Intel® SDK for UPNP™ Devices

Programming Guide

Intel® SDK for UPnP™ DevicesVerson 1.2.1

November 2002

Notice

Disclaimer

INTEL CORPORATION MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. INTEL
CORPORATION ASSUMES NO RESPONSIBILITY FOR ANY ERRORS THAT MAY APPEAR
IN THIS DOCUMENT. INTEL CORPORATION MAKES NO COMMITMENT TO UPDATE OR
TO KEEP CURRENT THE INFORMATION CONTAINED IN THISDOCUMENT.

THIS SPECIFICATION IS COPYRIGHTED BY AND SHALL REMAIN THE PROPERTY OF
INTEL CORPORATION. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED HEREIN.

INTEL DISCLAIMS ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF
ANY PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN
THIS SPECIFICATION. INTEL DOES NOT WARRANT OR REPRESENT THAT SUCH
IMPLEMENTATIONSWILL NOT INFRINGE SUCH RIGHTS.

NO PART OF THIS DOCUMENT MAY BE COPIED OR REPRODUCED IN ANY FORM OR BY
ANY MEANSWITHOUT PRIOR WRITTEN CONSENT OF INTEL CORPORATION.

INTEL CORPORATION RETAINS THE RIGHT TO MAKE CHANGES TO THESE
SPECIFICATIONSAT ANY TIME, WITHOUT NOTICE.

L egal Notices
Intel UPnP software products are copyrighted by, and shal remain the property of, Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's Software

License Agreement, or in the case of software delivered to the government, in accordance with
the software license agreement as defined in FAR 52.227-7013.

Copyright© 2002 Intel Corporation. All rights reserved.
Intel Corporation, 5200 N.E. Elam Y oung Parkway, Hillsboro, OR 97124-6497

$ Other brands and names are the property of their respective owners.

i Intel® SDK for UPnP™ DevicesVersion 1.2.1

Contents

(R OV VT TP TP PP PP UPRPTOPPRPPIO 1
1.1 UPNP OVEIVIBIW. ...ttt ettt e et e nne e 1
0 St I 1o 0 Y= oY PRSPPI 1

I D2 B T o 11 o 1 o o 1 PR RP 2

00 R o 11 {0 RSP 2

1.1 4 EVENTING ...eeieiiiieiiee ettt ettt et e st e e e b e e e be e e ebr e e enbe e e s ne e e anneeen 2

I ST . 1= < o1 [o R 3

1.1.6 Control Point and Device INtEraCtionc..eveeeiieieeiiiiiee e 3

1.2 S D QAN o 11 = o (1TSS 5
1.2.1 Device/Control POINt APPlICAHIONccveriiiieiiiieeiiie ettt 5

1.2.2 SDK AP .t 5

1.2.3 SSDIP... ettt h ettt n e 6

1.24 MiINiE WED SEIVEN ...ttt ettt sbe e sane e 6

1.2.5 GENA ettt b e b et et e b e nre e eare e 6

1.2.6 SOAP. ..ttt e et e ahe e e be e nae e e beeareeeneee e 6

A A) SRR 6

2R S T Y T = oV TSP 6

1.2.9 ThreadULil LIDrary......ccoooeiiiiiiee et 7

1,200 XML PaISEN ..ueietieieie ettt sttt sttt e st e et e e s st e et e e sneeenbeeaneeensee e 7

1.211 BSD SOCKEL LBYEN......ccoueiiiieiieiiiieite ettt 7

1.3 ViUl DIFECLOMTES.......eeeieeie ittt s et e s e e e e e e 8
2 WIItING @UPNP DEVICE.ceiiiiiiiiie it ee ettt e e sttt e ettt e e e et e e e s snne e e e e enneeeesansseeeeanns 10
21 Setup and INITTEIIZAITONooeiiiiiee e e e e e s e e e e snreeeeeans 10
211 InitializiNg the SDK ... e e e 10

212 Setting 8 ROOt DITECLONY........ceiiiiieiiiie ettt 11

213 RegiStering @R0OOt DEVICE.........c.ueiiiiieiiiie et 11

2.1.4 Device SpeCifiC INMIAiZation...........ccueeiiiiiiiieeiee e 12

215 AdvertiSNg thE DEVICE......ccciiiiiiie it 12

2.2 HaNdliNg REQUESES..........eeeiiiiiee ettt e e et e e e e e e e e nare e e e e ennes 12
2.2.1 SUDSCriptioN REQUESES.......cco ittt a e e e enneees 13

222 Get Variable REJUESES.......ooiieiieiieeiee e 14

2.2.3 ACHON REQUESEScoeiiiiiie ettt ettt ettt st e e e s nae e e e e st e e e e nnbaeeeeans 16

2.3 SENAING EVENES......eeeeeeieieie ettt e e e et e e s et e e e s nnse e e e e snnbeeeeesnseeeeeans 17
24 SNULEING DOWN ...ttt et e st e e b e s s e e enne e e enneeeenes 18
3 Writing @ UPNP CONtrol POINT........cuuiiiiiiiie et e et a e e e e e e e snnneeeeanes 19
31 Setup and INITTAHTZATONoeviiiiie e e 19
311 SDK INITEIZAION. ...ceiiieiiieeiee ettt st sae e beesneesnee e 19

3.1.2 Control Point Application Specific Initialization...............cccceeeiiiiiee i, 20

3.1.3 Control POINt REGISITAION.......cccoiiiiiieeiciiiee e e e e e e e erree e 20

3.2 Searching for SOmMething INtErESINGovveiiiiiei e 20
3.3 RELTEVING DESCIIPLIONS.ivteeee ettt ettt e et e e e s e e s sbbe e e e s nnnneeeeennes 22
34 WaELChING TOF EVENESceiiiiiiiie ettt e e et e e e et e e e snne e e e e nnnneeas 23

Intel® SDK for UPnP™ DevicesVersion 1.2.1 i

3.5
3.6

INVOKING ACHIONS ...ttt e e e e e et e e e e et e e e et e e e s eaneeeesaaareeeeeannes 24

Shutting Down

Intel® SDK for UPnP™ DevicesVersion 1.2.1

1 Overview

UPnP allows automatic discovery and control of services available on the network from other devices without
user intervention. Devices that act as servers can advertise their services to clients. Client systems, known as
control points, can search for specific services on the network. When they find the devices with the desired
services, the control points can retrieve detailed descriptions of the devices and services and interact from that
point on.

This document provides an overview of UPnP and provides examples of how to write a UPnP device and control
point. For a complete description of the Intel® SDK for UPnP Devices API functions, refer to the Intel® SDK for
UPNP™ Devices v1.2 APl Referenceincluded with the SDK.

The SDK aso includes sample control point and device applications. For details on building and running the
samples, see the README file in the sample directory of the SDK distribution.

1.1 UPNP Overview

This section provides a brief description of UPnP. For more information, refer to the document Universal Plug
and Play Device Architecture, available from the UPnP Forum at http://www.upnp.org/resources/documents.asp.

UPnP includes five basic phases:

1. Discovery. Inthisfirst phase, control points search for devices and services. Similarly, devices multicast
announcements of services they offer.

2. Description. Once acontrol point finds an interesting device or service, it requests from the device a
complete description of the device, its component devices, and services.

3. Control. Thisphase alows control points to control one or more of the services contained in a device by
enacting changes in the state of the device.

4. Eventing. This phase alows control pointsto keep in sync with the state of servicesin whichiitis
interested. Control points subscribe to the event server for a particular service and receive event
notifications when that service' s state changes.

5. Presentation. The presentation phase alows a device to host a document, written in standard HTML,
which can be a user interface for that device.

The following sections describe each of these phases.

1.1.1 Discovery

In the discovery phase control points find devices and services, and devices announce their presence to control
points using the Simple Service Discovery Protocol (SSDP). SSDP uses a variant of HT TP that operates over
multicast UDP for broadcasts and another variant of HTTP that operates over unicast UDP for replies.

A device may consist of other devices, each with its own services. Devices are identified both by type and by a
unique identifier. Services are identified by their type.

To search for devices or services on the network, control points use the HTTP M SEARCH command multicast to
the address 239.255.255.250:1900 over UDP. Any device on the network that matches the criteria the control
point is searching for issues a unicast UDP reply that includes the URL to its description document (See section
1.1.2). If acontrol point receives one or more acceptable replies, it moves into the description phase.

When a control point sends out a search request, it includes the amount of time it is willing to wait in an SSDP
header. Matching devices will wait a random time between zero and the number of seconds the control point
indicated before responding. If the control point does not receive any replies when its search time has expired, it
can assume that there are currently no matching devices on the network.

Intel® SDK for UPnP™ DevicesVersion 1.2.1 1

Devices don't have to wait for a control point to search for their services. They can advertise their device
availability by means of the SSDP NOTI FY command on the 239.255.255.250:1900 multicast address. When
control points see this NOT1 FY multicast, they can request the device' s description document using a standard

HTTP CET request to the URL in the NOT1 FY message. Devices must send a notification when their services
will no longer be available.

1.1.2 Description

When a control point locates a service it wants to know more about, it requests the description document. The
description is an XML document describing the device, including:

Manufacturer information, version, and so on.

Any URLsto icons that can be used for the device.
A list of embedded devices.

A list of services supported by the device.

For more information on the format of the description document, refer to the document Universal Plug and Play
Device Architecture

The control point requests the description document using HTTP over TCP. The control point performs a standard
HTTP GET command (smilar to retrieving a Web page). On the server side, the device runs a standard HTTP
server—either afull Web server such as Apache or amini-server. Many of the elements in the description
document are URLs. Those elements are also retrieved using HTTP/TCP.

1.1.3 Control

Once a control point discovers a device and retrieves its description document, it may want to control one or more
of the services contained in the device. The Simple Object Access Protocol (SOAP) alows a control point to

guery or change elementsin a service' s state table. SOAP uses the POST or M POST HTTP command
transported over TCP.

SOAP uses XML to specify what actionsto take. The control point creates the XML document and postsit to the
control URL for the service, as specified in the description document. The control point can request current values
and make changes to the service' s state table.

On the server side, the control server waits for control requests. The control server isan HTTP-like server
implementing the SOAP protocol. A device can operate more than one control server depending on the
combination of services provided by the device.

1.1.4 Eventing

After acontrol point discovers a device and retrieves its description, it can stay informed of the state of a service
offered by that device. Interested control points subscribe to the device' s event notification service URL found in
the description document for the particular service. An event notification is sent to the control point any time the
state of the service changes, even if the control point causes the change.

Subscribe and unsubscribe requests use HTTP/TCP to connect to the event URL contained in the description
document for the service. The control point specifies an URL where event notifications are made during
subscription. Events arrive by means of HTTP/TCP to the URL registered with the service. The event
notification includes a small XML document that describes the actua event, such as a change in the state table for
the service.

2 Intel® SDK for UPnP™ DevicesVersion 1.2.1

On the server side, an event server waits for subscribe and unsubscribe requests. The event server isan HTTP-
like server implementing the General Event Natification Architecture protocol (GENA). A device may have to
operate more than one event server depending on the combination of services provided by the device.

1.15 Presentation

For devices that need or support user interaction, in the presentation phase a control point can download an
HTML document that represents the user interface for the device. Thisisastandard HTML document that can
provide a means of control or status display.

The protocol for retrieving the presentation document, as with the description document, iSHTTP over TCP. The
control point can use the presentation URL contained in the description document to request the presentation
document. Not all devices have a presentation document nor are all control points able to display a presentation
document containing complex HTML objects such as frames, embedded Java® applets, and so on.

1.1.6 Control Point and Device I nteraction

The following diagram shows the sequence of interactions between a control point and device during the UPnP
phases described in the previous sections. A description of each step follows the diagram. The descriptions
indicate the API calls that a control point or device uses and what network packets the SDK issues. It should be
noted that due to the asynchronous nature of the sequence, the interactions do not necessarily happen in the order
shown. The control and eventing steps can happen in any order.

1. M-SEARCH (multicast)

2. NOTIFY (UDP unicast)

3. HTTP GET description.xml

4. 200 OK (XML)

92INa(

Control Point

5. SUBSCRIBE

A

6. 200 OK (SID)

7. HTTP M-POST (SOAP)

A

8. 200 OK (SOAP Response)

A

9. NOTIFY (Event)

Intel® SDK for UPnP™ DevicesVersion 1.2.1 3

The control point sends out a search request using the UpnpSear chAsync() API. The SDK for UPnP
Devices issuesamulticast M SEARCH SSDP message onto the network.

If the device matches what the control point is searching for, the SDK issues aunicast UDP NOTI FY
response with the URL to the device' s description document. The SDK responds automatically from
information contained in the device description document registered using

UpnpRegi st er Root Devi ce() or UpnpRegi st er Root Devi ce2() .

If the control point wants more information on the device, it cals UpnpDownl oadXm Doc() with the
URL with which the device responded. UpnpDownl oadXm Doc() downloadsthe XML description

document using a standard HTTP GET request and returnsaDOM document representing the device
description. This step may be repested to retrieve the service description documents for the device a so.

The web server contained in the device responds to the request and returns the XML description
document.

To receive automatic notifications of changesin the device, a control point subscribesto the servicesin
which it isinterested. Control points subscribe viaUpnpSubscri be() or

UpnpSubscri beAsync() . Thecontrol point extracts the subscription URL out of the device
description document for the service or services to which it would like to subscribe, and calls one of the

subscribe functions. For each subscribe call, the SDK sends a SUBSCRI BE message viaHTTP aong
with a URL to which to send the events.

The device acknowledges the subscription request and returns a unique Subscription Identifier (SID).

The contral point instructs the device to perform some action by changing one of the state variables
contained inside the device. The URL to send control requests is contained in the device description
document. The control point calls UpnpSendAct i on() or UpnpSendAct i onAsync() to change
the state. The SDK issues a SOAP action viaan HTTP M- POST command.

The device changes the state of the internal variable and issues a SOAP response message.

The device can notify clients of changes in its state because of either explicit actions, asin step 8, or
implicit changes in the device itself. The device calls UpnpNot i f y() or UpnpNot i f yExt () tosend

the updates. The SDK automatically notifies all subscribed control points viaa unicast NOTI FY message
over HTTP.

Intel® SDK for UPnP™ DevicesVersion 1.2.1

1.2 SDK Architecture
The following diagram shows the architecture of the SDK:

A

Device/Control Point

A A A 4

A 2 4 v ThreadUtil API (
XML Parser Device/Control Point timer thread,
API UPNP SDK API handle table threadpool and

'y 'y 'y y mutexes)

L L L :
PR I I S

MLParser || oon | | cena | | MEB || some Mibrary
4 > 5 > > B >B HTTP Parser
t } v v y 1
MiniServer <P
‘)

BSD socket layer

A 4 ¢ A

Underlying OS

Figure 1. A high-level diagram of the SDK architecture

The following sections describe each part of the diagram. For more information on any of the protocols, refer to
the document Universal Plug and Play Device Architecture.

1.2.1 Device/Control Point Application

The customer provides the client or server application software to run on top of the SDK. The client or server
application implements the functionality of a specific service. For example, for a gateway service, the server
software implements the “Enable Internet” functionality that the control point software can control using UPnP.
A sample service and control point application isincluded as part of the SDK.

122 SDK API

The SDK API abstracts the details of the core UPnP protocols away from the control point or service application
and gives applications access to the functionality in a unified interface. This frees the developers from concern
about the details of the SSDP, GENA, and SOAP protocols in their code.

Intel® SDK for UPnP™ DevicesVersion 1.2.1 5

The API layer a'so maintains the table of control point and device handles registered with the SDK. On each call
to an API function, the SDK will validate the handle is known by checking in the handle table. Currently, thereis
alimit of one control point and one device handle that can be alocated in one process at atime. In other words,
an application can register once as a device and once as a control point. Any further attempts to register by that
application will fail.

For information about the API, refer to the Intel® SDK for UPNP™ Devicesvl.2 APl Reference.

1.2.3 SSDP

The SSDP module implements the Simple Service Discovery Protocol, providing the discovery phase of UPnP.
This module alows control points to send multicast searches for services and devices on the network and receives
the replies to those searches. It aso notifies them when new services are announced on the network.

This module also allows devices to multicast announcements of their services to the network.
1.24 Mini Web Server

The Mini Web Server module handles the standard HTTP GET requests. Many UPnP elements are requested

using thisbasic HTTP service. This module manages the locations of documents that are available using the GET
command and implements the actual streaming of the data using the HTTP protocol.

The Mini Web Server module implements the RANGE header from HTTP/1.1. This header alows aremote client
to request a certain piece (or pieces) of afile rather than the entire file. An application for thisis seeking to a
particular track within a play list or jumping to an offset inside a mediafile.

The Mini Web Server also supports HTTP POST requests for Virtua Directories but not for any others. For a
definition of Virtual Directories, refer to section 1.3.

125 GENA

The GENA module implements the General Event Notification Architecture, providing the eventing phase of
UPNP. Control points use this module to subscribe or unsubscribe to services of interest. Service applications
receive subscribe and unsubscribe notifications from this module and generate the appropriate events.

1.26 SOAP

The SOAP module implements the Simple Object Access Protocal, providing the control phase of UPnP. Control
points use this module to generate the appropriate XML documents to retrieve or change the state tables of a
sarvice. The server uses this module to decode the control requests and generate the correct responses.

127 HTTP

The HTTP module parses the HTTP headers for incoming messages and aids in constructing the appropriate
headers for outgoing messages. It understands a number of HTTP/1.0 and HTTP/1.1 headers. It aso providesthe

parsing for HTTP/1.1 chunked encoding. The SDK does not generate chunked encoding by default on GET
requests with HTTP/1.1. It does, however, fully support decoding it when it receives chunked encoded messages.

1.2.8 Mini Server

The Mini Server layer provides common functionality for GENA, SOAP, SSDP, and the mini-Web server. This

layer acceptsal network connections, determines which request is coming in, hands off the HTTP header to the
HTTP module for parsing, and transfers the connection over to the appropriate protocol for processing. The first
line of the HTTP header contains the request. The Mini Server layer minimally handles these commands:

GET. Control points use the GET command to retrieve the description document and any of its sub-
elements including the presentation document, the service description documents, and the icons

6 Intel® SDK for UPnP™ DevicesVersion 1.2.1

associated with the device. Using Virtual Directories, described in section 1.3, device applications can

request the SDK to generate callbacks into the application to handle GET requests for certain directories.
Refer to section 1.3 on page 8 for more information.

POST/M -POST. A SOAP command isin the form of a POST or an M POST command. All POST
commands posted to one of the control URLs specified in the device description document are transferred
to the SOAP module for further processing. POST commands are also allowed to Virtual Directories,
generating a callback into the device application. Refer to section 1.3 on page 8 for more information.

SUBSCRIBE. SUBSCRI BE commands are transferred to the GENA module for further processing.
Control points use SUBSCRI BE requests to subscribe or renew a subscription to event notifications for a
particular service.

UNSUBSCRIBE. UNSUBSCRI BE commands are transferred to the GENA module for further
processing. Control points use UNSUBSCRI BE commands to notify a server that they are no longer
interested in receiving event notifications.

NOTIFY. NOTI FY commands are transferred to other modules for further processing. In the case of
TCP connections, they are transferred to the GENA module. In the case of UDP connections, they are
transferred to the SSDP module. NOTI FY commands can be event notifications sent from serversto
control points containing a description of the event, or notification of a device or service appearing on, or
disappearing from, the network.

1.29 ThreadUtil Library

The Intel SDK for UPnP Devices utilizes threads extensively to parallelize processing of UPnP traffic as much as
possible. The ThreadUtil library provides the SDK an abstraction of a POSIX-like thread API, thread
management routes, and linked and free list management utilities. The thread manager creates a pool of threads
that can be “borrowed” to perform atask and returned back into the pool to be used for other purposes. It
maintains aratio of how many jobs it has queued to the current number of threads in the pool. If thisratio gets
too large, it will increase the number of threads in the pool automaticaly. Likewise, if threads sit in the pool idle
for along time, it will remove threads from the pool to decrease resource usage but always maintaining a
configurable minimum number.

1.2.10 XML Parser

XML is used extensively in UPnP. The description documents are XML documents. GENA uses XML to
describe change in a service' s state. SOAP uses XML to format requests and responses. The SDK contains an
XML parser used both by the core UPnP protocols and by the client or server software.

The interface to the XML Parser uses a subset of the Document Object Model (DOM) Level 2 recommendation
written by the World Wide Web Consortium (W3C). The SDK provides a C interface. 1t implements the Node,
At t r, CDATASect i on, Docunent , El enent , NanedNodeMap, and NodelLi st interfaces, but excludes

the DOM npl enent at i on, Docunent Fr agnent , Char act er Dat a, Text , and Conment interfaces. See
http://w3c.ora/DOM/ for more information on DOM.

1.2.11 BSD Socket L ayer

The SDK assumes the BSD Socket Layer (POSIX.19) is provided by the operating system. Although not part of
the SDK, it isincluded in Figure 1 to illustrate the relationship between the SDK and the underlying operating
system.

Intel® SDK for UPnP™ DevicesVersion 1.2.1 7

1.3 Virtual Directories

The integrated Mini Web Server inside the SDK supports a concept known as Virtual Directories. A Virtua
Directory is a path accessible to HTTP clients that does not match the physical structure of the Mini Web Server’s
root directory structure. Normally, the URLs sent to aweb server correspond to the actual physical structure of
the files hosted by the web server. The web server prefixes the URL passed from the client with its root directory
and opens that file on the file system, feeding the data back to the client. With a Virtual Directory, adevice
application can register specific directories that it wishes to receive callbacks from when a makes arequest. For
example, assume a device has a directory structures such as this:

<webr oot >
i ndex. htm
devi ce. xmni

servi ce. xni

Toretrievei ndex. ht m , aclient would make a standard HTTP CGET request:
CET /index.htm HTTP/ 1.0

Suppose the device application has registered a Virtual Directory called “media’. A client would make a request
such asthis:

CET / medi a/ MySong. np3 HTTP/ 1.0

The device application gets a callback from the Mini Web Server requesting the device application to provide the
datato return to the client. Where the data comes from does not matter to the Mini Web Server. It could be
streamed from the Internet, read from afile that is outside the Mini Web Server root directory, or could be
generated dynamicaly.

The API that a device application uses to receive these callbacks is very similar to a standard file interface
consisting of a structure with six function pointers:

get i nfo() isthefirst calback for arequest. It passes a structure to the application with information
about the URL aclient is requesting. The application passes back information about the file, such asthe
size, to the Mini Web Server. This information becomes the basis of the HTTP response header.

open() returnsahandle back to the Mini Web Server for subsequent operations. What open actually
does and what value the handle has isirrelevant to the Mini Web Server. It will simply pass this handle
to any subsequent calls.

read() retrievesablock of data. The Mini Web Server calsthis function repeatedly on an HTTP GET
requests until it returns no more data.

write() writesablock of data The Mini Web Server cals this function repeatedly on an HTTP POST
request to a Virtual Directory.

seek() changesthe postioninafile The Mini Web Server mainly uses this function to satisfy HTTP
RANGE requests which ask for particular offsetsinto afile.

cl ose() closesthe handle.

A device application registers these callback functions viaUpnpSet Vi rt ual Di r Cal | backs() .
UpnpAddVi rtual D r () addsanew mapping to thelist of Virtua Directories. Note that the directory passed
to UpnpAddVi rt ual Di r () becomesthe prefix that the Mini Web Server uses to determineif it should
generate acallback. UpnpRenoveVi rtual Di r () removesasingle Virtua Directory mapping and

8 Intel® SDK for UPnP™ DevicesVersion 1.2.1

UpnpRenoveAl | Vi rtual Di rs() removesal mappings. For more detail on each of these functions, consult
the Intel® SDK for UPnP™ Devices v1.2 APl Reference.

Intel® SDK for UPnP™ DevicesVersion 1.2.1 9

2 Writing a UPnP Device

There are many ways to implement a UPnP device using the SDK for UPnP Devices. However, any
implementation must perform some basic steps. Specifically, an application must:

1. Set up and initiaize the device by following these basic steps:
a. Initidizethe SDK using Upnpl ni t ().
b. Set aroot directory for the Mini Web Server using UpnpSet WebSer ver Root Di r () .

c. Register the device description document using UpnpRegi st er Root Devi ce() or
UpnpRegi st er Root Devi ce2() .

d. Perform any device-specific initiaization.

e. Advertise the device on the network using UpnpSendAdverti senment () .
2. Handle asynchronous requests. The device needs to handle three different types of requests.

a. Requeststo subscribe to notifications of service state changes.

b. Requeststo retrieve the current value of a service state variable.

c. Regqueststo change the value of a service state variable.
3. Keep control points up-to-date by sending eventsusing UpnpNot i fy() or UpnpNot i f yExt ().
4. Shut down the device following these steps:

a. Send out SSDP “bye-bye” messages and unregister the device from the SDK using
UpnpUnRegi st er Root Devi ce() .

b. Shut down the SDK using UpnpFi ni sh().

In the following discussion, the examples are drawn from the sample TV device implementation found in

upnp/ sanpl e/ t vdevi ce/ . Parts of the sample code have been removed in this document to aid in clarity.
For complete descriptions of the SDK for UPnP Devices API functions, refer to the Intel® SDK for UPnP™
Devices v1.2 API Referenceincluded with the SDK.

2.1 Setup and Initialization

2.1.1 |Initializing the SDK

Before starting a device implementation, it is important to write or obtain the device and service description
documents that are going to be used. These specify the type and number of services that the device supports, as
well as actions, parameters, and variables that each service supports. For more information refer to the Universal
Plug and Play Device Architecture document or the relevant specification for the particular device.

The device and service description documents the sample TV device usesarein

upnp/ sanpl e/ t vdevi ce/ web. Itisimportant to note that the sample TV deviceis not a certified UPnP
device.

The application must initialize the SDK before using any of the API functions.

10 Intel® SDK for UPnP™ DevicesVersion 1.2.1

if ((ret = Upnplnit(ip_address, port)) != UPNP_E SUCCESS) {
SanpleUtil _Print("Error with Upnplnit -- %l\n", ret);
UpnpFi ni sh();
return ret;

}

The application can specify an IP address and port number during initialization. These are used to setthe interface
and port the server listens on for UPNP and HTTP requests. If the IP addressis NULL, the address of the first non-
null, non-loopback address is used. If the port number is 0, a random port number is used.* Y ou can retrieve both
the IP address and port number from the SDK after initidization by using UpnpGet Ser ver | pAddr ess() and
UpnpCet Server Port () .

2.1.2 Setting a Root Directory

Once the SDK has been initialized, the device application can specify the root directory of the web server. Thisis
the local directory the web server searches in order to serve filesin response to HTTP requests. Specifying the
root directory isoptional. If aroot directory is not specified, then only requests for documents in the virtual
directory list are served viathe registered callbacks. It is up to the application to insure that the specified directory
contains the necessary files (such as the description documents for the device and services). The web directory

for the sampleis/ upnp/ sanpl e/ t vdevi ce/ web.

char web_dir_path[] = “./web”;
if ((ret = UpnpSet WebServerRootDir(web_dir_path)) != UPNP_E_SUCCESS) ({
SanpleUtil _Print("Error specifying webserver root directory -- %s:

%\ n", web_dir_path, ret);
UpnpFi ni sh() ;
return ret;

}

Note that once Upnpl ni t () has succeeded, it is very important to cal UpnpFi ni sh() if the device shuts
down due to an error. This givesthe SDK an opportunity to clean up the resources it has alocated.

2.1.3 Registering a Root Device

The next step in setting up the device is registering with the SDK. There are two functions for registering the
device, UpnpRegi st er Root Devi ce() and UpnpRegi st er Root Devi ce2() . Thefirst function takes
afully qualified description URL as input, and the second can take the description document in a variety of forms.
The example shows only the first case.

if ((ret = UpnpRegi sterRoot Devi ce(desc_doc_url,
TvDevi ceCal | backEvent Handl er,
&Cooki e,
&devi ce_handl e))
I = UPNP_E_SUCCESS)

{
SanpleUtil _Print("Error registering the rootdevice : %\n", ret);
UpnpFi ni sh();
return ret;

}

The first parameter to the function is the description document URL. It must point to the valid description
document of the device. If the description document is afile being served by the web server included with the

! The current implementation listens to all interfaces. The | P address specified during initialization will only affect the IP
address advertised during SSDP advertisements and search responses.

Intel® SDK for UPnP™ DevicesVersion 1.2.1 11

SDK, it should be located off of the directory specified in UpnpSet WebSer ver Root Di r () . The second
parameter registers a callback with the SDK. The prototype for the callback is:

i nt Call backFxn(Upnp_Event Type Event Type, voi d* Event, void* Cookie);

Whenever arequest is received for the device from the network, such as a subscription request, a get variable
request, or an action request, this function is called on an independent thread with the appropriate parameters.
Event Type specifies the type of request received, the Event parameter is a structure whose actua type differs
based on the Event Type, and Cooki e is the application-specific data specified in

UpnpRegi st er Root Devi ce() . For the TV sample, the callback registered is:

i nt TvDevi ceCal | backEvent Handl er (Upnp_Event Type Event Type,
void *Event,
voi d *Cooki e)

The third parameter to UpnpRegi st er Root Devi ce() isavoid pointer specified by the user. It can be
anything the size of a pointer and can be used to point to application-specific data. It can also be NULL. The
application is responsible for alocating and deallocating this pointer if it is used. The pointer is passed back to the
application when it receives arequest. The final parameter to UpnpRegi st er Root Devi ce() isapointer to
space alocated by the application to store the device handle. The device handle is used as a parameter to other
API functions.

2.1.4 Device-Specific Initialization

So far we have not discussed initialization specific to the device or application. Before the device is advertised,
all device and application-specific initialization should be performed. Once the device has been advertised, it can
start receiving requests immediately. The deviceis responsible for maintaining the values of the service state
variables as well as manipulating them correctly in response to actions. In the TV device sample code, the
function, TvDevi ceSt at eTabl el ni t () initializesthe internal data structures used to store the state
variables, service ids, action pointers, and so on.

2.1.5 Advertising the Device
The fina step in setting up the UPNP device is sending out advertisements.

int default_advr_expire = 100;

if ((ret = UpnpSendAdverti senent(device_handl e, default_advr_expire))
I = UPNP_E_SUCCESS) ({
Sampl eUtil _Print("Error sending advertisenments : %\n", ret);
UpnpFi ni sh();
return ret;

}

The first parameter is the device handle returned during registration. The second parameter is the expiration time
for the advertisement. During the lifetime of the device, the SDK automatically re-advertises the device before it
expires.

The device is now ready to receive requests. The application must set itself in aloop or wait for some condition in
order to shut down.

2.2 Handling Requests

During the lifetime of a device, its main purpose is to handle requests sent to it by control points. When requests
are received by the SDK, they are forwarded to the application through the callback specified when the device
registered. The callback is invoked on an independent thread with the appropriate parameters, depending on the
type of the request.

12 Intel® SDK for UPnP™ DevicesVersion 1.2.1

There are three requests handled by adevice:
subscription requests
get variable requests
action requests

Note that the device does not need to handle any discovery requests. Since the SDK has the device description
document for the device (passed during UpnpRegi st er Root Devi ce()), it can automatically determine if the
discovery search criteria matches the device. |If so, it responds with the URL of the device description document.

The type of request is indicated in the callback through the Event Type variable. The callback for the TV device
sampleis:

i nt TvDevi ceCal | backEvent Handl er (Upnp_Event Type Event Type,
voi d *Event,
voi d *Cooki e)

switch (Event Type) {
case UPNP_EVENT_SUBSCRI PTI ON_REQUEST:

TvDevi ceHandl eSubscri pti onRequest (
(struct Upnp_Subscription_Request *) Event);
br eak;

case UPNP_CONTROL_CGET_VAR REQUEST:
TvDevi ceHandl eGet Var Request (
(struct Upnp_State Var_ Request *) Event);
br eak;

case UPNP_CONTROL_ACTI ON_REQUEST:
TvDevi ceHandl eAct i onRequest (
(struct Upnp_Action_Request *) Event);
br eak;

def aul t:
SanpleUtil _Print("Error in TvDevi ceCal | backEvent Handl er: unknown
event type %\ n", EventType);

}

return O;

}

2.2.1 Subscription Requests

When a control point makes a subscription request, the SDK invokes the registered callback with the

Event Type variable set to UPNP_EVENT _SUBSCRI PTI ON_REQUEST. The device is responsible for
accepting the subscription by calling either UpnpAccept Subscri ption() or

UpnpAccept Subscri pti onExt (), thus sending the current state table to the control point. The difference
between these two functionsis simply how the application passes the state table to the SDK for sending to the
subscribing control point. UpnpAccept Subscri pti on() takesacouple of arrays of strings for the

variable/value pairs. UpnpAccept Subscri pti onExt () takesaDOM document for the current values of
the variables. The format of the DOM document is given in section 4.3 of the Universal Plug and Plug Device

Architecture document. The TV sample uses UpnpAccept Subscri ption():

Intel® SDK for UPnP™ DevicesVersion 1.2.1 13

i nt TvDevi ceHandl eSubscri pti onRequest (I N struct Upnp_Subscri pti on_Request *
sr_event)

{
unsigned int | = O;
i thread_mut ex_| ock(&TVDevMutex);
for (i=0; | < TV_SERVI CE_SERVCOUNT; i ++)
{
if ((strcnp(sr_event->UDN,tv_service_table[i].UDN) == 0) &&
(strcnp(sr_event->Serviceld,tv_service_table[i]. Serviceld) == 0))
{
UpnpAccept Subscri pti on(devi ce_handl e,
sr_event - >UDN
sr_event - >Servi cel d,
(const char **)
tv_service_table[i]. Variabl eNane,
(const char **)
tv_service_table[i]. VariableStrVal,
tv_service_table[i]. Variabl eCount,
sr_event->Sid);
}
}
it hread_nut ex_unl ock(&TVDevMitex);
return 1,
}

In this case, the Event parameter passed to the callback is a pointer to a structure of type st r uct

Upnp_Subscri pti on_Request . The subscription request structure specifies the UDN and Servicel D of the
service for which the subscription is requested, along with the subscription identifier (SID). In the above sample,

once the service isidentified, the state variables, which arestoredint v_servi ce_tabl e[i], aresenttothe
control point using UpnpAccept Subscri ption() . UpnpAccept Subscri ption() takesthefollowing:

the device handle

the UDN

the ServicelD

the variable names (tv_service_tabl e[i]. Vari abl eNane)

the variable values (tv_service_table[i].Variabl eStrVal)

the number of variables (tv_service_table[i]. Vari abl eCount)

the SID

Once the subscription has been accepted, the control point receives future events sent by the device. The sample

code uses the TVDev Mt ex mutua exclusion variable to protect access to global data handled by the thread. The
SDK callbacks are multi-threaded, and it is up to the device implementation to insure that access to shared datais
protected.

2.2.2 Get Variable Requests

When a control point requests the current state of a variable, the SDK invokes the registered callback with the
Event Type set to UPNP_CONTROL_GET_VAR _REQUEST.

14 Intel® SDK for UPnP™ DevicesVersion 1.2.1

Note that the UPnP Forum has deprecated this capability. For clients to access state variables, the preferable
method is to have a specific action to retrieve the value. Having this support in adevice is not strictly necessary.
The discussion below illustrates how an application supports this on top of the Intel SDK for UPnP Devices.

The Event parameter passed to the callback is a pointer to a structure of type st r uct
Upnp_St at e_Var _Request . Therequest structure specifies the UDN, Servicel D, and variable name of the
requested variable. The device is responsible for setting the current value of the variable in the structure.

i nt TvDevi ceHandl eGet Var Request (| NOUT struct Upnp_State Var Request *
cgv_event)
{
unsigned int I =0, j = 0;
i nt getvar_succeeded = 0;

cgv_event->Current Val = NULL
i thread_mutex_| ock(&TVDevMutex);

for (i =0; | < TV_SERVICE_SERVCOUNT; i ++)
{
// check udn and service id
if ((strcnp(cgv_event->DevUDN, tv_service table[i].UDN) == 0) &&
(strcnp(cgv_event->Servicel D, tv_service_table[i]. Serviceld)
==0))

/I check variabl e nane
for (j =0; j <tv_service table[i].VariableCount; j++)
{
if (strcnmp(cgv_event->St at eVar Nane,
tv_service table[i]. VariableName[j]) == 0)
{
getvar_succeeded = 1
cgv_event->Current Val =
i xm Cl oneDOMSt ring(tv_service_ table[i].
VariableStrVal[j]);
br eak;

}

if (getvar_succeeded) {
cgv_event - >Err Code = UPNP_E _SUCCESS;
} else {
cgv_event - >Err Code = 404;
strcpy(cgv_event->ErrStr, "lnvalid Variable");

}

i thread_mut ex_unl ock(&TVDevMiutex);
return(cgv_event->Err Code == UPNP_E_SUCCESS) ;
}

The Cur r ent Val member of the structure must be set with a character string created with
i xm C oneDOVEBt ri ng() . Thismemory is released by the SDK once the value has been sent to the control

point. Once again, the TVDevMut ex mutua exclusion variable is used to protect data accessed by multiple
threads.

Intel® SDK for UPnP™ DevicesVersion 1.2.1 15

2.2.3 Action Requests

When a control point sends an action to the device, the SDK invokes the registered callback with the
Event Type set to UPNP_CONTROL_ACTI ON_REQUEST.

The Event parameter passed to the callback is a pointer to a structure of type st r uct

Upnp_Act i on_Request . The request structure specifies the UDN, Servicel D, Action Name, and the action
request document (which contains the inbound parameters). The deviceis responsible for navigating the
document, extracting the relevant parameters, performing the requested action, creating a response document with
outbound parameters (if applicable), and sending any events (if applicable). In the sample TV device, the action
request is handled by the function TvDevi ceHandl eAct i onRequest () . Thisfunction in turn dispatches the
request by looking up the action name in a table and retrieving the appropriate function. Each UPnP action is
handled by a separate function. The prototype for the function is:

i nt upnp_action(IN Document *in, OUT Document **out,
OQUT char **errorString).

The function is passed the XML document specifying the parameters for the action and is required to create the
response document, as well as send back an error string if appropriate. The function is required to return
UPNP_E_SUCCESS on success and anon-zero error code otherwise.

The TV device first sees which service the control point isinvoking an action on:

if ((strcnp(ca_event - >DevUDN,
tv_service_tabl e[TV_SERVI CE CONTROL].UDN) == 0) &&
(strcnp(ca_event->Servicel D, tv_service_tabl e[TV_SERVI CE_ CONTROL] .
Serviceld) == 0))

service = TV_SERVI CE_CONTROL;

else if ((strcnp(ca_event->DevUDN,
tv_service_tabl e[TV_SERVICE PICTURE].UDN) == 0) &&
(strcnp(ca_event->Servicel D, tv_service_tabl e[TV_SERVI CE_PI CTURE] .
Serviceld) == 0))

{
servi ce = TV_SERVI CE_PI CTURE;
}
Based on that service, it looks up the specific action and dispatches that to the action handler:
for (i =0; ((i < TV_MAXACTI ONS) &&
(tv_service_tabl e[service].ActionNames[i] != NULL));
i ++)
{
if (!strcnp(ca_event->Acti onNane,
tv_service_tabl e[service].ActionNames[i]))
{
ret Code = tv_service_tabl e[service].actions[i]
(ca_event->Acti onRequest,
&ca_event - >Acti onResul t,
&errorString);
action_found = 1;
br eak;
}
}

As an example, hereis the function implementing the Set Channel action:

16 Intel® SDK for UPnP™ DevicesVersion 1.2.1

i nt TvDevi ceSet Channel (I N Docunent *in, OUT Docunent **out,
OQUT char **errorString)

{
char *value = NULL;
int channel = O;
(*out) = NULL;
(*errorString) = NULL;
if (!(value = SanpleUtil_GetFirstDocunentltenm(in, "Channel"))) {
(*errorString) = "Invalid Channel";
return UPNP_E_| NVALI D_PARAM
}
channel = atoi (val ue);
if (channel < M N CHANNEL || <channel > MAX CHANNEL) {
free(value);
(*errorString) = "Invalid Channel";
return UPNP_E_| NVALI D_PARAM
}
/* Vendor-specific code to set the channel goes here */
i f (TvDevi ceSet Servi ceTabl eVar (TV_SERVI CE_CONTROL,
TV_CONTROL_ CHANNEL,
val ue))
{
i f (UpnpAddToActi onResponse(out, " Set Channel ",
TvServi ceType[TV_SERVI CE_CONTROL] ,
"NewChannel ", val ue)
I = UPNP_E_SUCCESS)
{
(*out) =NULL;
(*errorString) = "Internal Error";
free(value);
return UPNP_E | NTERNAL_ERROR;
}
free(value);
return UPNP_E SUCCESS;
} else {
free(value);
(*errorString) = "Internal Error";
return UPNP_E | NTERNAL_ ERROR;
}
}

The function uses the UpnpAddToAct i onResponse() utility function to build the action response.

2.3 Sending Events

Whenever an evented state variable is changed, the device is required to send a state table update event. This can
be in response to an action, an outside event, user input, and so on. The device application is responsible for
determining when an event should be sent. The SDK sends the event to al subscribed control points. In the TV
device sample, events are sent in response to actions. Eventing is handled by the function

TvDevi ceSet Ser vi ceTabl eVar ().

Intel® SDK for UPnP™ DevicesVersion 1.2.1 17

i nt TvDevi ceSet Servi ceTabl eVar(| N unsi gned int service,

}

I N unsi gned int vari abl e,
I N char *val ue)

i thread_mutex_| ock(&TVDevMutex);
strcpy(tv_service_table[service].VariableStrVal[variable], value);

UpnpNoti fy(devi ce_handl e,
tv_service_tabl e[service]. UDN
tv_service_tabl e[service]. Serviceld,
(const char **)& v_service_tabl e[service]. Vari abl eNane[vari abl e],
(const char **)& v_service_tabl e[service].Variabl eStrVal [variabl e],
1);

i thread_nut ex_unl ock(&TVDevMut ex);

return(1);

The function updates the application’ s internal state table and sends the event using UpnpNot i fy() .
UpnpNoti fy() takesthe following:

2.4

the device_handle
the device UDN
the Servicel D

the names of changed variables (& v_ser vi ce_t abl e[servi ce] . Vari abl eNane[vari abl e])
the values of changed variables (&t v_servi ce_t abl e[service]. Vari abl eStrVal [vari abl e])

the number of changed variables (1)

Shutting Down

When adevice is shut down, the SDK must be uninitialized. Thisis done by calling
UpnpUnRegi st er Root Devi ce() and UpnpFi ni sh(). TheTV sample performsal thisin
TvDevi ceSt op() .

i nt TvDevi ceSt op()

{

UpnpUnRegi st er Root Devi ce(devi ce_handl e
UpnpFi ni sh() ;

Sanpl eUti|l _Finish();

i thread_mut ex_destroy(&TVDevMutex);
return UPNP_E SUCCESS;

18

Intel® SDK for UPnP™ DevicesVersion 1.2.1

3 Writing a UPnP Control Point

The Intedl® SDK for UPnP ™ Devices not only supports UPnP device applications but a'so UPnP control point
applications aswell. The basic steps for a control point application are:

1. Set up and initiaize the control point following these basic steps.
a. Initidizethe SDK using Upnpl ni t ().

b. Register acontrol point (also known as a client) callback function using
UpnpRegi sterdient ().

2. Find interesting devices using UpnpSear chAsync() .

Download the description documents using UpnpDownl oadXm Doc() or the UpnpHtt p() family of
functions.

4. Subscribe to interesting services using UpnpSubscri be() or UpnpSubscri beAsync() .

Have the device do something interesting by changing the state using UpnpSendAct i on() or
UpnpSendAct i onAsync() .

6. Shut down the control point following these steps:
a. Unregister the control point from the SDK using UpnpUnRegi ster i ent ().
b. Shut down the SDK using UpnpFi ni sh().

In the following discussion, the examples are drawn from the sample TV control point implementation found in

upnp/ sanpl e/ t vdevi ce/ . Parts of the sample code have been removed in this document to aid in clarity.
For complete descriptions of the SDK for UPnP Devices API functions, refer to the Intel® SDK for UPnP™
Devices v1.2 API Referenceincluded with the SDK.

3.1 Setup and Initialization

3.1.1 SDK Initialization
Just like a device, a control point application needs to initialize the SDK.

short int port = O;
char *ip_address = NULL;

rc = Upnplnit(ip_address, port);

if (UPNP_E_SUCCESS != rc) {
SanpleUtil _Print("Upnplnit() Error: %", rc);
UpnpFi ni sh() ;
return TV_ERROR,

}

The application can specify an |P address and port number during initialization. For control points, this sets the

default IP address and port it will use to listen for events. If the IP addressis NULL, the address of the first non-
null, non-loopback addressis used. If the port number is 0, arandom port number is used. You can retrieve both

the IP address and port number from the SDK &fter initidization by using UpnpGet Ser ver | pAddr ess() and

UpnpGet Ser ver Port () . For control points, the only benefit for selecting an IP addressisto listen on a
particular interface in a multi-interface configuration. Thereisno real benefit to selecting a fixed port.

Intel® SDK for UPnP™ DevicesVersion 1.2.1 19

3.1.2 Control Point Application-Specific I nitialization

Prior to registering the control point callback function with the SDK (see section 3.1.3), the control point
application should perform any application-specif ic initialization. Thisisimportant because on the application
registers the callback, it can immediately start receiving callbacks.

3.1.3 Control Point Registration

The next step is to register the client callback function with the SDK. This callback function is the default
notification method the SDK will use. Some functions, such as UpnpSendAct i onAsync() , dlow adifferent
callback function for each call. The same function may be specified for al asynchronous operations since the
prototype is the same. Aswith devices, the callback function has a prototype like this:

i nt Call backFxn(Upnp_Event Type Event Type, voi d* Event, void* Cookie);

All searching operations will use the default callback registered via UpnpRegi sterC i ent ().

rc = UpnpRegi sterClient(TvCtrl Poi ntCal | backEvent Handl er, &ctrl pt _handl e,
&ctrl pt _handl e);
if (UPNP_E_SUCCESS != rc) {
Sampl eUtil _Print("Error registering CP: %", rc);
UpnpFi ni sh();
return TV_ERROR;
}

Thefirst parameter is the callback function the client wishesthe SDK to use. The TV sample uses

TvCrl Poi nt Cal | backEvent Handl er () for thispurpose. The second parameter is a pointer to a cookie
that will be passed to the callback function when invoked. The TV sample passes the control point handle so that
it may make SDK calls during the callbacks. The final parameter is a pointer to store the actual control point
handle itsalf. This handle will be necessary for making any subsequent SDK calls.

The TV sampleusesthe TvCQt r | Poi nt Cal | backEvent Handl er () function for al asynchronous
operations. Because of this, the function is long and will not be included here in its entirety. In the following
sections, pieces of this function will be included pertaining to the specific topic to illustrate how the sample
handles the callbacks the SDK generates.

Once the control point application calls UpnpRegi st er G i ent (), any device advertisement traffic on the
network will immediate generate callbacks to the application. The application needs to be ready to handle these.

3.2 Searching for Something Interesting

Once the control point application is completely initidized, it can start searching for interesting devices on the
network. The TV sampleisavery smple control point and searches for only one device: the TV Sample Device.

rc = UpnpSear chAsync(ctrl pt_handl e, 5, TvDeviceType, NULL);
if (UPNP_E SUCCESS != rc) {
SanpleUtil _Print("Error sending search request%", rc);
return TV_ERROR;

}

The sample starts looking for the TV devicein TvCi r | Poi nt Ref resh(). UpnpSear chAsync() dartsthe
process of finding devices. It takes the following parameters:

the control point handle
the number of seconds the control point iswilling to wait for responses (5)

the target for the search

20 Intel® SDK for UPnP™ DevicesVersion 1.2.1

an optional cookie to pass to the callback function when invoked (NULL)

The search target can specify something as specific as a particular device to devices or services of a particular
type. Section 1.2.2 of the Universal Plug and Play Device Architecture discusses search targetsin detail. In
summary, a search target must match one of the following:

ssdp: al | — searchesfor all UPnP devices and services on the network
upnp: r oot devi ce — searches for only the root devices on the network
uui d: devi ce- UUl D— searches for a specific device on the network matching device-UUID

urn: schemas-upnp- or g: devi ce: devi ceType: v — searchesfor aparticular device type,
deviceType, with a specification version matching v

urn: schemas-upnp- or g: servi ce: servi ceType: v — searchesfor a particular servicetype,
serviceType, with a specification version matching v

For the TV device, the search target is defined as this:

char TvDevi ceType[] = "urn:schemas-upnp-org: device:tvdevice: 1";

The search time, called MX in the Universal Plug and Play Device Architecture, specifies the maximum time a
control point iswilling to wait for matching responses to a search. Devices will wait a random time between O
and the M X value specified by the control point before responding to avoid discovery storms on searches The
Intel SDK generates a specia calback, UPNP_DI SCOVERY _SEARCH TI MEQUT, when this vaue expires. The
SDK will generate no further callbacks for the particular search, although device advertisements will continue to
generate callbacks.

The TV sample control point handles al these discovery messagesinthe TvCt r | Poi nt Event Handl er ()
function:

Intel® SDK for UPnP™ DevicesVersion 1.2.1 21

int TvCtrl Poi nt Cal | backEvent Handl er (Upnp_Event Type Event Type,
voi d *Event,
voi d *Cooki e)

switch (EventType) {

case UPNP_DI SCOVERY_ADVERTI SEMENT_ALI VE:

case UPNP_DI SCOVERY_SEARCH RESULT:

{
struct Upnp_Di scovery *d_event = (

struct Upnp_Di scovery *) Event;

| XML_Docunent *DescDoc=NULL;
int ret;

if ((ret = UpnpDownl oadXm Doc(d_event->Locati on,
&DescDoc))
I = UPNP_E_SUCCESS) {
[* %]
} else {
TvCtrl Poi nt AddDevi ce(DescDoc, d_event->Locati on,
d_event->Expires);

}

if (DescDoc) ixm Docunent free(DescDoc);
TvCtrl PointPrintList();
br eak;

}

case UPNP_DI SCOVERY_SEARCH_TI MEQOUT:
/* Nothing to do here... */
br eak;

case UPNP_DI SCOVERY_ADVERTI SEMENT_BYEBYE:

{
struct Upnp_Di scovery *d_event =
(struct Upnp_Di scovery *) Event;
TvCtrl Poi nt RenbveDevi ce(d_event - >Devi cel d) ;
TvCtrl PointPrintList();
br eak;
}

}
}

Devices need to be removed from the list of known devices when the advertisements expire or when the device
explicitly sends out a “bye-bye” message. “Bye-by€e’ messages are handled as shown. Advertisement expirations
are handled by calling TvCt r | Poi nt Ti nmer Loop() every 30 seconds, caling

TvCirl Poi nt Veri fyTi meout s() to check if any advertisements have expired. The sample does an
automatic search for devices that are about to expire by searching for the expiring device's UDN. Normally, this
is not required because the device should refresh its advertisement prior to expiration.

3.3 Retrieving Descriptions

The sample handles advertisements and search results in the same manner: it uses UpnpDownl oadXni Doc()
to retrieve the description document and adds that deviceto itslist of known devices. It isvery important to

destroy the description document returned from UpnpDownl oadXm Doc() when it is no longer necessary.
The sample does not keep this document around but other control point applications might want to do this.

22 Intel® SDK for UPnP™ DevicesVersion 1.2.1

UpnpDownl oadXm Doc() returnsacompletely parsed DOM document of the description document, ready to
be consumed by the control point application. This function can take alot of memory if the description document
islarge, since it is downloaded, parsed, and returned in one chunk. An aternate API that the SDK offers allows
much larger HTTP transfers by breaking the transfer down into chunks. Unlike UpnpDownl oadXm Doc() , it
requires multiple calls: UpnpOpenHt t pGet () createsanew HTTPtransfer, UpnpReadHt t pGet () to
transfer apiece of thefile, and UpnpC oseHt t pGet () to complete the connection. Refer to the Intel® DK
for UPNP™ Devicesv1.2 API Guidefor more information on these functions.

3.4 Watching for Events

Each time a state variable is changed on a device, the device sends out event notifications to all control points that
have registered to receive these events. The SDK has two functions to subscribe to a service:

UpnpSubscri be() and UpnpSubscri beAsync(). Both functions perform the same operation, the latter
generating a callback when the subscription request completes. It isimportant to note that when subscribing, the
control point subscribes for al events for a particular service Subscriptions for particular events are not currently
supported by the UPnP 1.0 architecture. Also, the control point needs to subscribe to each service it is interested
in separately. UPNP 1.0 also does not alow “bulk” subscriptions to all services a device offers.

The sample subscribes to the TV servicein TvCt r | Poi nt AddDevi ce() inresponse to a search request or
when a device sends out an advertisement.

ret = UpnpSubscribe(ctrlpt_handl e,
event URL[servi ce],
&Ti meQut [servi ce],
event SI D] servi ce]);

if(ret == UPNP_E_SUCCESS) ({

Sanpl eUtil _Print("Subscribed to EventURL with SID=%", eventSl|D service]);
} else {

Sampl eUtil _Print("Error Subscribing to EventURL -- %", ret);

strcpy(eventSID[service], "");
}

UpnpSubscri be() takesthe follow parameters:
the control point handle
the URL of the service in which to subscribe

a pointer to a requested timeout value. Upon return, this will contain the actua life of the subscription if
the device did not like the value the control point passed

apointer in which to store the Subscription 1D

UpnpSubscri beAsync() takessimilar values on input, but the SID and the actua timeout value are given to
the application during the callback rather than when the function returns,

The SDK sends events to the default callback function registered viaUpnpRegi sterd i ent () . Forthe TV
sample, that functionis TvCt r | Poi nt Cal | backEvent Handl er () .

Intel® SDK for UPnP™ DevicesVersion 1.2.1 23

int TvCtrl Poi nt Cal | backEvent Handl er (Upnp_Event Type Event Type,
voi d *Event,
voi d *Cooki e)

{
[* %
switch (Event Type) {
[* .
case UPNP_EVENT_RECEI VED:
{
struct Upnp_Event *e_event = (struct Upnp_Event *) Event;
TvCtr | Poi nt Handl eEvent (e_event - >Si d,
e_event - >Event Key,
e_event - >ChangedVari abl es);
br eak;
}
[*]
return O;
}

The UPNP_EVENT _RECEI VEDcalback is an actua event received from adevice. TheEvent parameter
containsa Upnp_Event structure describing the actua event. The sample dispatches these eventsto
TvC r | Poi nt Handl eEvent () to handle the event.

Once a control point subscribes to a service, the SDK will automatically renew the subscription until the device
explicitly unsubscribes.

3.5 Invoking Actions

Control points cause a device to do something by changing the internal state of the device. It does this by sending
actionsto the device. The SDK has two functions for changing state variables inside of a device:
UpnpSendActi on() and UpnpSendAct i onAsync() . Both of these functions accomplish the same thing
except the latter operates asynchronoudly. Each of these functions takes a DOM document that describes the
action the control point wishes to execute. Section 3.2.1 in the Universal Plug and Play Device Architecture
discusses the format of these messages. The SDK has utility functions to assemble these DOM documents:
UpnpMakeAct i on() and UpnpAddToAct i on() . The TV sample takes full advantage of these utility
functionsin TvCt r | Poi nt SendActi on():

24 Intel® SDK for UPnP™ DevicesVersion 1.2.1

| XM_._Docunent *acti onNode = NULL;

if (0 == param count) {
acti onNode = UpnpMakeActi on(acti onname, TvServiceType[service], 0, NULL);
} else {
for (param = 0; param < param count; paranmt+) {
i f (UpnpAddToActi on(&acti onNode, acti onnane,
TvServi ceType[servi ce],
par am nane[par ani ,
param val [param) != UPNP_E_SUCCESS) {
/* Handle error...*/

rc = UpnpSendActi onAsync(ctrl pt _handl e,
devnode- >devi ce. TvServi ce[servi ce] .
Control URL, TvServiceType[service],
NULL, acti onNode,
TvCtrl Poi nt Cal | backEvent Handl er, NULL);

if (rc !'= UPNP_E_SUCCESS) {
SanmpleUtil _Print("Error in UpnpSendActi onAsync -- %", rc);
rc = TV_ERROR;

}

If the action does not require any parameters, UonpMakeAct i on() isdl that is necessary to build up the
correct act i onNode for the action. Otherwise, the sample calls UpnpAddToAct i on() repeatedly to add all
the necessary parameters and valuesto theact i onNode document. Findly, it cals

UpnpSendAct i onAsync() to send the action message to the device.

TvSendCt r | Poi nt Act i on() isageneric function for sending actions used in the sample. An example of
caling this function for turning the TV power on is:

int TvCtrl Poi nt SendPower On(i nt devnum

{
return TvCtrl Poi nt SendActi on(TV_SERVI CE_CONTROL,

devnum
" Power On",
NULL,
NULL,
0);

}

When the asynchronous action completes, the callback is generated to the callback handler passed either through
UpnpSendAct i onAsync() or registered with UpnpRegi st er d i ent () . The sample prefersto use the
same callback handler for everything so the action complete message ends up in

TvC rl Poi nt Cal | backEvent Handl er () :

Intel® SDK for UPnP™ DevicesVersion 1.2.1 25

case UPNP_CONTROL_ACTI ON_COVPLETE:
{

struct Upnp_Action_Conpl ete *a_event =
(struct Upnp_Action_Conplete *) Event;

if (a_event->ErrCode != UPNP_E_SUCCESS) {
SampleUtil _Print("Error in Action Conplete Callback -- %",
a_event - >Err Code);

}

/* No need for any processing here, just print out results. Service state
tabl e updates are handl ed by events. */

br eak;

}

3.6 Shutting Down

When the control point application shuts down, it needs to unregister itself from the SDK using
UpnpUnRegi st er d i ent () and shut down the SDK using UpnpDel ni t () .

int TvCtrl PointStop(void)

{
TvCtrl Poi nt RemoveAl | () ;
UpnpUnRegi sterClient(ctrlpt_handle);
UpnpFi ni sh();
Sanpl eUti|l _Finish();
return TV_SUCCESS;
}

26 Intel® SDK for UPnP™ DevicesVersion 1.2.1

	Contents
	Overview
	UPnP Overview
	Discovery
	Description
	Control
	Eventing
	Presentation
	Control Point and Device Interaction

	SDK Architecture
	Device/Control Point Application
	SDK API
	SSDP
	Mini Web Server
	GENA
	SOAP
	HTTP
	Mini Server
	ThreadUtil Library
	XML Parser
	BSD Socket Layer

	Virtual Directories

	Writing a UPnP Device
	Setup and Initialization
	Initializing the SDK
	Setting a Root Directory
	Registering a Root Device
	Device-Specific Initialization
	Advertising the Device

	Handling Requests
	Subscription Requests
	Get Variable Requests
	Action Requests

	Sending Events
	Shutting Down

	Writing a UPnP Control Point
	Setup and Initialization
	SDK Initialization
	Control Point Application-Specific Initialization
	Control Point Registration

	Searching for Something Interesting
	Retrieving Descriptions
	Watching for Events
	Invoking Actions
	Shutting Down

