapfile) Option
	6.4.7 Output of –ln (Namespace Listing) Option

	6.5 Using the Disassembler
	6.5.1 Resolving External Control Methods
	6.5.1.1 Standard Disassembly
	6.5.1.2 Disassembly with –e option
	6.5.1.3 Disassembly with both –e and –fe options

	6.6 Integration Into MS VC++ Environment
	6.6.1 Integration as a Custom Tool
	6.6.2 Integration into a Project Build

	7 Generating iASL from Source Code
	7.1 Required Tools
	7.2 Required Source Code

