Deleted Added
full compact
sbdsp.c (1.74) sbdsp.c (1.75)
1/* $NetBSD: sbdsp.c,v 1.74 1997/10/11 12:36:32 mycroft Exp $ */
1/* $NetBSD: sbdsp.c,v 1.75 1997/10/16 23:34:57 augustss Exp $ */
2
3/*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37/*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve@vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs@meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se>
43 * with information from SB "Hardware Programming Guide" and the
44 * Linux drivers.
45 */
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/errno.h>
50#include <sys/ioctl.h>
51#include <sys/syslog.h>
52#include <sys/device.h>
53#include <sys/proc.h>
54#include <sys/buf.h>
55#include <vm/vm.h>
56
57#include <machine/cpu.h>
58#include <machine/intr.h>
59#include <machine/bus.h>
60
61#include <sys/audioio.h>
62#include <dev/audio_if.h>
63#include <dev/mulaw.h>
64#include <dev/auconv.h>
65
66#include <dev/isa/isavar.h>
67#include <dev/isa/isadmavar.h>
68
69#include <dev/isa/sbreg.h>
70#include <dev/isa/sbdspvar.h>
71
72#ifdef AUDIO_DEBUG
73#define DPRINTF(x) if (sbdspdebug) printf x
74int sbdspdebug = 0;
75#else
76#define DPRINTF(x)
77#endif
78
79#ifndef SBDSP_NPOLL
80#define SBDSP_NPOLL 3000
81#endif
82
83struct {
84 int wdsp;
85 int rdsp;
86 int wmidi;
87} sberr;
88
89/*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114/* XXX Should we round the tc?
115#define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
116*/
117#define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
118#define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
119
120struct sbmode {
121 short model;
122 u_char channels;
123 u_char precision;
124 u_short lowrate, highrate;
125 u_char cmd;
126 u_char cmdchan;
127};
128static struct sbmode sbpmodes[] = {
129 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA },
130 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
131 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
132 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
133 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
134 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
135 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT },
136 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
137 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO },
138 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO },
139 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO },
140 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO },
141 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO },
142 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO },
143 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 },
144 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 },
145#define PLAY16 15 /* must be the index of the next entry in the table */
146 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 },
147 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 },
148 { -1 }
149};
150static struct sbmode sbrmodes[] = {
151 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA },
152 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
153 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
154 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT },
155 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
156 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
157 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
158 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
159 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
160 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
161 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO },
162 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO },
163 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO },
164 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 },
165 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 },
166 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 },
167 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 },
168 { -1 }
169};
170
171void sbversion __P((struct sbdsp_softc *));
172void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
173void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
174void sbdsp_to __P((void *));
175void sbdsp_pause __P((struct sbdsp_softc *));
176int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
177int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
178int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
179void sbdsp_set_ifilter __P((void *, int));
180int sbdsp_get_ifilter __P((void *));
181
182static int sbdsp_dma_setup_input __P((struct sbdsp_softc *sc));
183static int sbdsp_dma_setup_output __P((struct sbdsp_softc *sc));
184static int sbdsp_adjust __P((int, int));
185
186#ifdef AUDIO_DEBUG
187void sb_printsc __P((struct sbdsp_softc *));
188
189void
190sb_printsc(sc)
191 struct sbdsp_softc *sc;
192{
193 int i;
194
195 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
196 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
197 sc->sc_drq8, sc->sc_drq16,
198 sc->sc_iobase, sc->sc_irq);
199 printf("irate %d itc %x orate %d otc %x\n",
200 sc->sc_i.rate, sc->sc_i.tc,
201 sc->sc_o.rate, sc->sc_o.tc);
202 printf("outport %u inport %u spkron %u nintr %lu\n",
203 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
204 printf("intr8 %p arg8 %p\n",
205 sc->sc_intr8, sc->sc_arg16);
206 printf("intr16 %p arg16 %p\n",
207 sc->sc_intr8, sc->sc_arg16);
208 printf("gain:");
209 for (i = 0; i < SB_NDEVS; i++)
210 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
211 printf("\n");
212}
213#endif /* AUDIO_DEBUG */
214
215/*
216 * Probe / attach routines.
217 */
218
219/*
220 * Probe for the soundblaster hardware.
221 */
222int
223sbdsp_probe(sc)
224 struct sbdsp_softc *sc;
225{
226
227 if (sbdsp_reset(sc) < 0) {
228 DPRINTF(("sbdsp: couldn't reset card\n"));
229 return 0;
230 }
231 /* if flags set, go and probe the jazz16 stuff */
232 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
233 sbdsp_jazz16_probe(sc);
234 else
235 sbversion(sc);
236 if (sc->sc_model == SB_UNK) {
237 /* Unknown SB model found. */
238 DPRINTF(("sbdsp: unknown SB model found\n"));
239 return 0;
240 }
241 return 1;
242}
243
244/*
245 * Try add-on stuff for Jazz16.
246 */
247void
248sbdsp_jazz16_probe(sc)
249 struct sbdsp_softc *sc;
250{
251 static u_char jazz16_irq_conf[16] = {
252 -1, -1, 0x02, 0x03,
253 -1, 0x01, -1, 0x04,
254 -1, 0x02, 0x05, -1,
255 -1, -1, -1, 0x06};
256 static u_char jazz16_drq_conf[8] = {
257 -1, 0x01, -1, 0x02,
258 -1, 0x03, -1, 0x04};
259
260 bus_space_tag_t iot = sc->sc_iot;
261 bus_space_handle_t ioh;
262
263 sbversion(sc);
264
265 DPRINTF(("jazz16 probe\n"));
266
267 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
268 DPRINTF(("bus map failed\n"));
269 return;
270 }
271
272 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
273 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
274 DPRINTF(("drq/irq check failed\n"));
275 goto done; /* give up, we can't do it. */
276 }
277
278 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
279 delay(10000); /* delay 10 ms */
280 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
281 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
282
283 if (sbdsp_reset(sc) < 0) {
284 DPRINTF(("sbdsp_reset check failed\n"));
285 goto done; /* XXX? what else could we do? */
286 }
287
288 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
289 DPRINTF(("read16 setup failed\n"));
290 goto done;
291 }
292
293 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
294 DPRINTF(("read16 failed\n"));
295 goto done;
296 }
297
298 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
299 sc->sc_drq16 = sc->sc_drq8;
300 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
301 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
302 jazz16_drq_conf[sc->sc_drq8]) ||
303 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
304 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
305 } else {
306 DPRINTF(("jazz16 detected!\n"));
307 sc->sc_model = SB_JAZZ;
308 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
309 }
310
311done:
312 bus_space_unmap(iot, ioh, 1);
313}
314
315/*
316 * Attach hardware to driver, attach hardware driver to audio
317 * pseudo-device driver .
318 */
319void
320sbdsp_attach(sc)
321 struct sbdsp_softc *sc;
322{
323 struct audio_params pparams, rparams;
324 int i;
325 u_int v;
326
327 /*
328 * Create our DMA maps.
329 */
330 if (sc->sc_drq8 != -1) {
331 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8,
332 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
333 printf("%s: can't create map for drq %d\n",
334 sc->sc_dev.dv_xname, sc->sc_drq8);
335 return;
336 }
337 }
338 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
339 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16,
340 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
341 printf("%s: can't create map for drq %d\n",
342 sc->sc_dev.dv_xname, sc->sc_drq16);
343 return;
344 }
345 }
346
347 pparams = audio_default;
348 rparams = audio_default;
349 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
350
351 sbdsp_set_in_port(sc, SB_MIC_VOL);
352 sbdsp_set_out_port(sc, SB_MASTER_VOL);
353
354 if (sc->sc_mixer_model != SBM_NONE) {
355 /* Reset the mixer.*/
356 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
357 /* And set our own default values */
358 for (i = 0; i < SB_NDEVS; i++) {
359 switch(i) {
360 case SB_MIC_VOL:
361 case SB_LINE_IN_VOL:
362 v = 0;
363 break;
364 case SB_BASS:
365 case SB_TREBLE:
366 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
367 break;
368 case SB_CD_IN_MUTE:
369 case SB_MIC_IN_MUTE:
370 case SB_LINE_IN_MUTE:
371 case SB_MIDI_IN_MUTE:
372 case SB_CD_SWAP:
373 case SB_MIC_SWAP:
374 case SB_LINE_SWAP:
375 case SB_MIDI_SWAP:
376 case SB_CD_OUT_MUTE:
377 case SB_MIC_OUT_MUTE:
378 case SB_LINE_OUT_MUTE:
379 v = 0;
380 break;
381 default:
382 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN * 3 / 4);
383 break;
384 }
385 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
386 sbdsp_set_mixer_gain(sc, i);
387 }
388 sc->in_filter = 0; /* no filters turned on, please */
389 }
390
391 printf(": dsp v%d.%02d%s\n",
392 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
393 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
394
395 sc->sc_fullduplex = ISSB16CLASS(sc) &&
396 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
397 sc->sc_drq8 != sc->sc_drq16;
398}
399
400void
401sbdsp_mix_write(sc, mixerport, val)
402 struct sbdsp_softc *sc;
403 int mixerport;
404 int val;
405{
406 bus_space_tag_t iot = sc->sc_iot;
407 bus_space_handle_t ioh = sc->sc_ioh;
408 int s;
409
410 s = splaudio();
411 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
412 delay(20);
413 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
414 delay(30);
415 splx(s);
416}
417
418int
419sbdsp_mix_read(sc, mixerport)
420 struct sbdsp_softc *sc;
421 int mixerport;
422{
423 bus_space_tag_t iot = sc->sc_iot;
424 bus_space_handle_t ioh = sc->sc_ioh;
425 int val;
426 int s;
427
428 s = splaudio();
429 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
430 delay(20);
431 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
432 delay(30);
433 splx(s);
434 return val;
435}
436
437/*
438 * Various routines to interface to higher level audio driver
439 */
440
441int
442sbdsp_query_encoding(addr, fp)
443 void *addr;
444 struct audio_encoding *fp;
445{
446 struct sbdsp_softc *sc = addr;
447 int emul;
448
449 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
450
451 switch (fp->index) {
452 case 0:
453 strcpy(fp->name, AudioEulinear);
454 fp->encoding = AUDIO_ENCODING_ULINEAR;
455 fp->precision = 8;
456 fp->flags = 0;
457 return 0;
458 case 1:
459 strcpy(fp->name, AudioEmulaw);
460 fp->encoding = AUDIO_ENCODING_ULAW;
461 fp->precision = 8;
462 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
463 return 0;
464 case 2:
465 strcpy(fp->name, AudioEalaw);
466 fp->encoding = AUDIO_ENCODING_ALAW;
467 fp->precision = 8;
468 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
469 return 0;
470 case 3:
471 strcpy(fp->name, AudioEslinear);
472 fp->encoding = AUDIO_ENCODING_SLINEAR;
473 fp->precision = 8;
474 fp->flags = emul;
475 return 0;
476 }
477 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
478 return EINVAL;
479
480 switch(fp->index) {
481 case 4:
482 strcpy(fp->name, AudioEslinear_le);
483 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
484 fp->precision = 16;
485 fp->flags = 0;
486 return 0;
487 case 5:
488 strcpy(fp->name, AudioEulinear_le);
489 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
490 fp->precision = 16;
491 fp->flags = emul;
492 return 0;
493 case 6:
494 strcpy(fp->name, AudioEslinear_be);
495 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
496 fp->precision = 16;
497 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
498 return 0;
499 case 7:
500 strcpy(fp->name, AudioEulinear_be);
501 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
502 fp->precision = 16;
503 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
504 return 0;
505 default:
506 return EINVAL;
507 }
508 return 0;
509}
510
511int
512sbdsp_set_params(addr, setmode, usemode, play, rec)
513 void *addr;
514 int setmode, usemode;
515 struct audio_params *play, *rec;
516{
517 struct sbdsp_softc *sc = addr;
518 struct sbmode *m;
519 u_int rate, tc, bmode;
520 void (*swcode) __P((void *, u_char *buf, int cnt));
521 int factor;
522 int model;
523 int chan;
524 struct audio_params *p;
525 int mode;
526
527 model = sc->sc_model;
528 if (model > SB_16)
529 model = SB_16; /* later models work like SB16 */
530
531 /* Set first record info, then play info */
532 for(mode = AUMODE_RECORD; mode != -1;
533 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
534 if ((setmode & mode) == 0)
535 continue;
536
537 p = mode == AUMODE_PLAY ? play : rec;
538 /* Locate proper commands */
539 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
540 m->model != -1; m++) {
541 if (model == m->model &&
542 p->channels == m->channels &&
543 p->precision == m->precision &&
544 p->sample_rate >= m->lowrate &&
545 p->sample_rate < m->highrate)
546 break;
547 }
548 if (m->model == -1)
549 return EINVAL;
550 rate = p->sample_rate;
551 swcode = 0;
552 factor = 1;
553 tc = 1;
554 bmode = -1;
555 if (model == SB_16) {
556 switch (p->encoding) {
557 case AUDIO_ENCODING_SLINEAR_BE:
558 if (p->precision == 16)
559 swcode = swap_bytes;
560 /* fall into */
561 case AUDIO_ENCODING_SLINEAR_LE:
562 bmode = SB_BMODE_SIGNED;
563 break;
564 case AUDIO_ENCODING_ULINEAR_BE:
565 if (p->precision == 16)
566 swcode = swap_bytes;
567 /* fall into */
568 case AUDIO_ENCODING_ULINEAR_LE:
569 bmode = SB_BMODE_UNSIGNED;
570 break;
571 case AUDIO_ENCODING_ULAW:
572 if (mode == AUMODE_PLAY) {
573 swcode = mulaw_to_ulinear16;
574 factor = 2;
575 m = &sbpmodes[PLAY16];
576 } else
577 swcode = ulinear8_to_mulaw;
578 bmode = SB_BMODE_UNSIGNED;
579 break;
580 case AUDIO_ENCODING_ALAW:
581 if (mode == AUMODE_PLAY) {
582 swcode = alaw_to_ulinear16;
583 factor = 2;
584 m = &sbpmodes[PLAY16];
585 } else
586 swcode = ulinear8_to_alaw;
587 bmode = SB_BMODE_UNSIGNED;
588 break;
589 default:
590 return EINVAL;
591 }
592 if (p->channels == 2)
593 bmode |= SB_BMODE_STEREO;
594 } else if (m->model == SB_JAZZ && m->precision == 16) {
595 switch (p->encoding) {
596 case AUDIO_ENCODING_SLINEAR_LE:
597 break;
598 case AUDIO_ENCODING_ULINEAR_LE:
599 swcode = change_sign16;
600 break;
601 case AUDIO_ENCODING_SLINEAR_BE:
602 swcode = swap_bytes;
603 break;
604 case AUDIO_ENCODING_ULINEAR_BE:
605 swcode = mode == AUMODE_PLAY ?
606 swap_bytes_change_sign16 : change_sign16_swap_bytes;
607 break;
608 case AUDIO_ENCODING_ULAW:
609 swcode = mode == AUMODE_PLAY ?
610 mulaw_to_ulinear8 : ulinear8_to_mulaw;
611 break;
612 case AUDIO_ENCODING_ALAW:
613 swcode = mode == AUMODE_PLAY ?
614 alaw_to_ulinear8 : ulinear8_to_alaw;
615 break;
616 default:
617 return EINVAL;
618 }
619 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
620 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
621 } else {
622 switch (p->encoding) {
623 case AUDIO_ENCODING_SLINEAR_BE:
624 case AUDIO_ENCODING_SLINEAR_LE:
625 swcode = change_sign8;
626 break;
627 case AUDIO_ENCODING_ULINEAR_BE:
628 case AUDIO_ENCODING_ULINEAR_LE:
629 break;
630 case AUDIO_ENCODING_ULAW:
631 swcode = mode == AUMODE_PLAY ?
632 mulaw_to_ulinear8 : ulinear8_to_mulaw;
633 break;
634 case AUDIO_ENCODING_ALAW:
635 swcode = mode == AUMODE_PLAY ?
636 alaw_to_ulinear8 : ulinear8_to_alaw;
637 break;
638 default:
639 return EINVAL;
640 }
641 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
642 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
643 }
644
645 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
646 if (mode == AUMODE_PLAY) {
647 sc->sc_o.rate = rate;
648 sc->sc_o.tc = tc;
649 sc->sc_o.modep = m;
650 sc->sc_o.bmode = bmode;
651 sc->sc_o.dmachan = chan;
652 } else {
653 sc->sc_i.rate = rate;
654 sc->sc_i.tc = tc;
655 sc->sc_i.modep = m;
656 sc->sc_i.bmode = bmode;
657 sc->sc_i.dmachan = chan;
658 }
659
660 p->sw_code = swcode;
661 p->factor = factor;
662 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
663 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
664 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
665
666 }
667 /*
668 * XXX
669 * Should wait for chip to be idle.
670 */
671 sc->sc_i.run = SB_NOTRUNNING;
672 sc->sc_o.run = SB_NOTRUNNING;
673
674 if (sc->sc_fullduplex &&
675 (usemode & (AUMODE_PLAY | AUMODE_RECORD)) == (AUMODE_PLAY | AUMODE_RECORD) &&
676 sc->sc_i.dmachan == sc->sc_o.dmachan) {
677 DPRINTF(("sbdsp_commit: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
678 if (sc->sc_o.dmachan == sc->sc_drq8) {
679 /* Use 16 bit DMA for playing by expanding the samples. */
680 play->sw_code = linear8_to_linear16;
681 play->factor = 2;
682 sc->sc_o.modep = &sbpmodes[PLAY16];
683 sc->sc_o.dmachan = sc->sc_drq16;
684 } else {
685 return EINVAL;
686 }
687 }
688 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n", sc->sc_i.dmachan, sc->sc_o.dmachan));
689
690 return 0;
691}
692
693void
694sbdsp_set_ifilter(addr, which)
695 void *addr;
696 int which;
697{
698 struct sbdsp_softc *sc = addr;
699 int mixval;
700
701 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
702 switch (which) {
703 case 0:
704 mixval |= SBP_FILTER_OFF;
705 break;
706 case SB_TREBLE:
707 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
708 break;
709 case SB_BASS:
710 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
711 break;
712 default:
713 return;
714 }
715 sc->in_filter = mixval & SBP_IFILTER_MASK;
716 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
717}
718
719int
720sbdsp_get_ifilter(addr)
721 void *addr;
722{
723 struct sbdsp_softc *sc = addr;
724
725 sc->in_filter =
726 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
727 switch (sc->in_filter) {
728 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
729 return SB_TREBLE;
730 case SBP_FILTER_ON|SBP_IFILTER_LOW:
731 return SB_BASS;
732 default:
733 return 0;
734 }
735}
736
737int
738sbdsp_set_out_port(addr, port)
739 void *addr;
740 int port;
741{
742 struct sbdsp_softc *sc = addr;
743
744 sc->out_port = port; /* Just record it */
745
746 return 0;
747}
748
749int
750sbdsp_get_out_port(addr)
751 void *addr;
752{
753 struct sbdsp_softc *sc = addr;
754
755 return sc->out_port;
756}
757
758
759int
760sbdsp_set_in_port(addr, port)
761 void *addr;
762 int port;
763{
764 return sbdsp_set_in_ports(addr, 1 << port);
765}
766
767int
768sbdsp_set_in_ports(sc, mask)
769 struct sbdsp_softc *sc;
770 int mask;
771{
772 int bitsl, bitsr;
773 int sbport;
774 int i;
775
776 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
777 sc->sc_mixer_model, mask));
778
779 switch(sc->sc_mixer_model) {
780 case SBM_NONE:
781 return EINVAL;
782 case SBM_CT1335:
783 if (mask != (1 << SB_MIC_VOL))
784 return EINVAL;
785 break;
786 case SBM_CT1345:
787 switch (mask) {
788 case 1 << SB_MIC_VOL:
789 sbport = SBP_FROM_MIC;
790 break;
791 case 1 << SB_LINE_IN_VOL:
792 sbport = SBP_FROM_LINE;
793 break;
794 case 1 << SB_CD_VOL:
795 sbport = SBP_FROM_CD;
796 break;
797 default:
798 return (EINVAL);
799 }
800 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
801 break;
802 case SBM_CT1XX5:
803 case SBM_CT1745:
804 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
805 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
806 return EINVAL;
807 bitsr = 0;
808 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
809 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
810 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
811 bitsl = SB_SRC_R_TO_L(bitsr);
812 if (mask & (1<<SB_MIC_VOL)) {
813 bitsl |= SBP_MIC_SRC;
814 bitsr |= SBP_MIC_SRC;
815 }
816 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
817 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
818 break;
819 }
820
821 sc->in_mask = mask;
822
823 /* XXX
824 * We have to fake a single port since the upper layer
825 * expects one.
826 */
827 for(i = 0; i < SB_NPORT; i++) {
828 if (mask & (1 << i)) {
829 sc->in_port = i;
830 break;
831 }
832 }
833 return 0;
834}
835
836int
837sbdsp_get_in_port(addr)
838 void *addr;
839{
840 struct sbdsp_softc *sc = addr;
841
842 return sc->in_port;
843}
844
845
846int
847sbdsp_speaker_ctl(addr, newstate)
848 void *addr;
849 int newstate;
850{
851 struct sbdsp_softc *sc = addr;
852
853 if ((newstate == SPKR_ON) &&
854 (sc->spkr_state == SPKR_OFF)) {
855 sbdsp_spkron(sc);
856 sc->spkr_state = SPKR_ON;
857 }
858 if ((newstate == SPKR_OFF) &&
859 (sc->spkr_state == SPKR_ON)) {
860 sbdsp_spkroff(sc);
861 sc->spkr_state = SPKR_OFF;
862 }
863 return 0;
864}
865
866int
867sbdsp_round_blocksize(addr, blk)
868 void *addr;
869 int blk;
870{
871 blk &= -4; /* round to biggest sample size */
872 return blk;
873}
874
875int
876sbdsp_open(addr, flags)
877 void *addr;
878 int flags;
879{
880 struct sbdsp_softc *sc = addr;
881
882 DPRINTF(("sbdsp_open: sc=%p\n", sc));
883
884 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
885 return ENXIO;
886
887 sc->sc_open = 1;
888 sc->sc_openflags = flags;
889 sc->sc_mintr = 0;
890 if (ISSBPRO(sc) &&
891 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
892 DPRINTF(("sbdsp_open: can't set mono mode\n"));
893 /* we'll readjust when it's time for DMA. */
894 }
895
896 /*
897 * Leave most things as they were; users must change things if
898 * the previous process didn't leave it they way they wanted.
899 * Looked at another way, it's easy to set up a configuration
900 * in one program and leave it for another to inherit.
901 */
902 DPRINTF(("sbdsp_open: opened\n"));
903
904 return 0;
905}
906
907void
908sbdsp_close(addr)
909 void *addr;
910{
911 struct sbdsp_softc *sc = addr;
912
913 DPRINTF(("sbdsp_close: sc=%p\n", sc));
914
915 sc->sc_open = 0;
916 sbdsp_spkroff(sc);
917 sc->spkr_state = SPKR_OFF;
918 sc->sc_intr8 = 0;
919 sc->sc_intr16 = 0;
920 sc->sc_mintr = 0;
921 sbdsp_haltdma(sc);
922
923 DPRINTF(("sbdsp_close: closed\n"));
924}
925
926/*
927 * Lower-level routines
928 */
929
930/*
931 * Reset the card.
932 * Return non-zero if the card isn't detected.
933 */
934int
935sbdsp_reset(sc)
936 struct sbdsp_softc *sc;
937{
938 bus_space_tag_t iot = sc->sc_iot;
939 bus_space_handle_t ioh = sc->sc_ioh;
940
941 sc->sc_intr8 = 0;
942 sc->sc_intr16 = 0;
943 if (sc->sc_i.run != SB_NOTRUNNING) {
944 isa_dmaabort(sc->sc_isa, sc->sc_i.dmachan);
945 sc->sc_i.run = SB_NOTRUNNING;
946 }
947 if (sc->sc_o.run != SB_NOTRUNNING) {
948 isa_dmaabort(sc->sc_isa, sc->sc_o.dmachan);
949 sc->sc_o.run = SB_NOTRUNNING;
950 }
951
952 /*
953 * See SBK, section 11.3.
954 * We pulse a reset signal into the card.
955 * Gee, what a brilliant hardware design.
956 */
957 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
958 delay(10);
959 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
960 delay(30);
961 if (sbdsp_rdsp(sc) != SB_MAGIC)
962 return -1;
963
964 return 0;
965}
966
967/*
968 * Write a byte to the dsp.
969 * We are at the mercy of the card as we use a
970 * polling loop and wait until it can take the byte.
971 */
972int
973sbdsp_wdsp(sc, v)
974 struct sbdsp_softc *sc;
975 int v;
976{
977 bus_space_tag_t iot = sc->sc_iot;
978 bus_space_handle_t ioh = sc->sc_ioh;
979 int i;
980 u_char x;
981
982 for (i = SBDSP_NPOLL; --i >= 0; ) {
983 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
984 delay(10);
985 if ((x & SB_DSP_BUSY) == 0) {
986 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
987 delay(10);
988 return 0;
989 }
990 }
991 ++sberr.wdsp;
992 return -1;
993}
994
995/*
996 * Read a byte from the DSP, using polling.
997 */
998int
999sbdsp_rdsp(sc)
1000 struct sbdsp_softc *sc;
1001{
1002 bus_space_tag_t iot = sc->sc_iot;
1003 bus_space_handle_t ioh = sc->sc_ioh;
1004 int i;
1005 u_char x;
1006
1007 for (i = SBDSP_NPOLL; --i >= 0; ) {
1008 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1009 delay(10);
1010 if (x & SB_DSP_READY) {
1011 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1012 delay(10);
1013 return x;
1014 }
1015 }
1016 ++sberr.rdsp;
1017 return -1;
1018}
1019
1020/*
1021 * Doing certain things (like toggling the speaker) make
1022 * the SB hardware go away for a while, so pause a little.
1023 */
1024void
1025sbdsp_to(arg)
1026 void *arg;
1027{
1028 wakeup(arg);
1029}
1030
1031void
1032sbdsp_pause(sc)
1033 struct sbdsp_softc *sc;
1034{
1035 extern int hz;
1036
1037 timeout(sbdsp_to, sbdsp_to, hz/8);
1038 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1039}
1040
1041/*
1042 * Turn on the speaker. The SBK documention says this operation
1043 * can take up to 1/10 of a second. Higher level layers should
1044 * probably let the task sleep for this amount of time after
1045 * calling here. Otherwise, things might not work (because
1046 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1047 *
1048 * These engineers had their heads up their ass when
1049 * they designed this card.
1050 */
1051void
1052sbdsp_spkron(sc)
1053 struct sbdsp_softc *sc;
1054{
1055 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1056 sbdsp_pause(sc);
1057}
1058
1059/*
1060 * Turn off the speaker; see comment above.
1061 */
1062void
1063sbdsp_spkroff(sc)
1064 struct sbdsp_softc *sc;
1065{
1066 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1067 sbdsp_pause(sc);
1068}
1069
1070/*
1071 * Read the version number out of the card.
1072 * Store version information in the softc.
1073 */
1074void
1075sbversion(sc)
1076 struct sbdsp_softc *sc;
1077{
1078 int v;
1079
1080 sc->sc_model = SB_UNK;
1081 sc->sc_version = 0;
1082 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1083 return;
1084 v = sbdsp_rdsp(sc) << 8;
1085 v |= sbdsp_rdsp(sc);
1086 if (v < 0)
1087 return;
1088 sc->sc_version = v;
1089 switch(SBVER_MAJOR(v)) {
1090 case 1:
1091 sc->sc_mixer_model = SBM_NONE;
1092 sc->sc_model = SB_1;
1093 break;
1094 case 2:
1095 /* Some SB2 have a mixer, some don't. */
1096 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1097 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1098 /* Check if we can read back the mixer values. */
1099 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1100 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1101 sc->sc_mixer_model = SBM_CT1335;
1102 else
1103 sc->sc_mixer_model = SBM_NONE;
1104 if (SBVER_MINOR(v) == 0)
1105 sc->sc_model = SB_20;
1106 else
1107 sc->sc_model = SB_2x;
1108 break;
1109 case 3:
1110 sc->sc_mixer_model = SBM_CT1345;
1111 sc->sc_model = SB_PRO;
1112 break;
1113 case 4:
1114#if 0
1115/* XXX This does not work */
1116 /* Most SB16 have a tone controls, but some don't. */
1117 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1118 /* Check if we can read back the mixer value. */
1119 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1120 sc->sc_mixer_model = SBM_CT1745;
1121 else
1122 sc->sc_mixer_model = SBM_CT1XX5;
1123#else
1124 sc->sc_mixer_model = SBM_CT1745;
1125#endif
1126 /* XXX what about SB_32 */
1127 if (SBVER_MINOR(v) == 16)
1128 sc->sc_model = SB_64;
1129 else
1130 sc->sc_model = SB_16;
1131 break;
1132 }
1133}
1134
1135/*
1136 * Halt a DMA in progress. A low-speed transfer can be
1137 * resumed with sbdsp_contdma().
1138 */
1139int
1140sbdsp_haltdma(addr)
1141 void *addr;
1142{
1143 struct sbdsp_softc *sc = addr;
1144
1145 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc));
1146
1147 sbdsp_reset(sc);
1148 return 0;
1149}
1150
1151int
1152sbdsp_contdma(addr)
1153 void *addr;
1154{
1155 struct sbdsp_softc *sc = addr;
1156
1157 DPRINTF(("sbdsp_contdma: sc=%p\n", sc));
1158
1159 /* XXX how do we reinitialize the DMA controller state? do we care? */
1160 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
1161 return 0;
1162}
1163
1164int
1165sbdsp_set_timeconst(sc, tc)
1166 struct sbdsp_softc *sc;
1167 int tc;
1168{
1169 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1170
1171 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1172 sbdsp_wdsp(sc, tc) < 0)
1173 return EIO;
1174
1175 return 0;
1176}
1177
1178int
1179sbdsp16_set_rate(sc, cmd, rate)
1180 struct sbdsp_softc *sc;
1181 int cmd, rate;
1182{
1183 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1184
1185 if (sbdsp_wdsp(sc, cmd) < 0 ||
1186 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1187 sbdsp_wdsp(sc, rate) < 0)
1188 return EIO;
1189 return 0;
1190}
1191
1192int
1193sbdsp_dma_init_input(addr, buf, cc)
1194 void *addr;
1195 void *buf;
1196 int cc;
1197{
1198 struct sbdsp_softc *sc = addr;
1199
1200 if (sc->sc_model == SB_1)
1201 return 0;
1202 sc->sc_i.run = SB_DMARUNNING;
1203 DPRINTF(("sbdsp: dma start loop input addr=%p cc=%d chan=%d\n",
1204 buf, cc, sc->sc_i.dmachan));
1205 isa_dmastart(sc->sc_isa, sc->sc_i.dmachan, buf,
1206 cc, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1207 return 0;
1208}
1209
1210static int
1211sbdsp_dma_setup_input(sc)
1212 struct sbdsp_softc *sc;
1213{
1214 int stereo = sc->sc_i.modep->channels == 2;
1215 int filter;
1216
1217 /* Initialize the PCM */
1218 if (ISSBPRO(sc)) {
1219 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1220 return 0;
1221 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1222 sbdsp_mix_write(sc, SBP_INFILTER,
1223 (sbdsp_mix_read(sc, SBP_INFILTER) &
1224 ~SBP_IFILTER_MASK) | filter);
1225 }
1226
1227 if (ISSB16CLASS(sc)) {
1228 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE,
1229 sc->sc_i.rate)) {
1230 DPRINTF(("sbdsp_dma_setup_input: rate=%d set failed\n",
1231 sc->sc_i.rate));
1232 return 0;
1233 }
1234 } else {
1235 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1236 DPRINTF(("sbdsp_dma_setup_input: tc=%d set failed\n",
1237 sc->sc_i.rate));
1238 return 0;
1239 }
1240 }
1241 return 1;
1242}
1243
1244int
1245sbdsp_dma_input(addr, p, cc, intr, arg)
1246 void *addr;
1247 void *p;
1248 int cc;
1249 void (*intr) __P((void *));
1250 void *arg;
1251{
1252 struct sbdsp_softc *sc = addr;
1253
1254#ifdef AUDIO_DEBUG
1255 if (sbdspdebug > 1)
1256 printf("sbdsp_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n",
1257 addr, p, cc, intr, arg);
1258#endif
1259#ifdef DIAGNOSTIC
1260 if (sc->sc_i.modep->channels == 2 && (cc & 1)) {
1261 DPRINTF(("stereo record odd bytes (%d)\n", cc));
1262 return EIO;
1263 }
1264#endif
1265
1266 if (sc->sc_i.modep->precision == 8) {
1267#ifdef DIAGNOSTIC
1268 if (sc->sc_i.dmachan != sc->sc_drq8) {
1269 printf("sbdsp_dma_input: prec=%d bad chan %d\n",
1270 sc->sc_i.modep->precision, sc->sc_i.dmachan);
1271 return EIO;
1272 }
1273#endif
1274 sc->sc_intr8 = intr;
1275 sc->sc_arg8 = arg;
1276 } else {
1277#ifdef DIAGNOSTIC
1278 if (sc->sc_i.dmachan != sc->sc_drq16) {
1279 printf("sbdsp_dma_input: prec=%d bad chan %d\n",
1280 sc->sc_i.modep->precision, sc->sc_i.dmachan);
1281 return EIO;
1282 }
1283#endif
1284 sc->sc_intr16 = intr;
1285 sc->sc_arg16 = arg;
1286 }
1287
1288 switch(sc->sc_i.run) {
1289 case SB_NOTRUNNING:
1290 /* Non-looping mode, not initialized */
1291 sc->sc_i.run = SB_RUNNING;
1292 if (!sbdsp_dma_setup_input(sc))
1293 goto giveup;
1294 /* fall into */
1295 case SB_RUNNING:
1296 /* Non-looping mode, start DMA */
1297#ifdef AUDIO_DEBUG
1298 if (sbdspdebug > 2)
1299 printf("sbdsp_dma_input: dmastart buf=%p cc=%d chan=%d\n",
1300 p, cc, sc->sc_i.dmachan);
1301#endif
1302 isa_dmastart(sc->sc_isa, sc->sc_i.dmachan, p,
1303 cc, NULL, DMAMODE_READ, BUS_DMA_NOWAIT);
1304
1305 /* Start PCM in non-looping mode */
1306 if ((sc->sc_model == SB_JAZZ && sc->sc_i.dmachan > 3) ||
1307 (sc->sc_model != SB_JAZZ && sc->sc_i.modep->precision == 16))
1308 cc >>= 1;
1309 --cc;
1310 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1311 sbdsp_wdsp(sc, cc) < 0 ||
1312 sbdsp_wdsp(sc, cc >> 8) < 0) {
1313 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1314 goto giveup;
1315 }
1316 break;
1317 case SB_DMARUNNING:
1318 /* Looping mode, not initialized */
1319 sc->sc_i.run = SB_PCMRUNNING;
1320 if (!sbdsp_dma_setup_input(sc))
1321 goto giveup;
1322 if ((sc->sc_model == SB_JAZZ && sc->sc_i.dmachan > 3) ||
1323 (sc->sc_model != SB_JAZZ && sc->sc_i.modep->precision == 16))
1324 cc >>= 1;
1325 --cc;
1326 /* Initialize looping PCM */
1327 if (ISSB16CLASS(sc)) {
1328#ifdef AUDIO_DEBUG
1329 if (sbdspdebug > 2)
1330 printf("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1331 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc);
1332#endif
1333 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1334 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1335 sbdsp_wdsp(sc, cc) < 0 ||
1336 sbdsp_wdsp(sc, cc >> 8) < 0) {
1337 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1338 DPRINTF(("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1339 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1340 goto giveup;
1341 }
1342 } else {
1343 DPRINTF(("sbdsp_dma_input: set blocksize=%d\n", cc));
1344 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1345 sbdsp_wdsp(sc, cc) < 0 ||
1346 sbdsp_wdsp(sc, cc >> 8) < 0) {
1347 DPRINTF(("sbdsp_dma_input: SB2 DMA blocksize failed\n"));
1348 goto giveup;
1349 }
1350 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1351 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1352 goto giveup;
1353 }
1354 }
1355 break;
1356 case SB_PCMRUNNING:
1357 /* Looping mode, nothing to do */
1358 break;
1359 }
1360 return 0;
1361
1362giveup:
1363 sbdsp_reset(sc);
1364 return EIO;
1365}
1366
1367int
1368sbdsp_dma_init_output(addr, buf, cc)
1369 void *addr;
1370 void *buf;
1371 int cc;
1372{
1373 struct sbdsp_softc *sc = addr;
1374
1375 if (sc->sc_model == SB_1)
1376 return 0;
1377 sc->sc_o.run = SB_DMARUNNING;
1378 DPRINTF(("sbdsp: dma start loop output buf=%p cc=%d chan=%d\n",
1379 buf, cc, sc->sc_o.dmachan));
1380 isa_dmastart(sc->sc_isa, sc->sc_o.dmachan, buf,
1381 cc, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1382 return 0;
1383}
1384
1385static int
1386sbdsp_dma_setup_output(sc)
1387 struct sbdsp_softc *sc;
1388{
1389 int stereo = sc->sc_o.modep->channels == 2;
1390 int cmd;
1391
1392 if (ISSBPRO(sc)) {
1393 /* make sure we re-set stereo mixer bit when we start output. */
1394 sbdsp_mix_write(sc, SBP_STEREO,
1395 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1396 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1397 cmd = sc->sc_o.modep->cmdchan;
1398 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1399 return 0;
1400 }
1401
1402 if (ISSB16CLASS(sc)) {
1403 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE,
1404 sc->sc_o.rate)) {
1405 DPRINTF(("sbdsp_dma_setup_output: rate=%d set failed\n",
1406 sc->sc_o.rate));
1407 return 0;
1408 }
1409 } else {
1410 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1411 DPRINTF(("sbdsp_dma_setup_output: tc=%d set failed\n",
1412 sc->sc_o.rate));
1413 return 0;
1414 }
1415 }
1416 return 1;
1417}
1418
1419int
1420sbdsp_dma_output(addr, p, cc, intr, arg)
1421 void *addr;
1422 void *p;
1423 int cc;
1424 void (*intr) __P((void *));
1425 void *arg;
1426{
1427 struct sbdsp_softc *sc = addr;
1428
1429#ifdef AUDIO_DEBUG
1430 if (sbdspdebug > 1)
1431 printf("sbdsp_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n", addr, p, cc, intr, arg);
1432#endif
1433#ifdef DIAGNOSTIC
1434 if (sc->sc_o.modep->channels == 2 && (cc & 1)) {
1435 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1436 return EIO;
1437 }
1438#endif
1439
1440 if (sc->sc_o.modep->precision == 8) {
1441#ifdef DIAGNOSTIC
1442 if (sc->sc_o.dmachan != sc->sc_drq8) {
1443 printf("sbdsp_dma_output: prec=%d bad chan %d\n",
1444 sc->sc_o.modep->precision, sc->sc_o.dmachan);
1445 return EIO;
1446 }
1447#endif
1448 sc->sc_intr8 = intr;
1449 sc->sc_arg8 = arg;
1450 } else {
1451#ifdef DIAGNOSTIC
1452 if (sc->sc_o.dmachan != sc->sc_drq16) {
1453 printf("sbdsp_dma_output: prec=%d bad chan %d\n",
1454 sc->sc_o.modep->precision, sc->sc_o.dmachan);
1455 return EIO;
1456 }
1457#endif
1458 sc->sc_intr16 = intr;
1459 sc->sc_arg16 = arg;
1460 }
1461
1462 switch(sc->sc_o.run) {
1463 case SB_NOTRUNNING:
1464 /* Non-looping mode, not initialized */
1465 sc->sc_o.run = SB_RUNNING;
1466 if (!sbdsp_dma_setup_output(sc))
1467 goto giveup;
1468 /* fall into */
1469 case SB_RUNNING:
1470 /* Non-looping mode, initialized. Start DMA and PCM */
1471#ifdef AUDIO_DEBUG
1472 if (sbdspdebug > 2)
1473 printf("sbdsp: start dma out addr=%p, cc=%d, chan=%d\n",
1474 p, cc, sc->sc_o.dmachan);
1475#endif
1476 isa_dmastart(sc->sc_isa, sc->sc_o.dmachan, p,
1477 cc, NULL, DMAMODE_WRITE, BUS_DMA_NOWAIT);
1478 if ((sc->sc_model == SB_JAZZ && sc->sc_o.dmachan > 3) ||
1479 (sc->sc_model != SB_JAZZ && sc->sc_o.modep->precision == 16))
1480 cc >>= 1;
1481 --cc;
1482 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1483 sbdsp_wdsp(sc, cc) < 0 ||
1484 sbdsp_wdsp(sc, cc >> 8) < 0) {
1485 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1486 goto giveup;
1487 }
1488 break;
1489 case SB_DMARUNNING:
1490 /* Looping mode, not initialized */
1491 sc->sc_o.run = SB_PCMRUNNING;
1492 if (!sbdsp_dma_setup_output(sc))
1493 goto giveup;
1494 if ((sc->sc_model == SB_JAZZ && sc->sc_o.dmachan > 3) ||
1495 (sc->sc_model != SB_JAZZ && sc->sc_o.modep->precision == 16))
1496 cc >>= 1;
1497 --cc;
1498 /* Initialize looping PCM */
1499 if (ISSB16CLASS(sc)) {
1500 DPRINTF(("sbdsp_dma_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1501 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1502 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1503 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1504 sbdsp_wdsp(sc, cc) < 0 ||
1505 sbdsp_wdsp(sc, cc >> 8) < 0) {
1506 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1507 goto giveup;
1508 }
1509 } else {
1510 DPRINTF(("sbdsp_dma_output: set blocksize=%d\n", cc));
1511 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1512 sbdsp_wdsp(sc, cc) < 0 ||
1513 sbdsp_wdsp(sc, cc >> 8) < 0) {
1514 DPRINTF(("sbdsp_dma_output: SB2 DMA blocksize failed\n"));
1515 goto giveup;
1516 }
1517 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1518 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1519 goto giveup;
1520 }
1521 }
1522 break;
1523 case SB_PCMRUNNING:
1524 /* Looping mode, nothing to do */
1525 break;
1526 }
1527 return 0;
1528
1529giveup:
1530 sbdsp_reset(sc);
1531 return EIO;
1532}
1533
1534/*
1535 * Only the DSP unit on the sound blaster generates interrupts.
1536 * There are three cases of interrupt: reception of a midi byte
1537 * (when mode is enabled), completion of dma transmission, or
1538 * completion of a dma reception.
1539 *
1540 * If there is interrupt sharing or a spurious interrupt occurs
1541 * there is no way to distinguish this on an SB2. So if you have
1542 * an SB2 and experience problems, buy an SB16 (it's only $40).
1543 */
1544int
1545sbdsp_intr(arg)
1546 void *arg;
1547{
1548 struct sbdsp_softc *sc = arg;
1549 int loop = sc->sc_model != SB_1;
1550 u_char irq;
1551
1552#ifdef AUDIO_DEBUG
1553 if (sbdspdebug > 1)
1554 printf("sbdsp_intr: intr8=%p, intr16=%p\n",
1555 sc->sc_intr8, sc->sc_intr16);
1556#endif
1557 if (ISSB16CLASS(sc)) {
1558 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1559 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16)) == 0) {
1560 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1561 return 0;
1562 }
1563 } else {
1564 if (!loop && !isa_dmafinished(sc->sc_isa, sc->sc_drq8))
1565 return 0;
1566 irq = SBP_IRQ_DMA8;
1567 }
1568 sc->sc_interrupts++;
1569 delay(10); /* XXX why? */
1570#if 0
1571 if (sc->sc_mintr != 0) {
1572 x = sbdsp_rdsp(sc);
1573 (*sc->sc_mintr)(sc->sc_arg, x);
1574 } else
1575#endif
1576 if (sc->sc_intr8 == 0 && sc->sc_intr16 == 0) {
1577 DPRINTF(("sbdsp_intr: Unexpected interrupt 0x%x\n", irq));
1578 /* XXX return 0;*/ /* Did not expect an interrupt */
1579 }
1580
1581 /* clear interrupt */
1582 if (irq & SBP_IRQ_DMA8) {
1583 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1584 if (!loop)
1585 isa_dmadone(sc->sc_isa, sc->sc_drq8);
1586 if (sc->sc_intr8)
1587 (*sc->sc_intr8)(sc->sc_arg8);
1588 }
1589 if (irq & SBP_IRQ_DMA16) {
1590 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1591 if (sc->sc_intr16)
1592 (*sc->sc_intr16)(sc->sc_arg16);
1593 }
1594 return 1;
1595}
1596
1597#if 0
1598/*
1599 * Enter midi uart mode and arrange for read interrupts
1600 * to vector to `intr'. This puts the card in a mode
1601 * which allows only midi I/O; the card must be reset
1602 * to leave this mode. Unfortunately, the card does not
1603 * use transmit interrupts, so bytes must be output
1604 * using polling. To keep the polling overhead to a
1605 * minimum, output should be driven off a timer.
1606 * This is a little tricky since only 320us separate
1607 * consecutive midi bytes.
1608 */
1609void
1610sbdsp_set_midi_mode(sc, intr, arg)
1611 struct sbdsp_softc *sc;
1612 void (*intr)();
1613 void *arg;
1614{
1615
1616 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1617 sc->sc_mintr = intr;
1618 sc->sc_intr = 0;
1619 sc->sc_arg = arg;
1620}
1621
1622/*
1623 * Write a byte to the midi port, when in midi uart mode.
1624 */
1625void
1626sbdsp_midi_output(sc, v)
1627 struct sbdsp_softc *sc;
1628 int v;
1629{
1630
1631 if (sbdsp_wdsp(sc, v) < 0)
1632 ++sberr.wmidi;
1633}
1634#endif
1635
1636/* Mask a value 0-255, but round it first */
1637#define MAXVAL 256
1638static int
1639sbdsp_adjust(val, mask)
1640 int val, mask;
1641{
1642 val += (MAXVAL - mask) >> 1;
1643 if (val >= MAXVAL)
1644 val = MAXVAL-1;
1645 return val & mask;
1646}
1647
1648void
1649sbdsp_set_mixer_gain(sc, port)
1650 struct sbdsp_softc *sc;
1651 int port;
1652{
1653 int src, gain;
1654
1655 switch(sc->sc_mixer_model) {
1656 case SBM_NONE:
1657 return;
1658 case SBM_CT1335:
1659 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1660 switch(port) {
1661 case SB_MASTER_VOL:
1662 src = SBP_1335_MASTER_VOL;
1663 break;
1664 case SB_MIDI_VOL:
1665 src = SBP_1335_MIDI_VOL;
1666 break;
1667 case SB_CD_VOL:
1668 src = SBP_1335_CD_VOL;
1669 break;
1670 case SB_VOICE_VOL:
1671 src = SBP_1335_VOICE_VOL;
1672 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1673 break;
1674 default:
1675 return;
1676 }
1677 sbdsp_mix_write(sc, src, gain);
1678 break;
1679 case SBM_CT1345:
1680 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1681 sc->gain[port][SB_RIGHT]);
1682 switch (port) {
1683 case SB_MIC_VOL:
1684 src = SBP_MIC_VOL;
1685 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1686 break;
1687 case SB_MASTER_VOL:
1688 src = SBP_MASTER_VOL;
1689 break;
1690 case SB_LINE_IN_VOL:
1691 src = SBP_LINE_VOL;
1692 break;
1693 case SB_VOICE_VOL:
1694 src = SBP_VOICE_VOL;
1695 break;
1696 case SB_MIDI_VOL:
1697 src = SBP_MIDI_VOL;
1698 break;
1699 case SB_CD_VOL:
1700 src = SBP_CD_VOL;
1701 break;
1702 default:
1703 return;
1704 }
1705 sbdsp_mix_write(sc, src, gain);
1706 break;
1707 case SBM_CT1XX5:
1708 case SBM_CT1745:
1709 switch (port) {
1710 case SB_MIC_VOL:
1711 src = SB16P_MIC_L;
1712 break;
1713 case SB_MASTER_VOL:
1714 src = SB16P_MASTER_L;
1715 break;
1716 case SB_LINE_IN_VOL:
1717 src = SB16P_LINE_L;
1718 break;
1719 case SB_VOICE_VOL:
1720 src = SB16P_VOICE_L;
1721 break;
1722 case SB_MIDI_VOL:
1723 src = SB16P_MIDI_L;
1724 break;
1725 case SB_CD_VOL:
1726 src = SB16P_CD_L;
1727 break;
1728 case SB_INPUT_GAIN:
1729 src = SB16P_INPUT_GAIN_L;
1730 break;
1731 case SB_OUTPUT_GAIN:
1732 src = SB16P_OUTPUT_GAIN_L;
1733 break;
1734 case SB_TREBLE:
1735 src = SB16P_TREBLE_L;
1736 break;
1737 case SB_BASS:
1738 src = SB16P_BASS_L;
1739 break;
1740 case SB_PCSPEAKER:
1741 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1742 return;
1743 default:
1744 return;
1745 }
1746 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1747 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1748 break;
1749 }
1750}
1751
1752int
1753sbdsp_mixer_set_port(addr, cp)
1754 void *addr;
1755 mixer_ctrl_t *cp;
1756{
1757 struct sbdsp_softc *sc = addr;
1758 int lgain, rgain;
1759 int mask, bits;
1760 int lmask, rmask, lbits, rbits;
1761 int mute, swap;
1762
1763 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1764 cp->un.value.num_channels));
1765
1766 if (sc->sc_mixer_model == SBM_NONE)
1767 return EINVAL;
1768
1769 switch (cp->dev) {
1770 case SB_TREBLE:
1771 case SB_BASS:
1772 if (sc->sc_mixer_model == SBM_CT1345 ||
1773 sc->sc_mixer_model == SBM_CT1XX5) {
1774 if (cp->type != AUDIO_MIXER_ENUM)
1775 return EINVAL;
1776 switch (cp->dev) {
1777 case SB_TREBLE:
1778 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1779 return 0;
1780 case SB_BASS:
1781 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1782 return 0;
1783 }
1784 }
1785 case SB_PCSPEAKER:
1786 case SB_INPUT_GAIN:
1787 case SB_OUTPUT_GAIN:
1788 if (!ISSBM1745(sc))
1789 return EINVAL;
1790 case SB_MIC_VOL:
1791 case SB_LINE_IN_VOL:
1792 if (sc->sc_mixer_model == SBM_CT1335)
1793 return EINVAL;
1794 case SB_VOICE_VOL:
1795 case SB_MIDI_VOL:
1796 case SB_CD_VOL:
1797 case SB_MASTER_VOL:
1798 if (cp->type != AUDIO_MIXER_VALUE)
1799 return EINVAL;
1800
1801 /*
1802 * All the mixer ports are stereo except for the microphone.
1803 * If we get a single-channel gain value passed in, then we
1804 * duplicate it to both left and right channels.
1805 */
1806
1807 switch (cp->dev) {
1808 case SB_MIC_VOL:
1809 if (cp->un.value.num_channels != 1)
1810 return EINVAL;
1811
1812 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1813 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1814 break;
1815 case SB_PCSPEAKER:
1816 if (cp->un.value.num_channels != 1)
1817 return EINVAL;
1818 /* fall into */
1819 case SB_INPUT_GAIN:
1820 case SB_OUTPUT_GAIN:
1821 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1822 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1823 break;
1824 default:
1825 switch (cp->un.value.num_channels) {
1826 case 1:
1827 lgain = rgain = SB_ADJUST_GAIN(sc,
1828 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1829 break;
1830 case 2:
1831 if (sc->sc_mixer_model == SBM_CT1335)
1832 return EINVAL;
1833 lgain = SB_ADJUST_GAIN(sc,
1834 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1835 rgain = SB_ADJUST_GAIN(sc,
1836 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1837 break;
1838 default:
1839 return EINVAL;
1840 }
1841 break;
1842 }
1843 sc->gain[cp->dev][SB_LEFT] = lgain;
1844 sc->gain[cp->dev][SB_RIGHT] = rgain;
1845
1846 sbdsp_set_mixer_gain(sc, cp->dev);
1847 break;
1848
1849 case SB_RECORD_SOURCE:
1850 if (ISSBM1745(sc)) {
1851 if (cp->type != AUDIO_MIXER_SET)
1852 return EINVAL;
1853 return sbdsp_set_in_ports(sc, cp->un.mask);
1854 } else {
1855 if (cp->type != AUDIO_MIXER_ENUM)
1856 return EINVAL;
1857 return sbdsp_set_in_port(sc, cp->un.ord);
1858 }
1859 break;
1860
1861 case SB_AGC:
1862 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1863 return EINVAL;
1864 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1865 break;
1866
1867 case SB_CD_OUT_MUTE:
1868 mask = SB16P_SW_CD;
1869 goto omute;
1870 case SB_MIC_OUT_MUTE:
1871 mask = SB16P_SW_MIC;
1872 goto omute;
1873 case SB_LINE_OUT_MUTE:
1874 mask = SB16P_SW_LINE;
1875 omute:
1876 if (cp->type != AUDIO_MIXER_ENUM)
1877 return EINVAL;
1878 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1879 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1880 if (cp->un.ord)
1881 bits = bits & ~mask;
1882 else
1883 bits = bits | mask;
1884 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1885 break;
1886
1887 case SB_MIC_IN_MUTE:
1888 case SB_MIC_SWAP:
1889 lmask = rmask = SB16P_SW_MIC;
1890 goto imute;
1891 case SB_CD_IN_MUTE:
1892 case SB_CD_SWAP:
1893 lmask = SB16P_SW_CD_L;
1894 rmask = SB16P_SW_CD_R;
1895 goto imute;
1896 case SB_LINE_IN_MUTE:
1897 case SB_LINE_SWAP:
1898 lmask = SB16P_SW_LINE_L;
1899 rmask = SB16P_SW_LINE_R;
1900 goto imute;
1901 case SB_MIDI_IN_MUTE:
1902 case SB_MIDI_SWAP:
1903 lmask = SB16P_SW_MIDI_L;
1904 rmask = SB16P_SW_MIDI_R;
1905 imute:
1906 if (cp->type != AUDIO_MIXER_ENUM)
1907 return EINVAL;
1908 mask = lmask | rmask;
1909 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1910 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1911 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1912 if (SB_IS_IN_MUTE(cp->dev)) {
1913 mute = cp->dev;
1914 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1915 } else {
1916 swap = cp->dev;
1917 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1918 }
1919 if (sc->gain[swap][SB_LR]) {
1920 mask = lmask;
1921 lmask = rmask;
1922 rmask = mask;
1923 }
1924 if (!sc->gain[mute][SB_LR]) {
1925 lbits = lbits | lmask;
1926 rbits = rbits | rmask;
1927 }
1928 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1929 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1930 break;
1931
1932 default:
1933 return EINVAL;
1934 }
1935
1936 return 0;
1937}
1938
1939int
1940sbdsp_mixer_get_port(addr, cp)
1941 void *addr;
1942 mixer_ctrl_t *cp;
1943{
1944 struct sbdsp_softc *sc = addr;
1945
1946 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1947
1948 if (sc->sc_mixer_model == SBM_NONE)
1949 return EINVAL;
1950
1951 switch (cp->dev) {
1952 case SB_TREBLE:
1953 case SB_BASS:
1954 if (sc->sc_mixer_model == SBM_CT1345 ||
1955 sc->sc_mixer_model == SBM_CT1XX5) {
1956 switch (cp->dev) {
1957 case SB_TREBLE:
1958 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1959 return 0;
1960 case SB_BASS:
1961 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1962 return 0;
1963 }
1964 }
1965 case SB_PCSPEAKER:
1966 case SB_INPUT_GAIN:
1967 case SB_OUTPUT_GAIN:
1968 if (!ISSBM1745(sc))
1969 return EINVAL;
1970 case SB_MIC_VOL:
1971 case SB_LINE_IN_VOL:
1972 if (sc->sc_mixer_model == SBM_CT1335)
1973 return EINVAL;
1974 case SB_VOICE_VOL:
1975 case SB_MIDI_VOL:
1976 case SB_CD_VOL:
1977 case SB_MASTER_VOL:
1978 switch (cp->dev) {
1979 case SB_MIC_VOL:
1980 case SB_PCSPEAKER:
1981 if (cp->un.value.num_channels != 1)
1982 return EINVAL;
1983 /* fall into */
1984 default:
1985 switch (cp->un.value.num_channels) {
1986 case 1:
1987 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1988 sc->gain[cp->dev][SB_LEFT];
1989 break;
1990 case 2:
1991 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1992 sc->gain[cp->dev][SB_LEFT];
1993 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1994 sc->gain[cp->dev][SB_RIGHT];
1995 break;
1996 default:
1997 return EINVAL;
1998 }
1999 break;
2000 }
2001 break;
2002
2003 case SB_RECORD_SOURCE:
2004 if (ISSBM1745(sc))
2005 cp->un.mask = sc->in_mask;
2006 else
2007 cp->un.ord = sc->in_port;
2008 break;
2009
2010 case SB_AGC:
2011 if (!ISSBM1745(sc))
2012 return EINVAL;
2013 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
2014 break;
2015
2016 case SB_CD_IN_MUTE:
2017 case SB_MIC_IN_MUTE:
2018 case SB_LINE_IN_MUTE:
2019 case SB_MIDI_IN_MUTE:
2020 case SB_CD_SWAP:
2021 case SB_MIC_SWAP:
2022 case SB_LINE_SWAP:
2023 case SB_MIDI_SWAP:
2024 case SB_CD_OUT_MUTE:
2025 case SB_MIC_OUT_MUTE:
2026 case SB_LINE_OUT_MUTE:
2027 cp->un.ord = sc->gain[cp->dev][SB_LR];
2028 break;
2029
2030 default:
2031 return EINVAL;
2032 }
2033
2034 return 0;
2035}
2036
2037int
2038sbdsp_mixer_query_devinfo(addr, dip)
2039 void *addr;
2040 mixer_devinfo_t *dip;
2041{
2042 struct sbdsp_softc *sc = addr;
2043 int chan, class, is1745;
2044
2045 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
2046 sc->sc_mixer_model, dip->index));
2047
2048 if (sc->sc_mixer_model == SBM_NONE)
2049 return ENXIO;
2050
2051 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
2052 is1745 = ISSBM1745(sc);
2053 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
2054
2055 switch (dip->index) {
2056 case SB_MASTER_VOL:
2057 dip->type = AUDIO_MIXER_VALUE;
2058 dip->mixer_class = SB_OUTPUT_CLASS;
2059 dip->prev = dip->next = AUDIO_MIXER_LAST;
2060 strcpy(dip->label.name, AudioNmaster);
2061 dip->un.v.num_channels = chan;
2062 strcpy(dip->un.v.units.name, AudioNvolume);
2063 return 0;
2064 case SB_MIDI_VOL:
2065 dip->type = AUDIO_MIXER_VALUE;
2066 dip->mixer_class = class;
2067 dip->prev = AUDIO_MIXER_LAST;
2068 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2069 strcpy(dip->label.name, AudioNfmsynth);
2070 dip->un.v.num_channels = chan;
2071 strcpy(dip->un.v.units.name, AudioNvolume);
2072 return 0;
2073 case SB_CD_VOL:
2074 dip->type = AUDIO_MIXER_VALUE;
2075 dip->mixer_class = class;
2076 dip->prev = AUDIO_MIXER_LAST;
2077 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2078 strcpy(dip->label.name, AudioNcd);
2079 dip->un.v.num_channels = chan;
2080 strcpy(dip->un.v.units.name, AudioNvolume);
2081 return 0;
2082 case SB_VOICE_VOL:
2083 dip->type = AUDIO_MIXER_VALUE;
2084 dip->mixer_class = class;
2085 dip->prev = AUDIO_MIXER_LAST;
2086 dip->next = AUDIO_MIXER_LAST;
2087 strcpy(dip->label.name, AudioNdac);
2088 dip->un.v.num_channels = chan;
2089 strcpy(dip->un.v.units.name, AudioNvolume);
2090 return 0;
2091 case SB_OUTPUT_CLASS:
2092 dip->type = AUDIO_MIXER_CLASS;
2093 dip->mixer_class = SB_OUTPUT_CLASS;
2094 dip->next = dip->prev = AUDIO_MIXER_LAST;
2095 strcpy(dip->label.name, AudioCoutputs);
2096 return 0;
2097 }
2098
2099 if (sc->sc_mixer_model == SBM_CT1335)
2100 return ENXIO;
2101
2102 switch (dip->index) {
2103 case SB_MIC_VOL:
2104 dip->type = AUDIO_MIXER_VALUE;
2105 dip->mixer_class = class;
2106 dip->prev = AUDIO_MIXER_LAST;
2107 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2108 strcpy(dip->label.name, AudioNmicrophone);
2109 dip->un.v.num_channels = 1;
2110 strcpy(dip->un.v.units.name, AudioNvolume);
2111 return 0;
2112
2113 case SB_LINE_IN_VOL:
2114 dip->type = AUDIO_MIXER_VALUE;
2115 dip->mixer_class = class;
2116 dip->prev = AUDIO_MIXER_LAST;
2117 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2118 strcpy(dip->label.name, AudioNline);
2119 dip->un.v.num_channels = 2;
2120 strcpy(dip->un.v.units.name, AudioNvolume);
2121 return 0;
2122
2123 case SB_RECORD_SOURCE:
2124 dip->mixer_class = SB_RECORD_CLASS;
2125 dip->prev = dip->next = AUDIO_MIXER_LAST;
2126 strcpy(dip->label.name, AudioNsource);
2127 if (ISSBM1745(sc)) {
2128 dip->type = AUDIO_MIXER_SET;
2129 dip->un.s.num_mem = 4;
2130 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2131 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2132 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2133 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2134 strcpy(dip->un.s.member[2].label.name, AudioNline);
2135 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2136 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2137 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2138 } else {
2139 dip->type = AUDIO_MIXER_ENUM;
2140 dip->un.e.num_mem = 3;
2141 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2142 dip->un.e.member[0].ord = SB_MIC_VOL;
2143 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2144 dip->un.e.member[1].ord = SB_CD_VOL;
2145 strcpy(dip->un.e.member[2].label.name, AudioNline);
2146 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2147 }
2148 return 0;
2149
2150 case SB_BASS:
2151 dip->prev = dip->next = AUDIO_MIXER_LAST;
2152 strcpy(dip->label.name, AudioNbass);
2153 if (sc->sc_mixer_model == SBM_CT1745) {
2154 dip->type = AUDIO_MIXER_VALUE;
2155 dip->mixer_class = SB_EQUALIZATION_CLASS;
2156 dip->un.v.num_channels = 2;
2157 strcpy(dip->un.v.units.name, AudioNbass);
2158 } else {
2159 dip->type = AUDIO_MIXER_ENUM;
2160 dip->mixer_class = SB_INPUT_CLASS;
2161 dip->un.e.num_mem = 2;
2162 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2163 dip->un.e.member[0].ord = 0;
2164 strcpy(dip->un.e.member[1].label.name, AudioNon);
2165 dip->un.e.member[1].ord = 1;
2166 }
2167 return 0;
2168
2169 case SB_TREBLE:
2170 dip->prev = dip->next = AUDIO_MIXER_LAST;
2171 strcpy(dip->label.name, AudioNtreble);
2172 if (sc->sc_mixer_model == SBM_CT1745) {
2173 dip->type = AUDIO_MIXER_VALUE;
2174 dip->mixer_class = SB_EQUALIZATION_CLASS;
2175 dip->un.v.num_channels = 2;
2176 strcpy(dip->un.v.units.name, AudioNtreble);
2177 } else {
2178 dip->type = AUDIO_MIXER_ENUM;
2179 dip->mixer_class = SB_INPUT_CLASS;
2180 dip->un.e.num_mem = 2;
2181 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2182 dip->un.e.member[0].ord = 0;
2183 strcpy(dip->un.e.member[1].label.name, AudioNon);
2184 dip->un.e.member[1].ord = 1;
2185 }
2186 return 0;
2187
2188 case SB_RECORD_CLASS: /* record source class */
2189 dip->type = AUDIO_MIXER_CLASS;
2190 dip->mixer_class = SB_RECORD_CLASS;
2191 dip->next = dip->prev = AUDIO_MIXER_LAST;
2192 strcpy(dip->label.name, AudioCrecord);
2193 return 0;
2194
2
3/*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37/*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve@vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs@meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se>
43 * with information from SB "Hardware Programming Guide" and the
44 * Linux drivers.
45 */
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/errno.h>
50#include <sys/ioctl.h>
51#include <sys/syslog.h>
52#include <sys/device.h>
53#include <sys/proc.h>
54#include <sys/buf.h>
55#include <vm/vm.h>
56
57#include <machine/cpu.h>
58#include <machine/intr.h>
59#include <machine/bus.h>
60
61#include <sys/audioio.h>
62#include <dev/audio_if.h>
63#include <dev/mulaw.h>
64#include <dev/auconv.h>
65
66#include <dev/isa/isavar.h>
67#include <dev/isa/isadmavar.h>
68
69#include <dev/isa/sbreg.h>
70#include <dev/isa/sbdspvar.h>
71
72#ifdef AUDIO_DEBUG
73#define DPRINTF(x) if (sbdspdebug) printf x
74int sbdspdebug = 0;
75#else
76#define DPRINTF(x)
77#endif
78
79#ifndef SBDSP_NPOLL
80#define SBDSP_NPOLL 3000
81#endif
82
83struct {
84 int wdsp;
85 int rdsp;
86 int wmidi;
87} sberr;
88
89/*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114/* XXX Should we round the tc?
115#define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
116*/
117#define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
118#define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
119
120struct sbmode {
121 short model;
122 u_char channels;
123 u_char precision;
124 u_short lowrate, highrate;
125 u_char cmd;
126 u_char cmdchan;
127};
128static struct sbmode sbpmodes[] = {
129 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA },
130 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
131 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
132 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
133 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
134 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
135 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT },
136 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
137 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO },
138 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO },
139 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO },
140 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO },
141 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO },
142 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO },
143 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 },
144 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 },
145#define PLAY16 15 /* must be the index of the next entry in the table */
146 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 },
147 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 },
148 { -1 }
149};
150static struct sbmode sbrmodes[] = {
151 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA },
152 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
153 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
154 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT },
155 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
156 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
157 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
158 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
159 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
160 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
161 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO },
162 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO },
163 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO },
164 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 },
165 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 },
166 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 },
167 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 },
168 { -1 }
169};
170
171void sbversion __P((struct sbdsp_softc *));
172void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
173void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
174void sbdsp_to __P((void *));
175void sbdsp_pause __P((struct sbdsp_softc *));
176int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
177int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
178int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
179void sbdsp_set_ifilter __P((void *, int));
180int sbdsp_get_ifilter __P((void *));
181
182static int sbdsp_dma_setup_input __P((struct sbdsp_softc *sc));
183static int sbdsp_dma_setup_output __P((struct sbdsp_softc *sc));
184static int sbdsp_adjust __P((int, int));
185
186#ifdef AUDIO_DEBUG
187void sb_printsc __P((struct sbdsp_softc *));
188
189void
190sb_printsc(sc)
191 struct sbdsp_softc *sc;
192{
193 int i;
194
195 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
196 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
197 sc->sc_drq8, sc->sc_drq16,
198 sc->sc_iobase, sc->sc_irq);
199 printf("irate %d itc %x orate %d otc %x\n",
200 sc->sc_i.rate, sc->sc_i.tc,
201 sc->sc_o.rate, sc->sc_o.tc);
202 printf("outport %u inport %u spkron %u nintr %lu\n",
203 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
204 printf("intr8 %p arg8 %p\n",
205 sc->sc_intr8, sc->sc_arg16);
206 printf("intr16 %p arg16 %p\n",
207 sc->sc_intr8, sc->sc_arg16);
208 printf("gain:");
209 for (i = 0; i < SB_NDEVS; i++)
210 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
211 printf("\n");
212}
213#endif /* AUDIO_DEBUG */
214
215/*
216 * Probe / attach routines.
217 */
218
219/*
220 * Probe for the soundblaster hardware.
221 */
222int
223sbdsp_probe(sc)
224 struct sbdsp_softc *sc;
225{
226
227 if (sbdsp_reset(sc) < 0) {
228 DPRINTF(("sbdsp: couldn't reset card\n"));
229 return 0;
230 }
231 /* if flags set, go and probe the jazz16 stuff */
232 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
233 sbdsp_jazz16_probe(sc);
234 else
235 sbversion(sc);
236 if (sc->sc_model == SB_UNK) {
237 /* Unknown SB model found. */
238 DPRINTF(("sbdsp: unknown SB model found\n"));
239 return 0;
240 }
241 return 1;
242}
243
244/*
245 * Try add-on stuff for Jazz16.
246 */
247void
248sbdsp_jazz16_probe(sc)
249 struct sbdsp_softc *sc;
250{
251 static u_char jazz16_irq_conf[16] = {
252 -1, -1, 0x02, 0x03,
253 -1, 0x01, -1, 0x04,
254 -1, 0x02, 0x05, -1,
255 -1, -1, -1, 0x06};
256 static u_char jazz16_drq_conf[8] = {
257 -1, 0x01, -1, 0x02,
258 -1, 0x03, -1, 0x04};
259
260 bus_space_tag_t iot = sc->sc_iot;
261 bus_space_handle_t ioh;
262
263 sbversion(sc);
264
265 DPRINTF(("jazz16 probe\n"));
266
267 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
268 DPRINTF(("bus map failed\n"));
269 return;
270 }
271
272 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
273 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
274 DPRINTF(("drq/irq check failed\n"));
275 goto done; /* give up, we can't do it. */
276 }
277
278 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
279 delay(10000); /* delay 10 ms */
280 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
281 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
282
283 if (sbdsp_reset(sc) < 0) {
284 DPRINTF(("sbdsp_reset check failed\n"));
285 goto done; /* XXX? what else could we do? */
286 }
287
288 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
289 DPRINTF(("read16 setup failed\n"));
290 goto done;
291 }
292
293 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
294 DPRINTF(("read16 failed\n"));
295 goto done;
296 }
297
298 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
299 sc->sc_drq16 = sc->sc_drq8;
300 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
301 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
302 jazz16_drq_conf[sc->sc_drq8]) ||
303 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
304 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
305 } else {
306 DPRINTF(("jazz16 detected!\n"));
307 sc->sc_model = SB_JAZZ;
308 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
309 }
310
311done:
312 bus_space_unmap(iot, ioh, 1);
313}
314
315/*
316 * Attach hardware to driver, attach hardware driver to audio
317 * pseudo-device driver .
318 */
319void
320sbdsp_attach(sc)
321 struct sbdsp_softc *sc;
322{
323 struct audio_params pparams, rparams;
324 int i;
325 u_int v;
326
327 /*
328 * Create our DMA maps.
329 */
330 if (sc->sc_drq8 != -1) {
331 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8,
332 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
333 printf("%s: can't create map for drq %d\n",
334 sc->sc_dev.dv_xname, sc->sc_drq8);
335 return;
336 }
337 }
338 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
339 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16,
340 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
341 printf("%s: can't create map for drq %d\n",
342 sc->sc_dev.dv_xname, sc->sc_drq16);
343 return;
344 }
345 }
346
347 pparams = audio_default;
348 rparams = audio_default;
349 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
350
351 sbdsp_set_in_port(sc, SB_MIC_VOL);
352 sbdsp_set_out_port(sc, SB_MASTER_VOL);
353
354 if (sc->sc_mixer_model != SBM_NONE) {
355 /* Reset the mixer.*/
356 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
357 /* And set our own default values */
358 for (i = 0; i < SB_NDEVS; i++) {
359 switch(i) {
360 case SB_MIC_VOL:
361 case SB_LINE_IN_VOL:
362 v = 0;
363 break;
364 case SB_BASS:
365 case SB_TREBLE:
366 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
367 break;
368 case SB_CD_IN_MUTE:
369 case SB_MIC_IN_MUTE:
370 case SB_LINE_IN_MUTE:
371 case SB_MIDI_IN_MUTE:
372 case SB_CD_SWAP:
373 case SB_MIC_SWAP:
374 case SB_LINE_SWAP:
375 case SB_MIDI_SWAP:
376 case SB_CD_OUT_MUTE:
377 case SB_MIC_OUT_MUTE:
378 case SB_LINE_OUT_MUTE:
379 v = 0;
380 break;
381 default:
382 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN * 3 / 4);
383 break;
384 }
385 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
386 sbdsp_set_mixer_gain(sc, i);
387 }
388 sc->in_filter = 0; /* no filters turned on, please */
389 }
390
391 printf(": dsp v%d.%02d%s\n",
392 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
393 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
394
395 sc->sc_fullduplex = ISSB16CLASS(sc) &&
396 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
397 sc->sc_drq8 != sc->sc_drq16;
398}
399
400void
401sbdsp_mix_write(sc, mixerport, val)
402 struct sbdsp_softc *sc;
403 int mixerport;
404 int val;
405{
406 bus_space_tag_t iot = sc->sc_iot;
407 bus_space_handle_t ioh = sc->sc_ioh;
408 int s;
409
410 s = splaudio();
411 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
412 delay(20);
413 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
414 delay(30);
415 splx(s);
416}
417
418int
419sbdsp_mix_read(sc, mixerport)
420 struct sbdsp_softc *sc;
421 int mixerport;
422{
423 bus_space_tag_t iot = sc->sc_iot;
424 bus_space_handle_t ioh = sc->sc_ioh;
425 int val;
426 int s;
427
428 s = splaudio();
429 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
430 delay(20);
431 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
432 delay(30);
433 splx(s);
434 return val;
435}
436
437/*
438 * Various routines to interface to higher level audio driver
439 */
440
441int
442sbdsp_query_encoding(addr, fp)
443 void *addr;
444 struct audio_encoding *fp;
445{
446 struct sbdsp_softc *sc = addr;
447 int emul;
448
449 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
450
451 switch (fp->index) {
452 case 0:
453 strcpy(fp->name, AudioEulinear);
454 fp->encoding = AUDIO_ENCODING_ULINEAR;
455 fp->precision = 8;
456 fp->flags = 0;
457 return 0;
458 case 1:
459 strcpy(fp->name, AudioEmulaw);
460 fp->encoding = AUDIO_ENCODING_ULAW;
461 fp->precision = 8;
462 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
463 return 0;
464 case 2:
465 strcpy(fp->name, AudioEalaw);
466 fp->encoding = AUDIO_ENCODING_ALAW;
467 fp->precision = 8;
468 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
469 return 0;
470 case 3:
471 strcpy(fp->name, AudioEslinear);
472 fp->encoding = AUDIO_ENCODING_SLINEAR;
473 fp->precision = 8;
474 fp->flags = emul;
475 return 0;
476 }
477 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
478 return EINVAL;
479
480 switch(fp->index) {
481 case 4:
482 strcpy(fp->name, AudioEslinear_le);
483 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
484 fp->precision = 16;
485 fp->flags = 0;
486 return 0;
487 case 5:
488 strcpy(fp->name, AudioEulinear_le);
489 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
490 fp->precision = 16;
491 fp->flags = emul;
492 return 0;
493 case 6:
494 strcpy(fp->name, AudioEslinear_be);
495 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
496 fp->precision = 16;
497 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
498 return 0;
499 case 7:
500 strcpy(fp->name, AudioEulinear_be);
501 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
502 fp->precision = 16;
503 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
504 return 0;
505 default:
506 return EINVAL;
507 }
508 return 0;
509}
510
511int
512sbdsp_set_params(addr, setmode, usemode, play, rec)
513 void *addr;
514 int setmode, usemode;
515 struct audio_params *play, *rec;
516{
517 struct sbdsp_softc *sc = addr;
518 struct sbmode *m;
519 u_int rate, tc, bmode;
520 void (*swcode) __P((void *, u_char *buf, int cnt));
521 int factor;
522 int model;
523 int chan;
524 struct audio_params *p;
525 int mode;
526
527 model = sc->sc_model;
528 if (model > SB_16)
529 model = SB_16; /* later models work like SB16 */
530
531 /* Set first record info, then play info */
532 for(mode = AUMODE_RECORD; mode != -1;
533 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
534 if ((setmode & mode) == 0)
535 continue;
536
537 p = mode == AUMODE_PLAY ? play : rec;
538 /* Locate proper commands */
539 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
540 m->model != -1; m++) {
541 if (model == m->model &&
542 p->channels == m->channels &&
543 p->precision == m->precision &&
544 p->sample_rate >= m->lowrate &&
545 p->sample_rate < m->highrate)
546 break;
547 }
548 if (m->model == -1)
549 return EINVAL;
550 rate = p->sample_rate;
551 swcode = 0;
552 factor = 1;
553 tc = 1;
554 bmode = -1;
555 if (model == SB_16) {
556 switch (p->encoding) {
557 case AUDIO_ENCODING_SLINEAR_BE:
558 if (p->precision == 16)
559 swcode = swap_bytes;
560 /* fall into */
561 case AUDIO_ENCODING_SLINEAR_LE:
562 bmode = SB_BMODE_SIGNED;
563 break;
564 case AUDIO_ENCODING_ULINEAR_BE:
565 if (p->precision == 16)
566 swcode = swap_bytes;
567 /* fall into */
568 case AUDIO_ENCODING_ULINEAR_LE:
569 bmode = SB_BMODE_UNSIGNED;
570 break;
571 case AUDIO_ENCODING_ULAW:
572 if (mode == AUMODE_PLAY) {
573 swcode = mulaw_to_ulinear16;
574 factor = 2;
575 m = &sbpmodes[PLAY16];
576 } else
577 swcode = ulinear8_to_mulaw;
578 bmode = SB_BMODE_UNSIGNED;
579 break;
580 case AUDIO_ENCODING_ALAW:
581 if (mode == AUMODE_PLAY) {
582 swcode = alaw_to_ulinear16;
583 factor = 2;
584 m = &sbpmodes[PLAY16];
585 } else
586 swcode = ulinear8_to_alaw;
587 bmode = SB_BMODE_UNSIGNED;
588 break;
589 default:
590 return EINVAL;
591 }
592 if (p->channels == 2)
593 bmode |= SB_BMODE_STEREO;
594 } else if (m->model == SB_JAZZ && m->precision == 16) {
595 switch (p->encoding) {
596 case AUDIO_ENCODING_SLINEAR_LE:
597 break;
598 case AUDIO_ENCODING_ULINEAR_LE:
599 swcode = change_sign16;
600 break;
601 case AUDIO_ENCODING_SLINEAR_BE:
602 swcode = swap_bytes;
603 break;
604 case AUDIO_ENCODING_ULINEAR_BE:
605 swcode = mode == AUMODE_PLAY ?
606 swap_bytes_change_sign16 : change_sign16_swap_bytes;
607 break;
608 case AUDIO_ENCODING_ULAW:
609 swcode = mode == AUMODE_PLAY ?
610 mulaw_to_ulinear8 : ulinear8_to_mulaw;
611 break;
612 case AUDIO_ENCODING_ALAW:
613 swcode = mode == AUMODE_PLAY ?
614 alaw_to_ulinear8 : ulinear8_to_alaw;
615 break;
616 default:
617 return EINVAL;
618 }
619 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
620 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
621 } else {
622 switch (p->encoding) {
623 case AUDIO_ENCODING_SLINEAR_BE:
624 case AUDIO_ENCODING_SLINEAR_LE:
625 swcode = change_sign8;
626 break;
627 case AUDIO_ENCODING_ULINEAR_BE:
628 case AUDIO_ENCODING_ULINEAR_LE:
629 break;
630 case AUDIO_ENCODING_ULAW:
631 swcode = mode == AUMODE_PLAY ?
632 mulaw_to_ulinear8 : ulinear8_to_mulaw;
633 break;
634 case AUDIO_ENCODING_ALAW:
635 swcode = mode == AUMODE_PLAY ?
636 alaw_to_ulinear8 : ulinear8_to_alaw;
637 break;
638 default:
639 return EINVAL;
640 }
641 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
642 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
643 }
644
645 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
646 if (mode == AUMODE_PLAY) {
647 sc->sc_o.rate = rate;
648 sc->sc_o.tc = tc;
649 sc->sc_o.modep = m;
650 sc->sc_o.bmode = bmode;
651 sc->sc_o.dmachan = chan;
652 } else {
653 sc->sc_i.rate = rate;
654 sc->sc_i.tc = tc;
655 sc->sc_i.modep = m;
656 sc->sc_i.bmode = bmode;
657 sc->sc_i.dmachan = chan;
658 }
659
660 p->sw_code = swcode;
661 p->factor = factor;
662 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
663 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
664 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
665
666 }
667 /*
668 * XXX
669 * Should wait for chip to be idle.
670 */
671 sc->sc_i.run = SB_NOTRUNNING;
672 sc->sc_o.run = SB_NOTRUNNING;
673
674 if (sc->sc_fullduplex &&
675 (usemode & (AUMODE_PLAY | AUMODE_RECORD)) == (AUMODE_PLAY | AUMODE_RECORD) &&
676 sc->sc_i.dmachan == sc->sc_o.dmachan) {
677 DPRINTF(("sbdsp_commit: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
678 if (sc->sc_o.dmachan == sc->sc_drq8) {
679 /* Use 16 bit DMA for playing by expanding the samples. */
680 play->sw_code = linear8_to_linear16;
681 play->factor = 2;
682 sc->sc_o.modep = &sbpmodes[PLAY16];
683 sc->sc_o.dmachan = sc->sc_drq16;
684 } else {
685 return EINVAL;
686 }
687 }
688 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n", sc->sc_i.dmachan, sc->sc_o.dmachan));
689
690 return 0;
691}
692
693void
694sbdsp_set_ifilter(addr, which)
695 void *addr;
696 int which;
697{
698 struct sbdsp_softc *sc = addr;
699 int mixval;
700
701 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
702 switch (which) {
703 case 0:
704 mixval |= SBP_FILTER_OFF;
705 break;
706 case SB_TREBLE:
707 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
708 break;
709 case SB_BASS:
710 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
711 break;
712 default:
713 return;
714 }
715 sc->in_filter = mixval & SBP_IFILTER_MASK;
716 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
717}
718
719int
720sbdsp_get_ifilter(addr)
721 void *addr;
722{
723 struct sbdsp_softc *sc = addr;
724
725 sc->in_filter =
726 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
727 switch (sc->in_filter) {
728 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
729 return SB_TREBLE;
730 case SBP_FILTER_ON|SBP_IFILTER_LOW:
731 return SB_BASS;
732 default:
733 return 0;
734 }
735}
736
737int
738sbdsp_set_out_port(addr, port)
739 void *addr;
740 int port;
741{
742 struct sbdsp_softc *sc = addr;
743
744 sc->out_port = port; /* Just record it */
745
746 return 0;
747}
748
749int
750sbdsp_get_out_port(addr)
751 void *addr;
752{
753 struct sbdsp_softc *sc = addr;
754
755 return sc->out_port;
756}
757
758
759int
760sbdsp_set_in_port(addr, port)
761 void *addr;
762 int port;
763{
764 return sbdsp_set_in_ports(addr, 1 << port);
765}
766
767int
768sbdsp_set_in_ports(sc, mask)
769 struct sbdsp_softc *sc;
770 int mask;
771{
772 int bitsl, bitsr;
773 int sbport;
774 int i;
775
776 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
777 sc->sc_mixer_model, mask));
778
779 switch(sc->sc_mixer_model) {
780 case SBM_NONE:
781 return EINVAL;
782 case SBM_CT1335:
783 if (mask != (1 << SB_MIC_VOL))
784 return EINVAL;
785 break;
786 case SBM_CT1345:
787 switch (mask) {
788 case 1 << SB_MIC_VOL:
789 sbport = SBP_FROM_MIC;
790 break;
791 case 1 << SB_LINE_IN_VOL:
792 sbport = SBP_FROM_LINE;
793 break;
794 case 1 << SB_CD_VOL:
795 sbport = SBP_FROM_CD;
796 break;
797 default:
798 return (EINVAL);
799 }
800 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
801 break;
802 case SBM_CT1XX5:
803 case SBM_CT1745:
804 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
805 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
806 return EINVAL;
807 bitsr = 0;
808 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
809 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
810 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
811 bitsl = SB_SRC_R_TO_L(bitsr);
812 if (mask & (1<<SB_MIC_VOL)) {
813 bitsl |= SBP_MIC_SRC;
814 bitsr |= SBP_MIC_SRC;
815 }
816 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
817 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
818 break;
819 }
820
821 sc->in_mask = mask;
822
823 /* XXX
824 * We have to fake a single port since the upper layer
825 * expects one.
826 */
827 for(i = 0; i < SB_NPORT; i++) {
828 if (mask & (1 << i)) {
829 sc->in_port = i;
830 break;
831 }
832 }
833 return 0;
834}
835
836int
837sbdsp_get_in_port(addr)
838 void *addr;
839{
840 struct sbdsp_softc *sc = addr;
841
842 return sc->in_port;
843}
844
845
846int
847sbdsp_speaker_ctl(addr, newstate)
848 void *addr;
849 int newstate;
850{
851 struct sbdsp_softc *sc = addr;
852
853 if ((newstate == SPKR_ON) &&
854 (sc->spkr_state == SPKR_OFF)) {
855 sbdsp_spkron(sc);
856 sc->spkr_state = SPKR_ON;
857 }
858 if ((newstate == SPKR_OFF) &&
859 (sc->spkr_state == SPKR_ON)) {
860 sbdsp_spkroff(sc);
861 sc->spkr_state = SPKR_OFF;
862 }
863 return 0;
864}
865
866int
867sbdsp_round_blocksize(addr, blk)
868 void *addr;
869 int blk;
870{
871 blk &= -4; /* round to biggest sample size */
872 return blk;
873}
874
875int
876sbdsp_open(addr, flags)
877 void *addr;
878 int flags;
879{
880 struct sbdsp_softc *sc = addr;
881
882 DPRINTF(("sbdsp_open: sc=%p\n", sc));
883
884 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
885 return ENXIO;
886
887 sc->sc_open = 1;
888 sc->sc_openflags = flags;
889 sc->sc_mintr = 0;
890 if (ISSBPRO(sc) &&
891 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
892 DPRINTF(("sbdsp_open: can't set mono mode\n"));
893 /* we'll readjust when it's time for DMA. */
894 }
895
896 /*
897 * Leave most things as they were; users must change things if
898 * the previous process didn't leave it they way they wanted.
899 * Looked at another way, it's easy to set up a configuration
900 * in one program and leave it for another to inherit.
901 */
902 DPRINTF(("sbdsp_open: opened\n"));
903
904 return 0;
905}
906
907void
908sbdsp_close(addr)
909 void *addr;
910{
911 struct sbdsp_softc *sc = addr;
912
913 DPRINTF(("sbdsp_close: sc=%p\n", sc));
914
915 sc->sc_open = 0;
916 sbdsp_spkroff(sc);
917 sc->spkr_state = SPKR_OFF;
918 sc->sc_intr8 = 0;
919 sc->sc_intr16 = 0;
920 sc->sc_mintr = 0;
921 sbdsp_haltdma(sc);
922
923 DPRINTF(("sbdsp_close: closed\n"));
924}
925
926/*
927 * Lower-level routines
928 */
929
930/*
931 * Reset the card.
932 * Return non-zero if the card isn't detected.
933 */
934int
935sbdsp_reset(sc)
936 struct sbdsp_softc *sc;
937{
938 bus_space_tag_t iot = sc->sc_iot;
939 bus_space_handle_t ioh = sc->sc_ioh;
940
941 sc->sc_intr8 = 0;
942 sc->sc_intr16 = 0;
943 if (sc->sc_i.run != SB_NOTRUNNING) {
944 isa_dmaabort(sc->sc_isa, sc->sc_i.dmachan);
945 sc->sc_i.run = SB_NOTRUNNING;
946 }
947 if (sc->sc_o.run != SB_NOTRUNNING) {
948 isa_dmaabort(sc->sc_isa, sc->sc_o.dmachan);
949 sc->sc_o.run = SB_NOTRUNNING;
950 }
951
952 /*
953 * See SBK, section 11.3.
954 * We pulse a reset signal into the card.
955 * Gee, what a brilliant hardware design.
956 */
957 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
958 delay(10);
959 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
960 delay(30);
961 if (sbdsp_rdsp(sc) != SB_MAGIC)
962 return -1;
963
964 return 0;
965}
966
967/*
968 * Write a byte to the dsp.
969 * We are at the mercy of the card as we use a
970 * polling loop and wait until it can take the byte.
971 */
972int
973sbdsp_wdsp(sc, v)
974 struct sbdsp_softc *sc;
975 int v;
976{
977 bus_space_tag_t iot = sc->sc_iot;
978 bus_space_handle_t ioh = sc->sc_ioh;
979 int i;
980 u_char x;
981
982 for (i = SBDSP_NPOLL; --i >= 0; ) {
983 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
984 delay(10);
985 if ((x & SB_DSP_BUSY) == 0) {
986 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
987 delay(10);
988 return 0;
989 }
990 }
991 ++sberr.wdsp;
992 return -1;
993}
994
995/*
996 * Read a byte from the DSP, using polling.
997 */
998int
999sbdsp_rdsp(sc)
1000 struct sbdsp_softc *sc;
1001{
1002 bus_space_tag_t iot = sc->sc_iot;
1003 bus_space_handle_t ioh = sc->sc_ioh;
1004 int i;
1005 u_char x;
1006
1007 for (i = SBDSP_NPOLL; --i >= 0; ) {
1008 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1009 delay(10);
1010 if (x & SB_DSP_READY) {
1011 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1012 delay(10);
1013 return x;
1014 }
1015 }
1016 ++sberr.rdsp;
1017 return -1;
1018}
1019
1020/*
1021 * Doing certain things (like toggling the speaker) make
1022 * the SB hardware go away for a while, so pause a little.
1023 */
1024void
1025sbdsp_to(arg)
1026 void *arg;
1027{
1028 wakeup(arg);
1029}
1030
1031void
1032sbdsp_pause(sc)
1033 struct sbdsp_softc *sc;
1034{
1035 extern int hz;
1036
1037 timeout(sbdsp_to, sbdsp_to, hz/8);
1038 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1039}
1040
1041/*
1042 * Turn on the speaker. The SBK documention says this operation
1043 * can take up to 1/10 of a second. Higher level layers should
1044 * probably let the task sleep for this amount of time after
1045 * calling here. Otherwise, things might not work (because
1046 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1047 *
1048 * These engineers had their heads up their ass when
1049 * they designed this card.
1050 */
1051void
1052sbdsp_spkron(sc)
1053 struct sbdsp_softc *sc;
1054{
1055 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1056 sbdsp_pause(sc);
1057}
1058
1059/*
1060 * Turn off the speaker; see comment above.
1061 */
1062void
1063sbdsp_spkroff(sc)
1064 struct sbdsp_softc *sc;
1065{
1066 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1067 sbdsp_pause(sc);
1068}
1069
1070/*
1071 * Read the version number out of the card.
1072 * Store version information in the softc.
1073 */
1074void
1075sbversion(sc)
1076 struct sbdsp_softc *sc;
1077{
1078 int v;
1079
1080 sc->sc_model = SB_UNK;
1081 sc->sc_version = 0;
1082 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1083 return;
1084 v = sbdsp_rdsp(sc) << 8;
1085 v |= sbdsp_rdsp(sc);
1086 if (v < 0)
1087 return;
1088 sc->sc_version = v;
1089 switch(SBVER_MAJOR(v)) {
1090 case 1:
1091 sc->sc_mixer_model = SBM_NONE;
1092 sc->sc_model = SB_1;
1093 break;
1094 case 2:
1095 /* Some SB2 have a mixer, some don't. */
1096 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1097 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1098 /* Check if we can read back the mixer values. */
1099 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1100 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1101 sc->sc_mixer_model = SBM_CT1335;
1102 else
1103 sc->sc_mixer_model = SBM_NONE;
1104 if (SBVER_MINOR(v) == 0)
1105 sc->sc_model = SB_20;
1106 else
1107 sc->sc_model = SB_2x;
1108 break;
1109 case 3:
1110 sc->sc_mixer_model = SBM_CT1345;
1111 sc->sc_model = SB_PRO;
1112 break;
1113 case 4:
1114#if 0
1115/* XXX This does not work */
1116 /* Most SB16 have a tone controls, but some don't. */
1117 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1118 /* Check if we can read back the mixer value. */
1119 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1120 sc->sc_mixer_model = SBM_CT1745;
1121 else
1122 sc->sc_mixer_model = SBM_CT1XX5;
1123#else
1124 sc->sc_mixer_model = SBM_CT1745;
1125#endif
1126 /* XXX what about SB_32 */
1127 if (SBVER_MINOR(v) == 16)
1128 sc->sc_model = SB_64;
1129 else
1130 sc->sc_model = SB_16;
1131 break;
1132 }
1133}
1134
1135/*
1136 * Halt a DMA in progress. A low-speed transfer can be
1137 * resumed with sbdsp_contdma().
1138 */
1139int
1140sbdsp_haltdma(addr)
1141 void *addr;
1142{
1143 struct sbdsp_softc *sc = addr;
1144
1145 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc));
1146
1147 sbdsp_reset(sc);
1148 return 0;
1149}
1150
1151int
1152sbdsp_contdma(addr)
1153 void *addr;
1154{
1155 struct sbdsp_softc *sc = addr;
1156
1157 DPRINTF(("sbdsp_contdma: sc=%p\n", sc));
1158
1159 /* XXX how do we reinitialize the DMA controller state? do we care? */
1160 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
1161 return 0;
1162}
1163
1164int
1165sbdsp_set_timeconst(sc, tc)
1166 struct sbdsp_softc *sc;
1167 int tc;
1168{
1169 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1170
1171 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1172 sbdsp_wdsp(sc, tc) < 0)
1173 return EIO;
1174
1175 return 0;
1176}
1177
1178int
1179sbdsp16_set_rate(sc, cmd, rate)
1180 struct sbdsp_softc *sc;
1181 int cmd, rate;
1182{
1183 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1184
1185 if (sbdsp_wdsp(sc, cmd) < 0 ||
1186 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1187 sbdsp_wdsp(sc, rate) < 0)
1188 return EIO;
1189 return 0;
1190}
1191
1192int
1193sbdsp_dma_init_input(addr, buf, cc)
1194 void *addr;
1195 void *buf;
1196 int cc;
1197{
1198 struct sbdsp_softc *sc = addr;
1199
1200 if (sc->sc_model == SB_1)
1201 return 0;
1202 sc->sc_i.run = SB_DMARUNNING;
1203 DPRINTF(("sbdsp: dma start loop input addr=%p cc=%d chan=%d\n",
1204 buf, cc, sc->sc_i.dmachan));
1205 isa_dmastart(sc->sc_isa, sc->sc_i.dmachan, buf,
1206 cc, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1207 return 0;
1208}
1209
1210static int
1211sbdsp_dma_setup_input(sc)
1212 struct sbdsp_softc *sc;
1213{
1214 int stereo = sc->sc_i.modep->channels == 2;
1215 int filter;
1216
1217 /* Initialize the PCM */
1218 if (ISSBPRO(sc)) {
1219 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1220 return 0;
1221 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1222 sbdsp_mix_write(sc, SBP_INFILTER,
1223 (sbdsp_mix_read(sc, SBP_INFILTER) &
1224 ~SBP_IFILTER_MASK) | filter);
1225 }
1226
1227 if (ISSB16CLASS(sc)) {
1228 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE,
1229 sc->sc_i.rate)) {
1230 DPRINTF(("sbdsp_dma_setup_input: rate=%d set failed\n",
1231 sc->sc_i.rate));
1232 return 0;
1233 }
1234 } else {
1235 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1236 DPRINTF(("sbdsp_dma_setup_input: tc=%d set failed\n",
1237 sc->sc_i.rate));
1238 return 0;
1239 }
1240 }
1241 return 1;
1242}
1243
1244int
1245sbdsp_dma_input(addr, p, cc, intr, arg)
1246 void *addr;
1247 void *p;
1248 int cc;
1249 void (*intr) __P((void *));
1250 void *arg;
1251{
1252 struct sbdsp_softc *sc = addr;
1253
1254#ifdef AUDIO_DEBUG
1255 if (sbdspdebug > 1)
1256 printf("sbdsp_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n",
1257 addr, p, cc, intr, arg);
1258#endif
1259#ifdef DIAGNOSTIC
1260 if (sc->sc_i.modep->channels == 2 && (cc & 1)) {
1261 DPRINTF(("stereo record odd bytes (%d)\n", cc));
1262 return EIO;
1263 }
1264#endif
1265
1266 if (sc->sc_i.modep->precision == 8) {
1267#ifdef DIAGNOSTIC
1268 if (sc->sc_i.dmachan != sc->sc_drq8) {
1269 printf("sbdsp_dma_input: prec=%d bad chan %d\n",
1270 sc->sc_i.modep->precision, sc->sc_i.dmachan);
1271 return EIO;
1272 }
1273#endif
1274 sc->sc_intr8 = intr;
1275 sc->sc_arg8 = arg;
1276 } else {
1277#ifdef DIAGNOSTIC
1278 if (sc->sc_i.dmachan != sc->sc_drq16) {
1279 printf("sbdsp_dma_input: prec=%d bad chan %d\n",
1280 sc->sc_i.modep->precision, sc->sc_i.dmachan);
1281 return EIO;
1282 }
1283#endif
1284 sc->sc_intr16 = intr;
1285 sc->sc_arg16 = arg;
1286 }
1287
1288 switch(sc->sc_i.run) {
1289 case SB_NOTRUNNING:
1290 /* Non-looping mode, not initialized */
1291 sc->sc_i.run = SB_RUNNING;
1292 if (!sbdsp_dma_setup_input(sc))
1293 goto giveup;
1294 /* fall into */
1295 case SB_RUNNING:
1296 /* Non-looping mode, start DMA */
1297#ifdef AUDIO_DEBUG
1298 if (sbdspdebug > 2)
1299 printf("sbdsp_dma_input: dmastart buf=%p cc=%d chan=%d\n",
1300 p, cc, sc->sc_i.dmachan);
1301#endif
1302 isa_dmastart(sc->sc_isa, sc->sc_i.dmachan, p,
1303 cc, NULL, DMAMODE_READ, BUS_DMA_NOWAIT);
1304
1305 /* Start PCM in non-looping mode */
1306 if ((sc->sc_model == SB_JAZZ && sc->sc_i.dmachan > 3) ||
1307 (sc->sc_model != SB_JAZZ && sc->sc_i.modep->precision == 16))
1308 cc >>= 1;
1309 --cc;
1310 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1311 sbdsp_wdsp(sc, cc) < 0 ||
1312 sbdsp_wdsp(sc, cc >> 8) < 0) {
1313 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1314 goto giveup;
1315 }
1316 break;
1317 case SB_DMARUNNING:
1318 /* Looping mode, not initialized */
1319 sc->sc_i.run = SB_PCMRUNNING;
1320 if (!sbdsp_dma_setup_input(sc))
1321 goto giveup;
1322 if ((sc->sc_model == SB_JAZZ && sc->sc_i.dmachan > 3) ||
1323 (sc->sc_model != SB_JAZZ && sc->sc_i.modep->precision == 16))
1324 cc >>= 1;
1325 --cc;
1326 /* Initialize looping PCM */
1327 if (ISSB16CLASS(sc)) {
1328#ifdef AUDIO_DEBUG
1329 if (sbdspdebug > 2)
1330 printf("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1331 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc);
1332#endif
1333 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1334 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1335 sbdsp_wdsp(sc, cc) < 0 ||
1336 sbdsp_wdsp(sc, cc >> 8) < 0) {
1337 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1338 DPRINTF(("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1339 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1340 goto giveup;
1341 }
1342 } else {
1343 DPRINTF(("sbdsp_dma_input: set blocksize=%d\n", cc));
1344 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1345 sbdsp_wdsp(sc, cc) < 0 ||
1346 sbdsp_wdsp(sc, cc >> 8) < 0) {
1347 DPRINTF(("sbdsp_dma_input: SB2 DMA blocksize failed\n"));
1348 goto giveup;
1349 }
1350 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1351 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1352 goto giveup;
1353 }
1354 }
1355 break;
1356 case SB_PCMRUNNING:
1357 /* Looping mode, nothing to do */
1358 break;
1359 }
1360 return 0;
1361
1362giveup:
1363 sbdsp_reset(sc);
1364 return EIO;
1365}
1366
1367int
1368sbdsp_dma_init_output(addr, buf, cc)
1369 void *addr;
1370 void *buf;
1371 int cc;
1372{
1373 struct sbdsp_softc *sc = addr;
1374
1375 if (sc->sc_model == SB_1)
1376 return 0;
1377 sc->sc_o.run = SB_DMARUNNING;
1378 DPRINTF(("sbdsp: dma start loop output buf=%p cc=%d chan=%d\n",
1379 buf, cc, sc->sc_o.dmachan));
1380 isa_dmastart(sc->sc_isa, sc->sc_o.dmachan, buf,
1381 cc, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1382 return 0;
1383}
1384
1385static int
1386sbdsp_dma_setup_output(sc)
1387 struct sbdsp_softc *sc;
1388{
1389 int stereo = sc->sc_o.modep->channels == 2;
1390 int cmd;
1391
1392 if (ISSBPRO(sc)) {
1393 /* make sure we re-set stereo mixer bit when we start output. */
1394 sbdsp_mix_write(sc, SBP_STEREO,
1395 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1396 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1397 cmd = sc->sc_o.modep->cmdchan;
1398 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1399 return 0;
1400 }
1401
1402 if (ISSB16CLASS(sc)) {
1403 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE,
1404 sc->sc_o.rate)) {
1405 DPRINTF(("sbdsp_dma_setup_output: rate=%d set failed\n",
1406 sc->sc_o.rate));
1407 return 0;
1408 }
1409 } else {
1410 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1411 DPRINTF(("sbdsp_dma_setup_output: tc=%d set failed\n",
1412 sc->sc_o.rate));
1413 return 0;
1414 }
1415 }
1416 return 1;
1417}
1418
1419int
1420sbdsp_dma_output(addr, p, cc, intr, arg)
1421 void *addr;
1422 void *p;
1423 int cc;
1424 void (*intr) __P((void *));
1425 void *arg;
1426{
1427 struct sbdsp_softc *sc = addr;
1428
1429#ifdef AUDIO_DEBUG
1430 if (sbdspdebug > 1)
1431 printf("sbdsp_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n", addr, p, cc, intr, arg);
1432#endif
1433#ifdef DIAGNOSTIC
1434 if (sc->sc_o.modep->channels == 2 && (cc & 1)) {
1435 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1436 return EIO;
1437 }
1438#endif
1439
1440 if (sc->sc_o.modep->precision == 8) {
1441#ifdef DIAGNOSTIC
1442 if (sc->sc_o.dmachan != sc->sc_drq8) {
1443 printf("sbdsp_dma_output: prec=%d bad chan %d\n",
1444 sc->sc_o.modep->precision, sc->sc_o.dmachan);
1445 return EIO;
1446 }
1447#endif
1448 sc->sc_intr8 = intr;
1449 sc->sc_arg8 = arg;
1450 } else {
1451#ifdef DIAGNOSTIC
1452 if (sc->sc_o.dmachan != sc->sc_drq16) {
1453 printf("sbdsp_dma_output: prec=%d bad chan %d\n",
1454 sc->sc_o.modep->precision, sc->sc_o.dmachan);
1455 return EIO;
1456 }
1457#endif
1458 sc->sc_intr16 = intr;
1459 sc->sc_arg16 = arg;
1460 }
1461
1462 switch(sc->sc_o.run) {
1463 case SB_NOTRUNNING:
1464 /* Non-looping mode, not initialized */
1465 sc->sc_o.run = SB_RUNNING;
1466 if (!sbdsp_dma_setup_output(sc))
1467 goto giveup;
1468 /* fall into */
1469 case SB_RUNNING:
1470 /* Non-looping mode, initialized. Start DMA and PCM */
1471#ifdef AUDIO_DEBUG
1472 if (sbdspdebug > 2)
1473 printf("sbdsp: start dma out addr=%p, cc=%d, chan=%d\n",
1474 p, cc, sc->sc_o.dmachan);
1475#endif
1476 isa_dmastart(sc->sc_isa, sc->sc_o.dmachan, p,
1477 cc, NULL, DMAMODE_WRITE, BUS_DMA_NOWAIT);
1478 if ((sc->sc_model == SB_JAZZ && sc->sc_o.dmachan > 3) ||
1479 (sc->sc_model != SB_JAZZ && sc->sc_o.modep->precision == 16))
1480 cc >>= 1;
1481 --cc;
1482 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1483 sbdsp_wdsp(sc, cc) < 0 ||
1484 sbdsp_wdsp(sc, cc >> 8) < 0) {
1485 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1486 goto giveup;
1487 }
1488 break;
1489 case SB_DMARUNNING:
1490 /* Looping mode, not initialized */
1491 sc->sc_o.run = SB_PCMRUNNING;
1492 if (!sbdsp_dma_setup_output(sc))
1493 goto giveup;
1494 if ((sc->sc_model == SB_JAZZ && sc->sc_o.dmachan > 3) ||
1495 (sc->sc_model != SB_JAZZ && sc->sc_o.modep->precision == 16))
1496 cc >>= 1;
1497 --cc;
1498 /* Initialize looping PCM */
1499 if (ISSB16CLASS(sc)) {
1500 DPRINTF(("sbdsp_dma_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1501 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1502 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1503 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1504 sbdsp_wdsp(sc, cc) < 0 ||
1505 sbdsp_wdsp(sc, cc >> 8) < 0) {
1506 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1507 goto giveup;
1508 }
1509 } else {
1510 DPRINTF(("sbdsp_dma_output: set blocksize=%d\n", cc));
1511 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1512 sbdsp_wdsp(sc, cc) < 0 ||
1513 sbdsp_wdsp(sc, cc >> 8) < 0) {
1514 DPRINTF(("sbdsp_dma_output: SB2 DMA blocksize failed\n"));
1515 goto giveup;
1516 }
1517 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1518 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1519 goto giveup;
1520 }
1521 }
1522 break;
1523 case SB_PCMRUNNING:
1524 /* Looping mode, nothing to do */
1525 break;
1526 }
1527 return 0;
1528
1529giveup:
1530 sbdsp_reset(sc);
1531 return EIO;
1532}
1533
1534/*
1535 * Only the DSP unit on the sound blaster generates interrupts.
1536 * There are three cases of interrupt: reception of a midi byte
1537 * (when mode is enabled), completion of dma transmission, or
1538 * completion of a dma reception.
1539 *
1540 * If there is interrupt sharing or a spurious interrupt occurs
1541 * there is no way to distinguish this on an SB2. So if you have
1542 * an SB2 and experience problems, buy an SB16 (it's only $40).
1543 */
1544int
1545sbdsp_intr(arg)
1546 void *arg;
1547{
1548 struct sbdsp_softc *sc = arg;
1549 int loop = sc->sc_model != SB_1;
1550 u_char irq;
1551
1552#ifdef AUDIO_DEBUG
1553 if (sbdspdebug > 1)
1554 printf("sbdsp_intr: intr8=%p, intr16=%p\n",
1555 sc->sc_intr8, sc->sc_intr16);
1556#endif
1557 if (ISSB16CLASS(sc)) {
1558 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1559 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16)) == 0) {
1560 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1561 return 0;
1562 }
1563 } else {
1564 if (!loop && !isa_dmafinished(sc->sc_isa, sc->sc_drq8))
1565 return 0;
1566 irq = SBP_IRQ_DMA8;
1567 }
1568 sc->sc_interrupts++;
1569 delay(10); /* XXX why? */
1570#if 0
1571 if (sc->sc_mintr != 0) {
1572 x = sbdsp_rdsp(sc);
1573 (*sc->sc_mintr)(sc->sc_arg, x);
1574 } else
1575#endif
1576 if (sc->sc_intr8 == 0 && sc->sc_intr16 == 0) {
1577 DPRINTF(("sbdsp_intr: Unexpected interrupt 0x%x\n", irq));
1578 /* XXX return 0;*/ /* Did not expect an interrupt */
1579 }
1580
1581 /* clear interrupt */
1582 if (irq & SBP_IRQ_DMA8) {
1583 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1584 if (!loop)
1585 isa_dmadone(sc->sc_isa, sc->sc_drq8);
1586 if (sc->sc_intr8)
1587 (*sc->sc_intr8)(sc->sc_arg8);
1588 }
1589 if (irq & SBP_IRQ_DMA16) {
1590 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1591 if (sc->sc_intr16)
1592 (*sc->sc_intr16)(sc->sc_arg16);
1593 }
1594 return 1;
1595}
1596
1597#if 0
1598/*
1599 * Enter midi uart mode and arrange for read interrupts
1600 * to vector to `intr'. This puts the card in a mode
1601 * which allows only midi I/O; the card must be reset
1602 * to leave this mode. Unfortunately, the card does not
1603 * use transmit interrupts, so bytes must be output
1604 * using polling. To keep the polling overhead to a
1605 * minimum, output should be driven off a timer.
1606 * This is a little tricky since only 320us separate
1607 * consecutive midi bytes.
1608 */
1609void
1610sbdsp_set_midi_mode(sc, intr, arg)
1611 struct sbdsp_softc *sc;
1612 void (*intr)();
1613 void *arg;
1614{
1615
1616 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1617 sc->sc_mintr = intr;
1618 sc->sc_intr = 0;
1619 sc->sc_arg = arg;
1620}
1621
1622/*
1623 * Write a byte to the midi port, when in midi uart mode.
1624 */
1625void
1626sbdsp_midi_output(sc, v)
1627 struct sbdsp_softc *sc;
1628 int v;
1629{
1630
1631 if (sbdsp_wdsp(sc, v) < 0)
1632 ++sberr.wmidi;
1633}
1634#endif
1635
1636/* Mask a value 0-255, but round it first */
1637#define MAXVAL 256
1638static int
1639sbdsp_adjust(val, mask)
1640 int val, mask;
1641{
1642 val += (MAXVAL - mask) >> 1;
1643 if (val >= MAXVAL)
1644 val = MAXVAL-1;
1645 return val & mask;
1646}
1647
1648void
1649sbdsp_set_mixer_gain(sc, port)
1650 struct sbdsp_softc *sc;
1651 int port;
1652{
1653 int src, gain;
1654
1655 switch(sc->sc_mixer_model) {
1656 case SBM_NONE:
1657 return;
1658 case SBM_CT1335:
1659 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1660 switch(port) {
1661 case SB_MASTER_VOL:
1662 src = SBP_1335_MASTER_VOL;
1663 break;
1664 case SB_MIDI_VOL:
1665 src = SBP_1335_MIDI_VOL;
1666 break;
1667 case SB_CD_VOL:
1668 src = SBP_1335_CD_VOL;
1669 break;
1670 case SB_VOICE_VOL:
1671 src = SBP_1335_VOICE_VOL;
1672 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1673 break;
1674 default:
1675 return;
1676 }
1677 sbdsp_mix_write(sc, src, gain);
1678 break;
1679 case SBM_CT1345:
1680 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1681 sc->gain[port][SB_RIGHT]);
1682 switch (port) {
1683 case SB_MIC_VOL:
1684 src = SBP_MIC_VOL;
1685 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1686 break;
1687 case SB_MASTER_VOL:
1688 src = SBP_MASTER_VOL;
1689 break;
1690 case SB_LINE_IN_VOL:
1691 src = SBP_LINE_VOL;
1692 break;
1693 case SB_VOICE_VOL:
1694 src = SBP_VOICE_VOL;
1695 break;
1696 case SB_MIDI_VOL:
1697 src = SBP_MIDI_VOL;
1698 break;
1699 case SB_CD_VOL:
1700 src = SBP_CD_VOL;
1701 break;
1702 default:
1703 return;
1704 }
1705 sbdsp_mix_write(sc, src, gain);
1706 break;
1707 case SBM_CT1XX5:
1708 case SBM_CT1745:
1709 switch (port) {
1710 case SB_MIC_VOL:
1711 src = SB16P_MIC_L;
1712 break;
1713 case SB_MASTER_VOL:
1714 src = SB16P_MASTER_L;
1715 break;
1716 case SB_LINE_IN_VOL:
1717 src = SB16P_LINE_L;
1718 break;
1719 case SB_VOICE_VOL:
1720 src = SB16P_VOICE_L;
1721 break;
1722 case SB_MIDI_VOL:
1723 src = SB16P_MIDI_L;
1724 break;
1725 case SB_CD_VOL:
1726 src = SB16P_CD_L;
1727 break;
1728 case SB_INPUT_GAIN:
1729 src = SB16P_INPUT_GAIN_L;
1730 break;
1731 case SB_OUTPUT_GAIN:
1732 src = SB16P_OUTPUT_GAIN_L;
1733 break;
1734 case SB_TREBLE:
1735 src = SB16P_TREBLE_L;
1736 break;
1737 case SB_BASS:
1738 src = SB16P_BASS_L;
1739 break;
1740 case SB_PCSPEAKER:
1741 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1742 return;
1743 default:
1744 return;
1745 }
1746 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1747 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1748 break;
1749 }
1750}
1751
1752int
1753sbdsp_mixer_set_port(addr, cp)
1754 void *addr;
1755 mixer_ctrl_t *cp;
1756{
1757 struct sbdsp_softc *sc = addr;
1758 int lgain, rgain;
1759 int mask, bits;
1760 int lmask, rmask, lbits, rbits;
1761 int mute, swap;
1762
1763 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1764 cp->un.value.num_channels));
1765
1766 if (sc->sc_mixer_model == SBM_NONE)
1767 return EINVAL;
1768
1769 switch (cp->dev) {
1770 case SB_TREBLE:
1771 case SB_BASS:
1772 if (sc->sc_mixer_model == SBM_CT1345 ||
1773 sc->sc_mixer_model == SBM_CT1XX5) {
1774 if (cp->type != AUDIO_MIXER_ENUM)
1775 return EINVAL;
1776 switch (cp->dev) {
1777 case SB_TREBLE:
1778 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1779 return 0;
1780 case SB_BASS:
1781 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1782 return 0;
1783 }
1784 }
1785 case SB_PCSPEAKER:
1786 case SB_INPUT_GAIN:
1787 case SB_OUTPUT_GAIN:
1788 if (!ISSBM1745(sc))
1789 return EINVAL;
1790 case SB_MIC_VOL:
1791 case SB_LINE_IN_VOL:
1792 if (sc->sc_mixer_model == SBM_CT1335)
1793 return EINVAL;
1794 case SB_VOICE_VOL:
1795 case SB_MIDI_VOL:
1796 case SB_CD_VOL:
1797 case SB_MASTER_VOL:
1798 if (cp->type != AUDIO_MIXER_VALUE)
1799 return EINVAL;
1800
1801 /*
1802 * All the mixer ports are stereo except for the microphone.
1803 * If we get a single-channel gain value passed in, then we
1804 * duplicate it to both left and right channels.
1805 */
1806
1807 switch (cp->dev) {
1808 case SB_MIC_VOL:
1809 if (cp->un.value.num_channels != 1)
1810 return EINVAL;
1811
1812 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1813 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1814 break;
1815 case SB_PCSPEAKER:
1816 if (cp->un.value.num_channels != 1)
1817 return EINVAL;
1818 /* fall into */
1819 case SB_INPUT_GAIN:
1820 case SB_OUTPUT_GAIN:
1821 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1822 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1823 break;
1824 default:
1825 switch (cp->un.value.num_channels) {
1826 case 1:
1827 lgain = rgain = SB_ADJUST_GAIN(sc,
1828 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1829 break;
1830 case 2:
1831 if (sc->sc_mixer_model == SBM_CT1335)
1832 return EINVAL;
1833 lgain = SB_ADJUST_GAIN(sc,
1834 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1835 rgain = SB_ADJUST_GAIN(sc,
1836 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1837 break;
1838 default:
1839 return EINVAL;
1840 }
1841 break;
1842 }
1843 sc->gain[cp->dev][SB_LEFT] = lgain;
1844 sc->gain[cp->dev][SB_RIGHT] = rgain;
1845
1846 sbdsp_set_mixer_gain(sc, cp->dev);
1847 break;
1848
1849 case SB_RECORD_SOURCE:
1850 if (ISSBM1745(sc)) {
1851 if (cp->type != AUDIO_MIXER_SET)
1852 return EINVAL;
1853 return sbdsp_set_in_ports(sc, cp->un.mask);
1854 } else {
1855 if (cp->type != AUDIO_MIXER_ENUM)
1856 return EINVAL;
1857 return sbdsp_set_in_port(sc, cp->un.ord);
1858 }
1859 break;
1860
1861 case SB_AGC:
1862 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1863 return EINVAL;
1864 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1865 break;
1866
1867 case SB_CD_OUT_MUTE:
1868 mask = SB16P_SW_CD;
1869 goto omute;
1870 case SB_MIC_OUT_MUTE:
1871 mask = SB16P_SW_MIC;
1872 goto omute;
1873 case SB_LINE_OUT_MUTE:
1874 mask = SB16P_SW_LINE;
1875 omute:
1876 if (cp->type != AUDIO_MIXER_ENUM)
1877 return EINVAL;
1878 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1879 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1880 if (cp->un.ord)
1881 bits = bits & ~mask;
1882 else
1883 bits = bits | mask;
1884 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1885 break;
1886
1887 case SB_MIC_IN_MUTE:
1888 case SB_MIC_SWAP:
1889 lmask = rmask = SB16P_SW_MIC;
1890 goto imute;
1891 case SB_CD_IN_MUTE:
1892 case SB_CD_SWAP:
1893 lmask = SB16P_SW_CD_L;
1894 rmask = SB16P_SW_CD_R;
1895 goto imute;
1896 case SB_LINE_IN_MUTE:
1897 case SB_LINE_SWAP:
1898 lmask = SB16P_SW_LINE_L;
1899 rmask = SB16P_SW_LINE_R;
1900 goto imute;
1901 case SB_MIDI_IN_MUTE:
1902 case SB_MIDI_SWAP:
1903 lmask = SB16P_SW_MIDI_L;
1904 rmask = SB16P_SW_MIDI_R;
1905 imute:
1906 if (cp->type != AUDIO_MIXER_ENUM)
1907 return EINVAL;
1908 mask = lmask | rmask;
1909 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1910 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1911 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1912 if (SB_IS_IN_MUTE(cp->dev)) {
1913 mute = cp->dev;
1914 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1915 } else {
1916 swap = cp->dev;
1917 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1918 }
1919 if (sc->gain[swap][SB_LR]) {
1920 mask = lmask;
1921 lmask = rmask;
1922 rmask = mask;
1923 }
1924 if (!sc->gain[mute][SB_LR]) {
1925 lbits = lbits | lmask;
1926 rbits = rbits | rmask;
1927 }
1928 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1929 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1930 break;
1931
1932 default:
1933 return EINVAL;
1934 }
1935
1936 return 0;
1937}
1938
1939int
1940sbdsp_mixer_get_port(addr, cp)
1941 void *addr;
1942 mixer_ctrl_t *cp;
1943{
1944 struct sbdsp_softc *sc = addr;
1945
1946 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1947
1948 if (sc->sc_mixer_model == SBM_NONE)
1949 return EINVAL;
1950
1951 switch (cp->dev) {
1952 case SB_TREBLE:
1953 case SB_BASS:
1954 if (sc->sc_mixer_model == SBM_CT1345 ||
1955 sc->sc_mixer_model == SBM_CT1XX5) {
1956 switch (cp->dev) {
1957 case SB_TREBLE:
1958 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1959 return 0;
1960 case SB_BASS:
1961 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1962 return 0;
1963 }
1964 }
1965 case SB_PCSPEAKER:
1966 case SB_INPUT_GAIN:
1967 case SB_OUTPUT_GAIN:
1968 if (!ISSBM1745(sc))
1969 return EINVAL;
1970 case SB_MIC_VOL:
1971 case SB_LINE_IN_VOL:
1972 if (sc->sc_mixer_model == SBM_CT1335)
1973 return EINVAL;
1974 case SB_VOICE_VOL:
1975 case SB_MIDI_VOL:
1976 case SB_CD_VOL:
1977 case SB_MASTER_VOL:
1978 switch (cp->dev) {
1979 case SB_MIC_VOL:
1980 case SB_PCSPEAKER:
1981 if (cp->un.value.num_channels != 1)
1982 return EINVAL;
1983 /* fall into */
1984 default:
1985 switch (cp->un.value.num_channels) {
1986 case 1:
1987 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1988 sc->gain[cp->dev][SB_LEFT];
1989 break;
1990 case 2:
1991 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1992 sc->gain[cp->dev][SB_LEFT];
1993 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1994 sc->gain[cp->dev][SB_RIGHT];
1995 break;
1996 default:
1997 return EINVAL;
1998 }
1999 break;
2000 }
2001 break;
2002
2003 case SB_RECORD_SOURCE:
2004 if (ISSBM1745(sc))
2005 cp->un.mask = sc->in_mask;
2006 else
2007 cp->un.ord = sc->in_port;
2008 break;
2009
2010 case SB_AGC:
2011 if (!ISSBM1745(sc))
2012 return EINVAL;
2013 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
2014 break;
2015
2016 case SB_CD_IN_MUTE:
2017 case SB_MIC_IN_MUTE:
2018 case SB_LINE_IN_MUTE:
2019 case SB_MIDI_IN_MUTE:
2020 case SB_CD_SWAP:
2021 case SB_MIC_SWAP:
2022 case SB_LINE_SWAP:
2023 case SB_MIDI_SWAP:
2024 case SB_CD_OUT_MUTE:
2025 case SB_MIC_OUT_MUTE:
2026 case SB_LINE_OUT_MUTE:
2027 cp->un.ord = sc->gain[cp->dev][SB_LR];
2028 break;
2029
2030 default:
2031 return EINVAL;
2032 }
2033
2034 return 0;
2035}
2036
2037int
2038sbdsp_mixer_query_devinfo(addr, dip)
2039 void *addr;
2040 mixer_devinfo_t *dip;
2041{
2042 struct sbdsp_softc *sc = addr;
2043 int chan, class, is1745;
2044
2045 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
2046 sc->sc_mixer_model, dip->index));
2047
2048 if (sc->sc_mixer_model == SBM_NONE)
2049 return ENXIO;
2050
2051 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
2052 is1745 = ISSBM1745(sc);
2053 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
2054
2055 switch (dip->index) {
2056 case SB_MASTER_VOL:
2057 dip->type = AUDIO_MIXER_VALUE;
2058 dip->mixer_class = SB_OUTPUT_CLASS;
2059 dip->prev = dip->next = AUDIO_MIXER_LAST;
2060 strcpy(dip->label.name, AudioNmaster);
2061 dip->un.v.num_channels = chan;
2062 strcpy(dip->un.v.units.name, AudioNvolume);
2063 return 0;
2064 case SB_MIDI_VOL:
2065 dip->type = AUDIO_MIXER_VALUE;
2066 dip->mixer_class = class;
2067 dip->prev = AUDIO_MIXER_LAST;
2068 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2069 strcpy(dip->label.name, AudioNfmsynth);
2070 dip->un.v.num_channels = chan;
2071 strcpy(dip->un.v.units.name, AudioNvolume);
2072 return 0;
2073 case SB_CD_VOL:
2074 dip->type = AUDIO_MIXER_VALUE;
2075 dip->mixer_class = class;
2076 dip->prev = AUDIO_MIXER_LAST;
2077 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2078 strcpy(dip->label.name, AudioNcd);
2079 dip->un.v.num_channels = chan;
2080 strcpy(dip->un.v.units.name, AudioNvolume);
2081 return 0;
2082 case SB_VOICE_VOL:
2083 dip->type = AUDIO_MIXER_VALUE;
2084 dip->mixer_class = class;
2085 dip->prev = AUDIO_MIXER_LAST;
2086 dip->next = AUDIO_MIXER_LAST;
2087 strcpy(dip->label.name, AudioNdac);
2088 dip->un.v.num_channels = chan;
2089 strcpy(dip->un.v.units.name, AudioNvolume);
2090 return 0;
2091 case SB_OUTPUT_CLASS:
2092 dip->type = AUDIO_MIXER_CLASS;
2093 dip->mixer_class = SB_OUTPUT_CLASS;
2094 dip->next = dip->prev = AUDIO_MIXER_LAST;
2095 strcpy(dip->label.name, AudioCoutputs);
2096 return 0;
2097 }
2098
2099 if (sc->sc_mixer_model == SBM_CT1335)
2100 return ENXIO;
2101
2102 switch (dip->index) {
2103 case SB_MIC_VOL:
2104 dip->type = AUDIO_MIXER_VALUE;
2105 dip->mixer_class = class;
2106 dip->prev = AUDIO_MIXER_LAST;
2107 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2108 strcpy(dip->label.name, AudioNmicrophone);
2109 dip->un.v.num_channels = 1;
2110 strcpy(dip->un.v.units.name, AudioNvolume);
2111 return 0;
2112
2113 case SB_LINE_IN_VOL:
2114 dip->type = AUDIO_MIXER_VALUE;
2115 dip->mixer_class = class;
2116 dip->prev = AUDIO_MIXER_LAST;
2117 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2118 strcpy(dip->label.name, AudioNline);
2119 dip->un.v.num_channels = 2;
2120 strcpy(dip->un.v.units.name, AudioNvolume);
2121 return 0;
2122
2123 case SB_RECORD_SOURCE:
2124 dip->mixer_class = SB_RECORD_CLASS;
2125 dip->prev = dip->next = AUDIO_MIXER_LAST;
2126 strcpy(dip->label.name, AudioNsource);
2127 if (ISSBM1745(sc)) {
2128 dip->type = AUDIO_MIXER_SET;
2129 dip->un.s.num_mem = 4;
2130 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2131 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2132 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2133 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2134 strcpy(dip->un.s.member[2].label.name, AudioNline);
2135 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2136 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2137 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2138 } else {
2139 dip->type = AUDIO_MIXER_ENUM;
2140 dip->un.e.num_mem = 3;
2141 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2142 dip->un.e.member[0].ord = SB_MIC_VOL;
2143 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2144 dip->un.e.member[1].ord = SB_CD_VOL;
2145 strcpy(dip->un.e.member[2].label.name, AudioNline);
2146 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2147 }
2148 return 0;
2149
2150 case SB_BASS:
2151 dip->prev = dip->next = AUDIO_MIXER_LAST;
2152 strcpy(dip->label.name, AudioNbass);
2153 if (sc->sc_mixer_model == SBM_CT1745) {
2154 dip->type = AUDIO_MIXER_VALUE;
2155 dip->mixer_class = SB_EQUALIZATION_CLASS;
2156 dip->un.v.num_channels = 2;
2157 strcpy(dip->un.v.units.name, AudioNbass);
2158 } else {
2159 dip->type = AUDIO_MIXER_ENUM;
2160 dip->mixer_class = SB_INPUT_CLASS;
2161 dip->un.e.num_mem = 2;
2162 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2163 dip->un.e.member[0].ord = 0;
2164 strcpy(dip->un.e.member[1].label.name, AudioNon);
2165 dip->un.e.member[1].ord = 1;
2166 }
2167 return 0;
2168
2169 case SB_TREBLE:
2170 dip->prev = dip->next = AUDIO_MIXER_LAST;
2171 strcpy(dip->label.name, AudioNtreble);
2172 if (sc->sc_mixer_model == SBM_CT1745) {
2173 dip->type = AUDIO_MIXER_VALUE;
2174 dip->mixer_class = SB_EQUALIZATION_CLASS;
2175 dip->un.v.num_channels = 2;
2176 strcpy(dip->un.v.units.name, AudioNtreble);
2177 } else {
2178 dip->type = AUDIO_MIXER_ENUM;
2179 dip->mixer_class = SB_INPUT_CLASS;
2180 dip->un.e.num_mem = 2;
2181 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2182 dip->un.e.member[0].ord = 0;
2183 strcpy(dip->un.e.member[1].label.name, AudioNon);
2184 dip->un.e.member[1].ord = 1;
2185 }
2186 return 0;
2187
2188 case SB_RECORD_CLASS: /* record source class */
2189 dip->type = AUDIO_MIXER_CLASS;
2190 dip->mixer_class = SB_RECORD_CLASS;
2191 dip->next = dip->prev = AUDIO_MIXER_LAST;
2192 strcpy(dip->label.name, AudioCrecord);
2193 return 0;
2194
2195 case SB_INPUT_CLASS:
2196 dip->type = AUDIO_MIXER_CLASS;
2197 dip->mixer_class = SB_INPUT_CLASS;
2198 dip->next = dip->prev = AUDIO_MIXER_LAST;
2199 strcpy(dip->label.name, AudioCinputs);
2200 return 0;
2201
2195 }
2196
2197 if (sc->sc_mixer_model == SBM_CT1345)
2198 return ENXIO;
2199
2200 switch(dip->index) {
2201 case SB_PCSPEAKER:
2202 dip->type = AUDIO_MIXER_VALUE;
2203 dip->mixer_class = SB_INPUT_CLASS;
2204 dip->prev = dip->next = AUDIO_MIXER_LAST;
2205 strcpy(dip->label.name, "pc_speaker");
2206 dip->un.v.num_channels = 1;
2207 strcpy(dip->un.v.units.name, AudioNvolume);
2208 return 0;
2209
2210 case SB_INPUT_GAIN:
2211 dip->type = AUDIO_MIXER_VALUE;
2212 dip->mixer_class = SB_INPUT_CLASS;
2213 dip->prev = dip->next = AUDIO_MIXER_LAST;
2214 strcpy(dip->label.name, AudioNinput);
2215 dip->un.v.num_channels = 2;
2216 strcpy(dip->un.v.units.name, AudioNvolume);
2217 return 0;
2218
2219 case SB_OUTPUT_GAIN:
2220 dip->type = AUDIO_MIXER_VALUE;
2221 dip->mixer_class = SB_OUTPUT_CLASS;
2222 dip->prev = dip->next = AUDIO_MIXER_LAST;
2223 strcpy(dip->label.name, AudioNoutput);
2224 dip->un.v.num_channels = 2;
2225 strcpy(dip->un.v.units.name, AudioNvolume);
2226 return 0;
2227
2228 case SB_AGC:
2229 dip->type = AUDIO_MIXER_ENUM;
2230 dip->mixer_class = SB_INPUT_CLASS;
2231 dip->prev = dip->next = AUDIO_MIXER_LAST;
2232 strcpy(dip->label.name, "AGC");
2233 dip->un.e.num_mem = 2;
2234 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2235 dip->un.e.member[0].ord = 0;
2236 strcpy(dip->un.e.member[1].label.name, AudioNon);
2237 dip->un.e.member[1].ord = 1;
2238 return 0;
2239
2202 }
2203
2204 if (sc->sc_mixer_model == SBM_CT1345)
2205 return ENXIO;
2206
2207 switch(dip->index) {
2208 case SB_PCSPEAKER:
2209 dip->type = AUDIO_MIXER_VALUE;
2210 dip->mixer_class = SB_INPUT_CLASS;
2211 dip->prev = dip->next = AUDIO_MIXER_LAST;
2212 strcpy(dip->label.name, "pc_speaker");
2213 dip->un.v.num_channels = 1;
2214 strcpy(dip->un.v.units.name, AudioNvolume);
2215 return 0;
2216
2217 case SB_INPUT_GAIN:
2218 dip->type = AUDIO_MIXER_VALUE;
2219 dip->mixer_class = SB_INPUT_CLASS;
2220 dip->prev = dip->next = AUDIO_MIXER_LAST;
2221 strcpy(dip->label.name, AudioNinput);
2222 dip->un.v.num_channels = 2;
2223 strcpy(dip->un.v.units.name, AudioNvolume);
2224 return 0;
2225
2226 case SB_OUTPUT_GAIN:
2227 dip->type = AUDIO_MIXER_VALUE;
2228 dip->mixer_class = SB_OUTPUT_CLASS;
2229 dip->prev = dip->next = AUDIO_MIXER_LAST;
2230 strcpy(dip->label.name, AudioNoutput);
2231 dip->un.v.num_channels = 2;
2232 strcpy(dip->un.v.units.name, AudioNvolume);
2233 return 0;
2234
2235 case SB_AGC:
2236 dip->type = AUDIO_MIXER_ENUM;
2237 dip->mixer_class = SB_INPUT_CLASS;
2238 dip->prev = dip->next = AUDIO_MIXER_LAST;
2239 strcpy(dip->label.name, "AGC");
2240 dip->un.e.num_mem = 2;
2241 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2242 dip->un.e.member[0].ord = 0;
2243 strcpy(dip->un.e.member[1].label.name, AudioNon);
2244 dip->un.e.member[1].ord = 1;
2245 return 0;
2246
2240 case SB_INPUT_CLASS:
2241 dip->type = AUDIO_MIXER_CLASS;
2242 dip->mixer_class = SB_INPUT_CLASS;
2243 dip->next = dip->prev = AUDIO_MIXER_LAST;
2244 strcpy(dip->label.name, AudioCinputs);
2245 return 0;
2246
2247 case SB_EQUALIZATION_CLASS:
2248 dip->type = AUDIO_MIXER_CLASS;
2249 dip->mixer_class = SB_EQUALIZATION_CLASS;
2250 dip->next = dip->prev = AUDIO_MIXER_LAST;
2251 strcpy(dip->label.name, AudioCequalization);
2252 return 0;
2253
2254 case SB_CD_IN_MUTE:
2255 dip->prev = SB_CD_VOL;
2256 dip->next = SB_CD_SWAP;
2257 dip->mixer_class = SB_INPUT_CLASS;
2258 goto mute;
2259
2260 case SB_MIC_IN_MUTE:
2261 dip->prev = SB_MIC_VOL;
2262 dip->next = SB_MIC_SWAP;
2263 dip->mixer_class = SB_INPUT_CLASS;
2264 goto mute;
2265
2266 case SB_LINE_IN_MUTE:
2267 dip->prev = SB_LINE_IN_VOL;
2268 dip->next = SB_LINE_SWAP;
2269 dip->mixer_class = SB_INPUT_CLASS;
2270 goto mute;
2271
2272 case SB_MIDI_IN_MUTE:
2273 dip->prev = SB_MIDI_VOL;
2274 dip->next = SB_MIDI_SWAP;
2275 dip->mixer_class = SB_INPUT_CLASS;
2276 goto mute;
2277
2278 case SB_CD_SWAP:
2279 dip->prev = SB_CD_IN_MUTE;
2280 dip->next = SB_CD_OUT_MUTE;
2281 goto swap;
2282
2283 case SB_MIC_SWAP:
2284 dip->prev = SB_MIC_IN_MUTE;
2285 dip->next = SB_MIC_OUT_MUTE;
2286 goto swap;
2287
2288 case SB_LINE_SWAP:
2289 dip->prev = SB_LINE_IN_MUTE;
2290 dip->next = SB_LINE_OUT_MUTE;
2291 goto swap;
2292
2293 case SB_MIDI_SWAP:
2294 dip->prev = SB_MIDI_IN_MUTE;
2295 dip->next = AUDIO_MIXER_LAST;
2296 swap:
2297 dip->mixer_class = SB_INPUT_CLASS;
2298 strcpy(dip->label.name, AudioNswap);
2299 goto mute1;
2300
2301 case SB_CD_OUT_MUTE:
2302 dip->prev = SB_CD_SWAP;
2303 dip->next = AUDIO_MIXER_LAST;
2304 dip->mixer_class = SB_OUTPUT_CLASS;
2305 goto mute;
2306
2307 case SB_MIC_OUT_MUTE:
2308 dip->prev = SB_MIC_SWAP;
2309 dip->next = AUDIO_MIXER_LAST;
2310 dip->mixer_class = SB_OUTPUT_CLASS;
2311 goto mute;
2312
2313 case SB_LINE_OUT_MUTE:
2314 dip->prev = SB_LINE_SWAP;
2315 dip->next = AUDIO_MIXER_LAST;
2316 dip->mixer_class = SB_OUTPUT_CLASS;
2317 mute:
2318 strcpy(dip->label.name, AudioNmute);
2319 mute1:
2320 dip->type = AUDIO_MIXER_ENUM;
2321 dip->un.e.num_mem = 2;
2322 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2323 dip->un.e.member[0].ord = 0;
2324 strcpy(dip->un.e.member[1].label.name, AudioNon);
2325 dip->un.e.member[1].ord = 1;
2326 return 0;
2327
2328 }
2329
2330 return ENXIO;
2331}
2332
2333void *
2334sb_malloc(addr, size, pool, flags)
2335 void *addr;
2336 unsigned long size;
2337 int pool;
2338 int flags;
2339{
2340 struct sbdsp_softc *sc = addr;
2341
2342 return isa_malloc(sc->sc_isa, 4, size, pool, flags);
2343}
2344
2345void
2346sb_free(addr, ptr, pool)
2347 void *addr;
2348 void *ptr;
2349 int pool;
2350{
2351 isa_free(ptr, pool);
2352}
2353
2354unsigned long
2355sb_round(addr, size)
2356 void *addr;
2357 unsigned long size;
2358{
2359 if (size > MAX_ISADMA)
2360 size = MAX_ISADMA;
2361 return size;
2362}
2363
2364int
2365sb_mappage(addr, mem, off, prot)
2366 void *addr;
2367 void *mem;
2368 int off;
2369 int prot;
2370{
2371 return isa_mappage(mem, off, prot);
2372}
2373
2374int
2375sbdsp_get_props(addr)
2376 void *addr;
2377{
2378 struct sbdsp_softc *sc = addr;
2379 return AUDIO_PROP_MMAP |
2380 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2381}
2247 case SB_EQUALIZATION_CLASS:
2248 dip->type = AUDIO_MIXER_CLASS;
2249 dip->mixer_class = SB_EQUALIZATION_CLASS;
2250 dip->next = dip->prev = AUDIO_MIXER_LAST;
2251 strcpy(dip->label.name, AudioCequalization);
2252 return 0;
2253
2254 case SB_CD_IN_MUTE:
2255 dip->prev = SB_CD_VOL;
2256 dip->next = SB_CD_SWAP;
2257 dip->mixer_class = SB_INPUT_CLASS;
2258 goto mute;
2259
2260 case SB_MIC_IN_MUTE:
2261 dip->prev = SB_MIC_VOL;
2262 dip->next = SB_MIC_SWAP;
2263 dip->mixer_class = SB_INPUT_CLASS;
2264 goto mute;
2265
2266 case SB_LINE_IN_MUTE:
2267 dip->prev = SB_LINE_IN_VOL;
2268 dip->next = SB_LINE_SWAP;
2269 dip->mixer_class = SB_INPUT_CLASS;
2270 goto mute;
2271
2272 case SB_MIDI_IN_MUTE:
2273 dip->prev = SB_MIDI_VOL;
2274 dip->next = SB_MIDI_SWAP;
2275 dip->mixer_class = SB_INPUT_CLASS;
2276 goto mute;
2277
2278 case SB_CD_SWAP:
2279 dip->prev = SB_CD_IN_MUTE;
2280 dip->next = SB_CD_OUT_MUTE;
2281 goto swap;
2282
2283 case SB_MIC_SWAP:
2284 dip->prev = SB_MIC_IN_MUTE;
2285 dip->next = SB_MIC_OUT_MUTE;
2286 goto swap;
2287
2288 case SB_LINE_SWAP:
2289 dip->prev = SB_LINE_IN_MUTE;
2290 dip->next = SB_LINE_OUT_MUTE;
2291 goto swap;
2292
2293 case SB_MIDI_SWAP:
2294 dip->prev = SB_MIDI_IN_MUTE;
2295 dip->next = AUDIO_MIXER_LAST;
2296 swap:
2297 dip->mixer_class = SB_INPUT_CLASS;
2298 strcpy(dip->label.name, AudioNswap);
2299 goto mute1;
2300
2301 case SB_CD_OUT_MUTE:
2302 dip->prev = SB_CD_SWAP;
2303 dip->next = AUDIO_MIXER_LAST;
2304 dip->mixer_class = SB_OUTPUT_CLASS;
2305 goto mute;
2306
2307 case SB_MIC_OUT_MUTE:
2308 dip->prev = SB_MIC_SWAP;
2309 dip->next = AUDIO_MIXER_LAST;
2310 dip->mixer_class = SB_OUTPUT_CLASS;
2311 goto mute;
2312
2313 case SB_LINE_OUT_MUTE:
2314 dip->prev = SB_LINE_SWAP;
2315 dip->next = AUDIO_MIXER_LAST;
2316 dip->mixer_class = SB_OUTPUT_CLASS;
2317 mute:
2318 strcpy(dip->label.name, AudioNmute);
2319 mute1:
2320 dip->type = AUDIO_MIXER_ENUM;
2321 dip->un.e.num_mem = 2;
2322 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2323 dip->un.e.member[0].ord = 0;
2324 strcpy(dip->un.e.member[1].label.name, AudioNon);
2325 dip->un.e.member[1].ord = 1;
2326 return 0;
2327
2328 }
2329
2330 return ENXIO;
2331}
2332
2333void *
2334sb_malloc(addr, size, pool, flags)
2335 void *addr;
2336 unsigned long size;
2337 int pool;
2338 int flags;
2339{
2340 struct sbdsp_softc *sc = addr;
2341
2342 return isa_malloc(sc->sc_isa, 4, size, pool, flags);
2343}
2344
2345void
2346sb_free(addr, ptr, pool)
2347 void *addr;
2348 void *ptr;
2349 int pool;
2350{
2351 isa_free(ptr, pool);
2352}
2353
2354unsigned long
2355sb_round(addr, size)
2356 void *addr;
2357 unsigned long size;
2358{
2359 if (size > MAX_ISADMA)
2360 size = MAX_ISADMA;
2361 return size;
2362}
2363
2364int
2365sb_mappage(addr, mem, off, prot)
2366 void *addr;
2367 void *mem;
2368 int off;
2369 int prot;
2370{
2371 return isa_mappage(mem, off, prot);
2372}
2373
2374int
2375sbdsp_get_props(addr)
2376 void *addr;
2377{
2378 struct sbdsp_softc *sc = addr;
2379 return AUDIO_PROP_MMAP |
2380 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2381}