Deleted Added
full compact
1/* nfa - NFA construction routines */
2
3/*-
4 * Copyright (c) 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Vern Paxson.
9 *
10 * The United States Government has rights in this work pursuant
11 * to contract no. DE-AC03-76SF00098 between the United States
12 * Department of Energy and the University of California.
13 *
14 * Redistribution and use in source and binary forms are permitted provided
15 * that: (1) source distributions retain this entire copyright notice and
16 * comment, and (2) distributions including binaries display the following
17 * acknowledgement: ``This product includes software developed by the
18 * University of California, Berkeley and its contributors'' in the
19 * documentation or other materials provided with the distribution and in
20 * all advertising materials mentioning features or use of this software.
21 * Neither the name of the University nor the names of its contributors may
22 * be used to endorse or promote products derived from this software without
23 * specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 */
28
29/* $Header: /home/daffy/u0/vern/flex/RCS/nfa.c,v 2.17 95/03/04 16:11:42 vern Exp $ */
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/usr.bin/lex/nfa.c 99112 2002-06-30 05:25:07Z obrien $");
32
33#include "flexdef.h"
34
35
36/* declare functions that have forward references */
37
38int dupmachine PROTO((int));
39void mkxtion PROTO((int, int));
40
41
42/* add_accept - add an accepting state to a machine
43 *
44 * accepting_number becomes mach's accepting number.
45 */
46
47void add_accept( mach, accepting_number )
48int mach, accepting_number;
49 {
50 /* Hang the accepting number off an epsilon state. if it is associated
51 * with a state that has a non-epsilon out-transition, then the state
52 * will accept BEFORE it makes that transition, i.e., one character
53 * too soon.
54 */
55
56 if ( transchar[finalst[mach]] == SYM_EPSILON )
57 accptnum[finalst[mach]] = accepting_number;
58
59 else
60 {
61 int astate = mkstate( SYM_EPSILON );
62 accptnum[astate] = accepting_number;
63 (void) link_machines( mach, astate );
64 }
65 }
66
67
68/* copysingl - make a given number of copies of a singleton machine
69 *
70 * synopsis
71 *
72 * newsng = copysingl( singl, num );
73 *
74 * newsng - a new singleton composed of num copies of singl
75 * singl - a singleton machine
76 * num - the number of copies of singl to be present in newsng
77 */
78
79int copysingl( singl, num )
80int singl, num;
81 {
82 int copy, i;
83
84 copy = mkstate( SYM_EPSILON );
85
86 for ( i = 1; i <= num; ++i )
87 copy = link_machines( copy, dupmachine( singl ) );
88
89 return copy;
90 }
91
92
93/* dumpnfa - debugging routine to write out an nfa */
94
95void dumpnfa( state1 )
96int state1;
97
98 {
99 int sym, tsp1, tsp2, anum, ns;
100
101 fprintf( stderr,
102 _( "\n\n********** beginning dump of nfa with start state %d\n" ),
103 state1 );
104
105 /* We probably should loop starting at firstst[state1] and going to
106 * lastst[state1], but they're not maintained properly when we "or"
107 * all of the rules together. So we use our knowledge that the machine
108 * starts at state 1 and ends at lastnfa.
109 */
110
111 /* for ( ns = firstst[state1]; ns <= lastst[state1]; ++ns ) */
112 for ( ns = 1; ns <= lastnfa; ++ns )
113 {
114 fprintf( stderr, _( "state # %4d\t" ), ns );
115
116 sym = transchar[ns];
117 tsp1 = trans1[ns];
118 tsp2 = trans2[ns];
119 anum = accptnum[ns];
120
121 fprintf( stderr, "%3d: %4d, %4d", sym, tsp1, tsp2 );
122
123 if ( anum != NIL )
124 fprintf( stderr, " [%d]", anum );
125
126 fprintf( stderr, "\n" );
127 }
128
129 fprintf( stderr, _( "********** end of dump\n" ) );
130 }
131
132
133/* dupmachine - make a duplicate of a given machine
134 *
135 * synopsis
136 *
137 * copy = dupmachine( mach );
138 *
139 * copy - holds duplicate of mach
140 * mach - machine to be duplicated
141 *
142 * note that the copy of mach is NOT an exact duplicate; rather, all the
143 * transition states values are adjusted so that the copy is self-contained,
144 * as the original should have been.
145 *
146 * also note that the original MUST be contiguous, with its low and high
147 * states accessible by the arrays firstst and lastst
148 */
149
150int dupmachine( mach )
151int mach;
152 {
153 int i, init, state_offset;
154 int state = 0;
155 int last = lastst[mach];
156
157 for ( i = firstst[mach]; i <= last; ++i )
158 {
159 state = mkstate( transchar[i] );
160
161 if ( trans1[i] != NO_TRANSITION )
162 {
163 mkxtion( finalst[state], trans1[i] + state - i );
164
165 if ( transchar[i] == SYM_EPSILON &&
166 trans2[i] != NO_TRANSITION )
167 mkxtion( finalst[state],
168 trans2[i] + state - i );
169 }
170
171 accptnum[state] = accptnum[i];
172 }
173
174 if ( state == 0 )
175 flexfatal( _( "empty machine in dupmachine()" ) );
176
177 state_offset = state - i + 1;
178
179 init = mach + state_offset;
180 firstst[init] = firstst[mach] + state_offset;
181 finalst[init] = finalst[mach] + state_offset;
182 lastst[init] = lastst[mach] + state_offset;
183
184 return init;
185 }
186
187
188/* finish_rule - finish up the processing for a rule
189 *
190 * An accepting number is added to the given machine. If variable_trail_rule
191 * is true then the rule has trailing context and both the head and trail
192 * are variable size. Otherwise if headcnt or trailcnt is non-zero then
193 * the machine recognizes a pattern with trailing context and headcnt is
194 * the number of characters in the matched part of the pattern, or zero
195 * if the matched part has variable length. trailcnt is the number of
196 * trailing context characters in the pattern, or zero if the trailing
197 * context has variable length.
198 */
199
200void finish_rule( mach, variable_trail_rule, headcnt, trailcnt )
201int mach, variable_trail_rule, headcnt, trailcnt;
202 {
203 char action_text[MAXLINE];
204
205 add_accept( mach, num_rules );
206
207 /* We did this in new_rule(), but it often gets the wrong
208 * number because we do it before we start parsing the current rule.
209 */
210 rule_linenum[num_rules] = linenum;
211
212 /* If this is a continued action, then the line-number has already
213 * been updated, giving us the wrong number.
214 */
215 if ( continued_action )
216 --rule_linenum[num_rules];
217
218 sprintf( action_text, "case %d:\n", num_rules );
219 add_action( action_text );
220
221 if ( variable_trail_rule )
222 {
223 rule_type[num_rules] = RULE_VARIABLE;
224
225 if ( performance_report > 0 )
226 fprintf( stderr,
227 _( "Variable trailing context rule at line %d\n" ),
228 rule_linenum[num_rules] );
229
230 variable_trailing_context_rules = true;
231 }
232
233 else
234 {
235 rule_type[num_rules] = RULE_NORMAL;
236
237 if ( headcnt > 0 || trailcnt > 0 )
238 {
239 /* Do trailing context magic to not match the trailing
240 * characters.
241 */
242 char *scanner_cp = "yy_c_buf_p = yy_cp";
243 char *scanner_bp = "yy_bp";
244
245 add_action(
246 "*yy_cp = yy_hold_char; /* undo effects of setting up yytext */\n" );
247
248 if ( headcnt > 0 )
249 {
250 sprintf( action_text, "%s = %s + %d;\n",
251 scanner_cp, scanner_bp, headcnt );
252 add_action( action_text );
253 }
254
255 else
256 {
257 sprintf( action_text, "%s -= %d;\n",
258 scanner_cp, trailcnt );
259 add_action( action_text );
260 }
261
262 add_action(
263 "YY_DO_BEFORE_ACTION; /* set up yytext again */\n" );
264 }
265 }
266
267 /* Okay, in the action code at this point yytext and yyleng have
268 * their proper final values for this rule, so here's the point
269 * to do any user action. But don't do it for continued actions,
270 * as that'll result in multiple YY_RULE_SETUP's.
271 */
272 if ( ! continued_action )
273 add_action( "YY_RULE_SETUP\n" );
274
275 line_directive_out( (FILE *) 0, 1 );
276 }
277
278
279/* link_machines - connect two machines together
280 *
281 * synopsis
282 *
283 * new = link_machines( first, last );
284 *
285 * new - a machine constructed by connecting first to last
286 * first - the machine whose successor is to be last
287 * last - the machine whose predecessor is to be first
288 *
289 * note: this routine concatenates the machine first with the machine
290 * last to produce a machine new which will pattern-match first first
291 * and then last, and will fail if either of the sub-patterns fails.
292 * FIRST is set to new by the operation. last is unmolested.
293 */
294
295int link_machines( first, last )
296int first, last;
297 {
298 if ( first == NIL )
299 return last;
300
301 else if ( last == NIL )
302 return first;
303
304 else
305 {
306 mkxtion( finalst[first], last );
307 finalst[first] = finalst[last];
308 lastst[first] = MAX( lastst[first], lastst[last] );
309 firstst[first] = MIN( firstst[first], firstst[last] );
310
311 return first;
312 }
313 }
314
315
316/* mark_beginning_as_normal - mark each "beginning" state in a machine
317 * as being a "normal" (i.e., not trailing context-
318 * associated) states
319 *
320 * The "beginning" states are the epsilon closure of the first state
321 */
322
323void mark_beginning_as_normal( mach )
324register int mach;
325 {
326 switch ( state_type[mach] )
327 {
328 case STATE_NORMAL:
329 /* Oh, we've already visited here. */
330 return;
331
332 case STATE_TRAILING_CONTEXT:
333 state_type[mach] = STATE_NORMAL;
334
335 if ( transchar[mach] == SYM_EPSILON )
336 {
337 if ( trans1[mach] != NO_TRANSITION )
338 mark_beginning_as_normal(
339 trans1[mach] );
340
341 if ( trans2[mach] != NO_TRANSITION )
342 mark_beginning_as_normal(
343 trans2[mach] );
344 }
345 break;
346
347 default:
348 flexerror(
349 _( "bad state type in mark_beginning_as_normal()" ) );
350 break;
351 }
352 }
353
354
355/* mkbranch - make a machine that branches to two machines
356 *
357 * synopsis
358 *
359 * branch = mkbranch( first, second );
360 *
361 * branch - a machine which matches either first's pattern or second's
362 * first, second - machines whose patterns are to be or'ed (the | operator)
363 *
364 * Note that first and second are NEITHER destroyed by the operation. Also,
365 * the resulting machine CANNOT be used with any other "mk" operation except
366 * more mkbranch's. Compare with mkor()
367 */
368
369int mkbranch( first, second )
370int first, second;
371 {
372 int eps;
373
374 if ( first == NO_TRANSITION )
375 return second;
376
377 else if ( second == NO_TRANSITION )
378 return first;
379
380 eps = mkstate( SYM_EPSILON );
381
382 mkxtion( eps, first );
383 mkxtion( eps, second );
384
385 return eps;
386 }
387
388
389/* mkclos - convert a machine into a closure
390 *
391 * synopsis
392 * new = mkclos( state );
393 *
394 * new - a new state which matches the closure of "state"
395 */
396
397int mkclos( state )
398int state;
399 {
400 return mkopt( mkposcl( state ) );
401 }
402
403
404/* mkopt - make a machine optional
405 *
406 * synopsis
407 *
408 * new = mkopt( mach );
409 *
410 * new - a machine which optionally matches whatever mach matched
411 * mach - the machine to make optional
412 *
413 * notes:
414 * 1. mach must be the last machine created
415 * 2. mach is destroyed by the call
416 */
417
418int mkopt( mach )
419int mach;
420 {
421 int eps;
422
423 if ( ! SUPER_FREE_EPSILON(finalst[mach]) )
424 {
425 eps = mkstate( SYM_EPSILON );
426 mach = link_machines( mach, eps );
427 }
428
429 /* Can't skimp on the following if FREE_EPSILON(mach) is true because
430 * some state interior to "mach" might point back to the beginning
431 * for a closure.
432 */
433 eps = mkstate( SYM_EPSILON );
434 mach = link_machines( eps, mach );
435
436 mkxtion( mach, finalst[mach] );
437
438 return mach;
439 }
440
441
442/* mkor - make a machine that matches either one of two machines
443 *
444 * synopsis
445 *
446 * new = mkor( first, second );
447 *
448 * new - a machine which matches either first's pattern or second's
449 * first, second - machines whose patterns are to be or'ed (the | operator)
450 *
451 * note that first and second are both destroyed by the operation
452 * the code is rather convoluted because an attempt is made to minimize
453 * the number of epsilon states needed
454 */
455
456int mkor( first, second )
457int first, second;
458 {
459 int eps, orend;
460
461 if ( first == NIL )
462 return second;
463
464 else if ( second == NIL )
465 return first;
466
467 else
468 {
469 /* See comment in mkopt() about why we can't use the first
470 * state of "first" or "second" if they satisfy "FREE_EPSILON".
471 */
472 eps = mkstate( SYM_EPSILON );
473
474 first = link_machines( eps, first );
475
476 mkxtion( first, second );
477
478 if ( SUPER_FREE_EPSILON(finalst[first]) &&
479 accptnum[finalst[first]] == NIL )
480 {
481 orend = finalst[first];
482 mkxtion( finalst[second], orend );
483 }
484
485 else if ( SUPER_FREE_EPSILON(finalst[second]) &&
486 accptnum[finalst[second]] == NIL )
487 {
488 orend = finalst[second];
489 mkxtion( finalst[first], orend );
490 }
491
492 else
493 {
494 eps = mkstate( SYM_EPSILON );
495
496 first = link_machines( first, eps );
497 orend = finalst[first];
498
499 mkxtion( finalst[second], orend );
500 }
501 }
502
503 finalst[first] = orend;
504 return first;
505 }
506
507
508/* mkposcl - convert a machine into a positive closure
509 *
510 * synopsis
511 * new = mkposcl( state );
512 *
513 * new - a machine matching the positive closure of "state"
514 */
515
516int mkposcl( state )
517int state;
518 {
519 int eps;
520
521 if ( SUPER_FREE_EPSILON(finalst[state]) )
522 {
523 mkxtion( finalst[state], state );
524 return state;
525 }
526
527 else
528 {
529 eps = mkstate( SYM_EPSILON );
530 mkxtion( eps, state );
531 return link_machines( state, eps );
532 }
533 }
534
535
536/* mkrep - make a replicated machine
537 *
538 * synopsis
539 * new = mkrep( mach, lb, ub );
540 *
541 * new - a machine that matches whatever "mach" matched from "lb"
542 * number of times to "ub" number of times
543 *
544 * note
545 * if "ub" is INFINITY then "new" matches "lb" or more occurrences of "mach"
546 */
547
548int mkrep( mach, lb, ub )
549int mach, lb, ub;
550 {
551 int base_mach, tail, copy, i;
552
553 base_mach = copysingl( mach, lb - 1 );
554
555 if ( ub == INFINITY )
556 {
557 copy = dupmachine( mach );
558 mach = link_machines( mach,
559 link_machines( base_mach, mkclos( copy ) ) );
560 }
561
562 else
563 {
564 tail = mkstate( SYM_EPSILON );
565
566 for ( i = lb; i < ub; ++i )
567 {
568 copy = dupmachine( mach );
569 tail = mkopt( link_machines( copy, tail ) );
570 }
571
572 mach = link_machines( mach, link_machines( base_mach, tail ) );
573 }
574
575 return mach;
576 }
577
578
579/* mkstate - create a state with a transition on a given symbol
580 *
581 * synopsis
582 *
583 * state = mkstate( sym );
584 *
585 * state - a new state matching sym
586 * sym - the symbol the new state is to have an out-transition on
587 *
588 * note that this routine makes new states in ascending order through the
589 * state array (and increments LASTNFA accordingly). The routine DUPMACHINE
590 * relies on machines being made in ascending order and that they are
591 * CONTIGUOUS. Change it and you will have to rewrite DUPMACHINE (kludge
592 * that it admittedly is)
593 */
594
595int mkstate( sym )
596int sym;
597 {
598 if ( ++lastnfa >= current_mns )
599 {
600 if ( (current_mns += MNS_INCREMENT) >= MAXIMUM_MNS )
601 lerrif(
602 _( "input rules are too complicated (>= %d NFA states)" ),
603 current_mns );
604
605 ++num_reallocs;
606
607 firstst = reallocate_integer_array( firstst, current_mns );
608 lastst = reallocate_integer_array( lastst, current_mns );
609 finalst = reallocate_integer_array( finalst, current_mns );
610 transchar = reallocate_integer_array( transchar, current_mns );
611 trans1 = reallocate_integer_array( trans1, current_mns );
612 trans2 = reallocate_integer_array( trans2, current_mns );
613 accptnum = reallocate_integer_array( accptnum, current_mns );
614 assoc_rule =
615 reallocate_integer_array( assoc_rule, current_mns );
616 state_type =
617 reallocate_integer_array( state_type, current_mns );
618 }
619
620 firstst[lastnfa] = lastnfa;
621 finalst[lastnfa] = lastnfa;
622 lastst[lastnfa] = lastnfa;
623 transchar[lastnfa] = sym;
624 trans1[lastnfa] = NO_TRANSITION;
625 trans2[lastnfa] = NO_TRANSITION;
626 accptnum[lastnfa] = NIL;
627 assoc_rule[lastnfa] = num_rules;
628 state_type[lastnfa] = current_state_type;
629
630 /* Fix up equivalence classes base on this transition. Note that any
631 * character which has its own transition gets its own equivalence
632 * class. Thus only characters which are only in character classes
633 * have a chance at being in the same equivalence class. E.g. "a|b"
634 * puts 'a' and 'b' into two different equivalence classes. "[ab]"
635 * puts them in the same equivalence class (barring other differences
636 * elsewhere in the input).
637 */
638
639 if ( sym < 0 )
640 {
641 /* We don't have to update the equivalence classes since
642 * that was already done when the ccl was created for the
643 * first time.
644 */
645 }
646
647 else if ( sym == SYM_EPSILON )
648 ++numeps;
649
650 else
651 {
652 check_char( sym );
653
654 if ( useecs )
655 /* Map NUL's to csize. */
656 mkechar( sym ? sym : csize, nextecm, ecgroup );
657 }
658
659 return lastnfa;
660 }
661
662
663/* mkxtion - make a transition from one state to another
664 *
665 * synopsis
666 *
667 * mkxtion( statefrom, stateto );
668 *
669 * statefrom - the state from which the transition is to be made
670 * stateto - the state to which the transition is to be made
671 */
672
673void mkxtion( statefrom, stateto )
674int statefrom, stateto;
675 {
676 if ( trans1[statefrom] == NO_TRANSITION )
677 trans1[statefrom] = stateto;
678
679 else if ( (transchar[statefrom] != SYM_EPSILON) ||
680 (trans2[statefrom] != NO_TRANSITION) )
681 flexfatal( _( "found too many transitions in mkxtion()" ) );
682
683 else
684 { /* second out-transition for an epsilon state */
685 ++eps2;
686 trans2[statefrom] = stateto;
687 }
688 }
689
690/* new_rule - initialize for a new rule */
691
692void new_rule()
693 {
694 if ( ++num_rules >= current_max_rules )
695 {
696 ++num_reallocs;
697 current_max_rules += MAX_RULES_INCREMENT;
698 rule_type = reallocate_integer_array( rule_type,
699 current_max_rules );
700 rule_linenum = reallocate_integer_array( rule_linenum,
701 current_max_rules );
702 rule_useful = reallocate_integer_array( rule_useful,
703 current_max_rules );
704 }
705
706 if ( num_rules > MAX_RULE )
707 lerrif( _( "too many rules (> %d)!" ), MAX_RULE );
708
709 rule_linenum[num_rules] = linenum;
710 rule_useful[num_rules] = false;
711 }