
 

 

 

Intel® SDK for UPnP™ Devices 

Programming Guide 

Intel® SDK for UPnP™ Devices Version 1.2.1 

November 2002 

 



 

ii Intel® SDK for UPnP™ Devices Version 1.2.1 

Notice 

Disclaimer 
INTEL CORPORATION MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS 
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  INTEL 
CORPORATION ASSUMES NO RESPONSIBILITY FOR ANY ERRORS THAT MAY APPEAR 
IN THIS DOCUMENT.  INTEL CORPORATION MAKES NO COMMITMENT TO UPDATE OR 
TO KEEP CURRENT THE INFORMATION CONTAINED IN THIS DOCUMENT. 

THIS SPECIFICATION IS COPYRIGHTED BY AND SHALL REMAIN THE PROPERTY OF 
INTEL CORPORATION.  NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR 
OTHERWISE TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED HEREIN. 

INTEL DISCLAIMS ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF 
ANY PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN 
THIS SPECIFICATION.  INTEL DOES NOT WARRANT OR REPRESENT THAT SUCH 
IMPLEMENTATIONS WILL NOT INFRINGE SUCH RIGHTS. 

NO PART OF THIS DOCUMENT MAY BE COPIED OR REPRODUCED IN ANY FORM OR BY 
ANY MEANS WITHOUT PRIOR WRITTEN CONSENT OF INTEL CORPORATION. 
INTEL CORPORATION RETAINS THE RIGHT TO MAKE CHANGES TO THESE 
SPECIFICATIONS AT ANY TIME, WITHOUT NOTICE. 

 

Legal Notices 
 

Intel UPnP software products are copyrighted by, and shall remain the property of, Intel 
Corporation.  Use, duplication or disclosure is subject to restrictions stated in Intel's Software 
License Agreement, or in the case of software delivered to the government, in accordance with 
the software license agreement as defined in FAR 52.227-7013. 

Copyright© 2002 Intel Corporation.  All rights reserved. 

Intel Corporation, 5200 N.E.  Elam Young Parkway, Hillsboro, OR 97124-6497 
 
§ Other brands and names are the property of their respective owners. 

 



 

Intel® SDK for UPnP™ Devices Version 1.2.1 iii 

Contents 
1 Overview.................................................................................................................................... 1 

1.1 UPnP Overview................................................................................................................1 
1.1.1 Discovery.............................................................................................................1 
1.1.2 Description...........................................................................................................2 
1.1.3 Control ................................................................................................................2 
1.1.4 Eventing ..............................................................................................................2 
1.1.5 Presentation .........................................................................................................3 
1.1.6 Control Point and Device Interaction .....................................................................3 

1.2 SDK Architecture.............................................................................................................5 
1.2.1 Device/Control Point Application ..........................................................................5 
1.2.2 SDK API.............................................................................................................5 
1.2.3 SSDP...................................................................................................................6 
1.2.4 Mini Web Server ..................................................................................................6 
1.2.5 GENA .................................................................................................................6 
1.2.6 SOAP..................................................................................................................6 
1.2.7 HTTP ..................................................................................................................6 
1.2.8 Mini Server ..........................................................................................................6 
1.2.9 ThreadUtil Library................................................................................................7 
1.2.10 XML Parser .........................................................................................................7 
1.2.11 BSD Socket Layer................................................................................................7 

1.3 Virtual Directories ............................................................................................................8 

2 Writing a UPnP Device ............................................................................................................ 10 
2.1 Setup and Initialization ...................................................................................................10 

2.1.1 Initializing the SDK............................................................................................10 
2.1.2 Setting a Root Directory......................................................................................11 
2.1.3 Registering a Root Device...................................................................................11 
2.1.4 Device Specific Initialization...............................................................................12 
2.1.5 Advertising the Device........................................................................................12 

2.2 Handling Requests..........................................................................................................12 
2.2.1 Subscription Requests.........................................................................................13 
2.2.2 Get Variable Requests.........................................................................................14 
2.2.3 Action Requests .................................................................................................16 

2.3 Sending Events...............................................................................................................17 

2.4 Shutting Down ...............................................................................................................18 

3 Writing a UPnP Control Point................................................................................................. 19 
3.1 Setup and Initialization ...................................................................................................19 

3.1.1 SDK Initialization...............................................................................................19 
3.1.2 Control Point Application Specific Initia lization...................................................20 
3.1.3 Control Point Registration ...................................................................................20 

3.2 Searching for Something Interesting ................................................................................20 

3.3 Retrieving Descriptions ...................................................................................................22 

3.4 Watching for Events .......................................................................................................23 



 

iv Intel® SDK for UPnP™ Devices Version 1.2.1 

3.5 Invoking Actions ............................................................................................................24 

3.6 Shutting Down ...............................................................................................................26 
 



 

Intel® SDK for UPnP™ Devices Version 1.2.1 1 

1 Overview 
UPnP allows automatic discovery and control of services available on the network from other devices without 
user intervention.  Devices that act as servers can advertise their services to clients.  Client systems, known as 
control points, can search for specific services on the network. When they find the devices with the desired 
services, the control points can retrieve detailed descriptions of the devices and services and interact from that 
point on. 

This document provides an overview of UPnP and provides examples of how to write a UPnP device and control 
point.  For a complete description of the Intel® SDK for UPnP Devices API functions, refer to the Intel® SDK for 
UPnP™ Devices v1.2 API Reference included with the SDK. 

The SDK also includes sample control point and device applications. For details on building and running the 
samples, see the README file in the sample directory of the SDK distribution. 

1.1 UPnP Overview 
This section provides a brief description of UPnP. For more information, refer to the document Universal Plug 
and Play Device Architecture, available from the UPnP Forum at http://www.upnp.org/resources/documents.asp.  

UPnP includes five basic phases: 
1. Discovery.  In this first phase, control points search for devices and services.  Similarly, devices multicast 

announcements of services they offer. 
2. Description.  Once a control point finds an interesting device or service, it requests from the device a 

complete description of the device, its component devices, and services. 
3. Control.  This phase allows control points to control one or more of the services contained in a device by 

enacting changes in the state of the device. 
4. Eventing.  This phase allows control points to keep in sync with the state of services in which it is 

interested.  Control points subscribe to the event server for a particular service and receive event 
notifications when that service’s state changes. 

5. Presentation.  The presentation phase allows a device to host a document, written in standard HTML, 
which can be a user interface for that device. 

The following sections describe each of these phases.  

1.1.1 Discovery 

In the discovery phase control points find devices and services, and devices announce their presence to control 
points using the Simple Service Discovery Protocol (SSDP). SSDP uses a variant of HTTP that operates over 
multicast UDP for broadcasts and another variant of HTTP that operates over unicast UDP for replies. 

A device may consist of other devices, each with its own services. Devices are identified both by type and by a 
unique identifier. Services are identified by their type. 

To search for devices or services on the network, control points use the HTTP M-SEARCH command multicast to 
the address 239.255.255.250:1900 over UDP. Any device on the network that matches the criteria the control 
point is searching for issues a unicast UDP reply that includes the URL to its description document (see section 
1.1.2). If a control point receives one or more acceptable replies, it moves into the description phase. 

When a control point sends out a search request, it includes the amount of time it is willing to wait in an SSDP 
header.  Matching devices will wait a random time between zero and the number of seconds the control point 
indicated before responding.  If the control point does not receive any replies when its search time has expired, it 
can assume that there are currently no matching devices on the network. 



 

2 Intel® SDK for UPnP™ Devices Version 1.2.1 

Devices don’t have to wait for a control point to search for their services.  They can advertise their device 
availability by means of the SSDP NOTIFY command on the 239.255.255.250:1900 multicast address.  When 
control points see this NOTIFY multicast, they can request the device’s description document using a standard 
HTTP GET request to the URL in the NOTIFY message.  Devices must send a notification when their services 
will no longer be available. 

1.1.2 Description 

When a control point locates a service it wants to know more about, it requests the description document.  The 
description is an XML document describing the device, including:  

• Manufacturer information, version, and so on. 

• Any URLs to icons that can be used for the device. 

• A list of embedded devices. 

• A list of services supported by the device. 

For more information on the format of the description document, refer to the document Universal Plug and Play 
Device Architecture. 

The control point requests the description document using HTTP over TCP. The control point performs a standard 
HTTP GET command (similar to retrieving a Web page). On the server side, the device runs a standard HTTP 
server—either a full Web server such as Apache or a mini-server. Many of the elements in the description 
document are URLs.  Those elements are also retrieved using HTTP/TCP.  

1.1.3 Control 

Once a control point discovers a device and retrieves its description document, it may want to control one or more 
of the services contained in the device. The Simple Object Access Protocol (SOAP) allows a control point to 
query or change elements in a service’s state table. SOAP uses the POST or M-POST HTTP command 
transported over TCP.   

SOAP uses XML to specify what actions to take.  The control point creates the XML document and posts it to the 
control URL for the service, as specified in the description document. The control point can request current values 
and make changes to the service’s state table. 

On the server side, the control server waits for control requests. The control server is an HTTP-like server 
implementing the SOAP protocol.  A device can operate more than one control server depending on the 
combination of services provided by the device. 

1.1.4 Eventing 

After a control point discovers a device and retrieves its description, it can stay informed of the state of a service 
offered by that device.  Interested control points subscribe to the device’s event notification service URL found in 
the description document for the particula r service.  An event notification is sent to the control point any time the 
state of the service changes, even if the control point causes the change.   

Subscribe and unsubscribe requests use HTTP/TCP to connect to the event URL contained in the description 
document for the service.  The control point specifies an URL where event notifications are made during 
subscription.  Events arrive by means of HTTP/TCP to the URL registered with the service.  The event 
notification includes a small XML document that describes the actual event, such as a change in the state table for 
the service. 



 

Intel® SDK for UPnP™ Devices Version 1.2.1 3 

On the server side, an event server waits for subscribe and unsubscribe requests.  The event server is an HTTP-
like server implementing the General Event Notification Architecture protocol (GENA).  A device may have to 
operate more than one event server depending on the combination of services provided by the device.   

1.1.5 Presentation 

For devices that need or support user interaction, in the presentation phase a control point can download an 
HTML document that represents the user interface for the device.  This is a standard HTML document that can 
provide a means of control or status display.   

The protocol for retrieving the presentation document, as with the description document, is HTTP over TCP.  The 
control point can use the presentation URL contained in the description document to request the presentation 
document.  Not all devices have a presentation document nor are all control points able to display a presentation 
document containing complex HTML objects such as frames, embedded Java§ applets, and so on. 

1.1.6 Control Point and Device Interaction 

The following diagram shows the sequence of interactions between a control point and device during the UPnP 
phases described in the previous sections. A description of each step follows the diagram. The descriptions 
indicate the API calls that a control point or device uses and what network packets the SDK issues.  It should be 
noted that due to the asynchronous nature of the sequence, the interactions do not necessarily happen in the order 
shown. The control and eventing steps can happen in any order. 

 

1.  M-SEARCH (multicast)

2.  NOTIFY (UDP unicast)

4.  200 OK (XML)

3.  HTTP GET description.xml

5.  SUBSCRIBE

6.  200 OK (SID)

7.  HTTP M-POST (SOAP)

8.  200 OK (SOAP Response)

9.  NOTIFY (Event)

C
on

tr
ol

 P
oi

nt D
evice

 



 

4 Intel® SDK for UPnP™ Devices Version 1.2.1 

1. The control point sends out a search request using the UpnpSearchAsync() API. The SDK for UPnP 
Devices issues a multicast M-SEARCH SSDP message onto the network. 

2. If the device matches what the control point is searching for, the SDK issues a unicast UDP NOTIFY 
response with the URL to the device’s description document.  The SDK responds automatically from 
information contained in the device description document registered using 
UpnpRegisterRootDevice() or UpnpRegisterRootDevice2(). 

3. If the control point wants more information on the device, it calls UpnpDownloadXmlDoc() with the 
URL with which the device responded.  UpnpDownloadXmlDoc() downloads the XML description 
document using a standard HTTP GET request and returns a DOM document representing the device 
description. This step may be repeated to retrieve the service description documents for the device also. 

4. The web server contained in the device responds to the request and returns the XML description 
document. 

5. To receive automatic notifications of changes in the device, a control point subscribes to the services in 
which it is interested.  Control points subscribe via UpnpSubscribe() or 
UpnpSubscribeAsync(). The control point extracts the subscription URL out of the device 
description document for the service or services to which it would like to subscribe, and calls one of the 
subscribe functions.  For each subscribe call, the SDK sends a SUBSCRIBE message via HTTP along 
with a URL to which to send the events. 

6. The device acknowledges the subscription request and returns a unique Subscription Identifier (SID). 

7. The control point instructs the device to perform some action by changing one of the state variables 
contained inside the device.  The URL to send control requests is contained in the device description 
document.  The control point calls UpnpSendAction() or UpnpSendActionAsync() to change 
the state. The SDK issues a SOAP action via an HTTP M-POST command. 

8. The device changes the state of the internal variable and issues a SOAP response message. 

9. The device can notify clients of changes in its state because of either explicit actions, as in step 8, or 
implicit changes in the device itself. The device calls UpnpNotify() or UpnpNotifyExt() to send 
the updates.  The SDK automatically notifies all subscribed control points via a unicast NOTIFY message 
over HTTP. 

 



 

Intel® SDK for UPnP™ Devices Version 1.2.1 5 

1.2 SDK Architecture 
The following diagram shows the architecture of the SDK: 
 

 
 

SSDP

UPnP SDK API

SOAP
WEB

ServerGENA

MiniServer

BSD socket layer

HTTP Parser

XML Parser

XML Parser
API

Threadutil
Library

ThreadUtil API (
timer thread,

threadpool and
mutexes)

Underlying OS

Device/Control Point

Device/Control Point
handle table

 

Figure 1: A high-level diagram of the SDK architecture  

The following sections describe each part of the diagram. For more information on any of the protocols, refer to 
the document Universal Plug and Play Device Architecture. 

1.2.1 Device/Control Point Application 

The customer provides the client or server application software to run on top of the SDK.  The client or server 
application implements the functionality of a specific service.  For example, for a gateway service, the server 
software implements the “Enable Internet” functionality that the control point software can control using UPnP.  
A sample service and control point application is included as part of the SDK. 

1.2.2 SDK API 

The SDK API abstracts the details of the core UPnP protocols away from the control point or service application 
and gives applications access to the functionality in a unified interface.  This frees the developers from concern 
about the details of the SSDP, GENA, and SOAP protocols in their code. 



 

6 Intel® SDK for UPnP™ Devices Version 1.2.1 

The API layer also maintains the table of control point and device handles registered with the SDK.  On each call 
to an API function, the SDK will validate the handle is known by checking in the handle table.  Currently, there is 
a limit of one control point and one device handle that can be allocated in one process at a time.  In other words, 
an application can register once as a device and once as a control point.  Any further attempts to register by that 
application will fail. 

For information about the API, refer to the Intel® SDK for UPnP™ Devices v1.2 API Reference. 

1.2.3 SSDP 

The SSDP module implements the Simple Service Discovery Protocol, providing the discovery phase of UPnP. 
This module allows control points to send multicast searches for services and devices on the network and receives 
the replies to those searches.  It also notifies them when new services are announced on the network. 

This module also allows devices to multicast announcements of their services to the network. 

1.2.4 Mini Web Server 

The Mini Web Server module handles the standard HTTP GET requests.  Many UPnP elements are requested 
using this basic HTTP service.  This module manages the locations of documents that are available using the GET 
command and implements the actual streaming of the data using the HTTP protocol.   

The Mini Web Server module implements the RANGE header from HTTP/1.1.  This header allows a remote client 
to request a certain piece (or pieces) of a file rather than the entire file.  An application for this is seeking to a 
particular track within a play list or jumping to an offset inside a media file. 

The Mini Web Server also supports HTTP POST requests for Virtual Directories but not for any others.  For a 
definition of Virtual Directories, refer to section 1.3. 

1.2.5 GENA 

The GENA module implements the General Event Notification Architecture, providing the eventing phase of 
UPnP.  Control points use this module to subscribe or unsubscribe to services of interest.  Service applications 
receive subscribe and unsubscribe notifications from this module and generate the appropriate events. 

1.2.6 SOAP 

The SOAP module implements the Simple Object Access Protocol, providing the control phase of UPnP.  Control 
points use this module to generate the appropriate XML documents to retrieve or change the state tables of a 
service.  The server uses this module to decode the control requests and generate the correct responses. 

1.2.7 HTTP 

The HTTP module parses the HTTP headers for incoming messages and aids in constructing the appropriate 
headers for outgoing messages.  It understands a number of HTTP/1.0 and HTTP/1.1 headers.  It also provides the 
parsing for HTTP/1.1 chunked encoding.  The SDK does not generate chunked encoding by default on GET 
requests with HTTP/1.1.  It does, however, fully support decoding it when it receives chunked encoded messages. 

1.2.8 Mini Server 

The Mini Server layer provides common functionality for GENA, SOAP, SSDP, and the mini-Web server. This 
layer accepts all network connections, determines which request is coming in, hands off the HTTP header to the 
HTTP module for parsing, and transfers the connection over to the appropriate protocol for processing.  The first 
line of the HTTP header contains the request.  The Mini Server layer minimally handles these commands: 

• GET.  Control points use the GET command to retrieve the description document and any of its sub-
elements including the presentation document, the service description documents, and the icons 



 

Intel® SDK for UPnP™ Devices Version 1.2.1 7 

associated with the device.  Using Virtual Directories, described in section 1.3, device applications can 
request the SDK to generate callbacks into the application to handle GET requests for certain directories.  
Refer to section 1.3 on page 8 for more information. 

• POST/M-POST.  A SOAP command is in the form of a POST or an M-POST command.  All POST 
commands posted to one of the control URLs specified in the device description document are transferred 
to the SOAP module for further processing.  POST commands are also allowed to Virtual Directories, 
generating a callback into the device application.  Refer to section 1.3 on page 8 for more information. 

• SUBSCRIBE.  SUBSCRIBE commands are transferred to the GENA module for further processing.  
Control points use SUBSCRIBE requests to subscribe or renew a subscription to event notifications for a 
particular service. 

• UNSUBSCRIBE.  UNSUBSCRIBE commands are transferred to the GENA module for further 
processing.  Control points use UNSUBSCRIBE commands to notify a server that they are no longer 
interested in receiving event notifications. 

• NOTIFY.  NOTIFY commands are transferred to other modules for further processing.  In the case of 
TCP connections, they are transferred to the GENA module. In the case of UDP connections, they are 
transferred to the SSDP module . NOTIFY commands can be event notifications sent from servers to 
control points containing a description of the event, or notification of a device or service appearing on, or 
disappearing from, the network. 

1.2.9 ThreadUtil Library 

The Intel SDK for UPnP Devices utilizes threads extensively to parallelize processing of UPnP traffic as much as 
possible .  The ThreadUtil library provides the SDK an abstraction of a POSIX-like thread API, thread 
management routes, and linked and free list management utilities.  The thread manager creates a pool of threads 
that can be “borrowed” to perform a task and returned back into the pool to be used for other purposes.  It 
maintains a ratio of how many jobs it has queued to the current number of threads in the pool.  If this ratio gets 
too large, it will increase the number of threads in the pool automatically.  Likewise, if threads sit in the pool idle 
for a long time, it will remove threads from the pool to decrease resource usage but always maintaining a 
configurable minimum number. 

1.2.10 XML Parser 

XML is used extensively in UPnP.  The description documents are XML documents. GENA uses XML to 
describe change in a service’s state. SOAP uses XML to format requests and responses. The SDK contains an 
XML parser used both by the core UPnP protocols and by the client or server software. 

The interface to the XML Parser uses a subset of the Document Object Model (DOM) Level 2 recommendation 
written by the World Wide Web Consortium (W3C).  The SDK provides a C interface.  It implements the Node, 
Attr, CDATASection, Document, Element, NamedNodeMap, and NodeList interfaces, but excludes 
the DOMImplementation, DocumentFragment, CharacterData, Text, and Comment interfaces.  See 
http://w3c.org/DOM/ for more information on DOM. 

1.2.11 BSD Socket Layer 

The SDK assumes the BSD Socket Layer (POSIX.1g) is provided by the operating system.  Although not part of 
the SDK, it is included in Figure 1 to illustrate the relationship between the SDK and the underlying operating 
system. 



 

8 Intel® SDK for UPnP™ Devices Version 1.2.1 

1.3 Virtual Directories 
The integrated Mini Web Server inside the SDK supports a concept known as Virtual Directories.  A Virtual 
Directory is a path accessible to HTTP clients that does not match the physical structure of the Mini Web Server’s 
root directory structure.  Normally, the URLs sent to a web server correspond to the actual physical structure of 
the files hosted by the web server.  The web server prefixes the URL passed from the client with its root directory 
and opens that file on the file system, feeding the data back to the client.  With a Virtual Directory, a device 
application can register specific directories that it wishes to receive callbacks from when a makes a request.  For 
example, assume a device has a directory structures such as this: 

<webroot> 
 index.html 

 device.xml 
 service.xml 

To retrieve index.html, a client would make a standard HTTP GET request: 

GET /index.html HTTP/1.0 

Suppose the device application has registered a Virtual Directory called “media”.  A client would make a request 
such as this: 

GET /media/MySong.mp3 HTTP/1.0 

The device application gets a callback from the Mini Web Server requesting the device application to provide the 
data to return to the client.  Where the data comes from does not matter to the Mini Web Server.  It could be 
streamed from the Internet, read from a file that is outside the Mini Web Server root directory, or could be 
generated dynamically. 

The API that a device application uses to receive these callbacks is very similar to a standard file interface 
consisting of a structure with six function pointers: 

• get_info() is the first callback for a request.  It passes a structure to the application with information 
about the URL a client is requesting.  The application passes back information about the file, such as the 
size, to the Mini Web Server.  This information becomes the basis of the HTTP response header. 

• open() returns a handle back to the Mini Web Server for subsequent operations.  What open actually 
does and what value the handle has is irrelevant to the Mini Web Server.  It will simply pass this handle 
to any subsequent calls. 

• read() retrieves a block of data.  The Mini Web Server calls this function repeatedly on an HTTP GET 
requests until it returns no more data. 

• write() writes a block of data.  The Mini Web Server calls this function repeatedly on an HTTP POST 
request to a Virtual Directory. 

• seek() changes the position in a file.  The Mini Web Server mainly uses this function to satisfy HTTP 
RANGE requests which ask for particular offsets into a file. 

• close() closes the handle. 

A device application registers these callback functions via UpnpSetVirtualDirCallbacks().  
UpnpAddVirtualDir() adds a new mapping to the list of Virtual Directories.  Note that the directory passed 
to UpnpAddVirtualDir() becomes the prefix that the Mini Web Server uses to determine if it should 
generate a callback.  UpnpRemoveVirtualDir() removes a single Virtual Directory mapping and 



 

Intel® SDK for UPnP™ Devices Version 1.2.1 9 

UpnpRemoveAllVirtualDirs() removes all mappings.  For more detail on each of these functions, consult 
the Intel® SDK for UPnP™ Devices v1.2 API Reference. 

 



 

10 Intel® SDK for UPnP™ Devices Version 1.2.1 

2 Writing a UPnP Device 
There are many ways to implement a UPnP device using the SDK for UPnP Devices.  However, any 
implementation must perform some basic steps.  Specifically, an application must: 

1. Set up and initialize the device by following these basic steps: 

a. Initialize the SDK using UpnpInit(). 

b. Set a root directory for the Mini Web Server using UpnpSetWebServerRootDir(). 

c. Register the device description document using UpnpRegisterRootDevice() or 
UpnpRegisterRootDevice2(). 

d. Perform any device-specific initialization. 

e. Advertise the device on the network using UpnpSendAdvertisement(). 

2. Handle asynchronous requests.  The device needs to handle three different types of requests: 

a. Requests to subscribe to notifications of service state changes. 

b. Requests to retrieve the current value of a service state variable. 

c. Requests to change the value of a service state variable. 

3. Keep control points up-to-date by sending events using UpnpNotify() or UpnpNotifyExt(). 

4. Shut down the device following these steps: 

a. Send out SSDP “bye-bye” messages and unregister the device from the SDK using 
UpnpUnRegisterRootDevice(). 

b. Shut down the SDK using UpnpFinish(). 

In the following discussion, the examples are drawn from the sample TV device implementation found in 
upnp/sample/tvdevice/.  Parts of the sample code have been removed in this document to aid in clarity.  
For complete descriptions of the SDK for UPnP Devices API functions, refer to the Intel® SDK for UPnP™ 
Devices v1.2 API Reference included with the SDK. 

2.1 Setup and Initialization 

2.1.1 Initializing the SDK 

Before starting a device implementation, it is important to write or obtain the device and service description 
documents that are going to be used.  These specify the type and number of services that the device supports, as 
well as actions, parameters, and variables that each service supports.  For more information refer to the Universal 
Plug and Play Device Architecture document or the relevant specification for the particular device.   

The device and service description documents the sample TV device uses are in 
upnp/sample/tvdevice/web.  It is important to note that the sample TV device is not a certified UPnP 
device.   

The application must initialize the SDK before using any of the API functions. 



 

Intel® SDK for UPnP™ Devices Version 1.2.1 11 

if ((ret = UpnpInit( ip_address, port )) != UPNP_E_SUCCESS) { 
      SampleUtil_Print( "Error with UpnpInit -- %d\n", ret ); 
      UpnpFinish(); 
      return ret; 
}  

The application can specify an IP address and port number during initialization. These are used to set the interface 
and port the server listens on for UPnP and HTTP requests.  If the IP address is NULL, the address of the first non-
null, non-loopback address is used.  If the port number is 0, a random port number is used.1  You can retrieve both 
the IP address and port number from the SDK after initialization by using UpnpGetServerIpAddress() and 
UpnpGetServerPort(). 

2.1.2 Setting a Root Directory 

Once the SDK has been initialized, the device application can specify the root directory of the web server. This is 
the local directory the web server searches in order to serve files in response to HTTP requests.  Specifying the 
root directory is optional. If a root directory is not specified, then only requests for documents in the virtual 
directory list are served via the registered callbacks. It is up to the application to insure that the specified directory 
contains the necessary files (such as the description documents for the device and services).  The web directory 
for the sample is /upnp/sample/tvdevice/web.  
char web_dir_path[] = “./web”; 
 
if ((ret = UpnpSetWebServerRootDir( web_dir_path )) != UPNP_E_SUCCESS) { 
 SampleUtil_Print( "Error specifying webserver root directory -- %s: 
         %d\n", web_dir_path, ret); 
 UpnpFinish(); 
 return ret; 
}  

Note that once UpnpInit() has succeeded, it is very important to call UpnpFinish() if the device shuts 
down due to an error.  This gives the SDK an opportunity to clean up the resources it has allocated. 

2.1.3 Registering a Root Device 

The next step in setting up the device is registering with the SDK. There are two functions for registering the 
device, UpnpRegisterRootDevice() and  UpnpRegisterRootDevice2(). The first function takes 
a fully qualified description URL as input, and the second can take the description document in a variety of forms. 
The example shows only the first case. 
if ((ret = UpnpRegisterRootDevice( desc_doc_url,  
          TvDeviceCallbackEventHandler,  
          &Cookie,  
          &device_handle ))  
  != UPNP_E_SUCCESS)  
{ 
 SampleUtil_Print( "Error registering the rootdevice : %d\n", ret ); 
 UpnpFinish(); 
 return ret; 
} 

The first parameter to the function is the description document URL. It must point to the valid description 
document of the device.  If the description document is a file being served by the web server included with the 

                                                                 
1 The current implementation listens to all interfaces. The IP address specified during initialization will only affect the IP 
address advertised during SSDP advertisements and search responses. 



 

12 Intel® SDK for UPnP™ Devices Version 1.2.1 

SDK, it should be located off of the directory specified in UpnpSetWebServerRootDir(). The second 
parameter registers a callback with the SDK. The prototype for the callback is: 
int CallbackFxn( Upnp_EventType EventType, void* Event, void* Cookie ); 

Whenever a request is received for the device from the network, such as a subscription request, a get variable 
request, or an action request, this function is called on an independent thread with the appropriate parameters. 
EventType specifies the type of request received, the Event parameter is a structure whose actual type differs 
based on the EventType, and Cookie is the application-specific data specified in 
UpnpRegisterRootDevice(). For the TV sample, the callback registered is: 
int TvDeviceCallbackEventHandler( Upnp_EventType EventType,  
          void *Event,  
          void *Cookie ) 

The third parameter to UpnpRegisterRootDevice() is a void pointer specified by the user. It can be 
anything the size of a pointer and can be used to point to application-specific data. It can also be NULL. The 
application is responsible for allocating and deallocating this pointer if it is used. The pointer is passed back to the 
application when it receives a request.  The final parameter to UpnpRegisterRootDevice() is a pointer to 
space allocated by the application to store the device handle. The device handle is used as a parameter to other 
API functions. 

2.1.4 Device-Specific Initialization 

So far we have not discussed initialization specific to the device or application.  Before the device is advertised, 
all device and application-specific initialization should be performed. Once the device has been advertised, it can 
start receiving requests immediately.  The device is responsible for maintaining the values of the service state 
variables as well as manipulating them correctly in response to actions.  In the TV device sample code, the 
function, TvDeviceStateTableInit() initializes the internal data structures used to store the state 
variables, service ids, action pointers, and so on. 

2.1.5 Advertising the Device 

The final step in setting up the UPnP device is sending out advertisements.  
int default_advr_expire = 100; 
 
if ((ret = UpnpSendAdvertisement( device_handle, default_advr_expire ))  
  != UPNP_E_SUCCESS) { 
 SampleUtil_Print( "Error sending advertisements : %d\n", ret ); 
 UpnpFinish(); 
 return ret; 
} 

The first parameter is the device handle returned during registration. The second parameter is the expiration time 
for the advertisement. During the lifetime of the device, the SDK automatically re-advertises the device before it 
expires.  

The device is now ready to receive requests. The application must set itself in a loop or wait for some condition in 
order to shut down.   

2.2 Handling Requests 
During the lifetime of a device, its main purpose is to handle requests sent to it by control points. When requests 
are received by the SDK, they are forwarded to the application through the callback specified when the device 
registered. The callback is invoked on an independent thread with the appropriate parameters, depending on the 
type of the request.  



 

Intel® SDK for UPnP™ Devices Version 1.2.1 13 

There are three requests handled by a device:  

• subscription requests 

• get variable requests 

• action requests 

Note that the device does not need to handle any discovery requests.  Since the SDK has the device description 
document for the device (passed during UpnpRegisterRootDevice()), it can automatically determine if the 
discovery search criteria matches the device.  If so, it responds with the URL of the device description document. 

The type of request is indicated in the callback through the EventType variable. The callback for the TV device 
sample is: 
int TvDeviceCallbackEventHandler( Upnp_EventType EventType,  
          void *Event,  
          void *Cookie ) 
{ 
    switch ( EventType ) { 
       
    case UPNP_EVENT_SUBSCRIPTION_REQUEST: 
       
 TvDeviceHandleSubscriptionRequest( 
     (struct Upnp_Subscription_Request *) Event); 
 break; 
 
    case UPNP_CONTROL_GET_VAR_REQUEST: 
 TvDeviceHandleGetVarRequest( 
     (struct Upnp_State_Var_Request *) Event); 
 break; 
 
    case UPNP_CONTROL_ACTION_REQUEST: 
 TvDeviceHandleActionRequest( 
     (struct Upnp_Action_Request *) Event); 
 break; 
 
    default: 
     SampleUtil_Print( "Error in TvDeviceCallbackEventHandler: unknown 
              event type %d\n", EventType ); 
    }  
 
    return 0; 
} 

2.2.1 Subscription Requests 

When a control point makes a subscription request, the SDK invokes the registered callback with the 
EventType variable set to UPNP_EVENT_SUBSCRIPTION_REQUEST. The device is responsible for 
accepting the subscription by calling either UpnpAcceptSubscription() or 
UpnpAcceptSubscriptionExt(), thus sending the current state table to the control point.  The difference 
between these two functions is simply how the application passes the state table to the SDK for sending to the 
subscribing control point.  UpnpAcceptSubscription() takes a couple of arrays of strings for the 
variable/value pairs.  UpnpAcceptSubscriptionExt() takes a DOM document for the current values of 
the variables.  The format of the DOM document is given in section 4.3 of the Universal Plug and Plug Device 
Architecture document.  The TV sample uses UpnpAcceptSubscription(): 



 

14 Intel® SDK for UPnP™ Devices Version 1.2.1 

int TvDeviceHandleSubscriptionRequest( IN struct Upnp_Subscription_Request * 
              sr_event )  
{ 
 unsigned int I = 0;  
 
 ithread_mutex_lock( &TVDevMutex ); 
   
 for ( i=0; I < TV_SERVICE_SERVCOUNT; i++ )  
 { 
  if ((strcmp(sr_event->UDN,tv_service_table[i].UDN) == 0) && 
      (strcmp(sr_event->ServiceId,tv_service_table[i].ServiceId) == 0))  
  { 
    
   UpnpAcceptSubscription( device_handle, 
       sr_event->UDN, 
       sr_event->ServiceId, 
       (const char **) 
          tv_service_table[i].VariableName, 
       (const char **)  
        tv_service_table[i].VariableStrVal, 
       tv_service_table[i].VariableCount, 
       sr_event->Sid ); 
      
  } 
 } 
 ithread_mutex_unlock( &TVDevMutex );  
 return 1; 
} 

In this case, the Event parameter passed to the callback is a pointer to a structure of type  struct 
Upnp_Subscription_Request. The subscription request structure specifies the UDN and ServiceID of the 
service for which the subscription is requested, along with the subscription identifier (SID). In the above sample, 
once the service is identified, the state variables, which are stored in tv_service_table[i], are sent to the 
control point using UpnpAcceptSubscription() . UpnpAcceptSubscription()  takes the following: 

• the device handle  
• the UDN 
• the ServiceID 
• the variable names (tv_service_table[i].VariableName) 
• the variable values (tv_service_table[i].VariableStrVal) 
• the number of variables (tv_service_table[i].VariableCount) 
• the SID 

Once the subscription has been accepted, the control point receives future events sent by the device. The sample 
code uses the TVDevMutex mutual exclusion variable to protect access to global data handled by the thread. The 
SDK callbacks are multi-threaded, and it is up to the device implementation to insure that access to shared data is 
protected.   

2.2.2 Get Variable Requests 

When a control point requests the current state of a variable, the SDK invokes the registered callback with the 
EventType set to UPNP_CONTROL_GET_VAR_REQUEST.  



 

Intel® SDK for UPnP™ Devices Version 1.2.1 15 

Note that the UPnP Forum has deprecated this capability.  For clients to access state variables, the preferable 
method is to have a specific action to retrieve the value.  Having this support in a device is not strictly necessary.  
The discussion below illustrates how an application supports this on top of the Intel SDK for UPnP Devices. 

The Event parameter passed to the callback is a pointer to a structure of type struct 
Upnp_State_Var_Request. The request structure specifies the UDN, ServiceID, and variable name of the 
requested variable.  The device is responsible for setting the current value of the variable in the structure.  
int TvDeviceHandleGetVarRequest( INOUT struct Upnp_State_Var_Request * 
                     cgv_event)  
{ 
 unsigned int I = 0, j = 0; 
 int getvar_succeeded = 0; 
     
 cgv_event->CurrentVal = NULL; 
   
 ithread_mutex_lock( &TVDevMutex ); 
   
 for ( i = 0; I < TV_SERVICE_SERVCOUNT; i++ )  
 { 
  //check udn and service id 
  if ((strcmp( cgv_event->DevUDN, tv_service_table[i].UDN ) == 0 ) && 
      (strcmp( cgv_event->ServiceID, tv_service_table[i].ServiceId ) 
    ==0 ))  
  { 
   //check variable name 
   for ( j = 0; j < tv_service_table[i].VariableCount; j++ )  
   { 
    if (strcmp( cgv_event->StateVarName,  
           tv_service_table[i].VariableName[j] ) == 0 )  
    { 
     getvar_succeeded = 1; 
     cgv_event->CurrentVal =  
      ixmlCloneDOMString( tv_service_table[i]. 
           VariableStrVal[j] ); 
     break; 
    } 
   }  
  } 
 } 
   
 if ( getvar_succeeded ) { 
  cgv_event->ErrCode = UPNP_E_SUCCESS; 
 } else { 
  cgv_event->ErrCode = 404; 
  strcpy( cgv_event->ErrStr, "Invalid Variable" ); 
 } 
   
 ithread_mutex_unlock( &TVDevMutex ); 
 return( cgv_event->ErrCode == UPNP_E_SUCCESS ); 
}  

The CurrentVal member of the structure must be set with a character string created with 
ixmlCloneDOMString(). This memory is released by the SDK once the value has been sent to the control 
point. Once again, the TVDevMutex mutual exclusion variable is used to protect data accessed by multiple 
threads. 



 

16 Intel® SDK for UPnP™ Devices Version 1.2.1 

2.2.3 Action Requests 

When a control point sends an action to the device, the SDK invokes the registered callback with the 
EventType set to UPNP_CONTROL_ACTION_REQUEST.  

The Event parameter passed to the callback is a pointer to a structure of type struct 
Upnp_Action_Request. The request structure specifies the UDN, ServiceID, Action Name, and the action 
request document (which contains the inbound parameters).  The device is responsible for navigating the 
document, extracting the relevant parameters, performing the requested action, creating a response document with 
outbound parameters (if applicable), and sending any events (if applicable). In the sample TV device, the action 
request is handled by the function TvDeviceHandleActionRequest(). This function in turn dispatches the 
request by looking up the action name in a table and retrieving the appropriate function. Each UPnP action is 
handled by a separate function. The prototype for the function is :  
int upnp_action( IN Document *in, OUT Document **out,  
       OUT char **errorString ). 

The function is passed the XML document specifying the parameters for the action and is required to create the 
response document, as well as send back an error string if appropriate. The function is required to return 
UPNP_E_SUCCESS on success and a non-zero error code otherwise. 

The TV device first sees which service the control point is invoking an action on: 
if ((strcmp( ca_event->DevUDN, 
   tv_service_table[TV_SERVICE_CONTROL].UDN) == 0 ) && 
    (strcmp( ca_event->ServiceID,tv_service_table[TV_SERVICE_CONTROL]. 
   ServiceId ) == 0 ))  
{ 
 service = TV_SERVICE_CONTROL; 
}  
else if ((strcmp( ca_event->DevUDN, 
        tv_service_table[TV_SERVICE_PICTURE].UDN) == 0 ) && 
    (strcmp( ca_event->ServiceID,tv_service_table[TV_SERVICE_PICTURE]. 
        ServiceId ) == 0 ))  
{ 
 service = TV_SERVICE_PICTURE; 
} 

Based on that service, it looks up the specific action and dispatches that to the action handler:  
for ( i = 0; ( (i < TV_MAXACTIONS) &&  
             ( tv_service_table[service].ActionNames[i] != NULL )); 
      i++) 
{ 
 if (!strcmp( ca_event->ActionName, 
                   tv_service_table[service].ActionNames[i] )) 
 { 
  retCode = tv_service_table[service].actions[i] 
   ( ca_event->ActionRequest,  
     &ca_event->ActionResult,  
     &errorString); 
  action_found = 1; 
  break; 
 } 
} 

As an example, here is the function implementing the SetChannel action: 



 

Intel® SDK for UPnP™ Devices Version 1.2.1 17 

int TvDeviceSetChannel( IN Document *in, OUT Document **out,  
              OUT char **errorString )  
{ 
 char *value = NULL; 
 int  channel = 0; 
 
 (*out) = NULL; 
 (*errorString) = NULL; 
   
 if (!(value = SampleUtil_GetFirstDocumentItem( in, "Channel" ))) { 
  (*errorString) = "Invalid Channel"; 
  return UPNP_E_INVALID_PARAM; 
 } 
 
 channel = atoi(value); 
 
 if (channel < MIN_CHANNEL  ||  channel > MAX_CHANNEL) { 
  free( value ); 
  (*errorString) = "Invalid Channel"; 
  return UPNP_E_INVALID_PARAM; 
 } 
   
 /* Vendor-specific code to set the channel goes here */ 
 
 if (TvDeviceSetServiceTableVar( TV_SERVICE_CONTROL, 
        TV_CONTROL_CHANNEL,  
                                      value )) 
 { 
  if (UpnpAddToActionResponse( out,"SetChannel", 
                  TvServiceType[TV_SERVICE_CONTROL], 
                  "NewChannel",value ) 
   ! = UPNP_E_SUCCESS) 
  { 
   (*out)=NULL; 
   (*errorString) = "Internal Error"; 
   free( value ); 
   return UPNP_E_INTERNAL_ERROR; 
  } 
  free( value ); 
  return UPNP_E_SUCCESS; 
 } else { 
  free( value ); 
  (*errorString) = "Internal Error"; 
  return UPNP_E_INTERNAL_ERROR; 
 } 
} 

The function uses the UpnpAddToActionResponse() utility function to build the action response.  

2.3 Sending Events 
Whenever an evented state variable is changed, the device is required to send a state table update event.  This can 
be in response to an action, an outside event, user input, and so on. The device application is responsible for 
determining when an event should be sent. The SDK sends the event to all subscribed control points. In the TV 
device sample, events are sent in response to actions. Eventing is handled by the function 
TvDeviceSetServiceTableVar(). 



 

18 Intel® SDK for UPnP™ Devices Version 1.2.1 

int TvDeviceSetServiceTableVar( IN unsigned int service,  
                 IN unsigned int variable,  
                 IN char *value)  
{ 
 ithread_mutex_lock( &TVDevMutex ); 
  
 strcpy( tv_service_table[service].VariableStrVal[variable], value ); 
 
 UpnpNotify(device_handle, 
  tv_service_table[service].UDN, 
  tv_service_table[service].ServiceId, 
  (const char **)&tv_service_table[service].VariableName[variable], 
  (const char **)&tv_service_table[service].VariableStrVal[variable], 
  1); 
 
 ithread_mutex_unlock( &TVDevMutex ); 
  
 return( 1 ); 
  
} 

The function updates the application’s internal state table and sends the event using UpnpNotify(). 
UpnpNotify() takes the following: 

• the device_handle  

• the device UDN 

• the ServiceID 

• the names of changed variables (&tv_service_table[service].VariableName[variable]) 

• the values of changed variables (&tv_service_table[service].VariableStrVal[variable]) 

• the number of changed variables (1) 

2.4 Shutting Down 
When a device is shut down, the SDK must be uninitialized. This is done by calling 
UpnpUnRegisterRootDevice() and UpnpFinish().   The TV sample performs all this in 
TvDeviceStop(). 
int TvDeviceStop() 
{ 
 UpnpUnRegisterRootDevice( device_handle ; 
 UpnpFinish(); 
 SampleUtil_Finish(); 
 ithread_mutex_destroy( &TVDevMutex ); 
 return UPNP_E_SUCCESS; 
} 

 

 



 

Intel® SDK for UPnP™ Devices Version 1.2.1 19 

3 Writing a UPnP Control Point 
The Intel® SDK for UPnP™ Devices not only supports UPnP device applications but also UPnP control point 
applications as well.  The basic steps for a control point application are: 

1. Set up and initialize the control point following these basic steps: 

a. Initialize the SDK using UpnpInit(). 

b. Register a control point (also known as a client) callback function using 
UpnpRegisterClient(). 

2. Find interesting devices using UpnpSearchAsync(). 

3. Download the description documents using UpnpDownloadXmlDoc() or the UpnpHttp() family of 
functions. 

4. Subscribe to interesting services using UpnpSubscribe() or UpnpSubscribeAsync(). 

5. Have the device do something interesting by changing the state using UpnpSendAction() or 
UpnpSendActionAsync(). 

6. Shut down the control point following these steps: 

a. Unregister the control point from the SDK using UpnpUnRegisterClient(). 

b. Shut down the SDK using UpnpFinish(). 

In the following discussion, the examples are drawn from the sample TV control point implementation found in 
upnp/sample/tvdevice/.  Parts of the sample code have been removed in this document to aid in clarity.  
For complete descriptions of the SDK for UPnP Devices API functions, refer to the Intel® SDK for UPnP™ 
Devices v1.2 API Reference included with the SDK. 

3.1 Setup and Initialization 

3.1.1 SDK Initialization 

Just like a device, a control point application needs to initialize the SDK.   
short int port = 0; 
char *ip_address = NULL; 
 
rc = UpnpInit( ip_address, port ); 
if (UPNP_E_SUCCESS != rc) { 
 SampleUtil_Print( "UpnpInit() Error: %d", rc ); 
 UpnpFinish(); 
 return TV_ERROR; 
} 

The application can specify an IP address and port number during initialization.  For control points, this sets the 
default IP address and port it will use to listen for events.  If the IP address is NULL, the address of the first non-
null, non-loopback address is used.  If the port number is 0, a random port number is used.  You can retrieve both 
the IP address and port number from the SDK after initialization by using UpnpGetServerIpAddress() and 
UpnpGetServerPort().  For control points, the only benefit for selecting an IP address is to listen on a 
particular interface in a multi-interface configuration.  There is no real benefit to selecting a fixed port. 



 

20 Intel® SDK for UPnP™ Devices Version 1.2.1 

3.1.2 Control Point Application-Specific Initialization 

Prior to registering the control point callback function with the SDK (see section 3.1.3), the control point 
application should perform any application-specif ic initialization. This is important because on the application 
registers the callback, it can immediately start receiving callbacks. 

3.1.3 Control Point Registration 

The next step is to register the client callback function with the SDK.  This callback function is the default 
notification method the SDK will use.  Some functions, such as UpnpSendActionAsync(), allow a different 
callback function for each call.  The same function may be specified for all asynchronous operations since the 
prototype is the same.  As with devices, the callback function has a prototype like this: 
int CallbackFxn( Upnp_EventType EventType, void* Event, void* Cookie ); 

All searching operations will use the default callback registered via UpnpRegisterClient(). 
rc = UpnpRegisterClient( TvCtrlPointCallbackEventHandler, &ctrlpt_handle, 
                         &ctrlpt_handle ); 
if (UPNP_E_SUCCESS != rc) { 
 SampleUtil_Print( "Error registering CP: %d", rc ); 
 UpnpFinish(); 
 return TV_ERROR; 
} 

The first parameter is the callback function the client wishes the SDK to use.  The TV sample uses 
TvCtrlPointCallbackEventHandler() for this purpose.  The second parameter is a pointer to a cookie 
that will be passed to the callback function when invoked.  The TV sample passes the control point handle so that 
it may make SDK calls during the callbacks.  The final parameter is a pointer to store the actual control point 
handle itself.  This handle will be necessary for making any subsequent SDK calls. 

The TV sample uses the TvCtrlPointCallbackEventHandler() function for all asynchronous 
operations.  Because of this, the function is long and will not be included here in its entirety.  In the following 
sections, pieces of this function will be included pertaining to the specific topic to illustrate how the sample 
handles the callbacks the SDK generates. 

Once the control point application calls UpnpRegisterClient(),  any device advertisement traffic on the 
network will immediate generate callbacks to the application.  The application needs to be ready to handle  these. 

3.2 Searching for Something Interesting 
Once the control point application is completely initialized, it can start searching for interesting devices on the 
network.  The TV sample is a very simple control point and searches for only one device: the TV Sample Device.  
rc = UpnpSearchAsync( ctrlpt_handle, 5, TvDeviceType, NULL ); 
if (UPNP_E_SUCCESS != rc) { 
 SampleUtil_Print( "Error sending search request%d", rc ); 
 return TV_ERROR; 
} 

The sample starts looking for the TV device in TvCtrlPointRefresh().  UpnpSearchAsync() starts the 
process of finding devices.  It takes the following parameters: 

• the control point handle  

• the number of seconds the control point is willing to wait for responses (5) 

• the target for the search 



 

Intel® SDK for UPnP™ Devices Version 1.2.1 21 

• an optional cookie to pass to the callback function when invoked (NULL) 

The search target can specify something as specific as a particular device to devices or services of a particular 
type.  Section 1.2.2 of the Universal Plug and Play Device Architecture discusses search targets in detail.  In 
summary, a search target must match one of the following: 

• ssdp:all – searches for all UPnP devices and services on the network 

• upnp:rootdevice – searches for only the root devices on the network 

• uuid:device-UUID – searches for a specific device on the network matching device-UUID 

• urn:schemas-upnp-org:device:deviceType:v – searches for a particular device type, 
deviceType, with a specification version matching v 

• urn:schemas-upnp-org:service:serviceType:v – searches for a particular service type, 
serviceType, with a specification version matching v 

For the TV device, the search target is defined as this: 
char TvDeviceType[] = "urn:schemas-upnp-org:device:tvdevice:1"; 

The search time, called MX in the Universal Plug and Play Device Architecture, specifies the maximum time a 
control point is willing to wait for matching responses to a search.  Devices will wait a random time between 0 
and the MX value specified by the control point before responding to avoid discovery storms on searches.  The 
Intel SDK generates a special callback, UPNP_DISCOVERY_SEARCH_TIMEOUT, when this value expires.  The 
SDK will generate no further callbacks for the particular search, although device advertisements will continue to 
generate callbacks. 

The TV sample control point handles all these discovery messages in the TvCtrlPointEventHandler() 
function: 



 

22 Intel® SDK for UPnP™ Devices Version 1.2.1 

int TvCtrlPointCallbackEventHandler( Upnp_EventType EventType,  
                                     void *Event,  
                                     void *Cookie) 
{ 
 switch ( EventType ) { 
  case UPNP_DISCOVERY_ADVERTISEMENT_ALIVE: 
  case UPNP_DISCOVERY_SEARCH_RESULT: 
  { 
   struct Upnp_Discovery *d_event = ( 
    struct Upnp_Discovery * ) Event; 
   IXML_Document *DescDoc=NULL; 
   int ret; 
 
   if ((ret = UpnpDownloadXmlDoc( d_event->Location,  
                             &DescDoc ))  
    != UPNP_E_SUCCESS) { 
    /* … */ 
   } else { 
    TvCtrlPointAddDevice( DescDoc, d_event->Location,  
           d_event->Expires ); 
   } 
 
   if (DescDoc) ixmlDocument_free( DescDoc ); 
   TvCtrlPointPrintList(); 
   break; 
  } 
  
  case UPNP_DISCOVERY_SEARCH_TIMEOUT: 
   /* Nothing to do here... */ 
   break; 
 
  case UPNP_DISCOVERY_ADVERTISEMENT_BYEBYE: 
  { 
   struct Upnp_Discovery *d_event =  
    (struct Upnp_Discovery * ) Event; 
   TvCtrlPointRemoveDevice(d_event->DeviceId); 
   TvCtrlPointPrintList(); 
   break; 
  } 
 } 
} 

Devices need to be removed from the list of known devices when the advertisements expire or when the device 
explicitly sends out a “bye-bye” message.  “Bye-bye” messages are handled as shown.  Advertisement expirations 
are handled by calling TvCtrlPointTimerLoop() every 30 seconds, calling 
TvCtrlPointVerifyTimeouts() to check if any advertisements have expired.  The sample does an 
automatic search for devices that are about to expire by searching for the expiring device’s UDN.  Normally, this 
is not required because the device should refresh its advertisement prior to expiration. 

3.3 Retrieving Descriptions 

The sample handles advertisements and search results in the same manner: it uses UpnpDownloadXmlDoc() 
to retrieve the description document and adds that device to its list of known devices.  It is very important to 
destroy the description document returned from UpnpDownloadXmlDoc() when it is no longer necessary.  
The sample does not keep this document around but other control point applications might want to do this. 



 

Intel® SDK for UPnP™ Devices Version 1.2.1 23 

UpnpDownloadXmlDoc() returns a completely parsed DOM document of the description document, ready to 
be consumed by the control point application.  This function can take a lot of memory if the description document 
is large, since it is downloaded, parsed, and returned in one chunk.  An alternate API that the SDK offers allows 
much larger HTTP transfers by breaking the transfer down into chunks.  Unlike UpnpDownloadXmlDoc(), it 
requires multiple calls: UpnpOpenHttpGet() creates a new HTTP transfer, UpnpReadHttpGet() to 
transfer a piece of the file, and UpnpCloseHttpGet() to complete the connection.  Refer to the Intel® SDK 
for UPnP™ Devices v1.2 API Guide for more information on these functions. 

3.4 Watching for Events 
Each time a state variable is changed on a device, the device sends out event notifications to all control points that 
have registered to receive these events.  The SDK has two functions to subscribe to a service: 
UpnpSubscribe() and UpnpSubscribeAsync().  Both functions perform the same operation, the latter 
generating a callback when the subscription request completes.  It is important to note that when subscribing, the 
control point subscribes for all events for a particular service.  Subscriptions for particular events are not currently 
supported by the UPnP 1.0 architecture.  Also, the control point needs to subscribe to each service it is interested 
in separately.  UPnP 1.0 also does not allow “bulk” subscriptions to all services a device offers. 

The sample subscribes to the TV service in TvCtrlPointAddDevice() in response to a search request or 
when a device sends out an advertisement. 
ret = UpnpSubscribe( ctrlpt_handle, 
                     eventURL[service],  
                     &TimeOut[service],  
                     eventSID[service] ); 
      
if(ret == UPNP_E_SUCCESS) { 
 SampleUtil_Print( "Subscribed to EventURL with SID=%s", eventSID[service] ); 
} else { 
 SampleUtil_Print( "Error Subscribing to EventURL -- %d", ret ); 
 strcpy( eventSID[service], "" ); 
} 

UpnpSubscribe() takes the follow parameters: 

• the control point handle  

• the URL of the service in which to subscribe 

• a pointer to a requested timeout value.  Upon return, this will contain the actual life of the subscription if 
the device did not like the value the control point passed 

• a pointer in which to store the Subscription ID 

UpnpSubscribeAsync() takes similar values on input, but the SID and the actual timeout value are given to 
the application during the callback rather than when the function returns. 

The SDK sends events to the default callback function registered via UpnpRegisterClient().  For the TV 
sample, that function is TvCtrlPointCallbackEventHandler(). 

 



 

24 Intel® SDK for UPnP™ Devices Version 1.2.1 

int TvCtrlPointCallbackEventHandler( Upnp_EventType EventType,  
                                     void *Event,  
                                     void *Cookie ) 
{ 
 /* … */ 
 
 switch ( EventType ) { 
 
 /* … */ 
 
 case UPNP_EVENT_RECEIVED: 
 { 
  struct Upnp_Event *e_event = (struct Upnp_Event * ) Event; 
 
  TvCtrlPointHandleEvent( e_event->Sid,  
                                    e_event->EventKey,  
                                    e_event->ChangedVariables ); 
  break; 
 } 
 /* … */ 
 return 0; 
} 

The UPNP_EVENT_RECEIVED callback is an actual event received from a device.  The Event parameter 
contains a Upnp_Event structure describing the actual event.  The sample dispatches these events to 
TvCtrlPointHandleEvent() to handle the event. 

Once a control point subscribes to a service, the SDK will automatically renew the subscription until the device 
explicitly unsubscribes.  

3.5 Invoking Actions 
Control points cause a device to do something by changing the internal state of the device.  It does this by sending 
actions to the device.  The SDK has two functions for changing state variables inside of a device: 
UpnpSendAction() and UpnpSendActionAsync().  Both of these functions accomplish the same thing 
except the latter operates asynchronously.  Each of these functions takes a DOM document that describes the 
action the control point wishes to execute.  Section 3.2.1 in the Universal Plug and Play Device Architecture 
discusses the format of these messages.  The SDK has utility functions to assemble these DOM documents: 
UpnpMakeAction() and UpnpAddToAction().  The TV sample takes full advantage of these utility 
functions in TvCtrlPointSendAction(): 



 

Intel® SDK for UPnP™ Devices Version 1.2.1 25 

IXML_Document *actionNode = NULL; 
 
if (0 == param_count) { 
 actionNode = UpnpMakeAction(actionname, TvServiceType[service], 0, NULL); 
} else { 
 for (param = 0; param < param_count; param++) { 
  if (UpnpAddToAction( &actionNode, actionname,  
                                 TvServiceType[service], 
                                 param_name[param],  
                                 param_val[param]) != UPNP_E_SUCCESS) { 
   /* Handle error… */ 
  } 
 } 
} 
 
rc = UpnpSendActionAsync( ctrlpt_handle,  
      devnode->device.TvService[service]. 
      ControlURL, TvServiceType[service], 
      NULL, actionNode,  
      TvCtrlPointCallbackEventHandler, NULL ); 
 
if (rc != UPNP_E_SUCCESS) { 
 SampleUtil_Print( "Error in UpnpSendActionAsync -- %d", rc ); 
 rc = TV_ERROR; 
} 

If the action does not require any parameters, UpnpMakeAction() is all that is necessary to build up the 
correct actionNode for the action.  Otherwise, the sample calls UpnpAddToAction() repeatedly to add all 
the necessary parameters and values to the actionNode document.  Finally, it calls 
UpnpSendActionAsync() to send the action message to the device.   

TvSendCtrlPointAction() is a generic function for sending actions used in the sample.  An example of 
calling this function for turning the TV power on is: 
int TvCtrlPointSendPowerOn(int devnum) 
{ 
 return TvCtrlPointSendAction( TV_SERVICE_CONTROL,  
      devnum,  
      "PowerOn",  
      NULL,  
      NULL,  
      0 ); 
} 

When the asynchronous action completes, the callback is generated to the callback handler passed either through 
UpnpSendActionAsync() or registered with UpnpRegisterClient().  The sample prefers to use the 
same callback handler for everything so the action complete message ends up in 
TvCtrlPointCallbackEventHandler(): 



 

26 Intel® SDK for UPnP™ Devices Version 1.2.1 

case UPNP_CONTROL_ACTION_COMPLETE: 
{ 
 struct Upnp_Action_Complete *a_event =  
  (struct Upnp_Action_Complete *) Event; 
 
 if (a_event->ErrCode != UPNP_E_SUCCESS) { 
  SampleUtil_Print( "Error in  Action Complete Callback -- %d",  
                a_event->ErrCode ); 
 } 
 
 /* No need for any processing here, just print out results.  Service state 
    table updates are handled by events. */ 
 
 break; 
} 

3.6 Shutting Down 
When the control point application shuts down, it needs to unregister itself from the SDK using 
UpnpUnRegisterClient() and shut down the SDK using UpnpDeInit(). 
int TvCtrlPointStop( void ) 
{ 
 TvCtrlPointRemoveAll(); 
 UpnpUnRegisterClient( ctrlpt_handle ); 
 UpnpFinish(); 
 SampleUtil_Finish(); 
 
 return TV_SUCCESS; 
} 

 

 

 

 

 

 

 


	Contents
	Overview
	UPnP Overview
	Discovery
	Description
	Control
	Eventing
	Presentation
	Control Point and Device Interaction

	SDK Architecture
	Device/Control Point Application
	SDK API
	SSDP
	Mini Web Server
	GENA
	SOAP
	HTTP
	Mini Server
	ThreadUtil Library
	XML Parser
	BSD Socket Layer

	Virtual Directories

	Writing a UPnP Device
	Setup and Initialization
	Initializing the SDK
	Setting a Root Directory
	Registering a Root Device
	Device-Specific Initialization
	Advertising the Device

	Handling Requests
	Subscription Requests
	Get Variable Requests
	Action Requests

	Sending Events
	Shutting Down

	Writing a UPnP Control Point
	Setup and Initialization
	SDK Initialization
	Control Point Application-Specific Initialization
	Control Point Registration

	Searching for Something Interesting
	Retrieving Descriptions
	Watching for Events
	Invoking Actions
	Shutting Down


