
Sourcery CodeBench Lite

ARM EABI

Sourcery CodeBench Lite 2011.09-69

Getting Started

Sourcery CodeBench Lite: ARM EABI: Sourcery CodeBench
Lite 2011.09-69: Getting Started
CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010, 2011 CodeSourcery, Inc.
All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery CodeBench Lite, Code-
Sourcery's customized and validated version of the GNU Toolchain. Sourcery CodeBench Lite includes
everything you need for application development, including C and C++ compilers, assemblers,
linkers, and libraries.

When you have finished reading this guide, you will know how to use Sourcery CodeBench from
the command line.

Table of Contents
Preface .. v

1. Intended Audience ... vi
2. Organization ... vi
3. Typographical Conventions .. vii

1. Quick Start .. 1
1.1. Installation and Set-Up ... 2
1.2. Configuring Sourcery CodeBench Lite for the Target System 2
1.3. Building Your Program ... 2
1.4. Running and Debugging Your Program .. 2

2. Installation and Configuration ... 4
2.1. Terminology ... 5
2.2. System Requirements ... 5
2.3. Downloading an Installer ... 6
2.4. Installing Sourcery CodeBench Lite .. 6
2.5. Installing Sourcery CodeBench Lite Updates ... 9
2.6. Setting up the Environment .. 9
2.7. Uninstalling Sourcery CodeBench Lite ... 11

3. Sourcery CodeBench Lite for ARM EABI ... 13
3.1. Included Components and Features .. 14
3.2. Library Configurations .. 14
3.3. Using Flash Memory .. 15
3.4. Using VFP Floating Point .. 15
3.5. Fixed-Point Arithmetic .. 17
3.6. ABI Compatibility .. 17
3.7. ARM Profiling Implementation ... 18
3.8. Object File Portability ... 19

4. Using Sourcery CodeBench from the Command Line .. 20
4.1. Building an Application ... 21
4.2. Running Applications on the Target System ... 21
4.3. Running Applications in the Simulator ... 21
4.4. Running Applications from GDB .. 22

5. CS3™: The CodeSourcery Common Startup Code Sequence .. 24
5.1. Linker Scripts .. 25
5.2. Program Startup and Termination .. 27
5.3. Memory Layout ... 30
5.4. Interrupt Vectors and Handlers .. 32
5.5. Supported Boards for ARM EABI ... 33
5.6. Interrupt Vector Tables .. 35

6. Sourcery CodeBench Debug Sprite .. 37
6.1. Probing for Debug Devices .. 38
6.2. Debug Sprite Example .. 38
6.3. Invoking Sourcery CodeBench Debug Sprite ... 39
6.4. Sourcery CodeBench Debug Sprite Options .. 40
6.5. Remote Debug Interface Devices ... 40
6.6. Actel FlashPro Devices ... 41
6.7. Altera Devices ... 41
6.8. Debugging a Remote Board ... 42
6.9. Supported Board Files ... 43
6.10. Board File Syntax ... 43

7. Next Steps with Sourcery CodeBench ... 47
7.1. Sourcery CodeBench Knowledge Base ... 48

iii

7.2. Example Programs ... 48
7.3. Manuals for GNU Toolchain Components ... 48

A. Sourcery CodeBench Lite Release Notes .. 50
A.1. Changes in Sourcery CodeBench Lite for ARM EABI .. 51

B. Sourcery CodeBench Lite Licenses ... 58
B.1. Licenses for Sourcery CodeBench Lite Components ... 59
B.2. Sourcery CodeBench Software License Agreement .. 60
B.3. Attribution .. 63

iv

Sourcery CodeBench Lite

Preface
This preface introduces the Sourcery CodeBench Lite Getting Started guide. It explains the
structure of this guide and describes the documentation conventions used.

v

1. Intended Audience
This guide is written for people who will install and/or use Sourcery CodeBench Lite. This guide
provides a step-by-step guide to installing Sourcery CodeBench Lite and to building simple applica-
tions. Parts of this document assume that you have some familiarity with using the command-line
interface.

2. Organization
This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start” This chapter includes a brief checklist to follow when in-
stalling and using Sourcery CodeBench Lite for the first time.
You may use this chapter as an abbreviated guide to the rest
of this manual.

Chapter 2, “Installation and Config-
uration”

This chapter describes how to download, install and configure
Sourcery CodeBench Lite. This section describes the available
installation options and explains how to set up your environ-
ment so that you can build applications.

Chapter 3, “Sourcery CodeBench
Lite for ARM EABI”

This chapter contains information about using Sourcery
CodeBench Lite that is specific to ARM EABI targets. You
should read this chapter to learn how to best use Sourcery
CodeBench Lite on your target system.

Chapter 4, “Using Sourcery
CodeBench from the Command
Line”

This chapter explains how to build applications with Sourcery
CodeBench Lite using the command line. In the process of
reading this chapter, you will build a simple application that
you can use as a model for your own programs.

Chapter 5, “CS3™: The Code-
Sourcery Common Startup Code Se-
quence”

CS3 is CodeSourcery's low-level board support library. This
chapter documents the boards supported by Sourcery
CodeBench Lite and the compiler and linker options you need
to use with them. It also explains how you can use and modify
CS3-provided definitions for memory maps, system startup
code and interrupt vectors in your own code.

Chapter 6, “Sourcery CodeBench
Debug Sprite”

This chapter describes the use of the Sourcery CodeBench
Debug Sprite for remote debugging. The Sprite allows you to
debug programs running on a bare board without an operating
system. This chapter includes information about the debugging
devices and boards supported by the Sprite for ARM EABI.

Chapter 7, “Next Steps with Sourcery
CodeBench”

This chapter describes where you can find additional docu-
mentation and information about using Sourcery CodeBench
Lite and its components. It also provides information about
Sourcery CodeBench subscriptions. CodeSourcery customers
with Sourcery CodeBench subscriptions receive comprehens-
ive support for Sourcery CodeBench.

Appendix A, “Sourcery CodeBench
Lite Release Notes”

This appendix contains information about changes in this re-
lease of Sourcery CodeBench Lite for ARM EABI. You should

vi

Preface

read through these notes to learn about new features and bug
fixes.

Appendix B, “Sourcery CodeBench
Lite Licenses”

This appendix provides information about the software li-
censes that apply to Sourcery CodeBench Lite. Read this ap-
pendix to understand your legal rights and obligations as a
user of Sourcery CodeBench Lite.

3.Typographical Conventions
The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

placeholder Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

vii

Preface

Chapter 1
Quick Start
This chapter includes a brief checklist to follow when installing and using Sourcery
CodeBench Lite for the first time.You may use this chapter as an abbreviated guide to the
rest of this manual.

1

Sourcery CodeBench Lite for ARM EABI is intended for developers working on embedded applic-
ations or firmware for boards without an operating system, or that run an RTOS or boot loader. This
Sourcery CodeBench configuration is not intended for Linux or uClinux kernel or application devel-
opment.

Follow the steps given in this chapter to install Sourcery CodeBench Lite and build and run your
first application program. The checklist given here is not a tutorial and does not include detailed in-
structions for each step; however, it will help guide you to find the instructions and reference inform-
ation you need to accomplish each step.

You can find additional details about the components, libraries, and other features included in this
version of Sourcery CodeBench Lite in Chapter 3, “Sourcery CodeBench Lite for ARM EABI”.

1.1. Installation and Set-Up
Install Sourcery CodeBench Lite on your host computer. You may download an installer
package from the Sourcery CodeBench web site1, or you may have received an installer on CD. The
installer is an executable program that pops up a window on your computer and leads you through
a series of dialogs to configure your installation. When the installation is complete, it offers to launch
the Getting Started guide. For more information about installing Sourcery CodeBench Lite, including
host system requirements and tips to set up your environment after installation, refer to Chapter 2,
“Installation and Configuration”.

Install drivers for your debug device. If you plan to use the Sourcery CodeBench Debug Sprite,
you may need to install drivers, libraries, or other software on your host system. Refer to Chapter 6,
“Sourcery CodeBench Debug Sprite” for a list of supported devices and information about installing
drivers and other device set-up. Sourcery CodeBench Lite also supports third-party debug devices
that communicate via the GDB remote serial protocol. If you plan to use one of these devices, follow
the manufacturer's directions to connect the device and install any required drivers or software.

1.2. Configuring Sourcery CodeBench Lite for
the Target System
Identify your target board. On bare-metal targets, you must explicitly specify a linker script
for your target board on your link command line. Supported boards are listed in Chapter 5, “CS3™:
The CodeSourcery Common Startup Code Sequence”. You can also choose a simulator as your target
board.

1.3. Building Your Program
Build your program with Sourcery CodeBench command-line tools. Create a simple test
program, and follow the directions in Chapter 4, “Using Sourcery CodeBench from the Command
Line” to compile and link it using Sourcery CodeBench Lite. On bare-metal targets, you must specify
a linker script using the -T option on your link command line. Supported boards and linker scripts
are listed in Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence”.

1.4. Running and Debugging Your Program
The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target.

1 http://www.codesourcery.com/gnu_toolchains/

2

Quick Start

http://www.codesourcery.com/gnu_toolchains/
http://www.codesourcery.com/gnu_toolchains/

Run or debug your program in the simulator. Sourcery CodeBench Lite includes an instruction-
set simulator, which provides an easy way to run or debug your program without requiring target
hardware. The simulator can be run directly from the command line (see Section 4.3, “Running Ap-
plications in the Simulator”) or via the debugger (see Section 4.4, “Running Applications from
GDB”).

Debug your program on the target using the Debug Sprite. You can use the Sourcery
CodeBench Debug Sprite to load and execute your program on the target from the debugger. Refer
to Section 4.4, “Running Applications from GDB” for instructions on using the Sprite from the GDB
command line. Detailed reference material for the Sourcery CodeBench Debug Sprite, including in-
formation about supported debug devices, can be found in Chapter 6, “Sourcery CodeBench Debug
Sprite”.

Debug your program on the target using a third-party debug device. Sourcery CodeBench
supports debugging programs on the remote target using third-party debug devices that can commu-
nicate via the GDB remote serial protocol. For command-line GDB instructions, see Section 4.4,
“Running Applications from GDB”.

3

Quick Start

Chapter 2
Installation and Configuration
This chapter explains how to install Sourcery CodeBench Lite.You will learn how to:

1. Verify that you can install Sourcery CodeBench Lite on your system.

2. Download the appropriate Sourcery CodeBench Lite installer.

3. Install Sourcery CodeBench Lite.

4. Configure your environment so that you can use Sourcery CodeBench Lite.

4

2.1.Terminology
Throughout this document, the term host system refers to the system on which you run Sourcery
CodeBench while the term target system refers to the system on which the code produced by Sourcery
CodeBench runs. The target system for this version of Sourcery CodeBench is arm-none-eabi.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery CodeBench, then the host and target systems are the same. On the other hand, if you
are developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements
2.2.1. Host Operating System Requirements

This version of Sourcery CodeBench supports the following host operating systems and architectures:

• Microsoft Windows XP (SP1), Windows Vista, and Windows 7 systems using IA32, AMD64,
and Intel 64 processors.

• GNU/Linux systems using IA32, AMD64, or Intel 64 processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), SuSE Enterprise Linux 8 (and later), and Ubuntu 8.04
(and later).

Sourcery CodeBench is built as a 32-bit application. Therefore, even when running on a 64-bit host
system, Sourcery CodeBench requires 32-bit host libraries. If these libraries are not already installed
on your system, you must install them before installing and using Sourcery CodeBench Lite. Consult
your operating system documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery CodeBench graphical installer is incompatible with the dash shell, which is
the default /bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions.
To install Sourcery CodeBench Lite on these systems, you must make /bin/sh a symbolic
link to one of the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery
CodeBench Lite toolchain.

2.2.2. Host Hardware Requirements

In order to install and use Sourcery CodeBench Lite, you must have at least 512MB of available
memory.

The amount of disk space required for a complete Sourcery CodeBench Lite installation directory
depends on the host operating system and the number of target libraries included. When you start
the graphical installer, it checks whether there is sufficient disk space before beginning to install.
Note that the graphical installer also requires additional temporary disk space during the installation
process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-

5

Installation and Configuration

ment variable for these temporary files. If there is not enough free space on that volume, the installer
prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPDIR environment variable, or /tmp if that is not set.

2.2.3.Target System Requirements

See Chapter 3, “Sourcery CodeBench Lite for ARM EABI” for requirements that apply to the target
system.

2.3. Downloading an Installer
If you have received Sourcery CodeBench Lite on a CD, or other physical media, then you do not
need to download an installer. You may skip ahead to Section 2.4, “Installing Sourcery CodeBench
Lite”.

You can download Sourcery CodeBench Lite from the Sourcery CodeBench web site1. This free
version of Sourcery CodeBench, which is made available to the general public, does not include all
the functionality of CodeSourcery's product releases. If you prefer, you may instead purchase or re-
gister for an evaluation of CodeSourcery's product toolchains at the Sourcery CodeBench Portal2.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery CodeBench installer is provided
as an executable with the .exe extension. For GNU/Linux systems Sourcery CodeBench Lite is
provided as an executable installer package with the .bin extension. You may also install from a
compressed archive with the .tar.bz2 extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

2.4. Installing Sourcery CodeBench Lite
The method used to install Sourcery CodeBench Lite depends on your host system and the kind of
installation package you have downloaded.

2.4.1. Using the Sourcery CodeBench Lite Installer on Microsoft Win-
dows

If you have received Sourcery CodeBench Lite on CD, insert the CD in your computer. On most
computers, the installer then starts automatically. If your computer has been configured not to auto-
matically run CDs, open My Computer, and double click on the CD. If you downloaded Sourcery
CodeBench Lite, double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery CodeBench Lite. The installer
is intended to be self-explanatory and on most pages the defaults are appropriate.

1 http://www.codesourcery.com/gnu_toolchains/
2 https://support.codesourcery.com/GNUToolchain/

6

Installation and Configuration

http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/

Running the Installer. The graphical installer guides you through the steps to
install Sourcery CodeBench Lite.

You may want to change the install directory pathname and customize the shortcut installation.

Choose Install Folder. Select the pathname to your install directory.

7

Installation and Configuration

Choose Shortcut Folder. You can customize where the installer creates
shortcuts for quick access to Sourcery CodeBench Lite.

When the installer has finished, it asks if you want to launch a viewer for the Getting Started guide.
Finally, the installer displays a summary screen to confirm a successful install before it exits.

Install Complete. You should see a screen similar to this after a successful
install.

If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -i console command-line option. For example:

> /path/to/package.exe -i console

2.4.2. Using the Sourcery CodeBench Lite Installer on GNU/Linux Hosts

Start the graphical installer by invoking the executable shell script:

8

Installation and Configuration

> /bin/sh ./path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery CodeBench Lite. For addi-
tional details on running the installer, see the discussion and screen shots in the Microsoft Windows
section above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-i console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.4.3. Installing Sourcery CodeBench Lite from a Compressed Archive

You do not need to be a system administrator to install Sourcery CodeBench Lite from a compressed
archive. You may install Sourcery CodeBench Lite using any user account and in any directory to
which you have write access. This guide assumes that you have decided to install Sourcery CodeBench
Lite in the $HOME/CodeSourcery subdirectory of your home directory and that the filename of
the package you have downloaded is /path/to/package.tar.bz2. After installation the
toolchain will be in $HOME/CodeSourcery/sourceryg++-2011.09.

First, uncompress the package file:

> bunzip2 /path/to/package.tar.bz2

Next, create the directory in which you wish to install the package:

> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

2.5. Installing Sourcery CodeBench Lite Updates
If you have already installed an earlier version of Sourcery CodeBench Lite for ARM EABI on your
system, it is not necessary to uninstall it before using the installer to unpack a new version in the
same location. The installer detects that it is performing an update in that case.

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery CodeBench commands for the ARM EABI target all begin with
arm-none-eabi. This means that you can install Sourcery CodeBench for multiple target systems
in the same directory without conflicts.

2.6. Setting up the Environment
As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

9

Installation and Configuration

2.6.1. Setting up the Environment on Microsoft Windows Hosts

2.6.1.1. Setting the PATH

If you installed Sourcery CodeBench Lite using the graphical installer then you may skip this step.
The installer does this setup for you.

In order to use the Sourcery CodeBench tools from the command line, you should add them to your
PATH. In the instructions that follow, replace installdir with the full pathname of your Sourcery
CodeBench Lite installation directory, including the drive letter.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd.exe
shell:

> setx PATH "%PATH%;installdir\bin"

To set the PATH on a system running Microsoft Windows 7, from the desktop bring up the Start
menu and right click on Computer. Select Properties and click on Advanced system
settings. Go to the Advanced tab, then click on the Environment Variables button.
Select the PATH variable and click Edit. Add the string ;installdir\bin to the end, and click
OK.

To set the PATH on older versions of Microsoft Windows, from the desktop bring up the Start
menu and right click on My Computer. Select Properties, go to the Advanced tab, then click
on the Environment Variables button. Select the PATH variable and click the Edit. Add
the string ;installdir\bin to the end, and click OK.

You can verify that your PATH is set up correctly by starting a new cmd.exe shell and running:

> arm-none-eabi-g++ -v

Verify that the last line of the output contains: Sourcery CodeBench Lite 2011.09-69.

2.6.1.2. Working with Cygwin

Sourcery CodeBench Lite does not require Cygwin or any other UNIX emulation environment. You
can use Sourcery CodeBench directly from the Windows command shell. You can also use Sourcery
CodeBench from within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hello.c corresponds to the Windows path c:\cygwin\
home\user\hello.c. Because Sourcery CodeBench is not a Cygwin application, it does not,
by default, recognize Cygwin paths.

If you are using Sourcery CodeBench from Cygwin, you should set the CYGPATH environment
variable. If this environment variable is set, Sourcery CodeBench Lite automatically translates
Cygwin path names into Windows path names. To set this environment variable, type the following
command in a Cygwin shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery CodeBench relies on the cygpath utility provided with
Cygwin. You must provide Sourcery CodeBench with the full path to cygpath if cygpath is not
in your PATH. For example:

> export CYGPATH=c:/cygwin/bin/cygpath

10

Installation and Configuration

directs Sourcery CodeBench Lite to use c:/cygwin/bin/cygpath as the path conversion utility.
The value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

2.6.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery CodeBench Lite using the graphical installer then you may skip this step.
The installer does this setup for you.

Before using Sourcery CodeBench Lite you should add it to your PATH. The command you must
use varies with the particular command shell that you are using. If you are using the C Shell (csh
or tcsh), use the command:

> setenv PATH installdir/bin:$PATH

If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=installdir/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, replace installdir
with the full pathname of your Sourcery CodeBench Lite installation directory.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
CodeBench manual pages, which provide additional information about using Sourcery CodeBench.
To set the MANPATH environment variable, follow the same steps shown above, replacing PATH
with MANPATH, and bin with share/doc/sourceryg++-arm-none-eabi/man.

You can test that your PATH is set up correctly by running the following command:

> arm-none-eabi-g++ -v

Verify that the last line of the output contains: Sourcery CodeBench Lite 2011.09-69.

2.7. Uninstalling Sourcery CodeBench Lite
The method used to uninstall Sourcery CodeBench Lite depends on the method you originally used
to install it. If you have modified any files in the installation it is recommended that you back up
these changes. The uninstall procedure may remove the files you have altered. In particular, the
arm-none-eabi directory located in the install directory will be removed entirely by the uninstaller.

2.7.1. Using the Sourcery CodeBench Lite Uninstaller on Microsoft
Windows

You should use the provided uninstaller to remove a Sourcery CodeBench Lite installation originally
created by the graphical installer. Start the graphical uninstaller by invoking the Uninstall executable
located in your installation directory, or use the uninstall shortcut created during installation. After
the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery CodeBench Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery CodeBench Lite installation directory with the -i
console command-line option.

To uninstall third-party drivers bundled with Sourcery CodeBench Lite, first disconnect the associated
hardware device. Then use Uninstall a program (Vista and newer) or Add or Remove

11

Installation and Configuration

Programs (older versions of Windows) to remove the drivers separately. Depending on the device,
you may need to reboot your computer to complete the driver uninstall.

2.7.2. Using the Sourcery CodeBench Lite Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery CodeBench Lite installation originally
created by the executable installer script. Start the graphical uninstaller by invoking the executable
Uninstall shell script located in your installation directory. After the uninstaller starts, follow the on-
screen dialogs to uninstall Sourcery CodeBench Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -i console command-line option.

2.7.3. Uninstalling a Compressed Archive Installation

If you installed Sourcery CodeBench Lite from a .tar.bz2 file, you can uninstall it by manually
deleting the installation directory created in the install procedure.

12

Installation and Configuration

Chapter 3
Sourcery CodeBench Lite for ARM
EABI
This chapter contains information about features of Sourcery CodeBench Lite that are
specific to ARM EABI targets.You should read this chapter to learn how to best use Sourcery
CodeBench Lite on your target system.

13

3.1. Included Components and Features
This section briefly lists the important components and features included in Sourcery CodeBench
Lite for ARM EABI, and tells you where you may find further information about these features.

NotesVersionComponent

GNU programming tools

Separate manual included.4.6.1GNU Compiler Collection

Includes assembler, linker, and other utilities.
Separate manuals included.

2.21.53GNU Binary Utilities

Debugging support and simulators

Separate manual included.7.2.50GNU Debugger

See Chapter 6, “Sourcery CodeBench Debug
Sprite”.

2011.09-69Sourcery CodeBench Debug Sprite
for ARM

See Section 4.3, “Running Applications in the
Simulator”.

N/AGDB Simulator

Target libraries

See Chapter 5, “CS3™: The CodeSourcery
Common Startup Code Sequence”.

2011.09-69CodeSourcery Common Startup Code
Sequence

Separate manuals included.1.18.0Newlib C Library

Other utilities

Build support on Windows hosts.N/AGNU Make

Build support on Windows hosts.N/AGNU Core Utilities

3.2. Library Configurations
Sourcery CodeBench Lite for ARM EABI includes the following library configuration.

ARMv4 - Little-Endian, Soft-Float

defaultCommand-line option(s):

./Library subdirectory:

ARMv4 Thumb - Little-Endian, Soft-Float

-mthumbCommand-line option(s):

thumb/Library subdirectory:

ARMv7 Thumb-2 - Little-Endian, Soft-Float

-mthumb -march=armv7 -mfix-cortex-m3-ldrdCommand-line option(s):

thumb2/Library subdirectory:

ARMv6-M Thumb - Little-Endian, Soft-Float

-mthumb -march=armv6-mCommand-line option(s):

armv6-m/Library subdirectory:

14

Sourcery CodeBench Lite for ARM EABI

Sourcery CodeBench includes copies of run-time libraries that have been built with optimizations
for different target architecture variants or other sets of build options. Each such set of libraries is
referred to as a multilib. When you link a target application, Sourcery CodeBench selects the multilib
matching the build options you have selected.

Sourcery CodeBench Lite's library support includes linker scripts that pull in appropriate CS3 startup
code, as well as the libraries themselves. You can find these linker scripts in multilib-specific subdir-
ectories of the arm-none-eabi/lib directory of your Sourcery CodeBench install.

3.3. Using Flash Memory
Sourcery CodeBench Lite supports development and debugging of applications loaded into flash
memory on ARM EABI targets. There are three steps involved:

1. You must use an appropriate linker script that identifies the ROM memory region on your target
board, and locates the program text within that region. Refer to Chapter 5, “CS3™: The Code-
Sourcery Common Startup Code Sequence” for information about the boards supported by Sourcery
CodeBench.

2. Next, load your program into the flash memory on your target board. You must use third-party
tools to program the flash memory.

3. Finally, when debugging a program in flash memory, GDB must be told about the ROM region
so that it knows where it must use hardware breakpoints to control program execution. If you are
using the Sourcery CodeBench Debug Sprite to debug your program, the Sprite does this automat-
ically, using the memory map provided in the board configuration file. Otherwise, you must
provide this information explicitly.

When using GDB from the command line, you can mark the flash memory as read-only by using
the command:

(gdb) mem start end ro

where start and end define the address range of the read-only memory region.

In addition to GDB's automatic use of hardware breakpoints in the ROM region, you can also set
hardware breakpoints explicitly from the debugger. However, on many targets the number of available
hardware breakpoints is very small. Furthermore, GDB also uses hardware breakpoints internally to
implement commands such as step, next, and finish. Thus the number of breakpoints you can
explicitly set in ROM may be fewer than the number of hardware breakpoints supported by the target
system.

For example, ARM7TDMI cores support only one hardware breakpoint, which must also be used
internally by the debugger if you set any software breakpoints in RAM. On ARM9 cores, there are
two hardware breakpoints supported and one is consumed by the debugger if you set any software
breakpoints.

3.4. Using VFP Floating Point
3.4.1. Enabling Hardware Floating Point

GCC provides three basic options for compiling floating-point code:

15

Sourcery CodeBench Lite for ARM EABI

• Software floating point emulation, which is the default. In this case, the compiler implements
floating-point arithmetic by means of library calls.

• VFP hardware floating-point support using the soft-float ABI. This is selected by the
-mfloat-abi=softfp option. When you select this variant, the compiler generates VFP
floating-point instructions, but the resulting code uses the same call and return conventions as
code compiled with software floating point.

• VFP hardware floating-point support using the VFP ABI, which is the VFP variant of the Procedure
Call Standard for the ARM® Architecture (AAPCS). This ABI uses VFP registers to pass function
arguments and return values, resulting in faster floating-point code. To use this variant, compile
with -mfloat-abi=hard.

You can freely mix code compiled with either of the first two variants in the same program, as they
both use the same soft-float ABI. However, code compiled with the VFP ABI is not link-compatible
with either of the other two options. If you use the VFP ABI, you must use this option to compile
your entire program, and link with libraries that have also been compiled with the VFP ABI. For
example, you may need to use the VFP ABI in order to link your program with other code compiled
by the ARM RealView® compiler, which uses this ABI.

Sourcery CodeBench Lite for ARM EABI includes libraries built with software floating point, which
are compatible with VFP code compiled using the soft-float ABI. While the compiler is capable of
generating code using the VFP ABI, no compatible runtime libraries are provided in Sourcery
CodeBench Lite. However, VFP hard-float libraries built with both ABIs are available to Sourcery
CodeBench Standard and Professional Edition subscribers.

Note that, in addition to selecting hard/soft float and the ABI via the -mfloat-abi option, you
can also compile for a particular FPU using the -mfpu option. For example, -mfpu=neon selects
VFPv3 with NEON coprocessor extensions.

3.4.2. NEON SIMD Code

Sourcery CodeBench includes support for automatic generation of NEON SIMD vector code.
Autovectorization is a compiler optimization in which loops involving normal integer or floating-
point code are transformed to use NEON SIMD instructions to process several data elements at once.

To enable generation of NEON vector code, use the command-line options -ftree-vectorize
-mfpu=neon -mfloat-abi=softfp. The -mfpu=neon option also enables generation of
VFPv3 scalar floating-point code.

Sourcery CodeBench also includes support for manual generation of NEON SIMD code using C
intrinsic functions. These intrinsics, the same as those supported by the ARM RealView® compiler,
are defined in the arm_neon.h header and are documented in the 'ARM NEON Intrinsics' section
of the GCC manual. The command-line options -mfpu=neon -mfloat-abi=softfp must
be specified to use these intrinsics; -ftree-vectorize is not required.

3.4.3. Half-Precision Floating Point

Sourcery CodeBench for ARM EABI includes support for half-precision (16-bit) floating point, in-
cluding the new __fp16 data type in C and C++, support for generating conversion instructions
when compiling for processors that support them, and library functions for use in other cases.

To use half-precision floating point, you must explicitly enable it via the -mfp16-format command-
line option to the compiler. For more information about __fp16 representations and usage from C
and C++, refer to the GCC manual.

16

Sourcery CodeBench Lite for ARM EABI

3.5. Fixed-Point Arithmetic
Sourcery CodeBench for ARM EABI includes experimental support for fixed-point arithmetic using
a set of new data types, as described in the draft ISO/IEC technical report TR 18037. This support
is provided for all ARM targets, and uses specialized instructions where available, e.g. saturating
add and subtract operations on ARMv6T2 and above. Library functions are used for operations which
are not natively supported on the target architecture.

This feature is a GNU extension, so is only available when the selected language standard includes
GNU extensions (e.g. -std=gnu90, which is the default). Furthermore, only C is supported, not
C++.

TR 18037 leaves up to the implementation the sizes of various quantities within the new data types
it defines. For Sourcery CodeBench for ARM EABI, these are, briefly:

• short _Fract: One sign bit, 7 fractional bits

• _Fract: One sign bit, 15 fractional bits

• long _Fract: One sign bit, 31 fractional bits

• unsigned short _Fract: 8 fractional bits

• unsigned _Fract: 16 fractional bits

• unsigned long _Fract: 32 fractional bits

• short _Accum: One sign bit, 7 fractional bits, 8 integral bits

• _Accum: One sign bit, 15 fractional bits, 16 integral bits

• long _Accum: One sign bit, 31 fractional bits, 32 integral bits

• unsigned short _Accum: 8 fractional bits, 8 integral bits

• unsigned _Accum: 16 fractional bits, 16 integral bits

• unsigned long _Accum: 32 fractional bits, 32 integral bits

These values (and various other useful constants) are also defined in the header file stdfix.h for
use in your programs. Note that there is currently no support for the new standard-library functions
described in TR 18037, nor for the pragmas controlling precision of operations.

Fixed-point extensions are not currently supported by GDB, nor are they compliant with the ARM
EABI (which does not specify anything about fixed-point types at present). Code using fixed-point
types cannot be expected to interact properly (across ABI boundaries) with code generated by other
compilers for the ARM architecture.

3.6. ABI Compatibility
The Application Binary Interface (ABI) for the ARM Architecture is a collection of standards, pub-
lished by ARM Ltd. and other organizations. The ABI makes it possible to combine tools from dif-
ferent vendors, including Sourcery CodeBench and ARM RealView®.

17

Sourcery CodeBench Lite for ARM EABI

Sourcery CodeBench implements the ABI as described in these documents, which are available from
the ARM Information Center1:

• BSABI - ARM IHI 0036B (28 October 2009)

• BPABI - ARM IHI 0037B (28 October 2009)

• EHABI - ARM IHI 0038A (28 October 2009)

• CLIBABI - ARM IHI 0039B (4 November 2009)

• AADWARF - ARM IHI 0040A (28 October 2009)

• CPPABI - ARM IHI 0041C (5 October 2009)

• AAPCS - ARM IHI 0042D (16 October 2009)

• RTABI - ARM IHI 0043C (19 October 2009)

• AAELF - ARM IHI 0044D (28 October 2009)

• ABI Addenda - ARM IHI 0045C (4 November 2009)

Sourcery CodeBench currently produces DWARF version 2, rather than DWARF version 3 as spe-
cified in AADWARF.

3.7. ARM Profiling Implementation
Profiling is enabled by means of the -pg compiler option. In this mode, the compiler inserts a call
to __gnu_mcount_nc into every function prologue. However, no implementation of __gnu_
mcount_nc is provided (to do so would be impossible without knowledge of the execution envir-
onment).

You must provide your own implementation of __gnu_mcount_nc . Here are the requirements:

• On exit, pop the top value from the stack, and place it in the lr register. The sp register should
be adjusted accordingly. For example, this is how to write it as a stub function:

 .globl __gnu_mcount_nc
 .type __gnu_mcount_nc, %function
__gnu_mcount_nc:
 mov ip, lr
 pop { lr }
 bx ip

• Preserve all other register state except for r12 and the CPSR condition code bits. In particular all
coprocessor state and registers r0-r3 must be preserved.

• Record and count all occurrences of the function calls in the program. The caller can be determined
from the lr value stored on the top of the stack (on entry to __gnu_mcount_nc), and the callee
can be determined from the current value of the lr register (i.e. the caller of this function).

1 http://infocenter.arm.com

18

Sourcery CodeBench Lite for ARM EABI

http://infocenter.arm.com
http://infocenter.arm.com

• Arrange for the data to be saved to a file named gmon.out when the program exits (via atexit).
Refer to the gprof profiler manual for more information.

3.8. Object File Portability
It is possible to create object files using Sourcery CodeBench for ARM EABI that are link-compatible
with the GNU C library provided with Sourcery CodeBench for ARM GNU/Linux as well as with
the CodeSourcery C Library or Newlib C Library provided with ARM bare-metal toolchains. These
object files are additionally link-compatible with other ARM C Library ABI-compliant static linking
environments and toolchains.

To use this feature, when compiling your files with the bare-metal ARM EABI toolchain define the
preprocessor constant _AEABI_PORTABILITY_LEVEL to 1 before including any system header
files. For example, pass the option -D_AEABI_PORTABILITY_LEVEL=1 on your compilation
command line. No special options are required when linking the resulting object files. When building
applications for ARM EABI, files compiled with this definition may be linked freely with those
compiled without it.

Files compiled in this manner may not use the functions fgetpos or fsetpos, or reference the
type fpos_t. This is because Newlib assumes a representation for fpos_t that is not AEABI-
compliant.

Note that object files are only portable from bare-metal toolchains to GNU/Linux, and not vice versa;
object files compiled for ARM GNU/Linux targets cannot be linked into ARM EABI executables.

19

Sourcery CodeBench Lite for ARM EABI

Chapter 4
Using Sourcery CodeBench from
the Command Line
This chapter demonstrates the use of Sourcery CodeBench Lite from the command line.

20

4.1. Building an Application
This chapter explains how to build an application with Sourcery CodeBench Lite using the command
line. As elsewhere in this manual, this section assumes that your target system is arm-none-eabi, as
indicated by the arm-none-eabi command prefix.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a
file named main.c containing the following simple factorial program:

#include <stdio.h>

int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial (n - 1);
}

int main () {
 int i;
 int n;
 for (i = 0; i < 10; ++i) {
 n = factorial (i);
 printf ("factorial(%d) = %d\n", i, n);
 }
 return 0;
}

Compile and link this program using the command:

> arm-none-eabi-gcc -o factorial main.c -T script

Sourcery CodeBench requires that you specify a linker script with the -T option to build applications
for bare-board targets. Linker errors like undefined reference to `read' are a symptom
of failing to use an appropriate linker script. Default linker scripts are provided in arm-none-eabi/
lib. Refer to Chapter 5, “CS3™: The CodeSourcery Common Startup Code Sequence” for inform-
ation about the boards and linker scripts supported by Sourcery CodeBench Lite. You must also add
the processor options for your board, as documented in that chapter, to your compile and link command
lines.

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace arm-none-eabi-gcc with arm-none-eabi-g++.)

4.2. Running Applications on the Target System
Consult your target board documentation for instructions on loading programs onto the target, and
running them. Alternatively, you can use the Sourcery CodeBench Debug Sprite from within GDB
to download and run programs on the target via a supported hardware debugging device.

4.3. Running Applications in the Simulator
Sourcery CodeBench Lite includes a simulator that you can use on the host system to run programs
compiled for the target system. Since you do not need target hardware, this is the easiest way to try
out Sourcery CodeBench.

21

Using Sourcery CodeBench from the Command Line

To use the simulator run:

> arm-none-eabi-run factorial

You should see the expected output:

factorial(0) = 1
factorial(1) = 1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
factorial(5) = 120
factorial(6) = 720
factorial(7) = 5040
factorial(8) = 40320
factorial(9) = 362880

You can also use the simulator to execute target programs when debugging with GDB. See Section 4.4,
“Running Applications from GDB” for more information.

The simulator supports the ARMv4 (StrongARM), ARMv4T (ARM7TDMI, ARM920, ARM9TDMI),
ARMv5, and ARMv5TE (ARM926, Xscale) instruction sets. The arm-none-eabi-run simulator also
includes support for Thumb instructions.

4.4. Running Applications from GDB
You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system. You can also run and debug programs using the GDB simulator.

When starting GDB, give it the pathname to the program you want to debug as a command-line ar-
gument. For example, if you have built the factorial program as described in Section 4.1, “Building
an Application”, enter:

> arm-none-eabi-gdb factorial

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

4.4.1. Connecting to the GDB Simulator

GDB includes a simulator that allows you to debug ARM EABI applications without target hardware.
To start and connect to the simulator from within GDB, use this command:

(gdb) target sim

4.4.2. Connecting to the Sourcery CodeBench Debug Sprite

The Sourcery CodeBench Debug Sprite is a program that runs on the host system to support hardware
debugging devices. You can use the Debug Sprite to run and debug programs on a target board
without an operating system, or to debug an operating system kernel. See Chapter 6, “Sourcery
CodeBench Debug Sprite” for detailed information about the supported devices.

You can start the Sprite directly from within GDB:

22

Using Sourcery CodeBench from the Command Line

(gdb) target remote | arm-none-eabi-sprite arguments

Refer to Section 6.3, “Invoking Sourcery CodeBench Debug Sprite” for a full description of the
Sprite arguments.

4.4.3. Connecting to an External GDB Server

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host:port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

4.4.4. Loading and Running Applications

Connecting to a bare-metal target or simulator from GDB does not cause your program to be loaded
into target memory. You must do this explicitly from GDB after you connect:

(gdb) load

Alternatively, you can use third-party tools to load your application into flash memory before starting
GDB.

To begin execution of your application, you should generally use the continue command:

(gdb) continue

However, you should use run instead of continue to start your program if you used target
sim to connect:

(gdb) run

23

Using Sourcery CodeBench from the Command Line

Chapter 5
CS3™:The CodeSourcery
Common Startup Code Sequence
CS3 is CodeSourcery's low-level board support library.This chapter documents the boards
supported by Sourcery CodeBench Lite and the compiler and linker options you need to
use with them. It also explains how you can use and modify CS3-provided definitions for
memory maps, system startup code and interrupt vectors in your own code.

24

Many developers turn to the GNU toolchain for its cross-platform consistency: having a single system
support so many different processors and boards helps to limit risk and keep learning curves gentle.
Historically, however, the GNU toolchain has lacked a consistent set of conventions for processor-
and board-level initialization, language run-time setup, and interrupt and trap handler definition.

The CodeSourcery Common Startup Code Sequence (CS3) addresses this problem. For each supported
system, CS3 provides a set of linker scripts describing the system's memory map, and a board support
library providing generic reset, startup, and interrupt handlers. These scripts and libraries all follow
a standard set of conventions across a range of processors and boards.

In addition to providing linker support, CS3's functionality is fully integrated with the Sourcery
CodeBench Debug Sprite. For each supported board, CS3 provides the board file containing the
memory map and initialization sequence required for debugging applications on the board via the
Sprite, as documented in Section 6.9, “Supported Board Files”.

This chapter is organized in two parts. The first part explains CS3 concepts:

• Section 5.1, “Linker Scripts” provides basic information you need to know in order to select an
appropriate CS3-provided linker script for your ARM EABI board.

• CS3's program startup and termination model is discussed in Section 5.2, “Program Startup and
Termination”.

• Section 5.3, “Memory Layout” discusses the mapping from program sections to memory regions.
It also explains how you can refer to memory regions using CS3-provided symbolic names from
C, assembly language, or the linker script, and customize placement of code or data in your program.

• Section 5.4, “Interrupt Vectors and Handlers” covers CS3's interrupt handling model, and discusses
how you can customize the CS3-provided interrupt vector tables.

The second part provides details about the CS3 implementation for ARM EABI:

• Section 5.5, “Supported Boards for ARM EABI” lists the boards supported by CS3 for ARM
EABI, and the available linker scripts for them.

• Section 5.6, “Interrupt Vector Tables” documents the details of the provided interrupt vectors for
CS3-supported devices.

5.1. Linker Scripts
When you build programs for ARM EABI targets, you must use a linker script. The linker script
serves several purposes:

• It determines the memory addresses for placement of code and data sections.

• It defines symbolic names for memory regions present on the board, which you can use program-
matically within your code.

• It provides appropriate program startup and termination code, and causes the linker to pull in any
low-level board support libraries that are required to run code on the target.

• It optionally provides a hosting library for basic I/O functionality.

• It provides a default interrupt vector appropriate for the target processor.

25

CS3™: The CodeSourcery Common Startup Code Sequence

When invoking the Sourcery CodeBench linker from the command line, you must explicitly supply
a linker script using the -T option; otherwise a link error results.

CS3 may provide multiple linker scripts for different configurations using the same board. For ex-
ample, on some boards CS3 may support running the program from either RAM or ROM (flash).
Some CS3 link configurations are also designed to co-exist with, or be run from, a boot monitor on
the target board. Simulator targets typically require different startup code configurations than hardware
targets. In CS3 terminology, each of these different configurations is referred to as a profile.

The remainder of this section discusses profile and hosting selection considerations in more detail.
You can find the full list of supported boards and linker scripts included in this release of Sourcery
CodeBench Lite in Section 5.5, “Supported Boards for ARM EABI”.

5.1.1. Program and Data Placement

Many boards have both RAM and ROM (flash) memory devices. CS3 provides distinct linker scripts
to place the application either entirely in RAM, or to place code and read-only data in ROM.

Some boards have very small amounts of RAM memory. If you use large library functions (such as
printf and malloc), you may overflow the available memory. You may need to use the ROM-
based profile for such programs, so that the program itself is stored in ROM. You may be able to
reduce the total amount of memory used by your program by replacing portions of the Sourcery
CodeBench runtime library and/or startup code.

5.1.2. Hosting and Semihosting

CS3 is designed to support boards without an operating system. To allow functions like open and
write to work without operating system support, a semihosting feature is supported, in conjunction
with the debugger.

With semihosting enabled, these system calls are translated into equivalent function calls on your
host system. You can only use these function calls while connected to the debugger; if you try to use
them when disconnected from the debugger, you will get a hardware exception.

Semihosting requires support from the remote GDB debugging stub or agent, as well as the debugger
itself. The Sourcery CodeBench Debug Sprite implements semihosting for all supported devices.
Semihosting is also supported by the GDB Simulator included with Sourcery CodeBench Lite.
However, semihosting may not be supported by debugging stubs provided by third parties. If you
are using a debug device that communicates with GDB using the GDB remote protocol, check the
documentation for your device to see whether semihosting is supported.

A good use of semihosting is to display debugging messages. For example, this program prints a
message on the debugger console on the host:

#include <unistd.h>

int main () {
 write (STDERR_FILENO, "Hello, world!\n", 14);
 return 0;
}

The hosted CS3 linker scripts provide the semihosting support, and as such programs linked with
them may only be run with the debugger. For production code, or programs where memory usage
is tightly constrained, use the unhosted CS3 linker scripts instead. These scripts provide stub versions
of the system calls, which return an appropriate error value in errno. If such a stub system call is

26

CS3™: The CodeSourcery Common Startup Code Sequence

required in the executable, the linker also produces a warning. Such a warning may indicate that you
have left debugging code active, or that your program contains unused code.

As an alternative to semihosting via the debugger, some targets supported by CS3 can run a boot
monitor that provides console I/O services and other basic system calls. CS3 can also provide hosting
via these facilities; where a boot monitor is supported, this is noted in the board tables below. Unlike
semihosting, hosting via the boot monitor can be used when running programs outside of the debugger.

5.1.3. Specifying a Linker Script

When using Sourcery CodeBench from the command line or from a Makefile, you must add -T
script to your linking command, where script is the appropriate linker script. For example, to
target Altera Cyclone III Cortex-M1 boards, you could link with -T
cycloneiii-cm1-ram-hosted.ld.

5.2. Program Startup and Termination
This section documents CS3's model for target initialization prior to invoking the main function of
your program, and aspects of program termination that are left unspecified in the C and C++ standards.
It explains how you can customize or override the default behavior for your application.

CS3 divides the startup sequence into three phases:

• The hard reset phase (__cs3_reset) includes actions such as initializing the memory controller
and setting up the memory map.

• The assembly initialization phase (__cs3_start_asm) prepares the stack to run C code, and
jumps to the C initialization function.

• The C initialization phase (__cs3_start_c) is responsible for initializing the data areas, running
constructors for statically-allocated objects, and calling main.

The hard reset and assembly initialization phases are necessarily written in assembly language; at
reset, there may not yet be stack to hold compiler temporaries, or perhaps even any RAM accessible
to hold the stack. These phases do the minimum necessary to prepare the environment for running
simple C code. Then, the code for the final phase may be written in C; CS3 leaves as much as possible
to be done at this point.

The CodeSourcery board support library provides default code for all three phases. The hard reset
phase is implemented by board- and profile-specific code. The assembly initialization phase is im-
plemented by profile-specific code. The C initialization phase is implemented by generic code.

5.2.1.The Hard Reset Phase

This phase, which begins at __cs3_reset, is responsible for initializing board-specific registers,
such as memory base registers and DRAM controllers, or scanning memory to check the available
size. It is written in assembler and ends with a jump to __cs3_start_asm, which is where the
assembly initialization phase begins.

The hard reset code is in a section named .cs3.reset. CS3 linker scripts define __cs3_reset
as an alias for a board- and profile-specific entry point. You may override the CS3-provided reset
code by defining your own __cs3_reset entry point in the .cs3.reset section.

Program execution always begins at __cs3_reset, whether the program is started from the reset
vector, the debugger, or a boot monitor. However, the __cs3_reset code linked into the application

27

CS3™: The CodeSourcery Common Startup Code Sequence

is typically non-empty only for ROM-based profiles. For example, in a RAM-based profile, resetting
the memory controllers would overwrite the code being executed.

When using the Sourcery CodeBench Debug Sprite, the Sprite is responsible for carrying out the
hard reset actions before the program is loaded onto the target. This is performed prior to execution
of both RAM- and ROM-profile applications from the debugger. Thus, when debugging a ROM-
profile application, hard reset is actually performed twice — once by the Sprite, and once by the
application itself.

5.2.2.The Assembly Initialization Phase

This phase is responsible for initializing the stack pointer and creating an initial stack frame. The
symbol __cs3_start_asm marks the entry point of the assembly initialization code. The assembly
initialization phase ends with a call or jump to __cs3_start_c.

The assembly initialization phase is profile-specific. For example, while bare-board applications
typically must initialize the stack themselves, CS3 also supports boot-monitor profiles where the
stack is initialized by the boot monitor before it launches the application. Likewise, some simulators
automatically initialize the stack pointer and initial stack frame on startup, while others require a
supervisory operation on startup to determine the amount of available memory. Each of these scen-
arios requires different assembly initialization behavior.

Note that on bare-board targets setting the stack pointer explicitly in the assembly initialization phase
is required even if the processor itself initializes the stack pointer automatically on reset. This is to
support running programs from the debugger as well as from processor reset.

For backwards compatibility with previous versions of CS3, on RAM and ROM profiles the symbol
__cs3_start_asm is actually an alias for a symbol named _start. However, referencing or
defining _start directly is now deprecated.

The value of the symbol __cs3_stack provides the initial value of the stack pointer for profiles
that must set it explicitly. The CodeSourcery linker scripts provide a default value for this symbol,
which you may override by defining __cs3_stack yourself. See Section 5.3.3, “Heap and Stack
Placement” for an example of a custom stack.

The initial stack frame is created for the use of ordinary C and C++ calling conventions. The stack
should be initialized so that backtraces stop cleanly at this point; this might entail zeroing a dynamic
link pointer, or providing hand-written DWARF call frame information.

The last action of the assembly initialization phase is to call the C function __cs3_start_c. This
function never returns, and __cs3_start_asm need not be prepared to handle a return from it.

As with the hard reset code, the CodeSourcery board support library provides reasonable default
assembly initialization code. However, you may provide your own code by providing a definition
for __cs3_start_asm, either in an object file or a library.

5.2.3.The C Initialization Phase

Finally, C code can be executed. The C startup function is declared as follows:

void __cs3_start_c (void) __attribute__ ((noreturn));

This function performs the following steps:

28

CS3™: The CodeSourcery Common Startup Code Sequence

• Initialize all .data-like sections by copying their contents. For example, ROM-profile linker
scripts use this mechanism to initialize writable data in RAM from the read-only data program
image.

• Clear all .bss-like sections.

• Run constructors for statically-allocated objects, recorded using whatever conventions are usual
for C++ on the target architecture.

CS3 reserves priorities from 0 to 100 for use by initialization code. You can handle tasks like en-
abling interrupts, initializing coprocessors, pointing control registers at interrupt vectors, and so
on by defining constructors with appropriate priorities.

• Call main as appropriate.

• Call exit, if it is available.

As with the hard reset and assembly initialization code, the CodeSourcery board support library
provides a reasonable definition for the __cs3_start_c function. You may override this by
providing a definition for __cs3_start_c, either in an object file or in a library.

5.2.4. Arguments to main

The CodeSourcery-provided definition of __cs3_start_c can pass command-line arguments to
main using the normal C argc and argv mechanism if the board support package provides corres-
ponding definitions for __cs3_argc and __cs3_argv. For example:

int __cs3_argc;
char **__cs3_argv;

These variables should be initialized using a constructor function, which is run by __cs3_start_
c after it initializes the data segment. Use the constructor attribute on the function definition:

__attribute__((constructor))
static void __cs3_init_args (void) {
 __cs3_argc = ...;
 __cs3_argv = ...;
}

The constructor function may have an arbitrary name; __cs3_init_args is used only for illus-
trative purposes here.

If definitions of __cs3_argc and __cs3_argv are not provided, then the default __cs3_
start_c function invokes main with zero as the argc argument and a null pointer as argv.

5.2.5. Program Termination

A program running on an embedded system is usually designed never to exit — it runs until the
system is powered down. The C and C++ standards leave it unspecified as to whether exit is called
at program termination. If the program never exits, then there is no reason to include exit, facilities
to run functions registered with atexit, or global destructors. This code would never be run and
would therefore just waste space in the application.

The CS3 startup code, by itself, does not cause exit to be present in the application. It dynamically
checks whether exit is present, and only calls it if it is. If you require exit to be present, either
refer to it within your application, or add -Wl,-u,exit to the linking command line.

29

CS3™: The CodeSourcery Common Startup Code Sequence

Similarly, code to register global destructors is only invoked when atexit is already in the execut-
able; CS3, by itself, does not cause atexit to be present. If you require atexit, either refer to it
within your application, or add -Wl,-u,atexit to the linking command line.

5.3. Memory Layout
Boards supported by CS3 can have multiple banks or regions of memory with different characteristics.
This section describes how program sections are mapped onto memory regions, and how you can
use these CS3 features to customize placement of your program's code or data in memory. CS3 also
provides a uniform set of symbolic names for each region, allowing you to programmatically refer
to each region's address range from C or assembly language as well as from the linker script.

5.3.1. Memory Regions and Program Sections

The regions that are available on a particular board are listed in the table for that board in Section 5.5,
“Supported Boards for ARM EABI”, below. There are two kinds of regions: those documented as
"Memory regions", which are general-purpose memory banks that can be used for program or data
storage; and those documented as "Other regions", which typically correspond to memory-mapped
control registers or other special-purpose storage.

CS3 supports boards that include both ram and rom memory regions. The ram region holds the
.data and .bss sections, and the .text section in RAM profiles. In ROM profiles, the rom region
holds the .text section and initialization values for the writable data sections.

In addition, all regions documented as "Memory regions" correspond to similarly-named program
sections. For example, the linker script assigns the .ram section to the ram region.

More generally, for a memory region named R, CS3 linker scripts define a section named .R, which
may contain initialized data or code. There is also a section named .bss.R for zero-initialized data
(BSS), which is placed after the initialized data section for this region.

You can explicitly locate data or code in a section corresponding to a particular memory region using
section attributes in your source C or C++ code. Section attributes are especially useful on code
compiled for boards that include special memory banks, such as a fast on-chip cache memory, in
addition to the default ram and/or rom regions. CS3's start-up code arranges for additional data-like
sections to be initialized in the same way as the default .data section.

As an example to illustrate the attribute syntax, you can put a variable v in the .ram section using:

int v __attribute__ ((section (".ram")));

To declare a function f in this section, use:

int f (void) __attribute__ ((section (".ram"))) {...}

For more information about attribute syntax, see the GCC manual.

In addition to the .R and .bss.R sections, CS3 places a .cs3.region-head.R section at the
beginning of each region R. Explicitly placing data in .cs3.region-head.R sections is discour-
aged, because CS3 itself may want to place items (like interrupt vector tables) at these locations. If
there is a conflict, CS3 raises an error at link time.

Regions documented as "Other regions" in the tables in Section 5.5, “Supported Boards for ARM
EABI” do not have corresponding program sections. Typically, these regions contain memory-mapped
control and I/O registers and cannot be used for general data or program storage. If your program

30

CS3™: The CodeSourcery Common Startup Code Sequence

needs to manipulate data in these regions, you can use the CS3 memory map access interface declared
in cs3.h, as described in Section 5.3.2, “Programmatic Access to the CS3 Memory Map”.

Memory maps for boards supported by Sourcery CodeBench Lite for ARM EABI are documented
in XML files in the arm-none-eabi/lib/boards/ subdirectory of your Sourcery CodeBench
installation directory.

5.3.2. Programmatic Access to the CS3 Memory Map

CS3 makes C declarations describing the memory regions on the target board available to your program
via the header file cs3.h, which you can find in the arm-none-eabi/include directory
within your install.

For each region named R, cs3.h declares a byte array variable __cs3_region_start_R at the
region's start address, and a size_t variable __cs3_region_size_R to represent the total size
of the region. These symbols are defined by the linker script and so may also be referenced from
assembly language. Note that all regions are aligned on eight-byte boundaries and sizes are also
multiples of eight bytes.

For memory regions that can correspond to program sections (as described in Section 5.3.1, “Memory
Regions and Program Sections”), there are additional symbols __cs3_region_init_R and
__cs3_region_init_size_R that describe constant data used to initialize the region. During
the C initialization phase (Section 5.2, “Program Startup and Termination”), this data is copied into
the lower part of the memory region. The symbol __cs3_region_zero_size_R represents the
size of the zero-initialized .bss.R section following the initialized data. Any of these identifiers
may actually be defined as a preprocessor macro that expands to an expression of the appropriate
type and value.

To perform the memory region initializations during startup, CS3 internally uses the array variable
__cs3_regions, which contains descriptors for all of the writable (RAM) memory regions. These
descriptors are also exposed in cs3.h; refer to the header file for details.

5.3.3. Heap and Stack Placement

CS3 linker scripts provide default placement of the heap and stack in the RAM region. However,
you can override the defaults by providing your own definitions of the associated CS3 variables. For
example, you may put the heap and/or stack in some other memory region.

Heap placement is controlled by defining the symbol __cs3_heap_start at the beginning of
the heap, and either the symbol __cs3_heap_end or the pointer variable __cs3_heap_limit
to mark the end of the heap. For example, this fragment of C code places the heap in a region named
extsram:

#define HEAPSIZE ... /* However big you want to make it. */
unsigned char __cs3_heap_start[HEAPSIZE]
 __attribute__ ((section (".bss.extsram"), aligned(8)));
unsigned char *__cs3_heap_limit = __cs3_heap_start + HEAPSIZE;

The default initial stack pointer for bare-metal profiles is given by the symbol __cs3_stack, and
the stack grows downward from this address. Stack initialization is discussed in more detail in Sec-
tion 5.2.2, “The Assembly Initialization Phase”.

You can find C declarations for the CS3 heap and stack symbols in the header file cs3.h.

31

CS3™: The CodeSourcery Common Startup Code Sequence

The cs3.h header file also defines a macro for creating a custom stack. The custom stack is created
as a block of RAM in the zero-initialized data section (BSS). The specified size must be a compile-
time constant. To account for alignment, the final size of the stack may be a few bytes less than the
requested size. The symbol __cs3_stack is initialized to point to the last extent of the stack block,
and is 16-byte aligned. For example, the following fragment of C code creates a stack of 8192 bytes:

#include <cs3.h>

CS3_STACK(2 * 4096);

As indicated in Section 5.2.2, “The Assembly Initialization Phase”, there are cases where a boot
monitor or simulator overrides a custom stack.

5.4. Interrupt Vectors and Handlers
CS3 provides standard handlers for interrupts, exceptions and traps, but also allows you to define
your own handlers as needed. In this section, we use the term interrupt as a generic term for this
entire class of events.

Different processors handle interrupts in various ways, but there are two general approaches:

• Some processors fetch an address from an array indexed by the interrupt number, and jump to that
address. We call these address vector processors.

• Others multiply the interrupt number by some constant factor, add a base address, and jump directly
to that address. Here, the interrupt vector consists of blocks of code, so we call these code vector
processors.

• Still other processors use a more complicated descriptor mechanism for the interrupt table.

M-profile processors like the Cortex-M3 use the address vector model. Classic ARM processors
(including ARM7/ARM9 as well as Cortex-A/R series processors) are technically code vector pro-
cessors. However, each vector slot only holds a single instruction. CS3 emulates the address vector
model on these processors by placing an indirect branch instruction in each slot of the real exception
vector. The remainder of this section assumes that you have some understanding of the specific re-
quirements for your target; refer to the architecture manuals if necessary.

5.4.1. ARM EABI Interrupt Vector Implementation

On address vector processors, the CS3 library provides an array of pointers to interrupt handlers
named __cs3_interrupt_vector_form, where form identifies the particular processor
variant the vector is appropriate for. Each entry in the vector holds a reference to a symbol named
__cs3_isr_name, where name is the customary name of that interrupt on the processor, or a
number if there is no consistently used name. You can find the interrupt vector details in Section 5.6,
“Interrupt Vector Tables”. The particular vector used by a given CS3-supported board is documented
in the tables in Section 5.5, “Supported Boards for ARM EABI”.

CS3 provides a reasonable default definition for each __cs3_isr_name handler. Many of these
symbols are aliased to a common handler routine. If your program stops at a default interrupt handler,
its name as shown in backtraces may therefore not correctly reflect which interrupt occurred.

To override an individual handler, provide your own definition for the appropriate __cs3_isr_
name symbol. The definition need not be placed in any particular object file section.

32

CS3™: The CodeSourcery Common Startup Code Sequence

To override the entire interrupt vector, you can define __cs3_interrupt_vector_form. You
must place this definition in a section named .cs3.interrupt_vector. The linker script reports
an error if the .cs3.interrupt_vector section is empty, to ensure that the definition of
__cs3_interrupt_vector_form occupies the proper section.

You may define the vector in C with an array of pointers using the section attribute to place it in
the appropriate section. For example, to override the interrupt vector on Altera Cyclone III Cortex-
M1 boards, make the following definition:

typedef void handler(void);
handler *__attribute__((section (".cs3.interrupt_vector")))
 __cs3_interrupt_vector_micro[] =
{ ... };

5.4.2. Writing Interrupt Handlers

Interrupt handlers typically require special call/return and register usage conventions that are target-
specific and beyond the scope of this document. In many cases, normal C functions cannot be used
as interrupt handlers. For example, the EABI requires that the stack be 8-byte aligned, but on some
ARMv7-M processors, only 4-byte stack alignment is guaranteed when calling an interrupt vector.
This can cause subtle runtime failures, usually when 8-byte types are used.

As an alternative to writing interrupt handlers in assembly language, on ARM targets they may be
written in C using the interrupt attribute. This tells the compiler to generate appropriate function
entry and exit sequences for an interrupt handler. For example, to override the __cs3_isr_nmi
handler, use the following definition:

void __attribute__ ((interrupt)) __cs3_isr_nmi (void)
{
 ... custom handler code ...
}

On ARM targets, the interrupt attribute also takes an optional parameter to specify the type of
interrupt. Refer to the GCC manual for more details about attribute syntax and usage.

5.5. Supported Boards for ARM EABI
CS3 provides support for the following boards on ARM EABI targets.

Altera Cyclone III Cortex-M1

Cortex-M1Processor name:

-mcpu=cortex-m1 -mthumbProcessor options:

itcm,
ram (SRAM),
rom (Flash)

Memory regions:

__cs3_interrupt_vector_microInterrupt vector:

cycloneiii-cm1-ram-hosted.ldRAM HostedLinker scripts:

cycloneiii-cm1-ram.ldRAM Unhosted

cycloneiii-cm1-rom-hosted.ldROM Hosted

cycloneiii-cm1-rom.ldROM Unhosted

33

CS3™: The CodeSourcery Common Startup Code Sequence

ARM M-profile Simulator

Cortex-M3Processor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ramMemory regions:

__cs3_interrupt_vector_microInterrupt vector:

generic-m-hosted.ldSimulator HostedLinker scripts:

generic-m.ldSimulator Unhosted

ARM Simulator

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

__cs3_interrupt_vector_armInterrupt vector:

generic-hosted.ldSimulator HostedLinker scripts:

generic.ldSimulator Unhosted

ARM Simulator (VFP)

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

__cs3_interrupt_vector_armInterrupt vector:

generic-vfp-hosted.ldSimulator HostedLinker scripts:

generic-vfp.ldSimulator Unhosted

ARMulator (RDI)

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

__cs3_interrupt_vector_armInterrupt vector:

armulator-ram-hosted.ldRAM HostedLinker scripts:

armulator-ram.ldRAM Unhosted

34

CS3™: The CodeSourcery Common Startup Code Sequence

Xilinx Zynq-7000

Cortex-A9Processor name:

-mcpu=cortex-a9Processor options:

ram (256MB DDR SDRAM),
rom (64MB NOR Flash Memory)

Memory regions:

__cs3_interrupt_vector_armInterrupt vector:

zynq7000-ram-hosted.ldRAM HostedLinker scripts:

zynq7000-ram.ldRAM Unhosted

zynq7000-rom-hosted.ldROM Hosted

zynq7000-rom.ldROM Unhosted

5.6. Interrupt Vector Tables
5.6.1. __cs3_interrupt_vector_arm

The ARM interrupt vector table (__cs3_interrupt_vector_arm) contents are:

MeaningNameNumber

Reset entry point__cs3_reset0

Undefined Instruction__cs3_isr_undef1

Software Interrupt/Supervisor Call__cs3_isr_swi2

Prefetch Abort__cs3_isr_pabort3

Data Abort__cs3_isr_dabort4

__cs3_isr_reserved5

External Interrupt (IRQ)__cs3_isr_irq6

Fast Interrupt (FIQ)__cs3_isr_fiq7

5.6.2. __cs3_interrupt_vector_micro

The Microcontroller Profile interrupt vector table (__cs3_interrupt_vector_micro) contents
are:

MeaningNameNumber

Initial stack pointer__cs3_stack0

Reset entry point__cs3_reset1

Non Maskable Interrupt__cs3_isr_nmi2

Hardware fault__cs3_isr_hard_fault3

MPU fault__cs3_isr_mpu_fault4

Bus fault__cs3_isr_bus_fault5

Usage fault__cs3_isr_usage_fault6

Reserved for future use__cs3_isr_reserved_7..107..10

System Vector Call__cs3_isr_svcall11

Debug interrupt__cs3_isr_debug12

35

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

Reserved for future use__cs3_isr_reserved_1313

__cs3_isr_pendsv14

System Ticker__cs3_isr_systick15

External interrupt__cs3_isr_external_0..3116..47

36

CS3™: The CodeSourcery Common Startup Code Sequence

Chapter 6
Sourcery CodeBench Debug Sprite
This chapter describes the use of the Sourcery CodeBench Debug Sprite for remote debug-
ging.The Sprite allows you to debug programs running on a bare board without an operating
system.This chapter includes information about the debugging devices and boards supported
by the Sprite for ARM EABI.

37

Sourcery CodeBench Lite contains the Sourcery CodeBench Debug Sprite for ARM EABI. This
Sprite is provided to allow debugging of programs running on a bare board. You can use the Sprite
to debug a program when there is no operating system on the board, or for debugging the operating
system itself. If the board is running an operating system, and you wish to debug a program running
on that OS, you should use the facilities provided by the OS itself (for instance, using gdbserver).

The Sprite acts as an interface between GDB and external debug devices and libraries. Refer to
Section 6.3, “Invoking Sourcery CodeBench Debug Sprite” for information about the specific devices
supported by this version of Sourcery CodeBench Lite.

Important

The Sourcery CodeBench Debug Sprite is not part of the GNU Debugger and is not free or
open-source software. You may use the Sourcery CodeBench Debug Sprite only with the
GNU Debugger. You may not distribute the Sourcery CodeBench Debug Sprite to any third
party.

6.1. Probing for Debug Devices
Before running the Sourcery CodeBench Debug Sprite for the first time, or when attaching new debug
devices to your host system, it is helpful to verify that the Sourcery CodeBench Debug Sprite recog-
nizes your debug hardware. From the command line, invoke the Sprite with the -i option:

> arm-none-eabi-sprite -i

This prints out a list of supported device types. For devices that can be autodetected, it additionally
probes for and prints out a list of attached devices. For instance:

Sourcery CodeBench Debug Sprite for ARM
 (Sourcery CodeBench Lite 2011.09-69)
armusb: [speed=<n:0-7>] Stellaris USB
 armusb:///0B01000C - Stellaris Evaluation Board (0B01000C)
rdi: (rdi-library=<file>&rdi-config=<file>) RDI Device
 rdi:/// - RDI Device

This shows that Stellaris USB and RDI devices are supported. The exact set of supported devices
depends on your host system and the version of Sourcery CodeBench you have installed; refer to
Section 6.3, “Invoking Sourcery CodeBench Debug Sprite” for complete information.

Note that it may take several seconds for the Debug Sprite to probe for all types of supported devices.

6.2. Debug Sprite Example
Start by compiling and linking a simple test program for your target board, following the instructions
in Chapter 4, “Using Sourcery CodeBench from the Command Line”. Use the -g option to tell the
compiler to generate debugging information.

To build the factorial program to run on the ARMulator simulator, which can communicate
with the Sprite via the RDI protocol, use:

> arm-none-eabi-gcc -g -Tarmulator-ram-hosted.ld main.c \
 -o factorial

Next start the debugger on your host system:

38

Sourcery CodeBench Debug Sprite

> arm-none-eabi-gdb factorial

The command for connecting GDB to the board depends on the debug device you are using; this is
described in more detail in Section 6.3, “Invoking Sourcery CodeBench Debug Sprite”. If you are
connecting via RDI, you must specify the full path to the RDI library file and configuration file for
that library. Use quotes to escape the Sprite argument syntax from the shell. For example, use a
command like this to connect to the ARMulator:

(gdb) target remote | arm-none-eabi-sprite \
 "rdi:///?rdi-library=library&rdi-config=config" armulator

The Sprite prints some status messages as it connects to your debug device and target board. If the
connection is successful, you should see output similar to:

arm-none-eabi-sprite:Target reset
0x00008936 in ?? ()
(gdb)

Next, use GDB to load your program onto the target board.

(gdb) load

At this point you can use GDB to control the execution of your program as required. For example:

(gdb) break main
(gdb) continue

6.3. Invoking Sourcery CodeBench Debug Sprite
The Debug Sprite is invoked as follows:

> arm-none-eabi-sprite [options] device-url board-file

The device-url specifies the debug device to use to communicate with the board. It follows the
standard format:

scheme:scheme-specific-part[?device-options]

Most device URL schemes also follow the regular format:

scheme:[//hostname:[port]]/path[?device-options]

The meanings of hostname, port, path and device-options parts depend on the scheme
and are described below. The following schemes are supported in Sourcery CodeBench Lite for
ARM EABI:

rdi Use an RDI debugging device. Refer to Section 6.5, “Remote Debug Interface
Devices”.

flashpro Use a FlashPro debugging device. Refer to Section 6.6, “Actel FlashPro Devices”.

altera Use an Altera FPGA. Refer to Section 6.7, “Altera Devices”.

The optional ?device-options portion is allowed in all schemes. These allow additional device-
specific options of the form name=value. Multiple options are concatenated using &.

39

Sourcery CodeBench Debug Sprite

The board-file specifies an XML file that describes how to initialize the target board, as well
as other properties of the board used by the debugger. If board-file refers to a file (via a relative
or absolute pathname), it is read. Otherwise, board-file can be a board name, and the toolchain's
board directory is searched for a matching file. See Section 6.9, “Supported Board Files” for the list
of supported boards, or invoke the Sprite with the -b option to list the available board files. You
can also write a custom board file; see Section 6.10, “Board File Syntax” for more information about
the file format.

Both the device-url and board-file command-line arguments are required to correctly
connect the Sprite to a target board.

6.4. Sourcery CodeBench Debug Sprite Options
The following command-line options are supported by the Sourcery CodeBench Debug Sprite:

-b Print a list of board-file files in the board config directory.

-h Print a list of options and their meanings. A list of device-url syntaxes
is also shown.

-i Print a list of the accessible devices. If a device-url is also specified,
only devices for that device type are scanned. Each supported device type is
listed along with the options that can be appended to the device-url. For
each discovered device, the device-url is printed along with a description
of that device.

-l [host]:port Specify the host address and port number to listen for a GDB connection. If
this option is not given, the Debug Sprite communicates with GDB using
stdin and stdout. If you start the Sprite from within GDB using the target
remote | arm-none-eabi-sprite ... command, you do not need
this option.

-m Listen for multiple sequential connections. Normally the Debug Sprite ter-
minates after the first connection from GDB terminates. This option instead
makes it listen for a subsequent connection. To terminate the Sprite, open a
connection and send the string END\n.

-q Do not print any messages.

-v Print additional messages.

If any of -b, -i or -h are given, the Debug Sprite terminates after providing the information rather
than waiting for a debugger connection.

6.5. Remote Debug Interface Devices
Remote Debug Interface (RDI) devices are supported. The RDI device URL accepts no hostname,
port or path components, so the device-url is specified as follows:

rdi:[///][?device-options]

The following device-options are required:

rdi-library=library Specify the library (DLL or shared object) implementing the RDI
target you wish to use.

40

Sourcery CodeBench Debug Sprite

rdi-config=configfile Specify a file containing configuration information for library.
The format of this file is specific to the RDI library you are using,
but tends to constitute a list of key=value pairs. Consult the
documentation of your RDI library for details.

6.6. Actel FlashPro Devices
On Windows hosts, Sourcery CodeBench Lite supports FlashPro devices used with Actel Cortex-
M1 development kits.

For FlashPro devices, the device-url has the following form:

flashpro:[//usb12345/][?jtagclock=rate]

The optional usb12345 part indicates the ID of the FlashPro device to connect to, which is useful
if you have more than one such device attached to your computer. If the ID is omitted, the Debug
Sprite connects automatically to the first detected FlashPro device. You can enumerate the connected
FlashPro devices by invoking the Sprite with the -i switch, as follows:

> arm-none-eabi-sprite -i flashpro:

The jtagclock option allows the communication speed with the target board to be altered. The
rate is specified in Hz and may range between 93750 and 4000000. The default is 93750, the
slowest speed supported by the FlashPro device. Depending on your target board, you may be able
to increase this rate, but beware that communication errors may occur above a certain threshold. If
you encounter communication errors with a higher-than-default speed selected, try reducing the
speed.

6.6.1. Installing FlashPro Windows drivers

Windows drivers for the FlashPro device are included with the FlashPro software provided by Actel.
Refer to Actel's documentation for details on installing this software. You must use the Actel FlashPro
software to configure the FPGA on your Cortex-M1 board, but it does not need to be running when
using the Debug Sprite.

Once you have set up your board using the FlashPro software, you can check that it is recognized
by the Sourcery CodeBench Debug Sprite by running the following command:

> arm-none-eabi-sprite -i
flashpro: [jtagclock=<n:93750-4000000>] FlashPro
 flashpro://usb12345/ - FlashPro Device
 ...

If output similar to the above does not appear, your FlashPro device is not working correctly. Contact
CodeSourcery for further guidance in that case.

6.7. Altera Devices
The Debug Sprite can be used to debug applications running on a Cortex-M1 core embedded in an
Altera FPGA supporting the System-Level Debug (SLD) architecture. Currently, the Sprite supports
the Cyclone III FPGA Starter board on Microsoft Windows hosts.

The Debug Sprite accepts two forms of the device-url for Altera devices. For the common case
where you have only one Altera Cortex-M1 device configured, you can use simply:

41

Sourcery CodeBench Debug Sprite

altera://

The full form of the device-url is:

altera://usbX/hubY/nodeZ

where X, Y, and Z are non-negative integers. The SLD architecture forms a hierarchy; there may be
multiple USB Blaster devices (numbered by X), multiple Altera FPGAs (numbered by Y) per USB
Blaster, and multiple nodes (numbered by Z) per FPGA.

The Debug Sprite can autodetect connected Altera Cortex-M1 devices. Invoking the Sprite with the
-i option, as described in Section 6.1, “Probing for Debug Devices”, displays the device-url
for each detected device:

> arm-none-eabi-sprite -i
...
altera: Altera SLD Hub
 altera://usb0/hub0/node1 - Altera Cortex-M Device

6.7.1. Setting Up the Altera Device

Follow these steps for initial installation and set up of the Altera device.

1. Install Quartus II Web Edition (or any equivalent), available from Altera.

2. Install drivers for USB Blaster, also available from Altera.

3. Install Sourcery CodeBench Lite for ARM EABI. See Chapter 2, “Installation and Configuration”.

4. Connect the board and the host computer with a USB cable.

5. Turn on the board.

6. Use Quartus II to download a .sof file including a Cortex-M1 core to the FPGA.

7. Use arm-none-eabi-sprite -i to verify that the Sprite can detect the installed Cortex-
M1 core.

6.7.2. Hardware Breakpoints

The Cortex-M1 core only permits hardware breakpoints to be set in the first 512MB of its address
space. Because both external SRAM and flash memory are located at higher addresses, you cannot
set hardware breakpoints in these memory regions.

6.8. Debugging a Remote Board
You can run the Sourcery CodeBench Debug Sprite on a different machine from the one on which
GDB is running. For example, if your board is connected to a machine in your lab, you can run the
debugger on your laptop and connect to the remote board. The Sourcery CodeBench Debug Sprite
must run on the machine that is connected to the target board. You must have Sourcery CodeBench
installed on both machines.

To use this mode, you must start the Sprite with the -l option and specify the port on which you
want it to listen. For example:

> arm-none-eabi-sprite -l :10000 device-url board-file

42

Sourcery CodeBench Debug Sprite

starts the Sprite listening on port 10000.

When running GDB from the command line, use the following command to connect GDB to the
remote Sprite:

(gdb) target remote host:10000

where host is the name of the remote machine. After this, debugging is just as if you are debugging
a target board connected to your host machine.

For more detailed instructions on using the Sourcery CodeBench Debug Sprite in this way, please
refer to the Sourcery CodeBench Knowledge Base1.

6.9. Supported Board Files
The Sourcery CodeBench Debug Sprite for ARM EABI includes support for the following target
boards. Specify the appropriate board-file as an argument when invoking the Sprite from the
command line.

ConfigBoard

cycloneiii-cm1Altera Cyclone III Cortex-M1

armulatorARMulator (RDI)

zynq7000Xilinx Zynq-7000

6.10. Board File Syntax
The board-file can be a user-written XML file to describe a non-standard board. The Sourcery
CodeBench Debug Sprite searches for board files in the arm-none-eabi/lib/boards directory
in the installation. Refer to the files in that directory for examples.

The file's DTD is:

<!-- Board description files

 Copyright (c) 2007-2009 CodeSourcery, Inc.

 THIS FILE CONTAINS PROPRIETARY, CONFIDENTIAL, AND TRADE
 SECRET INFORMATION OF CODESOURCERY AND/OR ITS LICENSORS.

 You may not use or distribute this file without the express
 written permission of CodeSourcery or its authorized
 distributor. This file is licensed only for use with
 Sourcery CodeBench. No other use is permitted.
 -->

<!ELEMENT board
 (category?, properties?, feature?, initialize?, memory-map?, \
debuggerDefaults?)>

<!-- Board category to group boards list into the tree -->

1 https://support.codesourcery.com/GNUToolchain/kbentry132

43

Sourcery CodeBench Debug Sprite

https://support.codesourcery.com/GNUToolchain/kbentry132
https://support.codesourcery.com/GNUToolchain/kbentry132

<!ELEMENT category (#PCDATA)>

<!ELEMENT properties
 (description?, property*)>

<!ELEMENT initialize
 (write-register | write-memory | delay
 | wait-until-memory-equal | wait-until-memory-not-equal)* >
<!ELEMENT write-register EMPTY>
<!ATTLIST write-register
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT write-memory EMPTY>
<!ATTLIST write-memory
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT delay EMPTY>
<!ATTLIST delay
 time CDATA #REQUIRED>
<!ELEMENT wait-until-memory-equal EMPTY>
<!ATTLIST wait-until-memory-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>
<!ELEMENT wait-until-memory-not-equal EMPTY>
<!ATTLIST wait-until-memory-not-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>

<!ELEMENT memory-map (memory-device)*>
<!ELEMENT memory-device (property*, description?, sectors*)>
<!ATTLIST memory-device
 address CDATA #REQUIRED
 size CDATA #REQUIRED
 type CDATA #REQUIRED
 device CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>
<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #REQUIRED>
<!ELEMENT sectors EMPTY>
<!ATTLIST sectors
 size CDATA #REQUIRED
 count CDATA #REQUIRED>

<!-- Definition of default option values for each debug interface -->
<!ELEMENT debuggerDefaults (debugInterface*)>
<!ELEMENT debugInterface (option*)>
<!ATTLIST debugInterface

44

Sourcery CodeBench Debug Sprite

 name CDATA #REQUIRED
>
<!ELEMENT option EMPTY>
<!ATTLIST option
 name CDATA #REQUIRED
 defaultValue CDATA #REQUIRED
>

<!ENTITY % gdbtarget SYSTEM "gdb-target.dtd">
%gdbtarget;

All values can be provided in decimal, hex (with a 0x prefix) or octal (with a 0 prefix). Addresses
and memory sizes can use a K, KB, M, MB, G or GB suffix to denote a unit of memory. Times must
use a ms or us suffix.

The following elements are available:

<board> This top-level element encapsulates the entire description of the board. It
can contain <properties>, <feature>, <initialize> and
<memory-map> elements.

<properties> The <properties> element specifies specific properties of the target
system. This element can occur at most once. It can contain a
<description> element.

It can also contain <property> elements with the following names:

banked-regs The banked-regs property specifies that the CPU
of the target board has banked registers for different
processor modes (supervisor, IRQ, etc.).

has-vfp The has-vfp property specifies that the CPU of the
target board has VFP registers.

system-v6-m The system-v6-m property specifies that the CPU
of the target board has ARMv6-M architecture system
registers.

system-v7-m The system-v7-m property specifies that the CPU
of the target board has ARMv7-M architecture system
registers.

core-family The core-family property specifies the ARM
family of the target. The body of the <property>
element may be one of arm7, arm9, arm11, and
cortex.

system-clock This property specifies the target clock frequency (in
Hertz) after reset. It is used to configure flash program-
ming algorithms.

<initialize> The <initialize> element defines an initialization sequence for the
board, which the Sprite performs before downloading a program. It can
contain <write-register>, <write-memory> and <delay>
elements.

45

Sourcery CodeBench Debug Sprite

<feature> This element is used to inform GDB about additional registers and peri-
pherals available on the board. It is passed directly to GDB; see the GDB
manual for further details.

<memory-map> This element describes the memory map of the target board. It is used by
GDB to determine where software breakpoints may be used and when
flash programming sequences must be used. This element can occur at
most once. It can contain <memory-device> elements.

<memory-device> This element specifies a region of memory. It has four attributes:
address, size, type and device. The address and size attributes
specify the location of the memory device. The type attribute specifies
that device as ram, rom or flash. The device attribute is required for
flash regions; it specifies the flash device type. The
<memory-device> element can contain a <description> element.

<write-register> This element writes a value to a control register. It has three attributes:
address, value and bits. The bits attribute, specifying the bit
width of the write operation, is optional; it defaults to 32.

<write-memory> This element writes a value to a memory location. It has three attributes:
address, value and bits. The bits attribute is optional and defaults
to 32. Bit widths of 8, 16 and 32 bits are supported. The address written
to must be naturally aligned for the size of the write being done.

<delay> This element introduces a delay. It has one attribute, time, which specifies
the number of milliseconds, or microseconds to delay by.

<description> This element encapsulates a human-readable description of its enclosing
element.

<property> The <property> element allows additional name/value pairs to be
specified. The property name is specified in a name attribute. The property
value is the body of the <property> element.

46

Sourcery CodeBench Debug Sprite

Chapter 7
Next Steps with Sourcery
CodeBench
This chapter describes where you can find additional documentation and information about
using Sourcery CodeBench Lite and its components.

47

7.1. Sourcery CodeBench Knowledge Base
The Sourcery CodeBench Knowledge Base is available to registered users at the Sourcery CodeBench
Portal1. Here you can find solutions to common problems including installing Sourcery CodeBench,
making it work with specific targets, and interoperability with third-party libraries. There are also
additional example programs and tips for making the most effective use of the toolchain and for
solving problems commonly encountered during debugging. The Knowledge Base is updated fre-
quently with additional entries based on inquiries and feedback from customers.

7.2. Example Programs
Sourcery CodeBench Lite includes some bundled example programs. You can find the source code
for these examples in the share/sourceryg++-arm-none-eabi-examples directory of
your Sourcery CodeBench installation.

7.2.1. Other Examples

The subdirectories contain a number of small, target-independent test programs. You may find these
programs useful as self-contained test cases when experimenting with configuring the correct compiler
and debugger settings for your target, or when learning how to use the debugger or other features of
the Sourcery CodeBench toolchain.

7.3. Manuals for GNU Toolchain Components
Sourcery CodeBench Lite includes the full user manuals for each of the GNU toolchain components,
such as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material
for new users as well as serving as a complete reference for command-line options, supported exten-
sions, and the like.

When you install Sourcery CodeBench Lite, links to both the PDF and HTML versions of the
manuals are created in the shortcuts folder you select. If you elected not to create shortcuts when
installing Sourcery CodeBench Lite, the documentation can be found in the share/doc/
sourceryg++-arm-none-eabi/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery CodeBench Lite includes a Unix-style
manual page for each toolchain component. You can view these by invoking the man command with
the pathname of the file you want to view. For example, you can first go to the directory containing
the man pages:

> cd $INSTALL/share/doc/sourceryg++-arm-none-eabi/man/man1

Then you can invoke man as:

> man ./arm-none-eabi-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery CodeBench man pages to your MANPATH environment variable. This should
go in your .profile or equivalent shell startup file; see Section 2.6, “Setting up the Environment”
for instructions. Then you can invoke man with just the command name rather than a pathname.

1 https://support.codesourcery.com/GNUToolchain/

48

Next Steps with Sourcery CodeBench

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Finally, note that every command-line utility program included with Sourcery CodeBench Lite can
be invoked with a --help option. This prints a brief description of the arguments and options to
the program and exits without doing further processing.

49

Next Steps with Sourcery CodeBench

Appendix A
Sourcery CodeBench Lite Release
Notes
This appendix contains information about changes in this release of Sourcery CodeBench
Lite for ARM EABI. You should read through these notes to learn about new features and
bug fixes.

50

A.1. Changes in Sourcery CodeBench Lite for
ARM EABI
This section documents Sourcery CodeBench Lite changes for each released revision.

A.1.1. Changes in Sourcery CodeBench Lite 2011.09-69

New Sourcery CodeBench Lite branding. Sourcery G++ has been renamed to Sourcery
CodeBench. This change affects the names of the default installation directory and installer-created
shortcuts, but no internal pathnames or tool names within the installation directory have been changed.

Internal compiler error with NEON intrinsics. A compiler bug has been fixed that caused in-
ternal compiler errors when using certain NEON intrinsics.

GCC version 4.6. Sourcery CodeBench Lite for ARM EABI is now based on GCC version 4.6.
For more information about changes from GCC version 4.5 that was included in previous releases,
see http://gcc.gnu.org/gcc-4.6/changes.html.

ARM VFP9-S errata workaround. A compiler workaround for ARM Errata Notice GENC-
010704 (760019: Canceled FDIV or FSQRT can be executed twice) has been implemented.

Map file name demangling bug fix. GCC now properly passes the --demangle and
--no-demangle options to the linker to control map file output. The default behavior on all hosts
is now to demangle C++ names.

GCC stack usage improvement. GCC now generates better code for stack allocation in some
cases when compiling with -fno-strict-aliasing.

Binutils version 2.21. Sourcery CodeBench Lite for ARM EABI is now based on binutils version
2.21.

Assembler crash. The assembler now warns when there is line information for the *ABS* section,
rather than crash. This can occur when the .offset directive is used incorrectly.

CS3 bug fix for Xilinx Zynq-7000. A bug that caused undefined symbol errors in the CS3 library
when linking programs for the Xilinx Zynq-7000 has been fixed.

Fix for crash in GDB maint print arch. A bug in the GDB command maint print
arch that sometimes caused GDB to crash has been fixed.

GDB interrupt handling bug fix. A bug in GDB has been fixed that caused it to sometimes fail
to interrupt lengthy single-step operations (as by a Ctrl+C when using GDB from the command
line).

Fix GDB crash during connection to debug agent. A bug has been fixed that caused GDB to
crash while connecting to any debug agent through standard IO where the debug agent had detected
an early error and terminated the communication.

Improved disassembler performance in the debugger. GDB's disassembler has been improved
to use more efficient memory access on remote targets.

Fix GDB crash in debugging Thumb assembly routines. A bug in GDB has been fixed that
caused a crash when debugging Thumb assembly routines that switch stacks by writing the stack
pointer in the function prologue.

51

Sourcery CodeBench Lite Release Notes

Debug Sprite option defaults. The Sourcery CodeBench Debug Sprite now uses default option
values specified in board configuration files. Options included in the device URL override the default
values.

Changes to host operating system requirements. The minimum required Microsoft Windows
OS needed to run Sourcery CodeBench Lite is now Windows XP (SP1).

A.1.2. Changes in Sourcery G++ Lite 2011.03-42

Variable Length Array (VLA) alignment bug. A compiler bug that resulted in incorrectly
aligned variable length arrays (VLA) in leaf functions has been fixed.

Cortex-R5 support. Sourcery G++ now includes support for ARM Cortex-R5 processors. To
compile for these processors, use -mcpu=cortex-r5.

Inline assembly and volatile fields. A bug has been fixed that caused the compiler to incorrectly
reject inline asm statements referring to volatile class/struct fields with errors such as error:
output number 1 not directly addressable.

Fixed-point arithmetic support. Experimental compiler support has been added for fixed-point
arithmetic on ARM, as described in the draft ISO/IEC technical report TR 18037. Specialized instruc-
tions defined in recent architecture versions for performing saturating arithmetic, etc. are used when
available, but are not a prerequisite for using the new language features. See Section 3.5, “Fixed-
Point Arithmetic” for further details.

C++ constructor bug fix. A compiler bug has been fixed that caused incorrect code for C++
constructors for some class hierarchies that use virtual inheritance and include empty classes. At
runtime, the incorrect constructors resulted in memory corruption or other errors.

Thumb debug information fix. A compiler bug that resulted in incorrect debug information for
Thumb code has been fixed. The incorrect information prevented single stepping through some code.

Internal compiler error with pointer casting. A compiler bug has been fixed that caused internal
compiler errors when accessing double-word memory locations with casted pointers under ARM
mode.

Unaligned access support. The compiler now generates more efficient code for accessing packed
data structures and for copying small blocks of unaligned data when targeting architectures that
permit unaligned word/halfword accesses. This feature can be controlled by the
-munaligned-access and -mno-unaligned-access options, and is enabled by default
for ARMv6 processors and above, except for ARMv6-M.

Internal compiler error under Thumb mode. A compiler bug has been fixed that caused internal
compiler errors when generating Thumb code.

Xilinx Zynq-7000 board support. Sourcery G++ Lite now includes CS3 board support for the
Xilinx Zynq-7000.

Debugging M-profile targets with third-party GDB stubs. A bug in GDB has been fixed that
caused the error Remote 'g' packet reply is too long with ARMv6-M and ARMv7-
M targets. The error was reported when connecting to some third-party GDB stubs, including SEGGER
GDB Server and OpenOCD, but did not affect the Sourcery G++ Debug Sprite.

52

Sourcery CodeBench Lite Release Notes

A.1.3. Changes in Sourcery G++ Lite 2011.03-13

GCC fixes for -fstrict-volatile-bitfields. GCC now honors
-fstrict-volatile-bitfields when a bitfield is not declared volatile initially, but an object
including bit fields is cast to volatile. Also, a bug was fixed that caused incorrect code to be generated
for some stores to volatile bit fields when -fstrict-volatile-bitfields is enabled.

Compiler optimization improvements. The compiler has been enhanced with a number of op-
timization improvements, including:

• Smaller and faster code for compound conditionals.

• Removal of superfluous sign and zero extensions.

• Improved code for multiply-and-accumulate operations on ARM.

• Faster code when tuning for Cortex-M series processors.

Internal compiler error with NEON intrinsics. A compiler bug has been fixed that caused in-
ternal compiler errors when using certain NEON intrinsics.

GCC version 4.5.2. Sourcery G++ Lite for ARM EABI is now based on GCC version 4.5.2.

GCC code generation bug for casts to volatile types. A compiler bug has been fixed that
sometimes caused incorrect code for references to pointers to types with volatile casts.

Incorrect optimization fix. An optimizer bug that in rare cases caused incorrect code to be gen-
erated for complex AND and OR expressions containing redundant subexpressions has been fixed.

Incorrect C++ warning fixed. A bug in GCC has been fixed that caused spurious warnings about
lambda expressions in C++ code that does not use them.

GCC fixes for NEON in big-endian mode. Several compiler bugs have been fixed that could
lead to incorrect code when using NEON in big-endian mode. The problems only manifested when
using the auto-vectorizer (enabled by default at the -O3 optimization level) with the
-mvectorize-with-neon-quad option.

Incorrect code for built-in comparison functions. A bug has been fixed that sometimes caused
GCC's built-in comparison functions, such as __builtin_isgreaterequal, to incorrectly
raise exceptions when invoked on unordered floating-point arguments.

C++ exception handling. A defect in the implementation of the EH-ABI specification has been
fixed. The defect affected the catching of pointer types in code generated by the ARM RealView®
compiler but using the Sourcery G++ runtime libraries. The fix also retains backward compatibility
with existing GCC-compiled code.

GCC bug where accesses to volatile structure fields are optimized away. A bug has been
fixed where accesses to volatile fields of a structure were sometimes incorrectly optimized away if
the structure instance was defined as non-volatile.

Internal compiler error fixes. Two bugs have been fixed that caused compiler crashes in rare
cases. The first bug involved code with multiple comparison operations, and the second one involved
char to int conversion.

53

Sourcery CodeBench Lite Release Notes

Thumb-2 assembler validation fix. The assembler now correctly rejects Thumb-2 ADD, ADDS,
SUB, and SUBS instructions that have an invalid shift operand. Previously, invalid shift values were
accepted and generated unpredictable instructions.

Objdump fix for multiple input files. The Objdump utility did not produce correct disassembly
when processing multiple input files. This has been fixed.

CS3 interrupt handlers. CS3 now provides separate ISR functions for each core processor ex-
ception, rather than aliasing them all to a single interrupt handler. This provides more useful backtrace
information in the debugger.

A.1.4. Changes in Sourcery G++ Lite 2010.09-51

GCC fix for duplicated symbols. A GCC optimizer bug that caused multiple definitions of local
symbols has been fixed. Code affected by the bug was rejected by the assembler.

NEON code generation fix. A GCC bug has been fixed that resulted in an assembler error VFP/
Neon double precision register expected.

Static data size improvement at -Os. When optimizing for size, the compiler no longer implicitly
adds padding bytes to align static and local arrays on word boundaries. This fixes static data size
regressions introduced since GCC 4.4. The additional alignment is still used when optimizing for
speed.

New -fstrict-volatile-bitfields option. The compiler has a new option,
-fstrict-volatile-bitfields, which forces access to a volatile structure member using
the width that conforms to its type. This option is enabled by default to conform to the ARM EABI.
Refer to the GCC manual for details.

Internal compiler error fixes. A bug has been fixed that caused the compiler to crash on code
containing a typedef alias for __builtin_va_list with option
-femit-struct-debug-baseonly. A second bug has been fixed that caused a crash when
compiling code using C99 variable-length arrays. Additionally, a compiler crash on code using 64-
bit integer multiplications with NEON vectorization enabled has also been fixed.

NEON narrowing-move instructions. The compiler now supports narrowing-move instructions
when auto-vectorizing for NEON. Loops accessing arrays of char or short values are now more
likely to be vectorized.

Improved support for atomic memory builtins. The compiler support for built-in atomic
memory access operations on ARMv7 targets has been improved. These builtins are documented in
the GCC manual.

Linker debug information fix. A bug in linker processing of debug information has been fixed.
The bug sometimes prevented the Sourcery G++ debugger from displaying source code if the execut-
able was linked with the --gc-sections option.

Absolute branch bug fixes. A bug that caused the assembler to crash on a branch to an absolute
address has been fixed. Linker handling of the resulting relocations has also been improved. Previously
this caused an invalid switch to ARM mode on ARMv7-M devices.

VMOV instruction bug fix. A bug that caused the assembler to incorrectly reject certain valid
immediate operands for the VMOV instruction has been fixed.

54

Sourcery CodeBench Lite Release Notes

Debugger warnings quieted. GDB no longer prints RMT ERROR diagnostics on connection to
the Sourcery G++ Debug Sprite. In spite of the alarming appearance of the messages, they were not
actually indicative of a serious problem.

A.1.5. Changes in Sourcery G++ Lite 2010.09-22

Changes to Sourcery G++ version numbering. Sourcery G++ product and Lite toolchains now
uniformly use a version numbering scheme of the form 2011.09-69. The major and minor parts of
the version number, in this case 2011.09, identify the release branch, while the final component is
a build number within the branch. There are also new preprocessor macros defined by the compiler
for the version number components so that you may conditionalize code for Sourcery G++ or partic-
ular Sourcery G++ versions. Details are available in the Sourcery G++ Knowledge Base1.

GCC fix for reference to undefined label. A bug in the optimizer that caused GCC to emit ref-
erences to undefined labels has been fixed.

Precision improvement with vectorization enabled. The GCC auto-vectorizer no longer uses
NEON floating-point instructions unless the -funsafe-math-optimizations option (implied
by -ffast-math) is specified. This is because NEON hardware does not fully support the IEEE
754 standard for floating-point arithmetic. In particular, very small quantities may be flushed to zero.

Alignment attributes. A bug has been fixed that caused the compiler to ignore alignment attributes
of C++ static member variables where the attribute was present on the definition, but not the declar-
ation.

naked attribute semantics. The naked function attribute now also implies the noinline
and noclone attributes. This fixes bugs resulting from invalid optimizations of functions with this
attribute.

Stack corruption bug fix. A bug in GCC has been fixed that caused stack corruption in functions
with the interrupt attribute.

GCC bug fix for push multiple instruction generation. A bug has been fixed that caused GCC
to generate incorrect push multiple instructions, causing an assembler warning register range
not in ascending order.

Thumb-2 internal compiler error fix. A bug has been fixed that caused the compiler to crash
when compiling Thumb-2 code using 64-bit integer arithmetic.

Compiler optimization improvements. The compiler has been enhanced with a number of op-
timization improvements, including:

• More efficient assignment for structures containing bitfields.

• Better code for initializing C++ arrays with explicit element initializers.

• Improved logic for eliminating/combining redundant comparisons in code with nested conditionals.

• Better selection of loop variables, resulting in fewer temporaries and more efficient register usage.

• More optimization of references to globals in position-independent code.

• Various Thumb code generation improvements.

1 https://support.codesourcery.com/GNUToolchain/kbentry1

55

Sourcery CodeBench Lite Release Notes

https://support.codesourcery.com/GNUToolchain/kbentry1
https://support.codesourcery.com/GNUToolchain/kbentry1

• Better code when constant addresses are used as arguments to inline assembly statements.

• Better code for copying small constant strings.

• Improved tuning for Cortex-M4 processors.

• Cortex-A9 specific tuning for VFP and NEON instructions.

• Use of more NEON features.

Preprocessor symbols for floating-point calling convention. Built-in preprocessor symbols
__ARM_PCS and __ARM_PCS_VFP are now defined to indicate the current floating-point calling
convention.

GCC version 4.5.1. Sourcery G++ Lite for ARM EABI is now based on GCC version 4.5.1. For
more information about changes from GCC version 4.4 that was included in previous releases, see
http://gcc.gnu.org/gcc-4.5/changes.html.

New -Wdouble-promotion warning option. The compiler has a new option,
-Wdouble-promotion, which enables warnings about implicit promotions of float values to
double. This option is useful when compiling code for processors (such as ARM Cortex-M4) that
have hardware support for single-precision floating-point arithmetic only, where unintentional use
of double precision results in dramatically slower code.

Linker bug fix. A bug that caused the linker error relocation truncated to fit:
R_ARM_THM_JUMP24 when linking some Thumb-2 applications has been fixed.

Assembler PC-relative store fix. A bug that caused the assembler to reject some valid PC-relative
store instructions has been fixed. It now issues a warning instead for architectures where these in-
structions are deprecated.

ARMv7-A linker bug fix. A bug in the linker support for --fix-cortex-a8, which is enabled
by default when linking ARMv7-A objects, has been fixed. Programs affected by the bug sometimes
crashed with segmentation fault or illegal instruction errors.

Smaller C++ programs with -g. An assembler bug has been fixed that caused unnecessary
references to exception-handling routines from C++ programs when debug information is enabled.
For programs that do not otherwise use exceptions, this change results in smaller code size.

Additional validation in the assembler. The assembler now diagnoses an error, instead of pro-
ducing an invalid object file, when directives such as .hidden are missing operands.

Assembler PC-relative load fix. An assembler bug that caused the assembler to reject some
references to global symbols has been fixed. This bug affected Thumb instructions of the form ldr
r0, symbol.

Strip bug fix. A bug in the strip and objcopy utilities, which resulted in stripped object files
that the linker could not recognize, has been fixed.

Binutils update. The binutils package has been updated to version 2.20.51.20100809 from the
FSF trunk. This update includes numerous bug fixes.

Additional alignment in CS3-defined linker scripts. Sourcery G++ now ensures 8-byte alignment
at additional points in CS3-defined linker scripts. Previously, placing a symbol in certain sections
broke the initialization of the .data and/or .bss sections.

56

Sourcery CodeBench Lite Release Notes

Newlib update. The Newlib package has been updated to version 1.18.0, with additions from the
community CVS trunk as of 2010-08-12. This update provides additional wide-character functions,
along with other bug fixes and enhancements.

malloc fix. A bug that sometimes caused free to dereference an invalid address has been
fixed. The bug was caused by incorrect handling within malloc of calls to sbrk from outside of
malloc.

Improved support for debugging RealView® C++ programs . GDB has been enhanced to
handle some debug information contained in binaries produced by the ARM RealView® compiler.
Formerly, GDB sometimes crashed on programs which use C++ templates. Another bug has been
fixed that caused GDB to fail to place breakpoints in binaries produced by the ARM RealView®
compiler when the source file location for the breakpoint was specified as an absolute pathname.

GDB update. The included version of GDB has been updated to 7.2.50.20100908. This update
adds numerous bug fixes and new features, including improved C++ language support, a new command
to save breakpoints to a file, a new convenience variable $_thread that holds the number of the
current thread, among many other improvements.

GDB crash fix. A bug has been fixed that caused GDB to crash on launch if the environment
variable CYGPATH is set to a program that does not exist or cannot be executed.

Debug Sprite abnormal termination bug fix. The Sourcery G++ Debug Sprite no longer termin-
ates abnormally if GDB is killed while the target is waiting for semihosted I/O to complete. The bug
was only triggered when running GDB on a Windows host.

Semihosting support for gettimeofday. The Sourcery G++ Debug Sprite now provides a
semihosted implementation of the gettimeofday C library function.

A.1.6. Changes in Older Releases

For information about changes in older releases of Sourcery G++ Lite for ARM EABI, please refer
to the Getting Started guide packaged with those releases.

57

Sourcery CodeBench Lite Release Notes

Appendix B
Sourcery CodeBench Lite
Licenses
Sourcery CodeBench Lite contains software provided under a variety of licenses. Some
components are “free” or “open source” software, while other components are proprietary.
This appendix explains what licenses apply to your use of Sourcery CodeBench Lite. You
should read this appendix to understand your legal rights and obligations as a user of
Sourcery CodeBench Lite.

58

B.1. Licenses for Sourcery CodeBench Lite
Components
The table below lists the major components of Sourcery CodeBench Lite for ARM EABI and the
license terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery CodeBench Lite. Sourcery
CodeBench Lite may contain free or open-source components not included in the list below; for a
definitive list, consult the source package corresponding to this release of Sourcery CodeBench Lite.

LicenseComponent

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Compiler Collection

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Binary Utilities

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Debugger

CodeSourcery LicenseSourcery CodeBench Debug Sprite
for ARM

CodeSourcery LicenseCodeSourcery Common Startup Code
Sequence

BSD License. For the text of the license and a complete list
of copyright holders, see Section B.3.2, “Newlib”.

Newlib C Library

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Make

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Core Utilities

The CodeSourcery License is available in Section B.2, “Sourcery CodeBench Software License
Agreement”.

Important

Although some of the licenses that apply to Sourcery CodeBench Lite are “free software”
or “open source software” licenses, none of these licenses impose any obligation on you to
reveal the source code of applications you build with Sourcery CodeBench Lite. You can
develop proprietary applications and libraries with Sourcery CodeBench Lite.

Sourcery CodeBench Lite may include some third party example programs and libraries in the
share/sourceryg++-arm-none-eabi-examples subdirectory. These examples are not
covered by the Sourcery CodeBench Software License Agreement. To the extent permitted by law,
these examples are provided by CodeSourcery as is with no warranty of any kind, including implied
warranties of merchantability or fitness for a particular purpose. Your use of each example is governed
by the license notice (if any) it contains.

59

Sourcery CodeBench Lite Licenses

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

B.2. Sourcery CodeBench™ Software License
Agreement
1. Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and

Mentor Graphics. If You are not acting on behalf of Yourself as an individual, then “You”
means Your company or organization.

2. The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery CodeBench™ Lite Edition (the “Software”).

3. Definitions.

3.1. Mentor Graphics Proprietary Components. The components of the Software that
are owned and/or licensed by Mentor Graphics and are not subject to a “free software”
or “open source” license, such as the GNU Public License. The Mentor Graphics Propri-
etary Components of the Software include, without limitation, the Sourcery CodeBench
Installer, any Sourcery CodeBench Eclipse plug-ins, the CodeSourcery C Library
(CSLIBC), and any Sourcery CodeBench Debug Sprite. For a complete list, refer to the
Getting Started Guide included with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.4. Redistributable Components. The Mentor Graphics Proprietary Components that
are intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,
CSLIBC and the CodeSourcery Common Startup Code Sequence (CS3). For a complete
list, refer to the Getting Started Guide included with the distribution.

4. License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license (a) to install and use the Mentor Graphics Proprietary Components of
the Software, (b) to transmit the Mentor Graphics Proprietary Components over an internal
computer network, (c) to copy the Mentor Graphics Proprietary Components for Your internal
use only, and (d) to distribute the Redistributable Component(s) in binary form only and only
as part of Licensee object code developed with the Software that provides substantially different
functionality than the Redistributable Component(s).

5. Restrictions. You may not: (i) copy or permit others to use the Mentor Graphics Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the Mentor
Graphics Proprietary Components of the Software to any third party, except as expressly provided
above; or (iii) reverse engineer, decompile, or disassemble the Mentor Graphics Proprietary
Components of the Software, except to the extent this restriction is expressly prohibited by ap-
plicable law.

5.1.

6. “Free Software” or “Open Source” License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by Mentor Graphics. Sourcery

60

Sourcery CodeBench Lite Licenses

CodeBench includes components provided under various different licenses. The Getting Started
Guide provides an overview of which license applies to different components, and, for compon-
ents subject to the Eclipse Public License, contains information on how to obtain the source
code. Definitive licensing information for each “free software” or “open source” component is
available in the relevant source file.

7. Mentor Graphics Trademarks. Notwithstanding any provision in a “free software” or
“open source” license agreement applicable to a component of the Software that permits You
to distribute such component to a third party in source or binary form, You may not use any
Mentor Graphics trademark, whether registered or unregistered, including without limitation,
CodeSourcery™, Sourcery CodeBench™, the CodeSourcery crystal ball logo, or the Sourcery
CodeBench splash screen, or any confusingly similar mark, in connection with such distribution,
and You may not recompile the Open Source Software Components with the
--with-pkgversion or --with-bugurl configuration options that embed Mentor
Graphics trademarks in the resulting binary.

8. Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. Mentor Graphics may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the Mentor Graphics Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

9. Transfers. You may not transfer any rights under this Agreement without the prior written
consent of Mentor Graphics, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

10. Ownership. Mentor Graphics owns and/or has licensed the Mentor Graphics Proprietary
Components of the Software and all intellectual property rights embodied therein, including
copyrights and valuable trade secrets embodied in its design and coding methodology. The
Mentor Graphics Proprietary Components of the Software are protected by United States
copyright laws and international treaty provisions. Mentor Graphics also owns all rights, title
and interest in and with respect to its trade names, domain names, trade dress, logos, trademarks,
service marks, and other similar rights or interests in intellectual property. This Agreement
provides You only a limited use license, and no ownership of any intellectual property.

11. Warranty Disclaimer; Limitation of Liability. MENTOR GRAPHICS AND ITS LI-
CENSORS PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS.
MENTOR GRAPHICS DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED. MENTOR GRAPHICS SPECIFICALLY DISCLAIMS THE IMPLIED WAR-
RANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE
IS NO WARRANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE
WILL BE UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFT-
WARE WILL MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY,
ACCURACY, PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION,
INSTALLATION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY
CONSTITUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE
SOFTWARE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

12. Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

61

Sourcery CodeBench Lite Licenses

13. Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL MENTOR GRAPHICS
BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-
ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
MENTOR GRAPHICS' LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE
WHATSOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE
AMOUNT PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS
ONE YEAR PERIOD.

14. Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

15. U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

16. Licensee Outside The U.S. If You are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

17. Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

18. Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to

62

Sourcery CodeBench Lite Licenses

this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted
by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

19. Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

20. Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of Mentor Graphics and shall not have the power or authority
to bind or obligate Mentor Graphics in any manner to any third party.

21. Force Majeure. Neither Mentor Graphics nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

22. Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

B.3. Attribution
This version of Sourcery CodeBench Lite may include code based on work under the following
copyright and permission notices:

B.3.1. Android Open Source Project

/*
 * Copyright (C) 2008 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the

63

Sourcery CodeBench Lite Licenses

 * distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

B.3.2. Newlib

The newlib subdirectory is a collection of software from several sources.

Each file may have its own copyright/license that is embedded in the source
file. Unless otherwise noted in the body of the source file(s), the following copyright
notices will apply to the contents of the newlib subdirectory:

(1) Red Hat Incorporated

Copyright (c) 1994-2007 Red Hat, Inc. All rights reserved.

This copyrighted material is made available to anyone wishing to use,
modify, copy, or redistribute it subject to the terms and conditions
of the BSD License. This program is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
including the implied warranties of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. A copy of this license is available at
http://www.opensource.org/licenses. Any Red Hat trademarks that are
incorporated in the source code or documentation are not subject to
the BSD License and may only be used or replicated with the express
permission of Red Hat, Inc.

(2) University of California, Berkeley

Copyright (c) 1981-2000 The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.
 * Neither the name of the University nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

(3) David M. Gay (AT&T 1991, Lucent 1998)

The author of this software is David M. Gay.

64

Sourcery CodeBench Lite Licenses

Copyright (c) 1991 by AT&T.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

The author of this software is David M. Gay.

Copyright (C) 1998-2001 by Lucent Technologies
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of Lucent or any of its entities
not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

(4) Advanced Micro Devices

Copyright 1989, 1990 Advanced Micro Devices, Inc.

This software is the property of Advanced Micro Devices, Inc (AMD) which
specifically grants the user the right to modify, use and distribute this
software provided this notice is not removed or altered. All other rights
are reserved by AMD.

AMD MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
SOFTWARE. IN NO EVENT SHALL AMD BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH OR ARISING FROM THE FURNISHING, PERFORMANCE, OR
USE OF THIS SOFTWARE.

So that all may benefit from your experience, please report any problems
or suggestions about this software to the 29K Technical Support Center at
800-29-29-AMD (800-292-9263) in the USA, or 0800-89-1131 in the UK, or
0031-11-1129 in Japan, toll free. The direct dial number is 512-462-4118.

Advanced Micro Devices, Inc.
29K Support Products
Mail Stop 573
5900 E. Ben White Blvd.
Austin, TX 78741
800-292-9263

(5) C.W. Sandmann

Copyright (C) 1993 C.W. Sandmann

This file may be freely distributed as long as the author's name remains.

65

Sourcery CodeBench Lite Licenses

(6) Eric Backus

(C) Copyright 1992 Eric Backus

This software may be used freely so long as this copyright notice is
left intact. There is no warrantee on this software.

(7) Sun Microsystems

Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.

Developed at SunPro, a Sun Microsystems, Inc. business.
Permission to use, copy, modify, and distribute this
software is freely granted, provided that this notice is preserved.

(8) Hewlett Packard

(c) Copyright 1986 HEWLETT-PACKARD COMPANY

To anyone who acknowledges that this file is provided "AS IS"
without any express or implied warranty:
 permission to use, copy, modify, and distribute this file
for any purpose is hereby granted without fee, provided that
the above copyright notice and this notice appears in all
copies, and that the name of Hewlett-Packard Company not be
used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
Hewlett-Packard Company makes no representations about the
suitability of this software for any purpose.

(9) Hans-Peter Nilsson

Copyright (C) 2001 Hans-Peter Nilsson

Permission to use, copy, modify, and distribute this software is
freely granted, provided that the above copyright notice, this notice
and the following disclaimer are preserved with no changes.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

(10) Stephane Carrez (m68hc11-elf/m68hc12-elf targets only)

Copyright (C) 1999, 2000, 2001, 2002 Stephane Carrez (stcarrez@nerim.fr)

The authors hereby grant permission to use, copy, modify, distribute,
and license this software and its documentation for any purpose, provided
that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement,
license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors
and need not follow the licensing terms described here, provided that
the new terms are clearly indicated on the first page of each file where
they apply.

(11) Christopher G. Demetriou

Copyright (c) 2001 Christopher G. Demetriou
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
 derived from this software without specific prior written permission.

66

Sourcery CodeBench Lite Licenses

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(12) SuperH, Inc.

Copyright 2002 SuperH, Inc. All rights reserved

This software is the property of SuperH, Inc (SuperH) which specifically
grants the user the right to modify, use and distribute this software
provided this notice is not removed or altered. All other rights are
reserved by SuperH.

SUPERH MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS SOFTWARE. IN NO EVENT SHALL SUPERH BE LIABLE FOR INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM
THE FURNISHING, PERFORMANCE, OR USE OF THIS SOFTWARE.

So that all may benefit from your experience, please report any problems
or suggestions about this software to the SuperH Support Center via
e-mail at softwaresupport@superh.com .

SuperH, Inc.
405 River Oaks Parkway
San Jose
CA 95134
USA

(13) Royal Institute of Technology

Copyright (c) 1999 Kungliga Tekniska Högskolan
(Royal Institute of Technology, Stockholm, Sweden).
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

3. Neither the name of KTH nor the names of its contributors may be
 used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY KTH AND ITS CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KTH OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(14) Alexey Zelkin

Copyright (c) 2000, 2001 Alexey Zelkin <phantom@FreeBSD.org>

67

Sourcery CodeBench Lite Licenses

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(15) Andrey A. Chernov

Copyright (C) 1997 by Andrey A. Chernov, Moscow, Russia.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(16) FreeBSD

Copyright (c) 1997-2002 FreeBSD Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

68

Sourcery CodeBench Lite Licenses

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(17) S. L. Moshier

Author: S. L. Moshier.

Copyright (c) 1984,2000 S.L. Moshier

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, THE AUTHOR MAKES NO REPRESENTATION
OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF THIS
SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

(18) Citrus Project

Copyright (c)1999 Citrus Project,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(19) Todd C. Miller

Copyright (c) 1998 Todd C. Miller <Todd.Miller@courtesan.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

69

Sourcery CodeBench Lite Licenses

(20) DJ Delorie (i386)
Copyright (C) 1991 DJ Delorie
All rights reserved.

Redistribution and use in source and binary forms is permitted
provided that the above copyright notice and following paragraph are
duplicated in all such forms.

This file is distributed WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

(21) Free Software Foundation LGPL License (*-linux* targets only)

 Copyright (C) 1990-1999, 2000, 2001 Free Software Foundation, Inc.
 This file is part of the GNU C Library.
 Contributed by Mark Kettenis <kettenis@phys.uva.nl>, 1997.

 The GNU C Library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 The GNU C Library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with the GNU C Library; if not, write to the Free
 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301 USA.

(22) Xavier Leroy LGPL License (i[3456]86-*-linux* targets only)

Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr)

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.

(23) Intel (i960)

Copyright (c) 1993 Intel Corporation

Intel hereby grants you permission to copy, modify, and distribute this
software and its documentation. Intel grants this permission provided
that the above copyright notice appears in all copies and that both the
copyright notice and this permission notice appear in supporting
documentation. In addition, Intel grants this permission provided that
you prominently mark as "not part of the original" any modifications
made to this software or documentation, and that the name of Intel
Corporation not be used in advertising or publicity pertaining to
distribution of the software or the documentation without specific,
written prior permission.

Intel Corporation provides this AS IS, WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Intel makes no guarantee or
representations regarding the use of, or the results of the use of,
the software and documentation in terms of correctness, accuracy,
reliability, currentness, or otherwise; and you rely on the software,
documentation and results solely at your own risk.

IN NO EVENT SHALL INTEL BE LIABLE FOR ANY LOSS OF USE, LOSS OF BUSINESS,
LOSS OF PROFITS, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES

70

Sourcery CodeBench Lite Licenses

OF ANY KIND. IN NO EVENT SHALL INTEL'S TOTAL LIABILITY EXCEED THE SUM
PAID TO INTEL FOR THE PRODUCT LICENSED HEREUNDER.

(24) Hewlett-Packard (hppa targets only)

(c) Copyright 1986 HEWLETT-PACKARD COMPANY

To anyone who acknowledges that this file is provided "AS IS"
without any express or implied warranty:
 permission to use, copy, modify, and distribute this file
for any purpose is hereby granted without fee, provided that
the above copyright notice and this notice appears in all
copies, and that the name of Hewlett-Packard Company not be
used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
Hewlett-Packard Company makes no representations about the
suitability of this software for any purpose.

(25) Henry Spencer (only *-linux targets)

Copyright 1992, 1993, 1994 Henry Spencer. All rights reserved.
This software is not subject to any license of the American Telephone
and Telegraph Company or of the Regents of the University of California.

Permission is granted to anyone to use this software for any purpose on
any computer system, and to alter it and redistribute it, subject
to the following restrictions:

1. The author is not responsible for the consequences of use of this
 software, no matter how awful, even if they arise from flaws in it.

2. The origin of this software must not be misrepresented, either by
 explicit claim or by omission. Since few users ever read sources,
 credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be
 misrepresented as being the original software. Since few users
 ever read sources, credits must appear in the documentation.

4. This notice may not be removed or altered.

(26) Mike Barcroft

Copyright (c) 2001 Mike Barcroft <mike@FreeBSD.org>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(27) Konstantin Chuguev (--enable-newlib-iconv)

Copyright (c) 1999, 2000
 Konstantin Chuguev. All rights reserved.

71

Sourcery CodeBench Lite Licenses

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

 iconv (Charset Conversion Library) v2.0

(28) Artem Bityuckiy (--enable-newlib-iconv)

Copyright (c) 2003, Artem B. Bityuckiy, SoftMine Corporation.
Rights transferred to Franklin Electronic Publishers.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(29) IBM, Sony, Toshiba (only spu-* targets)

 (C) Copyright 2001,2006,
 International Business Machines Corporation,
 Sony Computer Entertainment, Incorporated,
 Toshiba Corporation,

 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the names of the copyright holders nor the names of their
 contributors may be used to endorse or promote products derived from this
 software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

72

Sourcery CodeBench Lite Licenses

 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.

(30) - Alex Tatmanjants (targets using libc/posix)

 Copyright (c) 1995 Alex Tatmanjants <alex@elvisti.kiev.ua>
 at Electronni Visti IA, Kiev, Ukraine.
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(31) - M. Warner Losh (targets using libc/posix)

 Copyright (c) 1998, M. Warner Losh <imp@freebsd.org>
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(32) - Andrey A. Chernov (targets using libc/posix)

 Copyright (C) 1996 by Andrey A. Chernov, Moscow, Russia.
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright

73

Sourcery CodeBench Lite Licenses

 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(33) - Daniel Eischen (targets using libc/posix)

 Copyright (c) 2001 Daniel Eischen <deischen@FreeBSD.org>.
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(34) - Jon Beniston (only lm32-* targets)

 Contributed by Jon Beniston <jon@beniston.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(35) - ARM Ltd (arm and thumb variant targets only)

74

Sourcery CodeBench Lite Licenses

 Copyright (c) 2009 ARM Ltd
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 3. The name of the company may not be used to endorse or promote
 products derived from this software without specific prior written
 permission.

 THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(36) - CodeSourcery, Inc.

Copyright (c) 2009 CodeSourcery, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of CodeSourcery nor the
 names of its contributors may be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY CODESOURCERY, INC. ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL CODESOURCERY BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(37) MIPS Technologies, Inc
/*
 * Copyright (c) 2009 MIPS Technologies, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above
 * copyright
 * notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with
 * the distribution.
 * * Neither the name of MIPS Technologies Inc. nor the names of its

75

Sourcery CodeBench Lite Licenses

 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

76

Sourcery CodeBench Lite Licenses

	Sourcery CodeBench Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Configuring Sourcery CodeBench Lite for the Target System
	1.3. Building Your Program
	1.4. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Downloading an Installer
	2.4. Installing Sourcery CodeBench Lite
	2.4.1. Using the Sourcery CodeBench Lite Installer on Microsoft Windows
	2.4.2. Using the Sourcery CodeBench Lite Installer on GNU/Linux Hosts
	2.4.3. Installing Sourcery CodeBench Lite from a Compressed Archive

	2.5. Installing Sourcery CodeBench Lite Updates
	2.6. Setting up the Environment
	2.6.1. Setting up the Environment on Microsoft Windows Hosts
	2.6.1.1. Setting the PATH
	2.6.1.2. Working with Cygwin

	2.6.2. Setting up the Environment on GNU/Linux Hosts

	2.7. Uninstalling Sourcery CodeBench Lite
	2.7.1. Using the Sourcery CodeBench Lite Uninstaller on Microsoft Windows
	2.7.2. Using the Sourcery CodeBench Lite Uninstaller on GNU/Linux
	2.7.3. Uninstalling a Compressed Archive Installation

	Chapter 3 Sourcery CodeBench Lite for ARM EABI
	3.1. Included Components and Features
	3.2. Library Configurations
	3.3. Using Flash Memory
	3.4. Using VFP Floating Point
	3.4.1. Enabling Hardware Floating Point
	3.4.2. NEON SIMD Code
	3.4.3. Half-Precision Floating Point

	3.5. Fixed-Point Arithmetic
	3.6. ABI Compatibility
	3.7. ARM Profiling Implementation
	3.8. Object File Portability

	Chapter 4 Using Sourcery CodeBench from the Command Line
	4.1. Building an Application
	4.2. Running Applications on the Target System
	4.3. Running Applications in the Simulator
	4.4. Running Applications from GDB
	4.4.1. Connecting to the GDB Simulator
	4.4.2. Connecting to the Sourcery CodeBench Debug Sprite
	4.4.3. Connecting to an External GDB Server
	4.4.4. Loading and Running Applications

	Chapter 5 CS3™: The CodeSourcery Common Startup Code Sequence
	5.1. Linker Scripts
	5.1.1. Program and Data Placement
	5.1.2. Hosting and Semihosting
	5.1.3. Specifying a Linker Script

	5.2. Program Startup and Termination
	5.2.1. The Hard Reset Phase
	5.2.2. The Assembly Initialization Phase
	5.2.3. The C Initialization Phase
	5.2.4. Arguments to main
	5.2.5. Program Termination

	5.3. Memory Layout
	5.3.1. Memory Regions and Program Sections
	5.3.2. Programmatic Access to the CS3 Memory Map
	5.3.3. Heap and Stack Placement

	5.4. Interrupt Vectors and Handlers
	5.4.1. ARM EABI Interrupt Vector Implementation
	5.4.2. Writing Interrupt Handlers

	5.5. Supported Boards for ARM EABI
	5.6. Interrupt Vector Tables
	5.6.1. __cs3_interrupt_vector_arm
	5.6.2. __cs3_interrupt_vector_micro

	Chapter 6 Sourcery CodeBench Debug Sprite
	6.1. Probing for Debug Devices
	6.2. Debug Sprite Example
	6.3. Invoking Sourcery CodeBench Debug Sprite
	6.4. Sourcery CodeBench Debug Sprite Options
	6.5. Remote Debug Interface Devices
	6.6. Actel FlashPro Devices
	6.6.1. Installing FlashPro Windows drivers

	6.7. Altera Devices
	6.7.1. Setting Up the Altera Device
	6.7.2. Hardware Breakpoints

	6.8. Debugging a Remote Board
	6.9. Supported Board Files
	6.10. Board File Syntax

	Chapter 7 Next Steps with Sourcery CodeBench
	7.1. Sourcery CodeBench Knowledge Base
	7.2. Example Programs
	7.2.1. Other Examples

	7.3. Manuals for GNU Toolchain Components

	Appendix A Sourcery CodeBench Lite Release Notes
	A.1. Changes in Sourcery CodeBench Lite for ARM EABI
	A.1.1. Changes in Sourcery CodeBench Lite 2011.09-69
	A.1.2. Changes in Sourcery G++ Lite 2011.03-42
	A.1.3. Changes in Sourcery G++ Lite 2011.03-13
	A.1.4. Changes in Sourcery G++ Lite 2010.09-51
	A.1.5. Changes in Sourcery G++ Lite 2010.09-22
	A.1.6. Changes in Older Releases

	Appendix B Sourcery CodeBench Lite Licenses
	B.1. Licenses for Sourcery CodeBench Lite Components
	B.2. Sourcery CodeBench Software License Agreement
	B.3. Attribution
	B.3.1. Android Open Source Project
	B.3.2. Newlib

