Deleted Added
sdiff udiff text old ( 172836 ) new ( 173464 )
full compact
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3 *
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
8 *
9 * Further information about soft updates can be obtained from:
10 *
11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/
12 * 1614 Oxford Street mckusick@mckusick.com
13 * Berkeley, CA 94709-1608 +1-510-843-9542
14 * USA
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/ufs/ffs/ffs_softdep.c 172836 2007-10-20 23:23:23Z julian $");
43
44/*
45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
46 */
47#ifndef DIAGNOSTIC
48#define DIAGNOSTIC
49#endif
50#ifndef DEBUG
51#define DEBUG
52#endif
53
54#include <sys/param.h>
55#include <sys/kernel.h>
56#include <sys/systm.h>
57#include <sys/bio.h>
58#include <sys/buf.h>
59#include <sys/kdb.h>
60#include <sys/kthread.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mount.h>
64#include <sys/mutex.h>
65#include <sys/proc.h>
66#include <sys/stat.h>
67#include <sys/sysctl.h>
68#include <sys/syslog.h>
69#include <sys/vnode.h>
70#include <sys/conf.h>
71#include <ufs/ufs/dir.h>
72#include <ufs/ufs/extattr.h>
73#include <ufs/ufs/quota.h>
74#include <ufs/ufs/inode.h>
75#include <ufs/ufs/ufsmount.h>
76#include <ufs/ffs/fs.h>
77#include <ufs/ffs/softdep.h>
78#include <ufs/ffs/ffs_extern.h>
79#include <ufs/ufs/ufs_extern.h>
80
81#include <vm/vm.h>
82
83#include "opt_ffs.h"
84#include "opt_quota.h"
85
86#ifndef SOFTUPDATES
87
88int
89softdep_flushfiles(oldmnt, flags, td)
90 struct mount *oldmnt;
91 int flags;
92 struct thread *td;
93{
94
95 panic("softdep_flushfiles called");
96}
97
98int
99softdep_mount(devvp, mp, fs, cred)
100 struct vnode *devvp;
101 struct mount *mp;
102 struct fs *fs;
103 struct ucred *cred;
104{
105
106 return (0);
107}
108
109void
110softdep_initialize()
111{
112
113 return;
114}
115
116void
117softdep_uninitialize()
118{
119
120 return;
121}
122
123void
124softdep_setup_inomapdep(bp, ip, newinum)
125 struct buf *bp;
126 struct inode *ip;
127 ino_t newinum;
128{
129
130 panic("softdep_setup_inomapdep called");
131}
132
133void
134softdep_setup_blkmapdep(bp, mp, newblkno)
135 struct buf *bp;
136 struct mount *mp;
137 ufs2_daddr_t newblkno;
138{
139
140 panic("softdep_setup_blkmapdep called");
141}
142
143void
144softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
145 struct inode *ip;
146 ufs_lbn_t lbn;
147 ufs2_daddr_t newblkno;
148 ufs2_daddr_t oldblkno;
149 long newsize;
150 long oldsize;
151 struct buf *bp;
152{
153
154 panic("softdep_setup_allocdirect called");
155}
156
157void
158softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
159 struct inode *ip;
160 ufs_lbn_t lbn;
161 ufs2_daddr_t newblkno;
162 ufs2_daddr_t oldblkno;
163 long newsize;
164 long oldsize;
165 struct buf *bp;
166{
167
168 panic("softdep_setup_allocext called");
169}
170
171void
172softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
173 struct inode *ip;
174 ufs_lbn_t lbn;
175 struct buf *bp;
176 int ptrno;
177 ufs2_daddr_t newblkno;
178 ufs2_daddr_t oldblkno;
179 struct buf *nbp;
180{
181
182 panic("softdep_setup_allocindir_page called");
183}
184
185void
186softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
187 struct buf *nbp;
188 struct inode *ip;
189 struct buf *bp;
190 int ptrno;
191 ufs2_daddr_t newblkno;
192{
193
194 panic("softdep_setup_allocindir_meta called");
195}
196
197void
198softdep_setup_freeblocks(ip, length, flags)
199 struct inode *ip;
200 off_t length;
201 int flags;
202{
203
204 panic("softdep_setup_freeblocks called");
205}
206
207void
208softdep_freefile(pvp, ino, mode)
209 struct vnode *pvp;
210 ino_t ino;
211 int mode;
212{
213
214 panic("softdep_freefile called");
215}
216
217int
218softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
219 struct buf *bp;
220 struct inode *dp;
221 off_t diroffset;
222 ino_t newinum;
223 struct buf *newdirbp;
224 int isnewblk;
225{
226
227 panic("softdep_setup_directory_add called");
228}
229
230void
231softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
232 struct inode *dp;
233 caddr_t base;
234 caddr_t oldloc;
235 caddr_t newloc;
236 int entrysize;
237{
238
239 panic("softdep_change_directoryentry_offset called");
240}
241
242void
243softdep_setup_remove(bp, dp, ip, isrmdir)
244 struct buf *bp;
245 struct inode *dp;
246 struct inode *ip;
247 int isrmdir;
248{
249
250 panic("softdep_setup_remove called");
251}
252
253void
254softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
255 struct buf *bp;
256 struct inode *dp;
257 struct inode *ip;
258 ino_t newinum;
259 int isrmdir;
260{
261
262 panic("softdep_setup_directory_change called");
263}
264
265void
266softdep_change_linkcnt(ip)
267 struct inode *ip;
268{
269
270 panic("softdep_change_linkcnt called");
271}
272
273void
274softdep_load_inodeblock(ip)
275 struct inode *ip;
276{
277
278 panic("softdep_load_inodeblock called");
279}
280
281void
282softdep_update_inodeblock(ip, bp, waitfor)
283 struct inode *ip;
284 struct buf *bp;
285 int waitfor;
286{
287
288 panic("softdep_update_inodeblock called");
289}
290
291int
292softdep_fsync(vp)
293 struct vnode *vp; /* the "in_core" copy of the inode */
294{
295
296 return (0);
297}
298
299void
300softdep_fsync_mountdev(vp)
301 struct vnode *vp;
302{
303
304 return;
305}
306
307int
308softdep_flushworklist(oldmnt, countp, td)
309 struct mount *oldmnt;
310 int *countp;
311 struct thread *td;
312{
313
314 *countp = 0;
315 return (0);
316}
317
318int
319softdep_sync_metadata(struct vnode *vp)
320{
321
322 return (0);
323}
324
325int
326softdep_slowdown(vp)
327 struct vnode *vp;
328{
329
330 panic("softdep_slowdown called");
331}
332
333void
334softdep_releasefile(ip)
335 struct inode *ip; /* inode with the zero effective link count */
336{
337
338 panic("softdep_releasefile called");
339}
340
341int
342softdep_request_cleanup(fs, vp)
343 struct fs *fs;
344 struct vnode *vp;
345{
346
347 return (0);
348}
349
350int
351softdep_check_suspend(struct mount *mp,
352 struct vnode *devvp,
353 int softdep_deps,
354 int softdep_accdeps,
355 int secondary_writes,
356 int secondary_accwrites)
357{
358 struct bufobj *bo;
359 int error;
360
361 (void) softdep_deps,
362 (void) softdep_accdeps;
363
364 ASSERT_VI_LOCKED(devvp, "softdep_check_suspend");
365 bo = &devvp->v_bufobj;
366
367 for (;;) {
368 if (!MNT_ITRYLOCK(mp)) {
369 VI_UNLOCK(devvp);
370 MNT_ILOCK(mp);
371 MNT_IUNLOCK(mp);
372 VI_LOCK(devvp);
373 continue;
374 }
375 if (mp->mnt_secondary_writes != 0) {
376 VI_UNLOCK(devvp);
377 msleep(&mp->mnt_secondary_writes,
378 MNT_MTX(mp),
379 (PUSER - 1) | PDROP, "secwr", 0);
380 VI_LOCK(devvp);
381 continue;
382 }
383 break;
384 }
385
386 /*
387 * Reasons for needing more work before suspend:
388 * - Dirty buffers on devvp.
389 * - Secondary writes occurred after start of vnode sync loop
390 */
391 error = 0;
392 if (bo->bo_numoutput > 0 ||
393 bo->bo_dirty.bv_cnt > 0 ||
394 secondary_writes != 0 ||
395 mp->mnt_secondary_writes != 0 ||
396 secondary_accwrites != mp->mnt_secondary_accwrites)
397 error = EAGAIN;
398 VI_UNLOCK(devvp);
399 return (error);
400}
401
402void
403softdep_get_depcounts(struct mount *mp,
404 int *softdepactivep,
405 int *softdepactiveaccp)
406{
407 (void) mp;
408 *softdepactivep = 0;
409 *softdepactiveaccp = 0;
410}
411
412#else
413/*
414 * These definitions need to be adapted to the system to which
415 * this file is being ported.
416 */
417/*
418 * malloc types defined for the softdep system.
419 */
420static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
421static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
422static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
423static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
424static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
425static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
426static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
427static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
428static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
429static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
430static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
431static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
432static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
433static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block");
434static MALLOC_DEFINE(M_SAVEDINO, "savedino","Saved inodes");
435
436#define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE)
437
438#define D_PAGEDEP 0
439#define D_INODEDEP 1
440#define D_NEWBLK 2
441#define D_BMSAFEMAP 3
442#define D_ALLOCDIRECT 4
443#define D_INDIRDEP 5
444#define D_ALLOCINDIR 6
445#define D_FREEFRAG 7
446#define D_FREEBLKS 8
447#define D_FREEFILE 9
448#define D_DIRADD 10
449#define D_MKDIR 11
450#define D_DIRREM 12
451#define D_NEWDIRBLK 13
452#define D_LAST D_NEWDIRBLK
453
454/*
455 * translate from workitem type to memory type
456 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
457 */
458static struct malloc_type *memtype[] = {
459 M_PAGEDEP,
460 M_INODEDEP,
461 M_NEWBLK,
462 M_BMSAFEMAP,
463 M_ALLOCDIRECT,
464 M_INDIRDEP,
465 M_ALLOCINDIR,
466 M_FREEFRAG,
467 M_FREEBLKS,
468 M_FREEFILE,
469 M_DIRADD,
470 M_MKDIR,
471 M_DIRREM,
472 M_NEWDIRBLK
473};
474
475#define DtoM(type) (memtype[type])
476
477/*
478 * Names of malloc types.
479 */
480#define TYPENAME(type) \
481 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
482/*
483 * End system adaptation definitions.
484 */
485
486/*
487 * Forward declarations.
488 */
489struct inodedep_hashhead;
490struct newblk_hashhead;
491struct pagedep_hashhead;
492
493/*
494 * Internal function prototypes.
495 */
496static void softdep_error(char *, int);
497static void drain_output(struct vnode *);
498static struct buf *getdirtybuf(struct buf *, struct mtx *, int);
499static void clear_remove(struct thread *);
500static void clear_inodedeps(struct thread *);
501static int flush_pagedep_deps(struct vnode *, struct mount *,
502 struct diraddhd *);
503static int flush_inodedep_deps(struct mount *, ino_t);
504static int flush_deplist(struct allocdirectlst *, int, int *);
505static int handle_written_filepage(struct pagedep *, struct buf *);
506static void diradd_inode_written(struct diradd *, struct inodedep *);
507static int handle_written_inodeblock(struct inodedep *, struct buf *);
508static void handle_allocdirect_partdone(struct allocdirect *);
509static void handle_allocindir_partdone(struct allocindir *);
510static void initiate_write_filepage(struct pagedep *, struct buf *);
511static void handle_written_mkdir(struct mkdir *, int);
512static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
513static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
514static void handle_workitem_freefile(struct freefile *);
515static void handle_workitem_remove(struct dirrem *, struct vnode *);
516static struct dirrem *newdirrem(struct buf *, struct inode *,
517 struct inode *, int, struct dirrem **);
518static void free_diradd(struct diradd *);
519static void free_allocindir(struct allocindir *, struct inodedep *);
520static void free_newdirblk(struct newdirblk *);
521static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t,
522 ufs2_daddr_t *);
523static void deallocate_dependencies(struct buf *, struct inodedep *);
524static void free_allocdirect(struct allocdirectlst *,
525 struct allocdirect *, int);
526static int check_inode_unwritten(struct inodedep *);
527static int free_inodedep(struct inodedep *);
528static void handle_workitem_freeblocks(struct freeblks *, int);
529static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
530static void setup_allocindir_phase2(struct buf *, struct inode *,
531 struct allocindir *);
532static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
533 ufs2_daddr_t);
534static void handle_workitem_freefrag(struct freefrag *);
535static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long);
536static void allocdirect_merge(struct allocdirectlst *,
537 struct allocdirect *, struct allocdirect *);
538static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *);
539static int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t,
540 struct newblk **);
541static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **);
542static int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
543 struct inodedep **);
544static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
545static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **);
546static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
547 struct mount *mp, int, struct pagedep **);
548static void pause_timer(void *);
549static int request_cleanup(struct mount *, int);
550static int process_worklist_item(struct mount *, int);
551static void add_to_worklist(struct worklist *);
552static void softdep_flush(void);
553static int softdep_speedup(void);
554
555/*
556 * Exported softdep operations.
557 */
558static void softdep_disk_io_initiation(struct buf *);
559static void softdep_disk_write_complete(struct buf *);
560static void softdep_deallocate_dependencies(struct buf *);
561static int softdep_count_dependencies(struct buf *bp, int);
562
563static struct mtx lk;
564MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
565
566#define TRY_ACQUIRE_LOCK(lk) mtx_trylock(lk)
567#define ACQUIRE_LOCK(lk) mtx_lock(lk)
568#define FREE_LOCK(lk) mtx_unlock(lk)
569
570/*
571 * Worklist queue management.
572 * These routines require that the lock be held.
573 */
574#ifndef /* NOT */ DEBUG
575#define WORKLIST_INSERT(head, item) do { \
576 (item)->wk_state |= ONWORKLIST; \
577 LIST_INSERT_HEAD(head, item, wk_list); \
578} while (0)
579#define WORKLIST_REMOVE(item) do { \
580 (item)->wk_state &= ~ONWORKLIST; \
581 LIST_REMOVE(item, wk_list); \
582} while (0)
583#else /* DEBUG */
584static void worklist_insert(struct workhead *, struct worklist *);
585static void worklist_remove(struct worklist *);
586
587#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
588#define WORKLIST_REMOVE(item) worklist_remove(item)
589
590static void
591worklist_insert(head, item)
592 struct workhead *head;
593 struct worklist *item;
594{
595
596 mtx_assert(&lk, MA_OWNED);
597 if (item->wk_state & ONWORKLIST)
598 panic("worklist_insert: already on list");
599 item->wk_state |= ONWORKLIST;
600 LIST_INSERT_HEAD(head, item, wk_list);
601}
602
603static void
604worklist_remove(item)
605 struct worklist *item;
606{
607
608 mtx_assert(&lk, MA_OWNED);
609 if ((item->wk_state & ONWORKLIST) == 0)
610 panic("worklist_remove: not on list");
611 item->wk_state &= ~ONWORKLIST;
612 LIST_REMOVE(item, wk_list);
613}
614#endif /* DEBUG */
615
616/*
617 * Routines for tracking and managing workitems.
618 */
619static void workitem_free(struct worklist *, int);
620static void workitem_alloc(struct worklist *, int, struct mount *);
621
622#define WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
623
624static void
625workitem_free(item, type)
626 struct worklist *item;
627 int type;
628{
629 struct ufsmount *ump;
630 mtx_assert(&lk, MA_OWNED);
631
632#ifdef DEBUG
633 if (item->wk_state & ONWORKLIST)
634 panic("workitem_free: still on list");
635 if (item->wk_type != type)
636 panic("workitem_free: type mismatch");
637#endif
638 ump = VFSTOUFS(item->wk_mp);
639 if (--ump->softdep_deps == 0 && ump->softdep_req)
640 wakeup(&ump->softdep_deps);
641 FREE(item, DtoM(type));
642}
643
644static void
645workitem_alloc(item, type, mp)
646 struct worklist *item;
647 int type;
648 struct mount *mp;
649{
650 item->wk_type = type;
651 item->wk_mp = mp;
652 item->wk_state = 0;
653 ACQUIRE_LOCK(&lk);
654 VFSTOUFS(mp)->softdep_deps++;
655 VFSTOUFS(mp)->softdep_accdeps++;
656 FREE_LOCK(&lk);
657}
658
659/*
660 * Workitem queue management
661 */
662static int max_softdeps; /* maximum number of structs before slowdown */
663static int maxindirdeps = 50; /* max number of indirdeps before slowdown */
664static int tickdelay = 2; /* number of ticks to pause during slowdown */
665static int proc_waiting; /* tracks whether we have a timeout posted */
666static int *stat_countp; /* statistic to count in proc_waiting timeout */
667static struct callout_handle handle; /* handle on posted proc_waiting timeout */
668static int req_pending;
669static int req_clear_inodedeps; /* syncer process flush some inodedeps */
670#define FLUSH_INODES 1
671static int req_clear_remove; /* syncer process flush some freeblks */
672#define FLUSH_REMOVE 2
673#define FLUSH_REMOVE_WAIT 3
674/*
675 * runtime statistics
676 */
677static int stat_worklist_push; /* number of worklist cleanups */
678static int stat_blk_limit_push; /* number of times block limit neared */
679static int stat_ino_limit_push; /* number of times inode limit neared */
680static int stat_blk_limit_hit; /* number of times block slowdown imposed */
681static int stat_ino_limit_hit; /* number of times inode slowdown imposed */
682static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */
683static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
684static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */
685static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
686static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */
687
688SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
689SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
690SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, "");
691SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
692SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
693SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
694SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
695SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
696SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
697SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
698SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
699SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
700SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
701/* SYSCTL_INT(_debug, OID_AUTO, worklist_num, CTLFLAG_RD, &softdep_on_worklist, 0, ""); */
702
703SYSCTL_DECL(_vfs_ffs);
704
705static int compute_summary_at_mount = 0; /* Whether to recompute the summary at mount time */
706SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
707 &compute_summary_at_mount, 0, "Recompute summary at mount");
708
709static struct proc *softdepproc;
710static struct kproc_desc softdep_kp = {
711 "softdepflush",
712 softdep_flush,
713 &softdepproc
714};
715SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, &softdep_kp)
716
717static void
718softdep_flush(void)
719{
720 struct mount *nmp;
721 struct mount *mp;
722 struct ufsmount *ump;
723 struct thread *td;
724 int remaining;
725 int vfslocked;
726
727 td = curthread;
728 td->td_pflags |= TDP_NORUNNINGBUF;
729
730 for (;;) {
731 kproc_suspend_check(softdepproc);
732 vfslocked = VFS_LOCK_GIANT((struct mount *)NULL);
733 ACQUIRE_LOCK(&lk);
734 /*
735 * If requested, try removing inode or removal dependencies.
736 */
737 if (req_clear_inodedeps) {
738 clear_inodedeps(td);
739 req_clear_inodedeps -= 1;
740 wakeup_one(&proc_waiting);
741 }
742 if (req_clear_remove) {
743 clear_remove(td);
744 req_clear_remove -= 1;
745 wakeup_one(&proc_waiting);
746 }
747 FREE_LOCK(&lk);
748 VFS_UNLOCK_GIANT(vfslocked);
749 remaining = 0;
750 mtx_lock(&mountlist_mtx);
751 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
752 nmp = TAILQ_NEXT(mp, mnt_list);
753 if ((mp->mnt_flag & MNT_SOFTDEP) == 0)
754 continue;
755 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
756 continue;
757 vfslocked = VFS_LOCK_GIANT(mp);
758 softdep_process_worklist(mp, 0);
759 ump = VFSTOUFS(mp);
760 remaining += ump->softdep_on_worklist -
761 ump->softdep_on_worklist_inprogress;
762 VFS_UNLOCK_GIANT(vfslocked);
763 mtx_lock(&mountlist_mtx);
764 nmp = TAILQ_NEXT(mp, mnt_list);
765 vfs_unbusy(mp, td);
766 }
767 mtx_unlock(&mountlist_mtx);
768 if (remaining)
769 continue;
770 ACQUIRE_LOCK(&lk);
771 if (!req_pending)
772 msleep(&req_pending, &lk, PVM, "sdflush", hz);
773 req_pending = 0;
774 FREE_LOCK(&lk);
775 }
776}
777
778static int
779softdep_speedup(void)
780{
781
782 mtx_assert(&lk, MA_OWNED);
783 if (req_pending == 0) {
784 req_pending = 1;
785 wakeup(&req_pending);
786 }
787
788 return speedup_syncer();
789}
790
791/*
792 * Add an item to the end of the work queue.
793 * This routine requires that the lock be held.
794 * This is the only routine that adds items to the list.
795 * The following routine is the only one that removes items
796 * and does so in order from first to last.
797 */
798static void
799add_to_worklist(wk)
800 struct worklist *wk;
801{
802 struct ufsmount *ump;
803
804 mtx_assert(&lk, MA_OWNED);
805 ump = VFSTOUFS(wk->wk_mp);
806 if (wk->wk_state & ONWORKLIST)
807 panic("add_to_worklist: already on list");
808 wk->wk_state |= ONWORKLIST;
809 if (LIST_EMPTY(&ump->softdep_workitem_pending))
810 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
811 else
812 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
813 ump->softdep_worklist_tail = wk;
814 ump->softdep_on_worklist += 1;
815}
816
817/*
818 * Process that runs once per second to handle items in the background queue.
819 *
820 * Note that we ensure that everything is done in the order in which they
821 * appear in the queue. The code below depends on this property to ensure
822 * that blocks of a file are freed before the inode itself is freed. This
823 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
824 * until all the old ones have been purged from the dependency lists.
825 */
826int
827softdep_process_worklist(mp, full)
828 struct mount *mp;
829 int full;
830{
831 struct thread *td = curthread;
832 int cnt, matchcnt, loopcount;
833 struct ufsmount *ump;
834 long starttime;
835
836 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
837 /*
838 * Record the process identifier of our caller so that we can give
839 * this process preferential treatment in request_cleanup below.
840 */
841 matchcnt = 0;
842 ump = VFSTOUFS(mp);
843 ACQUIRE_LOCK(&lk);
844 loopcount = 1;
845 starttime = time_second;
846 while (ump->softdep_on_worklist > 0) {
847 if ((cnt = process_worklist_item(mp, 0)) == -1)
848 break;
849 else
850 matchcnt += cnt;
851 /*
852 * If requested, try removing inode or removal dependencies.
853 */
854 if (req_clear_inodedeps) {
855 clear_inodedeps(td);
856 req_clear_inodedeps -= 1;
857 wakeup_one(&proc_waiting);
858 }
859 if (req_clear_remove) {
860 clear_remove(td);
861 req_clear_remove -= 1;
862 wakeup_one(&proc_waiting);
863 }
864 /*
865 * We do not generally want to stop for buffer space, but if
866 * we are really being a buffer hog, we will stop and wait.
867 */
868 if (loopcount++ % 128 == 0) {
869 FREE_LOCK(&lk);
870 bwillwrite();
871 ACQUIRE_LOCK(&lk);
872 }
873 /*
874 * Never allow processing to run for more than one
875 * second. Otherwise the other mountpoints may get
876 * excessively backlogged.
877 */
878 if (!full && starttime != time_second) {
879 matchcnt = -1;
880 break;
881 }
882 }
883 FREE_LOCK(&lk);
884 return (matchcnt);
885}
886
887/*
888 * Process one item on the worklist.
889 */
890static int
891process_worklist_item(mp, flags)
892 struct mount *mp;
893 int flags;
894{
895 struct worklist *wk, *wkend;
896 struct ufsmount *ump;
897 struct vnode *vp;
898 int matchcnt = 0;
899
900 mtx_assert(&lk, MA_OWNED);
901 KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
902 /*
903 * If we are being called because of a process doing a
904 * copy-on-write, then it is not safe to write as we may
905 * recurse into the copy-on-write routine.
906 */
907 if (curthread->td_pflags & TDP_COWINPROGRESS)
908 return (-1);
909 /*
910 * Normally we just process each item on the worklist in order.
911 * However, if we are in a situation where we cannot lock any
912 * inodes, we have to skip over any dirrem requests whose
913 * vnodes are resident and locked.
914 */
915 ump = VFSTOUFS(mp);
916 vp = NULL;
917 LIST_FOREACH(wk, &ump->softdep_workitem_pending, wk_list) {
918 if (wk->wk_state & INPROGRESS)
919 continue;
920 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
921 break;
922 wk->wk_state |= INPROGRESS;
923 ump->softdep_on_worklist_inprogress++;
924 FREE_LOCK(&lk);
925 ffs_vget(mp, WK_DIRREM(wk)->dm_oldinum,
926 LK_NOWAIT | LK_EXCLUSIVE, &vp);
927 ACQUIRE_LOCK(&lk);
928 wk->wk_state &= ~INPROGRESS;
929 ump->softdep_on_worklist_inprogress--;
930 if (vp != NULL)
931 break;
932 }
933 if (wk == 0)
934 return (-1);
935 /*
936 * Remove the item to be processed. If we are removing the last
937 * item on the list, we need to recalculate the tail pointer.
938 * As this happens rarely and usually when the list is short,
939 * we just run down the list to find it rather than tracking it
940 * in the above loop.
941 */
942 WORKLIST_REMOVE(wk);
943 if (wk == ump->softdep_worklist_tail) {
944 LIST_FOREACH(wkend, &ump->softdep_workitem_pending, wk_list)
945 if (LIST_NEXT(wkend, wk_list) == NULL)
946 break;
947 ump->softdep_worklist_tail = wkend;
948 }
949 ump->softdep_on_worklist -= 1;
950 FREE_LOCK(&lk);
951 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
952 panic("process_worklist_item: suspended filesystem");
953 matchcnt++;
954 switch (wk->wk_type) {
955
956 case D_DIRREM:
957 /* removal of a directory entry */
958 handle_workitem_remove(WK_DIRREM(wk), vp);
959 break;
960
961 case D_FREEBLKS:
962 /* releasing blocks and/or fragments from a file */
963 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT);
964 break;
965
966 case D_FREEFRAG:
967 /* releasing a fragment when replaced as a file grows */
968 handle_workitem_freefrag(WK_FREEFRAG(wk));
969 break;
970
971 case D_FREEFILE:
972 /* releasing an inode when its link count drops to 0 */
973 handle_workitem_freefile(WK_FREEFILE(wk));
974 break;
975
976 default:
977 panic("%s_process_worklist: Unknown type %s",
978 "softdep", TYPENAME(wk->wk_type));
979 /* NOTREACHED */
980 }
981 vn_finished_secondary_write(mp);
982 ACQUIRE_LOCK(&lk);
983 return (matchcnt);
984}
985
986/*
987 * Move dependencies from one buffer to another.
988 */
989void
990softdep_move_dependencies(oldbp, newbp)
991 struct buf *oldbp;
992 struct buf *newbp;
993{
994 struct worklist *wk, *wktail;
995
996 if (!LIST_EMPTY(&newbp->b_dep))
997 panic("softdep_move_dependencies: need merge code");
998 wktail = 0;
999 ACQUIRE_LOCK(&lk);
1000 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1001 LIST_REMOVE(wk, wk_list);
1002 if (wktail == 0)
1003 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1004 else
1005 LIST_INSERT_AFTER(wktail, wk, wk_list);
1006 wktail = wk;
1007 }
1008 FREE_LOCK(&lk);
1009}
1010
1011/*
1012 * Purge the work list of all items associated with a particular mount point.
1013 */
1014int
1015softdep_flushworklist(oldmnt, countp, td)
1016 struct mount *oldmnt;
1017 int *countp;
1018 struct thread *td;
1019{
1020 struct vnode *devvp;
1021 int count, error = 0;
1022 struct ufsmount *ump;
1023
1024 /*
1025 * Alternately flush the block device associated with the mount
1026 * point and process any dependencies that the flushing
1027 * creates. We continue until no more worklist dependencies
1028 * are found.
1029 */
1030 *countp = 0;
1031 ump = VFSTOUFS(oldmnt);
1032 devvp = ump->um_devvp;
1033 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1034 *countp += count;
1035 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td);
1036 error = VOP_FSYNC(devvp, MNT_WAIT, td);
1037 VOP_UNLOCK(devvp, 0, td);
1038 if (error)
1039 break;
1040 }
1041 return (error);
1042}
1043
1044int
1045softdep_waitidle(struct mount *mp)
1046{
1047 struct ufsmount *ump;
1048 int error;
1049 int i;
1050
1051 ump = VFSTOUFS(mp);
1052 ACQUIRE_LOCK(&lk);
1053 for (i = 0; i < 10 && ump->softdep_deps; i++) {
1054 ump->softdep_req = 1;
1055 if (ump->softdep_on_worklist)
1056 panic("softdep_waitidle: work added after flush.");
1057 msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1058 }
1059 ump->softdep_req = 0;
1060 FREE_LOCK(&lk);
1061 error = 0;
1062 if (i == 10) {
1063 error = EBUSY;
1064 printf("softdep_waitidle: Failed to flush worklist for %p\n",
1065 mp);
1066 }
1067
1068 return (error);
1069}
1070
1071/*
1072 * Flush all vnodes and worklist items associated with a specified mount point.
1073 */
1074int
1075softdep_flushfiles(oldmnt, flags, td)
1076 struct mount *oldmnt;
1077 int flags;
1078 struct thread *td;
1079{
1080 int error, count, loopcnt;
1081
1082 error = 0;
1083
1084 /*
1085 * Alternately flush the vnodes associated with the mount
1086 * point and process any dependencies that the flushing
1087 * creates. In theory, this loop can happen at most twice,
1088 * but we give it a few extra just to be sure.
1089 */
1090 for (loopcnt = 10; loopcnt > 0; loopcnt--) {
1091 /*
1092 * Do another flush in case any vnodes were brought in
1093 * as part of the cleanup operations.
1094 */
1095 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1096 break;
1097 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 ||
1098 count == 0)
1099 break;
1100 }
1101 /*
1102 * If we are unmounting then it is an error to fail. If we
1103 * are simply trying to downgrade to read-only, then filesystem
1104 * activity can keep us busy forever, so we just fail with EBUSY.
1105 */
1106 if (loopcnt == 0) {
1107 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1108 panic("softdep_flushfiles: looping");
1109 error = EBUSY;
1110 }
1111 if (!error)
1112 error = softdep_waitidle(oldmnt);
1113 return (error);
1114}
1115
1116/*
1117 * Structure hashing.
1118 *
1119 * There are three types of structures that can be looked up:
1120 * 1) pagedep structures identified by mount point, inode number,
1121 * and logical block.
1122 * 2) inodedep structures identified by mount point and inode number.
1123 * 3) newblk structures identified by mount point and
1124 * physical block number.
1125 *
1126 * The "pagedep" and "inodedep" dependency structures are hashed
1127 * separately from the file blocks and inodes to which they correspond.
1128 * This separation helps when the in-memory copy of an inode or
1129 * file block must be replaced. It also obviates the need to access
1130 * an inode or file page when simply updating (or de-allocating)
1131 * dependency structures. Lookup of newblk structures is needed to
1132 * find newly allocated blocks when trying to associate them with
1133 * their allocdirect or allocindir structure.
1134 *
1135 * The lookup routines optionally create and hash a new instance when
1136 * an existing entry is not found.
1137 */
1138#define DEPALLOC 0x0001 /* allocate structure if lookup fails */
1139#define NODELAY 0x0002 /* cannot do background work */
1140
1141/*
1142 * Structures and routines associated with pagedep caching.
1143 */
1144LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1145u_long pagedep_hash; /* size of hash table - 1 */
1146#define PAGEDEP_HASH(mp, inum, lbn) \
1147 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
1148 pagedep_hash])
1149
1150static int
1151pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
1152 struct pagedep_hashhead *pagedephd;
1153 ino_t ino;
1154 ufs_lbn_t lbn;
1155 struct mount *mp;
1156 int flags;
1157 struct pagedep **pagedeppp;
1158{
1159 struct pagedep *pagedep;
1160
1161 LIST_FOREACH(pagedep, pagedephd, pd_hash)
1162 if (ino == pagedep->pd_ino &&
1163 lbn == pagedep->pd_lbn &&
1164 mp == pagedep->pd_list.wk_mp)
1165 break;
1166 if (pagedep) {
1167 *pagedeppp = pagedep;
1168 if ((flags & DEPALLOC) != 0 &&
1169 (pagedep->pd_state & ONWORKLIST) == 0)
1170 return (0);
1171 return (1);
1172 }
1173 *pagedeppp = NULL;
1174 return (0);
1175}
1176/*
1177 * Look up a pagedep. Return 1 if found, 0 if not found or found
1178 * when asked to allocate but not associated with any buffer.
1179 * If not found, allocate if DEPALLOC flag is passed.
1180 * Found or allocated entry is returned in pagedeppp.
1181 * This routine must be called with splbio interrupts blocked.
1182 */
1183static int
1184pagedep_lookup(ip, lbn, flags, pagedeppp)
1185 struct inode *ip;
1186 ufs_lbn_t lbn;
1187 int flags;
1188 struct pagedep **pagedeppp;
1189{
1190 struct pagedep *pagedep;
1191 struct pagedep_hashhead *pagedephd;
1192 struct mount *mp;
1193 int ret;
1194 int i;
1195
1196 mtx_assert(&lk, MA_OWNED);
1197 mp = ITOV(ip)->v_mount;
1198 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
1199
1200 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp);
1201 if (*pagedeppp || (flags & DEPALLOC) == 0)
1202 return (ret);
1203 FREE_LOCK(&lk);
1204 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep),
1205 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
1206 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
1207 ACQUIRE_LOCK(&lk);
1208 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp);
1209 if (*pagedeppp) {
1210 WORKITEM_FREE(pagedep, D_PAGEDEP);
1211 return (ret);
1212 }
1213 pagedep->pd_ino = ip->i_number;
1214 pagedep->pd_lbn = lbn;
1215 LIST_INIT(&pagedep->pd_dirremhd);
1216 LIST_INIT(&pagedep->pd_pendinghd);
1217 for (i = 0; i < DAHASHSZ; i++)
1218 LIST_INIT(&pagedep->pd_diraddhd[i]);
1219 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
1220 *pagedeppp = pagedep;
1221 return (0);
1222}
1223
1224/*
1225 * Structures and routines associated with inodedep caching.
1226 */
1227LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
1228static u_long inodedep_hash; /* size of hash table - 1 */
1229static long num_inodedep; /* number of inodedep allocated */
1230#define INODEDEP_HASH(fs, inum) \
1231 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
1232
1233static int
1234inodedep_find(inodedephd, fs, inum, inodedeppp)
1235 struct inodedep_hashhead *inodedephd;
1236 struct fs *fs;
1237 ino_t inum;
1238 struct inodedep **inodedeppp;
1239{
1240 struct inodedep *inodedep;
1241
1242 LIST_FOREACH(inodedep, inodedephd, id_hash)
1243 if (inum == inodedep->id_ino && fs == inodedep->id_fs)
1244 break;
1245 if (inodedep) {
1246 *inodedeppp = inodedep;
1247 return (1);
1248 }
1249 *inodedeppp = NULL;
1250
1251 return (0);
1252}
1253/*
1254 * Look up an inodedep. Return 1 if found, 0 if not found.
1255 * If not found, allocate if DEPALLOC flag is passed.
1256 * Found or allocated entry is returned in inodedeppp.
1257 * This routine must be called with splbio interrupts blocked.
1258 */
1259static int
1260inodedep_lookup(mp, inum, flags, inodedeppp)
1261 struct mount *mp;
1262 ino_t inum;
1263 int flags;
1264 struct inodedep **inodedeppp;
1265{
1266 struct inodedep *inodedep;
1267 struct inodedep_hashhead *inodedephd;
1268 struct fs *fs;
1269
1270 mtx_assert(&lk, MA_OWNED);
1271 fs = VFSTOUFS(mp)->um_fs;
1272 inodedephd = INODEDEP_HASH(fs, inum);
1273
1274 if (inodedep_find(inodedephd, fs, inum, inodedeppp))
1275 return (1);
1276 if ((flags & DEPALLOC) == 0)
1277 return (0);
1278 /*
1279 * If we are over our limit, try to improve the situation.
1280 */
1281 if (num_inodedep > max_softdeps && (flags & NODELAY) == 0)
1282 request_cleanup(mp, FLUSH_INODES);
1283 FREE_LOCK(&lk);
1284 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1285 M_INODEDEP, M_SOFTDEP_FLAGS);
1286 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
1287 ACQUIRE_LOCK(&lk);
1288 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
1289 WORKITEM_FREE(inodedep, D_INODEDEP);
1290 return (1);
1291 }
1292 num_inodedep += 1;
1293 inodedep->id_fs = fs;
1294 inodedep->id_ino = inum;
1295 inodedep->id_state = ALLCOMPLETE;
1296 inodedep->id_nlinkdelta = 0;
1297 inodedep->id_savedino1 = NULL;
1298 inodedep->id_savedsize = -1;
1299 inodedep->id_savedextsize = -1;
1300 inodedep->id_buf = NULL;
1301 LIST_INIT(&inodedep->id_pendinghd);
1302 LIST_INIT(&inodedep->id_inowait);
1303 LIST_INIT(&inodedep->id_bufwait);
1304 TAILQ_INIT(&inodedep->id_inoupdt);
1305 TAILQ_INIT(&inodedep->id_newinoupdt);
1306 TAILQ_INIT(&inodedep->id_extupdt);
1307 TAILQ_INIT(&inodedep->id_newextupdt);
1308 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1309 *inodedeppp = inodedep;
1310 return (0);
1311}
1312
1313/*
1314 * Structures and routines associated with newblk caching.
1315 */
1316LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1317u_long newblk_hash; /* size of hash table - 1 */
1318#define NEWBLK_HASH(fs, inum) \
1319 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1320
1321static int
1322newblk_find(newblkhd, fs, newblkno, newblkpp)
1323 struct newblk_hashhead *newblkhd;
1324 struct fs *fs;
1325 ufs2_daddr_t newblkno;
1326 struct newblk **newblkpp;
1327{
1328 struct newblk *newblk;
1329
1330 LIST_FOREACH(newblk, newblkhd, nb_hash)
1331 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1332 break;
1333 if (newblk) {
1334 *newblkpp = newblk;
1335 return (1);
1336 }
1337 *newblkpp = NULL;
1338 return (0);
1339}
1340
1341/*
1342 * Look up a newblk. Return 1 if found, 0 if not found.
1343 * If not found, allocate if DEPALLOC flag is passed.
1344 * Found or allocated entry is returned in newblkpp.
1345 */
1346static int
1347newblk_lookup(fs, newblkno, flags, newblkpp)
1348 struct fs *fs;
1349 ufs2_daddr_t newblkno;
1350 int flags;
1351 struct newblk **newblkpp;
1352{
1353 struct newblk *newblk;
1354 struct newblk_hashhead *newblkhd;
1355
1356 newblkhd = NEWBLK_HASH(fs, newblkno);
1357 if (newblk_find(newblkhd, fs, newblkno, newblkpp))
1358 return (1);
1359 if ((flags & DEPALLOC) == 0)
1360 return (0);
1361 FREE_LOCK(&lk);
1362 MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1363 M_NEWBLK, M_SOFTDEP_FLAGS);
1364 ACQUIRE_LOCK(&lk);
1365 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) {
1366 FREE(newblk, M_NEWBLK);
1367 return (1);
1368 }
1369 newblk->nb_state = 0;
1370 newblk->nb_fs = fs;
1371 newblk->nb_newblkno = newblkno;
1372 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1373 *newblkpp = newblk;
1374 return (0);
1375}
1376
1377/*
1378 * Executed during filesystem system initialization before
1379 * mounting any filesystems.
1380 */
1381void
1382softdep_initialize()
1383{
1384
1385 LIST_INIT(&mkdirlisthd);
1386 max_softdeps = desiredvnodes * 4;
1387 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1388 &pagedep_hash);
1389 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1390 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1391
1392 /* initialise bioops hack */
1393 bioops.io_start = softdep_disk_io_initiation;
1394 bioops.io_complete = softdep_disk_write_complete;
1395 bioops.io_deallocate = softdep_deallocate_dependencies;
1396 bioops.io_countdeps = softdep_count_dependencies;
1397}
1398
1399/*
1400 * Executed after all filesystems have been unmounted during
1401 * filesystem module unload.
1402 */
1403void
1404softdep_uninitialize()
1405{
1406
1407 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
1408 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
1409 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
1410}
1411
1412/*
1413 * Called at mount time to notify the dependency code that a
1414 * filesystem wishes to use it.
1415 */
1416int
1417softdep_mount(devvp, mp, fs, cred)
1418 struct vnode *devvp;
1419 struct mount *mp;
1420 struct fs *fs;
1421 struct ucred *cred;
1422{
1423 struct csum_total cstotal;
1424 struct ufsmount *ump;
1425 struct cg *cgp;
1426 struct buf *bp;
1427 int error, cyl;
1428
1429 MNT_ILOCK(mp);
1430 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
1431 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
1432 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
1433 MNTK_SOFTDEP;
1434 mp->mnt_noasync++;
1435 }
1436 MNT_IUNLOCK(mp);
1437 ump = VFSTOUFS(mp);
1438 LIST_INIT(&ump->softdep_workitem_pending);
1439 ump->softdep_worklist_tail = NULL;
1440 ump->softdep_on_worklist = 0;
1441 ump->softdep_deps = 0;
1442 /*
1443 * When doing soft updates, the counters in the
1444 * superblock may have gotten out of sync. Recomputation
1445 * can take a long time and can be deferred for background
1446 * fsck. However, the old behavior of scanning the cylinder
1447 * groups and recalculating them at mount time is available
1448 * by setting vfs.ffs.compute_summary_at_mount to one.
1449 */
1450 if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
1451 return (0);
1452 bzero(&cstotal, sizeof cstotal);
1453 for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1454 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
1455 fs->fs_cgsize, cred, &bp)) != 0) {
1456 brelse(bp);
1457 return (error);
1458 }
1459 cgp = (struct cg *)bp->b_data;
1460 cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1461 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1462 cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1463 cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1464 fs->fs_cs(fs, cyl) = cgp->cg_cs;
1465 brelse(bp);
1466 }
1467#ifdef DEBUG
1468 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1469 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
1470#endif
1471 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1472 return (0);
1473}
1474
1475/*
1476 * Protecting the freemaps (or bitmaps).
1477 *
1478 * To eliminate the need to execute fsck before mounting a filesystem
1479 * after a power failure, one must (conservatively) guarantee that the
1480 * on-disk copy of the bitmaps never indicate that a live inode or block is
1481 * free. So, when a block or inode is allocated, the bitmap should be
1482 * updated (on disk) before any new pointers. When a block or inode is
1483 * freed, the bitmap should not be updated until all pointers have been
1484 * reset. The latter dependency is handled by the delayed de-allocation
1485 * approach described below for block and inode de-allocation. The former
1486 * dependency is handled by calling the following procedure when a block or
1487 * inode is allocated. When an inode is allocated an "inodedep" is created
1488 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1489 * Each "inodedep" is also inserted into the hash indexing structure so
1490 * that any additional link additions can be made dependent on the inode
1491 * allocation.
1492 *
1493 * The ufs filesystem maintains a number of free block counts (e.g., per
1494 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1495 * in addition to the bitmaps. These counts are used to improve efficiency
1496 * during allocation and therefore must be consistent with the bitmaps.
1497 * There is no convenient way to guarantee post-crash consistency of these
1498 * counts with simple update ordering, for two main reasons: (1) The counts
1499 * and bitmaps for a single cylinder group block are not in the same disk
1500 * sector. If a disk write is interrupted (e.g., by power failure), one may
1501 * be written and the other not. (2) Some of the counts are located in the
1502 * superblock rather than the cylinder group block. So, we focus our soft
1503 * updates implementation on protecting the bitmaps. When mounting a
1504 * filesystem, we recompute the auxiliary counts from the bitmaps.
1505 */
1506
1507/*
1508 * Called just after updating the cylinder group block to allocate an inode.
1509 */
1510void
1511softdep_setup_inomapdep(bp, ip, newinum)
1512 struct buf *bp; /* buffer for cylgroup block with inode map */
1513 struct inode *ip; /* inode related to allocation */
1514 ino_t newinum; /* new inode number being allocated */
1515{
1516 struct inodedep *inodedep;
1517 struct bmsafemap *bmsafemap;
1518
1519 /*
1520 * Create a dependency for the newly allocated inode.
1521 * Panic if it already exists as something is seriously wrong.
1522 * Otherwise add it to the dependency list for the buffer holding
1523 * the cylinder group map from which it was allocated.
1524 */
1525 ACQUIRE_LOCK(&lk);
1526 if ((inodedep_lookup(UFSTOVFS(ip->i_ump), newinum, DEPALLOC|NODELAY,
1527 &inodedep)))
1528 panic("softdep_setup_inomapdep: dependency for new inode "
1529 "already exists");
1530 inodedep->id_buf = bp;
1531 inodedep->id_state &= ~DEPCOMPLETE;
1532 bmsafemap = bmsafemap_lookup(inodedep->id_list.wk_mp, bp);
1533 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1534 FREE_LOCK(&lk);
1535}
1536
1537/*
1538 * Called just after updating the cylinder group block to
1539 * allocate block or fragment.
1540 */
1541void
1542softdep_setup_blkmapdep(bp, mp, newblkno)
1543 struct buf *bp; /* buffer for cylgroup block with block map */
1544 struct mount *mp; /* filesystem doing allocation */
1545 ufs2_daddr_t newblkno; /* number of newly allocated block */
1546{
1547 struct newblk *newblk;
1548 struct bmsafemap *bmsafemap;
1549 struct fs *fs;
1550
1551 fs = VFSTOUFS(mp)->um_fs;
1552 /*
1553 * Create a dependency for the newly allocated block.
1554 * Add it to the dependency list for the buffer holding
1555 * the cylinder group map from which it was allocated.
1556 */
1557 ACQUIRE_LOCK(&lk);
1558 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1559 panic("softdep_setup_blkmapdep: found block");
1560 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp);
1561 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1562 FREE_LOCK(&lk);
1563}
1564
1565/*
1566 * Find the bmsafemap associated with a cylinder group buffer.
1567 * If none exists, create one. The buffer must be locked when
1568 * this routine is called and this routine must be called with
1569 * splbio interrupts blocked.
1570 */
1571static struct bmsafemap *
1572bmsafemap_lookup(mp, bp)
1573 struct mount *mp;
1574 struct buf *bp;
1575{
1576 struct bmsafemap *bmsafemap;
1577 struct worklist *wk;
1578
1579 mtx_assert(&lk, MA_OWNED);
1580 LIST_FOREACH(wk, &bp->b_dep, wk_list)
1581 if (wk->wk_type == D_BMSAFEMAP)
1582 return (WK_BMSAFEMAP(wk));
1583 FREE_LOCK(&lk);
1584 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1585 M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1586 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
1587 bmsafemap->sm_buf = bp;
1588 LIST_INIT(&bmsafemap->sm_allocdirecthd);
1589 LIST_INIT(&bmsafemap->sm_allocindirhd);
1590 LIST_INIT(&bmsafemap->sm_inodedephd);
1591 LIST_INIT(&bmsafemap->sm_newblkhd);
1592 ACQUIRE_LOCK(&lk);
1593 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1594 return (bmsafemap);
1595}
1596
1597/*
1598 * Direct block allocation dependencies.
1599 *
1600 * When a new block is allocated, the corresponding disk locations must be
1601 * initialized (with zeros or new data) before the on-disk inode points to
1602 * them. Also, the freemap from which the block was allocated must be
1603 * updated (on disk) before the inode's pointer. These two dependencies are
1604 * independent of each other and are needed for all file blocks and indirect
1605 * blocks that are pointed to directly by the inode. Just before the
1606 * "in-core" version of the inode is updated with a newly allocated block
1607 * number, a procedure (below) is called to setup allocation dependency
1608 * structures. These structures are removed when the corresponding
1609 * dependencies are satisfied or when the block allocation becomes obsolete
1610 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1611 * fragment that gets upgraded). All of these cases are handled in
1612 * procedures described later.
1613 *
1614 * When a file extension causes a fragment to be upgraded, either to a larger
1615 * fragment or to a full block, the on-disk location may change (if the
1616 * previous fragment could not simply be extended). In this case, the old
1617 * fragment must be de-allocated, but not until after the inode's pointer has
1618 * been updated. In most cases, this is handled by later procedures, which
1619 * will construct a "freefrag" structure to be added to the workitem queue
1620 * when the inode update is complete (or obsolete). The main exception to
1621 * this is when an allocation occurs while a pending allocation dependency
1622 * (for the same block pointer) remains. This case is handled in the main
1623 * allocation dependency setup procedure by immediately freeing the
1624 * unreferenced fragments.
1625 */
1626void
1627softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1628 struct inode *ip; /* inode to which block is being added */
1629 ufs_lbn_t lbn; /* block pointer within inode */
1630 ufs2_daddr_t newblkno; /* disk block number being added */
1631 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */
1632 long newsize; /* size of new block */
1633 long oldsize; /* size of new block */
1634 struct buf *bp; /* bp for allocated block */
1635{
1636 struct allocdirect *adp, *oldadp;
1637 struct allocdirectlst *adphead;
1638 struct bmsafemap *bmsafemap;
1639 struct inodedep *inodedep;
1640 struct pagedep *pagedep;
1641 struct newblk *newblk;
1642 struct mount *mp;
1643
1644 mp = UFSTOVFS(ip->i_ump);
1645 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1646 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1647 workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp);
1648 adp->ad_lbn = lbn;
1649 adp->ad_newblkno = newblkno;
1650 adp->ad_oldblkno = oldblkno;
1651 adp->ad_newsize = newsize;
1652 adp->ad_oldsize = oldsize;
1653 adp->ad_state = ATTACHED;
1654 LIST_INIT(&adp->ad_newdirblk);
1655 if (newblkno == oldblkno)
1656 adp->ad_freefrag = NULL;
1657 else
1658 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1659
1660 ACQUIRE_LOCK(&lk);
1661 if (lbn >= NDADDR) {
1662 /* allocating an indirect block */
1663 if (oldblkno != 0)
1664 panic("softdep_setup_allocdirect: non-zero indir");
1665 } else {
1666 /*
1667 * Allocating a direct block.
1668 *
1669 * If we are allocating a directory block, then we must
1670 * allocate an associated pagedep to track additions and
1671 * deletions.
1672 */
1673 if ((ip->i_mode & IFMT) == IFDIR &&
1674 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1675 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1676 }
1677 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1678 panic("softdep_setup_allocdirect: lost block");
1679 if (newblk->nb_state == DEPCOMPLETE) {
1680 adp->ad_state |= DEPCOMPLETE;
1681 adp->ad_buf = NULL;
1682 } else {
1683 bmsafemap = newblk->nb_bmsafemap;
1684 adp->ad_buf = bmsafemap->sm_buf;
1685 LIST_REMOVE(newblk, nb_deps);
1686 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1687 }
1688 LIST_REMOVE(newblk, nb_hash);
1689 FREE(newblk, M_NEWBLK);
1690
1691 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1692 adp->ad_inodedep = inodedep;
1693 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1694 /*
1695 * The list of allocdirects must be kept in sorted and ascending
1696 * order so that the rollback routines can quickly determine the
1697 * first uncommitted block (the size of the file stored on disk
1698 * ends at the end of the lowest committed fragment, or if there
1699 * are no fragments, at the end of the highest committed block).
1700 * Since files generally grow, the typical case is that the new
1701 * block is to be added at the end of the list. We speed this
1702 * special case by checking against the last allocdirect in the
1703 * list before laboriously traversing the list looking for the
1704 * insertion point.
1705 */
1706 adphead = &inodedep->id_newinoupdt;
1707 oldadp = TAILQ_LAST(adphead, allocdirectlst);
1708 if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1709 /* insert at end of list */
1710 TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1711 if (oldadp != NULL && oldadp->ad_lbn == lbn)
1712 allocdirect_merge(adphead, adp, oldadp);
1713 FREE_LOCK(&lk);
1714 return;
1715 }
1716 TAILQ_FOREACH(oldadp, adphead, ad_next) {
1717 if (oldadp->ad_lbn >= lbn)
1718 break;
1719 }
1720 if (oldadp == NULL)
1721 panic("softdep_setup_allocdirect: lost entry");
1722 /* insert in middle of list */
1723 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1724 if (oldadp->ad_lbn == lbn)
1725 allocdirect_merge(adphead, adp, oldadp);
1726 FREE_LOCK(&lk);
1727}
1728
1729/*
1730 * Replace an old allocdirect dependency with a newer one.
1731 * This routine must be called with splbio interrupts blocked.
1732 */
1733static void
1734allocdirect_merge(adphead, newadp, oldadp)
1735 struct allocdirectlst *adphead; /* head of list holding allocdirects */
1736 struct allocdirect *newadp; /* allocdirect being added */
1737 struct allocdirect *oldadp; /* existing allocdirect being checked */
1738{
1739 struct worklist *wk;
1740 struct freefrag *freefrag;
1741 struct newdirblk *newdirblk;
1742
1743 mtx_assert(&lk, MA_OWNED);
1744 if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1745 newadp->ad_oldsize != oldadp->ad_newsize ||
1746 newadp->ad_lbn >= NDADDR)
1747 panic("%s %jd != new %jd || old size %ld != new %ld",
1748 "allocdirect_merge: old blkno",
1749 (intmax_t)newadp->ad_oldblkno,
1750 (intmax_t)oldadp->ad_newblkno,
1751 newadp->ad_oldsize, oldadp->ad_newsize);
1752 newadp->ad_oldblkno = oldadp->ad_oldblkno;
1753 newadp->ad_oldsize = oldadp->ad_oldsize;
1754 /*
1755 * If the old dependency had a fragment to free or had never
1756 * previously had a block allocated, then the new dependency
1757 * can immediately post its freefrag and adopt the old freefrag.
1758 * This action is done by swapping the freefrag dependencies.
1759 * The new dependency gains the old one's freefrag, and the
1760 * old one gets the new one and then immediately puts it on
1761 * the worklist when it is freed by free_allocdirect. It is
1762 * not possible to do this swap when the old dependency had a
1763 * non-zero size but no previous fragment to free. This condition
1764 * arises when the new block is an extension of the old block.
1765 * Here, the first part of the fragment allocated to the new
1766 * dependency is part of the block currently claimed on disk by
1767 * the old dependency, so cannot legitimately be freed until the
1768 * conditions for the new dependency are fulfilled.
1769 */
1770 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1771 freefrag = newadp->ad_freefrag;
1772 newadp->ad_freefrag = oldadp->ad_freefrag;
1773 oldadp->ad_freefrag = freefrag;
1774 }
1775 /*
1776 * If we are tracking a new directory-block allocation,
1777 * move it from the old allocdirect to the new allocdirect.
1778 */
1779 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
1780 newdirblk = WK_NEWDIRBLK(wk);
1781 WORKLIST_REMOVE(&newdirblk->db_list);
1782 if (!LIST_EMPTY(&oldadp->ad_newdirblk))
1783 panic("allocdirect_merge: extra newdirblk");
1784 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list);
1785 }
1786 free_allocdirect(adphead, oldadp, 0);
1787}
1788
1789/*
1790 * Allocate a new freefrag structure if needed.
1791 */
1792static struct freefrag *
1793newfreefrag(ip, blkno, size)
1794 struct inode *ip;
1795 ufs2_daddr_t blkno;
1796 long size;
1797{
1798 struct freefrag *freefrag;
1799 struct fs *fs;
1800
1801 if (blkno == 0)
1802 return (NULL);
1803 fs = ip->i_fs;
1804 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1805 panic("newfreefrag: frag size");
1806 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1807 M_FREEFRAG, M_SOFTDEP_FLAGS);
1808 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
1809 freefrag->ff_inum = ip->i_number;
1810 freefrag->ff_blkno = blkno;
1811 freefrag->ff_fragsize = size;
1812 return (freefrag);
1813}
1814
1815/*
1816 * This workitem de-allocates fragments that were replaced during
1817 * file block allocation.
1818 */
1819static void
1820handle_workitem_freefrag(freefrag)
1821 struct freefrag *freefrag;
1822{
1823 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
1824
1825 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
1826 freefrag->ff_fragsize, freefrag->ff_inum);
1827 ACQUIRE_LOCK(&lk);
1828 WORKITEM_FREE(freefrag, D_FREEFRAG);
1829 FREE_LOCK(&lk);
1830}
1831
1832/*
1833 * Set up a dependency structure for an external attributes data block.
1834 * This routine follows much of the structure of softdep_setup_allocdirect.
1835 * See the description of softdep_setup_allocdirect above for details.
1836 */
1837void
1838softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1839 struct inode *ip;
1840 ufs_lbn_t lbn;
1841 ufs2_daddr_t newblkno;
1842 ufs2_daddr_t oldblkno;
1843 long newsize;
1844 long oldsize;
1845 struct buf *bp;
1846{
1847 struct allocdirect *adp, *oldadp;
1848 struct allocdirectlst *adphead;
1849 struct bmsafemap *bmsafemap;
1850 struct inodedep *inodedep;
1851 struct newblk *newblk;
1852 struct mount *mp;
1853
1854 mp = UFSTOVFS(ip->i_ump);
1855 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1856 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO);
1857 workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp);
1858 adp->ad_lbn = lbn;
1859 adp->ad_newblkno = newblkno;
1860 adp->ad_oldblkno = oldblkno;
1861 adp->ad_newsize = newsize;
1862 adp->ad_oldsize = oldsize;
1863 adp->ad_state = ATTACHED | EXTDATA;
1864 LIST_INIT(&adp->ad_newdirblk);
1865 if (newblkno == oldblkno)
1866 adp->ad_freefrag = NULL;
1867 else
1868 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1869
1870 ACQUIRE_LOCK(&lk);
1871 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1872 panic("softdep_setup_allocext: lost block");
1873
1874 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1875 adp->ad_inodedep = inodedep;
1876
1877 if (newblk->nb_state == DEPCOMPLETE) {
1878 adp->ad_state |= DEPCOMPLETE;
1879 adp->ad_buf = NULL;
1880 } else {
1881 bmsafemap = newblk->nb_bmsafemap;
1882 adp->ad_buf = bmsafemap->sm_buf;
1883 LIST_REMOVE(newblk, nb_deps);
1884 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1885 }
1886 LIST_REMOVE(newblk, nb_hash);
1887 FREE(newblk, M_NEWBLK);
1888
1889 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1890 if (lbn >= NXADDR)
1891 panic("softdep_setup_allocext: lbn %lld > NXADDR",
1892 (long long)lbn);
1893 /*
1894 * The list of allocdirects must be kept in sorted and ascending
1895 * order so that the rollback routines can quickly determine the
1896 * first uncommitted block (the size of the file stored on disk
1897 * ends at the end of the lowest committed fragment, or if there
1898 * are no fragments, at the end of the highest committed block).
1899 * Since files generally grow, the typical case is that the new
1900 * block is to be added at the end of the list. We speed this
1901 * special case by checking against the last allocdirect in the
1902 * list before laboriously traversing the list looking for the
1903 * insertion point.
1904 */
1905 adphead = &inodedep->id_newextupdt;
1906 oldadp = TAILQ_LAST(adphead, allocdirectlst);
1907 if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1908 /* insert at end of list */
1909 TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1910 if (oldadp != NULL && oldadp->ad_lbn == lbn)
1911 allocdirect_merge(adphead, adp, oldadp);
1912 FREE_LOCK(&lk);
1913 return;
1914 }
1915 TAILQ_FOREACH(oldadp, adphead, ad_next) {
1916 if (oldadp->ad_lbn >= lbn)
1917 break;
1918 }
1919 if (oldadp == NULL)
1920 panic("softdep_setup_allocext: lost entry");
1921 /* insert in middle of list */
1922 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1923 if (oldadp->ad_lbn == lbn)
1924 allocdirect_merge(adphead, adp, oldadp);
1925 FREE_LOCK(&lk);
1926}
1927
1928/*
1929 * Indirect block allocation dependencies.
1930 *
1931 * The same dependencies that exist for a direct block also exist when
1932 * a new block is allocated and pointed to by an entry in a block of
1933 * indirect pointers. The undo/redo states described above are also
1934 * used here. Because an indirect block contains many pointers that
1935 * may have dependencies, a second copy of the entire in-memory indirect
1936 * block is kept. The buffer cache copy is always completely up-to-date.
1937 * The second copy, which is used only as a source for disk writes,
1938 * contains only the safe pointers (i.e., those that have no remaining
1939 * update dependencies). The second copy is freed when all pointers
1940 * are safe. The cache is not allowed to replace indirect blocks with
1941 * pending update dependencies. If a buffer containing an indirect
1942 * block with dependencies is written, these routines will mark it
1943 * dirty again. It can only be successfully written once all the
1944 * dependencies are removed. The ffs_fsync routine in conjunction with
1945 * softdep_sync_metadata work together to get all the dependencies
1946 * removed so that a file can be successfully written to disk. Three
1947 * procedures are used when setting up indirect block pointer
1948 * dependencies. The division is necessary because of the organization
1949 * of the "balloc" routine and because of the distinction between file
1950 * pages and file metadata blocks.
1951 */
1952
1953/*
1954 * Allocate a new allocindir structure.
1955 */
1956static struct allocindir *
1957newallocindir(ip, ptrno, newblkno, oldblkno)
1958 struct inode *ip; /* inode for file being extended */
1959 int ptrno; /* offset of pointer in indirect block */
1960 ufs2_daddr_t newblkno; /* disk block number being added */
1961 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */
1962{
1963 struct allocindir *aip;
1964
1965 MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1966 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO);
1967 workitem_alloc(&aip->ai_list, D_ALLOCINDIR, UFSTOVFS(ip->i_ump));
1968 aip->ai_state = ATTACHED;
1969 aip->ai_offset = ptrno;
1970 aip->ai_newblkno = newblkno;
1971 aip->ai_oldblkno = oldblkno;
1972 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1973 return (aip);
1974}
1975
1976/*
1977 * Called just before setting an indirect block pointer
1978 * to a newly allocated file page.
1979 */
1980void
1981softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
1982 struct inode *ip; /* inode for file being extended */
1983 ufs_lbn_t lbn; /* allocated block number within file */
1984 struct buf *bp; /* buffer with indirect blk referencing page */
1985 int ptrno; /* offset of pointer in indirect block */
1986 ufs2_daddr_t newblkno; /* disk block number being added */
1987 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */
1988 struct buf *nbp; /* buffer holding allocated page */
1989{
1990 struct allocindir *aip;
1991 struct pagedep *pagedep;
1992
1993 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
1994 aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1995 ACQUIRE_LOCK(&lk);
1996 /*
1997 * If we are allocating a directory page, then we must
1998 * allocate an associated pagedep to track additions and
1999 * deletions.
2000 */
2001 if ((ip->i_mode & IFMT) == IFDIR &&
2002 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
2003 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
2004 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
2005 setup_allocindir_phase2(bp, ip, aip);
2006 FREE_LOCK(&lk);
2007}
2008
2009/*
2010 * Called just before setting an indirect block pointer to a
2011 * newly allocated indirect block.
2012 */
2013void
2014softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
2015 struct buf *nbp; /* newly allocated indirect block */
2016 struct inode *ip; /* inode for file being extended */
2017 struct buf *bp; /* indirect block referencing allocated block */
2018 int ptrno; /* offset of pointer in indirect block */
2019 ufs2_daddr_t newblkno; /* disk block number being added */
2020{
2021 struct allocindir *aip;
2022
2023 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
2024 aip = newallocindir(ip, ptrno, newblkno, 0);
2025 ACQUIRE_LOCK(&lk);
2026 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
2027 setup_allocindir_phase2(bp, ip, aip);
2028 FREE_LOCK(&lk);
2029}
2030
2031/*
2032 * Called to finish the allocation of the "aip" allocated
2033 * by one of the two routines above.
2034 */
2035static void
2036setup_allocindir_phase2(bp, ip, aip)
2037 struct buf *bp; /* in-memory copy of the indirect block */
2038 struct inode *ip; /* inode for file being extended */
2039 struct allocindir *aip; /* allocindir allocated by the above routines */
2040{
2041 struct worklist *wk;
2042 struct indirdep *indirdep, *newindirdep;
2043 struct bmsafemap *bmsafemap;
2044 struct allocindir *oldaip;
2045 struct freefrag *freefrag;
2046 struct newblk *newblk;
2047 ufs2_daddr_t blkno;
2048
2049 mtx_assert(&lk, MA_OWNED);
2050 if (bp->b_lblkno >= 0)
2051 panic("setup_allocindir_phase2: not indir blk");
2052 for (indirdep = NULL, newindirdep = NULL; ; ) {
2053 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2054 if (wk->wk_type != D_INDIRDEP)
2055 continue;
2056 indirdep = WK_INDIRDEP(wk);
2057 break;
2058 }
2059 if (indirdep == NULL && newindirdep) {
2060 indirdep = newindirdep;
2061 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
2062 newindirdep = NULL;
2063 }
2064 if (indirdep) {
2065 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
2066 &newblk) == 0)
2067 panic("setup_allocindir: lost block");
2068 if (newblk->nb_state == DEPCOMPLETE) {
2069 aip->ai_state |= DEPCOMPLETE;
2070 aip->ai_buf = NULL;
2071 } else {
2072 bmsafemap = newblk->nb_bmsafemap;
2073 aip->ai_buf = bmsafemap->sm_buf;
2074 LIST_REMOVE(newblk, nb_deps);
2075 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
2076 aip, ai_deps);
2077 }
2078 LIST_REMOVE(newblk, nb_hash);
2079 FREE(newblk, M_NEWBLK);
2080 aip->ai_indirdep = indirdep;
2081 /*
2082 * Check to see if there is an existing dependency
2083 * for this block. If there is, merge the old
2084 * dependency into the new one.
2085 */
2086 if (aip->ai_oldblkno == 0)
2087 oldaip = NULL;
2088 else
2089
2090 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
2091 if (oldaip->ai_offset == aip->ai_offset)
2092 break;
2093 freefrag = NULL;
2094 if (oldaip != NULL) {
2095 if (oldaip->ai_newblkno != aip->ai_oldblkno)
2096 panic("setup_allocindir_phase2: blkno");
2097 aip->ai_oldblkno = oldaip->ai_oldblkno;
2098 freefrag = aip->ai_freefrag;
2099 aip->ai_freefrag = oldaip->ai_freefrag;
2100 oldaip->ai_freefrag = NULL;
2101 free_allocindir(oldaip, NULL);
2102 }
2103 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
2104 if (ip->i_ump->um_fstype == UFS1)
2105 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)
2106 [aip->ai_offset] = aip->ai_oldblkno;
2107 else
2108 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)
2109 [aip->ai_offset] = aip->ai_oldblkno;
2110 FREE_LOCK(&lk);
2111 if (freefrag != NULL)
2112 handle_workitem_freefrag(freefrag);
2113 } else
2114 FREE_LOCK(&lk);
2115 if (newindirdep) {
2116 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
2117 brelse(newindirdep->ir_savebp);
2118 ACQUIRE_LOCK(&lk);
2119 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
2120 if (indirdep)
2121 break;
2122 FREE_LOCK(&lk);
2123 }
2124 if (indirdep) {
2125 ACQUIRE_LOCK(&lk);
2126 break;
2127 }
2128 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
2129 M_INDIRDEP, M_SOFTDEP_FLAGS);
2130 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP,
2131 UFSTOVFS(ip->i_ump));
2132 newindirdep->ir_state = ATTACHED;
2133 if (ip->i_ump->um_fstype == UFS1)
2134 newindirdep->ir_state |= UFS1FMT;
2135 LIST_INIT(&newindirdep->ir_deplisthd);
2136 LIST_INIT(&newindirdep->ir_donehd);
2137 if (bp->b_blkno == bp->b_lblkno) {
2138 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
2139 NULL, NULL);
2140 bp->b_blkno = blkno;
2141 }
2142 newindirdep->ir_savebp =
2143 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
2144 BUF_KERNPROC(newindirdep->ir_savebp);
2145 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
2146 ACQUIRE_LOCK(&lk);
2147 }
2148}
2149
2150/*
2151 * Block de-allocation dependencies.
2152 *
2153 * When blocks are de-allocated, the on-disk pointers must be nullified before
2154 * the blocks are made available for use by other files. (The true
2155 * requirement is that old pointers must be nullified before new on-disk
2156 * pointers are set. We chose this slightly more stringent requirement to
2157 * reduce complexity.) Our implementation handles this dependency by updating
2158 * the inode (or indirect block) appropriately but delaying the actual block
2159 * de-allocation (i.e., freemap and free space count manipulation) until
2160 * after the updated versions reach stable storage. After the disk is
2161 * updated, the blocks can be safely de-allocated whenever it is convenient.
2162 * This implementation handles only the common case of reducing a file's
2163 * length to zero. Other cases are handled by the conventional synchronous
2164 * write approach.
2165 *
2166 * The ffs implementation with which we worked double-checks
2167 * the state of the block pointers and file size as it reduces
2168 * a file's length. Some of this code is replicated here in our
2169 * soft updates implementation. The freeblks->fb_chkcnt field is
2170 * used to transfer a part of this information to the procedure
2171 * that eventually de-allocates the blocks.
2172 *
2173 * This routine should be called from the routine that shortens
2174 * a file's length, before the inode's size or block pointers
2175 * are modified. It will save the block pointer information for
2176 * later release and zero the inode so that the calling routine
2177 * can release it.
2178 */
2179void
2180softdep_setup_freeblocks(ip, length, flags)
2181 struct inode *ip; /* The inode whose length is to be reduced */
2182 off_t length; /* The new length for the file */
2183 int flags; /* IO_EXT and/or IO_NORMAL */
2184{
2185 struct freeblks *freeblks;
2186 struct inodedep *inodedep;
2187 struct allocdirect *adp;
2188 struct vnode *vp;
2189 struct buf *bp;
2190 struct fs *fs;
2191 ufs2_daddr_t extblocks, datablocks;
2192 struct mount *mp;
2193 int i, delay, error;
2194
2195 fs = ip->i_fs;
2196 mp = UFSTOVFS(ip->i_ump);
2197 if (length != 0)
2198 panic("softdep_setup_freeblocks: non-zero length");
2199 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
2200 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
2201 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
2202 freeblks->fb_state = ATTACHED;
2203 freeblks->fb_uid = ip->i_uid;
2204 freeblks->fb_previousinum = ip->i_number;
2205 freeblks->fb_devvp = ip->i_devvp;
2206 extblocks = 0;
2207 if (fs->fs_magic == FS_UFS2_MAGIC)
2208 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
2209 datablocks = DIP(ip, i_blocks) - extblocks;
2210 if ((flags & IO_NORMAL) == 0) {
2211 freeblks->fb_oldsize = 0;
2212 freeblks->fb_chkcnt = 0;
2213 } else {
2214 freeblks->fb_oldsize = ip->i_size;
2215 ip->i_size = 0;
2216 DIP_SET(ip, i_size, 0);
2217 freeblks->fb_chkcnt = datablocks;
2218 for (i = 0; i < NDADDR; i++) {
2219 freeblks->fb_dblks[i] = DIP(ip, i_db[i]);
2220 DIP_SET(ip, i_db[i], 0);
2221 }
2222 for (i = 0; i < NIADDR; i++) {
2223 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]);
2224 DIP_SET(ip, i_ib[i], 0);
2225 }
2226 /*
2227 * If the file was removed, then the space being freed was
2228 * accounted for then (see softdep_releasefile()). If the
2229 * file is merely being truncated, then we account for it now.
2230 */
2231 if ((ip->i_flag & IN_SPACECOUNTED) == 0) {
2232 UFS_LOCK(ip->i_ump);
2233 fs->fs_pendingblocks += datablocks;
2234 UFS_UNLOCK(ip->i_ump);
2235 }
2236 }
2237 if ((flags & IO_EXT) == 0) {
2238 freeblks->fb_oldextsize = 0;
2239 } else {
2240 freeblks->fb_oldextsize = ip->i_din2->di_extsize;
2241 ip->i_din2->di_extsize = 0;
2242 freeblks->fb_chkcnt += extblocks;
2243 for (i = 0; i < NXADDR; i++) {
2244 freeblks->fb_eblks[i] = ip->i_din2->di_extb[i];
2245 ip->i_din2->di_extb[i] = 0;
2246 }
2247 }
2248 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt);
2249 /*
2250 * Push the zero'ed inode to to its disk buffer so that we are free
2251 * to delete its dependencies below. Once the dependencies are gone
2252 * the buffer can be safely released.
2253 */
2254 if ((error = bread(ip->i_devvp,
2255 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
2256 (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
2257 brelse(bp);
2258 softdep_error("softdep_setup_freeblocks", error);
2259 }
2260 if (ip->i_ump->um_fstype == UFS1)
2261 *((struct ufs1_dinode *)bp->b_data +
2262 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
2263 else
2264 *((struct ufs2_dinode *)bp->b_data +
2265 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
2266 /*
2267 * Find and eliminate any inode dependencies.
2268 */
2269 ACQUIRE_LOCK(&lk);
2270 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
2271 if ((inodedep->id_state & IOSTARTED) != 0)
2272 panic("softdep_setup_freeblocks: inode busy");
2273 /*
2274 * Add the freeblks structure to the list of operations that
2275 * must await the zero'ed inode being written to disk. If we
2276 * still have a bitmap dependency (delay == 0), then the inode
2277 * has never been written to disk, so we can process the
2278 * freeblks below once we have deleted the dependencies.
2279 */
2280 delay = (inodedep->id_state & DEPCOMPLETE);
2281 if (delay)
2282 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
2283 /*
2284 * Because the file length has been truncated to zero, any
2285 * pending block allocation dependency structures associated
2286 * with this inode are obsolete and can simply be de-allocated.
2287 * We must first merge the two dependency lists to get rid of
2288 * any duplicate freefrag structures, then purge the merged list.
2289 * If we still have a bitmap dependency, then the inode has never
2290 * been written to disk, so we can free any fragments without delay.
2291 */
2292 if (flags & IO_NORMAL) {
2293 merge_inode_lists(&inodedep->id_newinoupdt,
2294 &inodedep->id_inoupdt);
2295 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
2296 free_allocdirect(&inodedep->id_inoupdt, adp, delay);
2297 }
2298 if (flags & IO_EXT) {
2299 merge_inode_lists(&inodedep->id_newextupdt,
2300 &inodedep->id_extupdt);
2301 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
2302 free_allocdirect(&inodedep->id_extupdt, adp, delay);
2303 }
2304 FREE_LOCK(&lk);
2305 bdwrite(bp);
2306 /*
2307 * We must wait for any I/O in progress to finish so that
2308 * all potential buffers on the dirty list will be visible.
2309 * Once they are all there, walk the list and get rid of
2310 * any dependencies.
2311 */
2312 vp = ITOV(ip);
2313 VI_LOCK(vp);
2314 drain_output(vp);
2315restart:
2316 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
2317 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
2318 ((flags & IO_NORMAL) == 0 &&
2319 (bp->b_xflags & BX_ALTDATA) == 0))
2320 continue;
2321 if ((bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT)) == NULL)
2322 goto restart;
2323 VI_UNLOCK(vp);
2324 ACQUIRE_LOCK(&lk);
2325 (void) inodedep_lookup(mp, ip->i_number, 0, &inodedep);
2326 deallocate_dependencies(bp, inodedep);
2327 FREE_LOCK(&lk);
2328 bp->b_flags |= B_INVAL | B_NOCACHE;
2329 brelse(bp);
2330 VI_LOCK(vp);
2331 goto restart;
2332 }
2333 VI_UNLOCK(vp);
2334 ACQUIRE_LOCK(&lk);
2335 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
2336 (void) free_inodedep(inodedep);
2337
2338 if(delay) {
2339 freeblks->fb_state |= DEPCOMPLETE;
2340 /*
2341 * If the inode with zeroed block pointers is now on disk
2342 * we can start freeing blocks. Add freeblks to the worklist
2343 * instead of calling handle_workitem_freeblocks directly as
2344 * it is more likely that additional IO is needed to complete
2345 * the request here than in the !delay case.
2346 */
2347 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
2348 add_to_worklist(&freeblks->fb_list);
2349 }
2350
2351 FREE_LOCK(&lk);
2352 /*
2353 * If the inode has never been written to disk (delay == 0),
2354 * then we can process the freeblks now that we have deleted
2355 * the dependencies.
2356 */
2357 if (!delay)
2358 handle_workitem_freeblocks(freeblks, 0);
2359}
2360
2361/*
2362 * Reclaim any dependency structures from a buffer that is about to
2363 * be reallocated to a new vnode. The buffer must be locked, thus,
2364 * no I/O completion operations can occur while we are manipulating
2365 * its associated dependencies. The mutex is held so that other I/O's
2366 * associated with related dependencies do not occur.
2367 */
2368static void
2369deallocate_dependencies(bp, inodedep)
2370 struct buf *bp;
2371 struct inodedep *inodedep;
2372{
2373 struct worklist *wk;
2374 struct indirdep *indirdep;
2375 struct allocindir *aip;
2376 struct pagedep *pagedep;
2377 struct dirrem *dirrem;
2378 struct diradd *dap;
2379 int i;
2380
2381 mtx_assert(&lk, MA_OWNED);
2382 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2383 switch (wk->wk_type) {
2384
2385 case D_INDIRDEP:
2386 indirdep = WK_INDIRDEP(wk);
2387 /*
2388 * None of the indirect pointers will ever be visible,
2389 * so they can simply be tossed. GOINGAWAY ensures
2390 * that allocated pointers will be saved in the buffer
2391 * cache until they are freed. Note that they will
2392 * only be able to be found by their physical address
2393 * since the inode mapping the logical address will
2394 * be gone. The save buffer used for the safe copy
2395 * was allocated in setup_allocindir_phase2 using
2396 * the physical address so it could be used for this
2397 * purpose. Hence we swap the safe copy with the real
2398 * copy, allowing the safe copy to be freed and holding
2399 * on to the real copy for later use in indir_trunc.
2400 */
2401 if (indirdep->ir_state & GOINGAWAY)
2402 panic("deallocate_dependencies: already gone");
2403 indirdep->ir_state |= GOINGAWAY;
2404 VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1;
2405 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
2406 free_allocindir(aip, inodedep);
2407 if (bp->b_lblkno >= 0 ||
2408 bp->b_blkno != indirdep->ir_savebp->b_lblkno)
2409 panic("deallocate_dependencies: not indir");
2410 bcopy(bp->b_data, indirdep->ir_savebp->b_data,
2411 bp->b_bcount);
2412 WORKLIST_REMOVE(wk);
2413 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
2414 continue;
2415
2416 case D_PAGEDEP:
2417 pagedep = WK_PAGEDEP(wk);
2418 /*
2419 * None of the directory additions will ever be
2420 * visible, so they can simply be tossed.
2421 */
2422 for (i = 0; i < DAHASHSZ; i++)
2423 while ((dap =
2424 LIST_FIRST(&pagedep->pd_diraddhd[i])))
2425 free_diradd(dap);
2426 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
2427 free_diradd(dap);
2428 /*
2429 * Copy any directory remove dependencies to the list
2430 * to be processed after the zero'ed inode is written.
2431 * If the inode has already been written, then they
2432 * can be dumped directly onto the work list.
2433 */
2434 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2435 LIST_REMOVE(dirrem, dm_next);
2436 dirrem->dm_dirinum = pagedep->pd_ino;
2437 if (inodedep == NULL ||
2438 (inodedep->id_state & ALLCOMPLETE) ==
2439 ALLCOMPLETE)
2440 add_to_worklist(&dirrem->dm_list);
2441 else
2442 WORKLIST_INSERT(&inodedep->id_bufwait,
2443 &dirrem->dm_list);
2444 }
2445 if ((pagedep->pd_state & NEWBLOCK) != 0) {
2446 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list)
2447 if (wk->wk_type == D_NEWDIRBLK &&
2448 WK_NEWDIRBLK(wk)->db_pagedep ==
2449 pagedep)
2450 break;
2451 if (wk != NULL) {
2452 WORKLIST_REMOVE(wk);
2453 free_newdirblk(WK_NEWDIRBLK(wk));
2454 } else
2455 panic("deallocate_dependencies: "
2456 "lost pagedep");
2457 }
2458 WORKLIST_REMOVE(&pagedep->pd_list);
2459 LIST_REMOVE(pagedep, pd_hash);
2460 WORKITEM_FREE(pagedep, D_PAGEDEP);
2461 continue;
2462
2463 case D_ALLOCINDIR:
2464 free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2465 continue;
2466
2467 case D_ALLOCDIRECT:
2468 case D_INODEDEP:
2469 panic("deallocate_dependencies: Unexpected type %s",
2470 TYPENAME(wk->wk_type));
2471 /* NOTREACHED */
2472
2473 default:
2474 panic("deallocate_dependencies: Unknown type %s",
2475 TYPENAME(wk->wk_type));
2476 /* NOTREACHED */
2477 }
2478 }
2479}
2480
2481/*
2482 * Free an allocdirect. Generate a new freefrag work request if appropriate.
2483 * This routine must be called with splbio interrupts blocked.
2484 */
2485static void
2486free_allocdirect(adphead, adp, delay)
2487 struct allocdirectlst *adphead;
2488 struct allocdirect *adp;
2489 int delay;
2490{
2491 struct newdirblk *newdirblk;
2492 struct worklist *wk;
2493
2494 mtx_assert(&lk, MA_OWNED);
2495 if ((adp->ad_state & DEPCOMPLETE) == 0)
2496 LIST_REMOVE(adp, ad_deps);
2497 TAILQ_REMOVE(adphead, adp, ad_next);
2498 if ((adp->ad_state & COMPLETE) == 0)
2499 WORKLIST_REMOVE(&adp->ad_list);
2500 if (adp->ad_freefrag != NULL) {
2501 if (delay)
2502 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2503 &adp->ad_freefrag->ff_list);
2504 else
2505 add_to_worklist(&adp->ad_freefrag->ff_list);
2506 }
2507 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) {
2508 newdirblk = WK_NEWDIRBLK(wk);
2509 WORKLIST_REMOVE(&newdirblk->db_list);
2510 if (!LIST_EMPTY(&adp->ad_newdirblk))
2511 panic("free_allocdirect: extra newdirblk");
2512 if (delay)
2513 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2514 &newdirblk->db_list);
2515 else
2516 free_newdirblk(newdirblk);
2517 }
2518 WORKITEM_FREE(adp, D_ALLOCDIRECT);
2519}
2520
2521/*
2522 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
2523 * This routine must be called with splbio interrupts blocked.
2524 */
2525static void
2526free_newdirblk(newdirblk)
2527 struct newdirblk *newdirblk;
2528{
2529 struct pagedep *pagedep;
2530 struct diradd *dap;
2531 int i;
2532
2533 mtx_assert(&lk, MA_OWNED);
2534 /*
2535 * If the pagedep is still linked onto the directory buffer
2536 * dependency chain, then some of the entries on the
2537 * pd_pendinghd list may not be committed to disk yet. In
2538 * this case, we will simply clear the NEWBLOCK flag and
2539 * let the pd_pendinghd list be processed when the pagedep
2540 * is next written. If the pagedep is no longer on the buffer
2541 * dependency chain, then all the entries on the pd_pending
2542 * list are committed to disk and we can free them here.
2543 */
2544 pagedep = newdirblk->db_pagedep;
2545 pagedep->pd_state &= ~NEWBLOCK;
2546 if ((pagedep->pd_state & ONWORKLIST) == 0)
2547 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
2548 free_diradd(dap);
2549 /*
2550 * If no dependencies remain, the pagedep will be freed.
2551 */
2552 for (i = 0; i < DAHASHSZ; i++)
2553 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
2554 break;
2555 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) {
2556 LIST_REMOVE(pagedep, pd_hash);
2557 WORKITEM_FREE(pagedep, D_PAGEDEP);
2558 }
2559 WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
2560}
2561
2562/*
2563 * Prepare an inode to be freed. The actual free operation is not
2564 * done until the zero'ed inode has been written to disk.
2565 */
2566void
2567softdep_freefile(pvp, ino, mode)
2568 struct vnode *pvp;
2569 ino_t ino;
2570 int mode;
2571{
2572 struct inode *ip = VTOI(pvp);
2573 struct inodedep *inodedep;
2574 struct freefile *freefile;
2575
2576 /*
2577 * This sets up the inode de-allocation dependency.
2578 */
2579 MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2580 M_FREEFILE, M_SOFTDEP_FLAGS);
2581 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
2582 freefile->fx_mode = mode;
2583 freefile->fx_oldinum = ino;
2584 freefile->fx_devvp = ip->i_devvp;
2585 if ((ip->i_flag & IN_SPACECOUNTED) == 0) {
2586 UFS_LOCK(ip->i_ump);
2587 ip->i_fs->fs_pendinginodes += 1;
2588 UFS_UNLOCK(ip->i_ump);
2589 }
2590
2591 /*
2592 * If the inodedep does not exist, then the zero'ed inode has
2593 * been written to disk. If the allocated inode has never been
2594 * written to disk, then the on-disk inode is zero'ed. In either
2595 * case we can free the file immediately.
2596 */
2597 ACQUIRE_LOCK(&lk);
2598 if (inodedep_lookup(pvp->v_mount, ino, 0, &inodedep) == 0 ||
2599 check_inode_unwritten(inodedep)) {
2600 FREE_LOCK(&lk);
2601 handle_workitem_freefile(freefile);
2602 return;
2603 }
2604 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2605 FREE_LOCK(&lk);
2606 ip->i_flag |= IN_MODIFIED;
2607}
2608
2609/*
2610 * Check to see if an inode has never been written to disk. If
2611 * so free the inodedep and return success, otherwise return failure.
2612 * This routine must be called with splbio interrupts blocked.
2613 *
2614 * If we still have a bitmap dependency, then the inode has never
2615 * been written to disk. Drop the dependency as it is no longer
2616 * necessary since the inode is being deallocated. We set the
2617 * ALLCOMPLETE flags since the bitmap now properly shows that the
2618 * inode is not allocated. Even if the inode is actively being
2619 * written, it has been rolled back to its zero'ed state, so we
2620 * are ensured that a zero inode is what is on the disk. For short
2621 * lived files, this change will usually result in removing all the
2622 * dependencies from the inode so that it can be freed immediately.
2623 */
2624static int
2625check_inode_unwritten(inodedep)
2626 struct inodedep *inodedep;
2627{
2628
2629 mtx_assert(&lk, MA_OWNED);
2630 if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2631 !LIST_EMPTY(&inodedep->id_pendinghd) ||
2632 !LIST_EMPTY(&inodedep->id_bufwait) ||
2633 !LIST_EMPTY(&inodedep->id_inowait) ||
2634 !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
2635 !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
2636 !TAILQ_EMPTY(&inodedep->id_extupdt) ||
2637 !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
2638 inodedep->id_nlinkdelta != 0)
2639 return (0);
2640
2641 /*
2642 * Another process might be in initiate_write_inodeblock_ufs[12]
2643 * trying to allocate memory without holding "Softdep Lock".
2644 */
2645 if ((inodedep->id_state & IOSTARTED) != 0 &&
2646 inodedep->id_savedino1 == NULL)
2647 return (0);
2648
2649 inodedep->id_state |= ALLCOMPLETE;
2650 LIST_REMOVE(inodedep, id_deps);
2651 inodedep->id_buf = NULL;
2652 if (inodedep->id_state & ONWORKLIST)
2653 WORKLIST_REMOVE(&inodedep->id_list);
2654 if (inodedep->id_savedino1 != NULL) {
2655 FREE(inodedep->id_savedino1, M_SAVEDINO);
2656 inodedep->id_savedino1 = NULL;
2657 }
2658 if (free_inodedep(inodedep) == 0)
2659 panic("check_inode_unwritten: busy inode");
2660 return (1);
2661}
2662
2663/*
2664 * Try to free an inodedep structure. Return 1 if it could be freed.
2665 */
2666static int
2667free_inodedep(inodedep)
2668 struct inodedep *inodedep;
2669{
2670
2671 mtx_assert(&lk, MA_OWNED);
2672 if ((inodedep->id_state & ONWORKLIST) != 0 ||
2673 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2674 !LIST_EMPTY(&inodedep->id_pendinghd) ||
2675 !LIST_EMPTY(&inodedep->id_bufwait) ||
2676 !LIST_EMPTY(&inodedep->id_inowait) ||
2677 !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
2678 !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
2679 !TAILQ_EMPTY(&inodedep->id_extupdt) ||
2680 !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
2681 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL)
2682 return (0);
2683 LIST_REMOVE(inodedep, id_hash);
2684 WORKITEM_FREE(inodedep, D_INODEDEP);
2685 num_inodedep -= 1;
2686 return (1);
2687}
2688
2689/*
2690 * This workitem routine performs the block de-allocation.
2691 * The workitem is added to the pending list after the updated
2692 * inode block has been written to disk. As mentioned above,
2693 * checks regarding the number of blocks de-allocated (compared
2694 * to the number of blocks allocated for the file) are also
2695 * performed in this function.
2696 */
2697static void
2698handle_workitem_freeblocks(freeblks, flags)
2699 struct freeblks *freeblks;
2700 int flags;
2701{
2702 struct inode *ip;
2703 struct vnode *vp;
2704 struct fs *fs;
2705 struct ufsmount *ump;
2706 int i, nblocks, level, bsize;
2707 ufs2_daddr_t bn, blocksreleased = 0;
2708 int error, allerror = 0;
2709 ufs_lbn_t baselbns[NIADDR], tmpval;
2710 int fs_pendingblocks;
2711
2712 ump = VFSTOUFS(freeblks->fb_list.wk_mp);
2713 fs = ump->um_fs;
2714 fs_pendingblocks = 0;
2715 tmpval = 1;
2716 baselbns[0] = NDADDR;
2717 for (i = 1; i < NIADDR; i++) {
2718 tmpval *= NINDIR(fs);
2719 baselbns[i] = baselbns[i - 1] + tmpval;
2720 }
2721 nblocks = btodb(fs->fs_bsize);
2722 blocksreleased = 0;
2723 /*
2724 * Release all extended attribute blocks or frags.
2725 */
2726 if (freeblks->fb_oldextsize > 0) {
2727 for (i = (NXADDR - 1); i >= 0; i--) {
2728 if ((bn = freeblks->fb_eblks[i]) == 0)
2729 continue;
2730 bsize = sblksize(fs, freeblks->fb_oldextsize, i);
2731 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize,
2732 freeblks->fb_previousinum);
2733 blocksreleased += btodb(bsize);
2734 }
2735 }
2736 /*
2737 * Release all data blocks or frags.
2738 */
2739 if (freeblks->fb_oldsize > 0) {
2740 /*
2741 * Indirect blocks first.
2742 */
2743 for (level = (NIADDR - 1); level >= 0; level--) {
2744 if ((bn = freeblks->fb_iblks[level]) == 0)
2745 continue;
2746 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn),
2747 level, baselbns[level], &blocksreleased)) != 0)
2748 allerror = error;
2749 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn,
2750 fs->fs_bsize, freeblks->fb_previousinum);
2751 fs_pendingblocks += nblocks;
2752 blocksreleased += nblocks;
2753 }
2754 /*
2755 * All direct blocks or frags.
2756 */
2757 for (i = (NDADDR - 1); i >= 0; i--) {
2758 if ((bn = freeblks->fb_dblks[i]) == 0)
2759 continue;
2760 bsize = sblksize(fs, freeblks->fb_oldsize, i);
2761 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize,
2762 freeblks->fb_previousinum);
2763 fs_pendingblocks += btodb(bsize);
2764 blocksreleased += btodb(bsize);
2765 }
2766 }
2767 UFS_LOCK(ump);
2768 fs->fs_pendingblocks -= fs_pendingblocks;
2769 UFS_UNLOCK(ump);
2770 /*
2771 * If we still have not finished background cleanup, then check
2772 * to see if the block count needs to be adjusted.
2773 */
2774 if (freeblks->fb_chkcnt != blocksreleased &&
2775 (fs->fs_flags & FS_UNCLEAN) != 0 &&
2776 ffs_vget(freeblks->fb_list.wk_mp, freeblks->fb_previousinum,
2777 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) {
2778 ip = VTOI(vp);
2779 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \
2780 freeblks->fb_chkcnt - blocksreleased);
2781 ip->i_flag |= IN_CHANGE;
2782 vput(vp);
2783 }
2784
2785#ifdef DIAGNOSTIC
2786 if (freeblks->fb_chkcnt != blocksreleased &&
2787 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0))
2788 printf("handle_workitem_freeblocks: block count\n");
2789 if (allerror)
2790 softdep_error("handle_workitem_freeblks", allerror);
2791#endif /* DIAGNOSTIC */
2792
2793 ACQUIRE_LOCK(&lk);
2794 WORKITEM_FREE(freeblks, D_FREEBLKS);
2795 FREE_LOCK(&lk);
2796}
2797
2798/*
2799 * Release blocks associated with the inode ip and stored in the indirect
2800 * block dbn. If level is greater than SINGLE, the block is an indirect block
2801 * and recursive calls to indirtrunc must be used to cleanse other indirect
2802 * blocks.
2803 */
2804static int
2805indir_trunc(freeblks, dbn, level, lbn, countp)
2806 struct freeblks *freeblks;
2807 ufs2_daddr_t dbn;
2808 int level;
2809 ufs_lbn_t lbn;
2810 ufs2_daddr_t *countp;
2811{
2812 struct buf *bp;
2813 struct fs *fs;
2814 struct worklist *wk;
2815 struct indirdep *indirdep;
2816 struct ufsmount *ump;
2817 ufs1_daddr_t *bap1 = 0;
2818 ufs2_daddr_t nb, *bap2 = 0;
2819 ufs_lbn_t lbnadd;
2820 int i, nblocks, ufs1fmt;
2821 int error, allerror = 0;
2822 int fs_pendingblocks;
2823
2824 ump = VFSTOUFS(freeblks->fb_list.wk_mp);
2825 fs = ump->um_fs;
2826 fs_pendingblocks = 0;
2827 lbnadd = 1;
2828 for (i = level; i > 0; i--)
2829 lbnadd *= NINDIR(fs);
2830 /*
2831 * Get buffer of block pointers to be freed. This routine is not
2832 * called until the zero'ed inode has been written, so it is safe
2833 * to free blocks as they are encountered. Because the inode has
2834 * been zero'ed, calls to bmap on these blocks will fail. So, we
2835 * have to use the on-disk address and the block device for the
2836 * filesystem to look them up. If the file was deleted before its
2837 * indirect blocks were all written to disk, the routine that set
2838 * us up (deallocate_dependencies) will have arranged to leave
2839 * a complete copy of the indirect block in memory for our use.
2840 * Otherwise we have to read the blocks in from the disk.
2841 */
2842#ifdef notyet
2843 bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0,
2844 GB_NOCREAT);
2845#else
2846 bp = incore(&freeblks->fb_devvp->v_bufobj, dbn);
2847#endif
2848 ACQUIRE_LOCK(&lk);
2849 if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2850 if (wk->wk_type != D_INDIRDEP ||
2851 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2852 (indirdep->ir_state & GOINGAWAY) == 0)
2853 panic("indir_trunc: lost indirdep");
2854 WORKLIST_REMOVE(wk);
2855 WORKITEM_FREE(indirdep, D_INDIRDEP);
2856 if (!LIST_EMPTY(&bp->b_dep))
2857 panic("indir_trunc: dangling dep");
2858 ump->um_numindirdeps -= 1;
2859 FREE_LOCK(&lk);
2860 } else {
2861#ifdef notyet
2862 if (bp)
2863 brelse(bp);
2864#endif
2865 FREE_LOCK(&lk);
2866 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
2867 NOCRED, &bp);
2868 if (error) {
2869 brelse(bp);
2870 return (error);
2871 }
2872 }
2873 /*
2874 * Recursively free indirect blocks.
2875 */
2876 if (ump->um_fstype == UFS1) {
2877 ufs1fmt = 1;
2878 bap1 = (ufs1_daddr_t *)bp->b_data;
2879 } else {
2880 ufs1fmt = 0;
2881 bap2 = (ufs2_daddr_t *)bp->b_data;
2882 }
2883 nblocks = btodb(fs->fs_bsize);
2884 for (i = NINDIR(fs) - 1; i >= 0; i--) {
2885 if (ufs1fmt)
2886 nb = bap1[i];
2887 else
2888 nb = bap2[i];
2889 if (nb == 0)
2890 continue;
2891 if (level != 0) {
2892 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb),
2893 level - 1, lbn + (i * lbnadd), countp)) != 0)
2894 allerror = error;
2895 }
2896 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize,
2897 freeblks->fb_previousinum);
2898 fs_pendingblocks += nblocks;
2899 *countp += nblocks;
2900 }
2901 UFS_LOCK(ump);
2902 fs->fs_pendingblocks -= fs_pendingblocks;
2903 UFS_UNLOCK(ump);
2904 bp->b_flags |= B_INVAL | B_NOCACHE;
2905 brelse(bp);
2906 return (allerror);
2907}
2908
2909/*
2910 * Free an allocindir.
2911 * This routine must be called with splbio interrupts blocked.
2912 */
2913static void
2914free_allocindir(aip, inodedep)
2915 struct allocindir *aip;
2916 struct inodedep *inodedep;
2917{
2918 struct freefrag *freefrag;
2919
2920 mtx_assert(&lk, MA_OWNED);
2921 if ((aip->ai_state & DEPCOMPLETE) == 0)
2922 LIST_REMOVE(aip, ai_deps);
2923 if (aip->ai_state & ONWORKLIST)
2924 WORKLIST_REMOVE(&aip->ai_list);
2925 LIST_REMOVE(aip, ai_next);
2926 if ((freefrag = aip->ai_freefrag) != NULL) {
2927 if (inodedep == NULL)
2928 add_to_worklist(&freefrag->ff_list);
2929 else
2930 WORKLIST_INSERT(&inodedep->id_bufwait,
2931 &freefrag->ff_list);
2932 }
2933 WORKITEM_FREE(aip, D_ALLOCINDIR);
2934}
2935
2936/*
2937 * Directory entry addition dependencies.
2938 *
2939 * When adding a new directory entry, the inode (with its incremented link
2940 * count) must be written to disk before the directory entry's pointer to it.
2941 * Also, if the inode is newly allocated, the corresponding freemap must be
2942 * updated (on disk) before the directory entry's pointer. These requirements
2943 * are met via undo/redo on the directory entry's pointer, which consists
2944 * simply of the inode number.
2945 *
2946 * As directory entries are added and deleted, the free space within a
2947 * directory block can become fragmented. The ufs filesystem will compact
2948 * a fragmented directory block to make space for a new entry. When this
2949 * occurs, the offsets of previously added entries change. Any "diradd"
2950 * dependency structures corresponding to these entries must be updated with
2951 * the new offsets.
2952 */
2953
2954/*
2955 * This routine is called after the in-memory inode's link
2956 * count has been incremented, but before the directory entry's
2957 * pointer to the inode has been set.
2958 */
2959int
2960softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
2961 struct buf *bp; /* buffer containing directory block */
2962 struct inode *dp; /* inode for directory */
2963 off_t diroffset; /* offset of new entry in directory */
2964 ino_t newinum; /* inode referenced by new directory entry */
2965 struct buf *newdirbp; /* non-NULL => contents of new mkdir */
2966 int isnewblk; /* entry is in a newly allocated block */
2967{
2968 int offset; /* offset of new entry within directory block */
2969 ufs_lbn_t lbn; /* block in directory containing new entry */
2970 struct fs *fs;
2971 struct diradd *dap;
2972 struct allocdirect *adp;
2973 struct pagedep *pagedep;
2974 struct inodedep *inodedep;
2975 struct newdirblk *newdirblk = 0;
2976 struct mkdir *mkdir1, *mkdir2;
2977 struct mount *mp;
2978
2979 /*
2980 * Whiteouts have no dependencies.
2981 */
2982 if (newinum == WINO) {
2983 if (newdirbp != NULL)
2984 bdwrite(newdirbp);
2985 return (0);
2986 }
2987 mp = UFSTOVFS(dp->i_ump);
2988 fs = dp->i_fs;
2989 lbn = lblkno(fs, diroffset);
2990 offset = blkoff(fs, diroffset);
2991 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2992 M_SOFTDEP_FLAGS|M_ZERO);
2993 workitem_alloc(&dap->da_list, D_DIRADD, mp);
2994 dap->da_offset = offset;
2995 dap->da_newinum = newinum;
2996 dap->da_state = ATTACHED;
2997 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) {
2998 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk),
2999 M_NEWDIRBLK, M_SOFTDEP_FLAGS);
3000 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
3001 }
3002 if (newdirbp == NULL) {
3003 dap->da_state |= DEPCOMPLETE;
3004 ACQUIRE_LOCK(&lk);
3005 } else {
3006 dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
3007 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
3008 M_SOFTDEP_FLAGS);
3009 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
3010 mkdir1->md_state = MKDIR_BODY;
3011 mkdir1->md_diradd = dap;
3012 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
3013 M_SOFTDEP_FLAGS);
3014 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
3015 mkdir2->md_state = MKDIR_PARENT;
3016 mkdir2->md_diradd = dap;
3017 /*
3018 * Dependency on "." and ".." being written to disk.
3019 */
3020 mkdir1->md_buf = newdirbp;
3021 ACQUIRE_LOCK(&lk);
3022 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
3023 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
3024 FREE_LOCK(&lk);
3025 bdwrite(newdirbp);
3026 /*
3027 * Dependency on link count increase for parent directory
3028 */
3029 ACQUIRE_LOCK(&lk);
3030 if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0
3031 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
3032 dap->da_state &= ~MKDIR_PARENT;
3033 WORKITEM_FREE(mkdir2, D_MKDIR);
3034 } else {
3035 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
3036 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
3037 }
3038 }
3039 /*
3040 * Link into parent directory pagedep to await its being written.
3041 */
3042 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
3043 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
3044 dap->da_pagedep = pagedep;
3045 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
3046 da_pdlist);
3047 /*
3048 * Link into its inodedep. Put it on the id_bufwait list if the inode
3049 * is not yet written. If it is written, do the post-inode write
3050 * processing to put it on the id_pendinghd list.
3051 */
3052 (void) inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
3053 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
3054 diradd_inode_written(dap, inodedep);
3055 else
3056 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
3057 if (isnewblk) {
3058 /*
3059 * Directories growing into indirect blocks are rare
3060 * enough and the frequency of new block allocation
3061 * in those cases even more rare, that we choose not
3062 * to bother tracking them. Rather we simply force the
3063 * new directory entry to disk.
3064 */
3065 if (lbn >= NDADDR) {
3066 FREE_LOCK(&lk);
3067 /*
3068 * We only have a new allocation when at the
3069 * beginning of a new block, not when we are
3070 * expanding into an existing block.
3071 */
3072 if (blkoff(fs, diroffset) == 0)
3073 return (1);
3074 return (0);
3075 }
3076 /*
3077 * We only have a new allocation when at the beginning
3078 * of a new fragment, not when we are expanding into an
3079 * existing fragment. Also, there is nothing to do if we
3080 * are already tracking this block.
3081 */
3082 if (fragoff(fs, diroffset) != 0) {
3083 FREE_LOCK(&lk);
3084 return (0);
3085 }
3086 if ((pagedep->pd_state & NEWBLOCK) != 0) {
3087 WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
3088 FREE_LOCK(&lk);
3089 return (0);
3090 }
3091 /*
3092 * Find our associated allocdirect and have it track us.
3093 */
3094 if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0)
3095 panic("softdep_setup_directory_add: lost inodedep");
3096 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst);
3097 if (adp == NULL || adp->ad_lbn != lbn)
3098 panic("softdep_setup_directory_add: lost entry");
3099 pagedep->pd_state |= NEWBLOCK;
3100 newdirblk->db_pagedep = pagedep;
3101 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list);
3102 }
3103 FREE_LOCK(&lk);
3104 return (0);
3105}
3106
3107/*
3108 * This procedure is called to change the offset of a directory
3109 * entry when compacting a directory block which must be owned
3110 * exclusively by the caller. Note that the actual entry movement
3111 * must be done in this procedure to ensure that no I/O completions
3112 * occur while the move is in progress.
3113 */
3114void
3115softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
3116 struct inode *dp; /* inode for directory */
3117 caddr_t base; /* address of dp->i_offset */
3118 caddr_t oldloc; /* address of old directory location */
3119 caddr_t newloc; /* address of new directory location */
3120 int entrysize; /* size of directory entry */
3121{
3122 int offset, oldoffset, newoffset;
3123 struct pagedep *pagedep;
3124 struct diradd *dap;
3125 ufs_lbn_t lbn;
3126
3127 ACQUIRE_LOCK(&lk);
3128 lbn = lblkno(dp->i_fs, dp->i_offset);
3129 offset = blkoff(dp->i_fs, dp->i_offset);
3130 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
3131 goto done;
3132 oldoffset = offset + (oldloc - base);
3133 newoffset = offset + (newloc - base);
3134
3135 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
3136 if (dap->da_offset != oldoffset)
3137 continue;
3138 dap->da_offset = newoffset;
3139 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
3140 break;
3141 LIST_REMOVE(dap, da_pdlist);
3142 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
3143 dap, da_pdlist);
3144 break;
3145 }
3146 if (dap == NULL) {
3147
3148 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
3149 if (dap->da_offset == oldoffset) {
3150 dap->da_offset = newoffset;
3151 break;
3152 }
3153 }
3154 }
3155done:
3156 bcopy(oldloc, newloc, entrysize);
3157 FREE_LOCK(&lk);
3158}
3159
3160/*
3161 * Free a diradd dependency structure. This routine must be called
3162 * with splbio interrupts blocked.
3163 */
3164static void
3165free_diradd(dap)
3166 struct diradd *dap;
3167{
3168 struct dirrem *dirrem;
3169 struct pagedep *pagedep;
3170 struct inodedep *inodedep;
3171 struct mkdir *mkdir, *nextmd;
3172
3173 mtx_assert(&lk, MA_OWNED);
3174 WORKLIST_REMOVE(&dap->da_list);
3175 LIST_REMOVE(dap, da_pdlist);
3176 if ((dap->da_state & DIRCHG) == 0) {
3177 pagedep = dap->da_pagedep;
3178 } else {
3179 dirrem = dap->da_previous;
3180 pagedep = dirrem->dm_pagedep;
3181 dirrem->dm_dirinum = pagedep->pd_ino;
3182 add_to_worklist(&dirrem->dm_list);
3183 }
3184 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
3185 0, &inodedep) != 0)
3186 (void) free_inodedep(inodedep);
3187 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
3188 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
3189 nextmd = LIST_NEXT(mkdir, md_mkdirs);
3190 if (mkdir->md_diradd != dap)
3191 continue;
3192 dap->da_state &= ~mkdir->md_state;
3193 WORKLIST_REMOVE(&mkdir->md_list);
3194 LIST_REMOVE(mkdir, md_mkdirs);
3195 WORKITEM_FREE(mkdir, D_MKDIR);
3196 }
3197 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
3198 panic("free_diradd: unfound ref");
3199 }
3200 WORKITEM_FREE(dap, D_DIRADD);
3201}
3202
3203/*
3204 * Directory entry removal dependencies.
3205 *
3206 * When removing a directory entry, the entry's inode pointer must be
3207 * zero'ed on disk before the corresponding inode's link count is decremented
3208 * (possibly freeing the inode for re-use). This dependency is handled by
3209 * updating the directory entry but delaying the inode count reduction until
3210 * after the directory block has been written to disk. After this point, the
3211 * inode count can be decremented whenever it is convenient.
3212 */
3213
3214/*
3215 * This routine should be called immediately after removing
3216 * a directory entry. The inode's link count should not be
3217 * decremented by the calling procedure -- the soft updates
3218 * code will do this task when it is safe.
3219 */
3220void
3221softdep_setup_remove(bp, dp, ip, isrmdir)
3222 struct buf *bp; /* buffer containing directory block */
3223 struct inode *dp; /* inode for the directory being modified */
3224 struct inode *ip; /* inode for directory entry being removed */
3225 int isrmdir; /* indicates if doing RMDIR */
3226{
3227 struct dirrem *dirrem, *prevdirrem;
3228
3229 /*
3230 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
3231 */
3232 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
3233
3234 /*
3235 * If the COMPLETE flag is clear, then there were no active
3236 * entries and we want to roll back to a zeroed entry until
3237 * the new inode is committed to disk. If the COMPLETE flag is
3238 * set then we have deleted an entry that never made it to
3239 * disk. If the entry we deleted resulted from a name change,
3240 * then the old name still resides on disk. We cannot delete
3241 * its inode (returned to us in prevdirrem) until the zeroed
3242 * directory entry gets to disk. The new inode has never been
3243 * referenced on the disk, so can be deleted immediately.
3244 */
3245 if ((dirrem->dm_state & COMPLETE) == 0) {
3246 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
3247 dm_next);
3248 FREE_LOCK(&lk);
3249 } else {
3250 if (prevdirrem != NULL)
3251 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
3252 prevdirrem, dm_next);
3253 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
3254 FREE_LOCK(&lk);
3255 handle_workitem_remove(dirrem, NULL);
3256 }
3257}
3258
3259/*
3260 * Allocate a new dirrem if appropriate and return it along with
3261 * its associated pagedep. Called without a lock, returns with lock.
3262 */
3263static long num_dirrem; /* number of dirrem allocated */
3264static struct dirrem *
3265newdirrem(bp, dp, ip, isrmdir, prevdirremp)
3266 struct buf *bp; /* buffer containing directory block */
3267 struct inode *dp; /* inode for the directory being modified */
3268 struct inode *ip; /* inode for directory entry being removed */
3269 int isrmdir; /* indicates if doing RMDIR */
3270 struct dirrem **prevdirremp; /* previously referenced inode, if any */
3271{
3272 int offset;
3273 ufs_lbn_t lbn;
3274 struct diradd *dap;
3275 struct dirrem *dirrem;
3276 struct pagedep *pagedep;
3277
3278 /*
3279 * Whiteouts have no deletion dependencies.
3280 */
3281 if (ip == NULL)
3282 panic("newdirrem: whiteout");
3283 /*
3284 * If we are over our limit, try to improve the situation.
3285 * Limiting the number of dirrem structures will also limit
3286 * the number of freefile and freeblks structures.
3287 */
3288 ACQUIRE_LOCK(&lk);
3289 if (num_dirrem > max_softdeps / 2)
3290 (void) request_cleanup(ITOV(dp)->v_mount, FLUSH_REMOVE);
3291 num_dirrem += 1;
3292 FREE_LOCK(&lk);
3293 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
3294 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
3295 workitem_alloc(&dirrem->dm_list, D_DIRREM, ITOV(dp)->v_mount);
3296 dirrem->dm_state = isrmdir ? RMDIR : 0;
3297 dirrem->dm_oldinum = ip->i_number;
3298 *prevdirremp = NULL;
3299
3300 ACQUIRE_LOCK(&lk);
3301 lbn = lblkno(dp->i_fs, dp->i_offset);
3302 offset = blkoff(dp->i_fs, dp->i_offset);
3303 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
3304 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
3305 dirrem->dm_pagedep = pagedep;
3306 /*
3307 * Check for a diradd dependency for the same directory entry.
3308 * If present, then both dependencies become obsolete and can
3309 * be de-allocated. Check for an entry on both the pd_dirraddhd
3310 * list and the pd_pendinghd list.
3311 */
3312
3313 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
3314 if (dap->da_offset == offset)
3315 break;
3316 if (dap == NULL) {
3317
3318 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
3319 if (dap->da_offset == offset)
3320 break;
3321 if (dap == NULL)
3322 return (dirrem);
3323 }
3324 /*
3325 * Must be ATTACHED at this point.
3326 */
3327 if ((dap->da_state & ATTACHED) == 0)
3328 panic("newdirrem: not ATTACHED");
3329 if (dap->da_newinum != ip->i_number)
3330 panic("newdirrem: inum %d should be %d",
3331 ip->i_number, dap->da_newinum);
3332 /*
3333 * If we are deleting a changed name that never made it to disk,
3334 * then return the dirrem describing the previous inode (which
3335 * represents the inode currently referenced from this entry on disk).
3336 */
3337 if ((dap->da_state & DIRCHG) != 0) {
3338 *prevdirremp = dap->da_previous;
3339 dap->da_state &= ~DIRCHG;
3340 dap->da_pagedep = pagedep;
3341 }
3342 /*
3343 * We are deleting an entry that never made it to disk.
3344 * Mark it COMPLETE so we can delete its inode immediately.
3345 */
3346 dirrem->dm_state |= COMPLETE;
3347 free_diradd(dap);
3348 return (dirrem);
3349}
3350
3351/*
3352 * Directory entry change dependencies.
3353 *
3354 * Changing an existing directory entry requires that an add operation
3355 * be completed first followed by a deletion. The semantics for the addition
3356 * are identical to the description of adding a new entry above except
3357 * that the rollback is to the old inode number rather than zero. Once
3358 * the addition dependency is completed, the removal is done as described
3359 * in the removal routine above.
3360 */
3361
3362/*
3363 * This routine should be called immediately after changing
3364 * a directory entry. The inode's link count should not be
3365 * decremented by the calling procedure -- the soft updates
3366 * code will perform this task when it is safe.
3367 */
3368void
3369softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
3370 struct buf *bp; /* buffer containing directory block */
3371 struct inode *dp; /* inode for the directory being modified */
3372 struct inode *ip; /* inode for directory entry being removed */
3373 ino_t newinum; /* new inode number for changed entry */
3374 int isrmdir; /* indicates if doing RMDIR */
3375{
3376 int offset;
3377 struct diradd *dap = NULL;
3378 struct dirrem *dirrem, *prevdirrem;
3379 struct pagedep *pagedep;
3380 struct inodedep *inodedep;
3381 struct mount *mp;
3382
3383 offset = blkoff(dp->i_fs, dp->i_offset);
3384 mp = UFSTOVFS(dp->i_ump);
3385
3386 /*
3387 * Whiteouts do not need diradd dependencies.
3388 */
3389 if (newinum != WINO) {
3390 MALLOC(dap, struct diradd *, sizeof(struct diradd),
3391 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
3392 workitem_alloc(&dap->da_list, D_DIRADD, mp);
3393 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
3394 dap->da_offset = offset;
3395 dap->da_newinum = newinum;
3396 }
3397
3398 /*
3399 * Allocate a new dirrem and ACQUIRE_LOCK.
3400 */
3401 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
3402 pagedep = dirrem->dm_pagedep;
3403 /*
3404 * The possible values for isrmdir:
3405 * 0 - non-directory file rename
3406 * 1 - directory rename within same directory
3407 * inum - directory rename to new directory of given inode number
3408 * When renaming to a new directory, we are both deleting and
3409 * creating a new directory entry, so the link count on the new
3410 * directory should not change. Thus we do not need the followup
3411 * dirrem which is usually done in handle_workitem_remove. We set
3412 * the DIRCHG flag to tell handle_workitem_remove to skip the
3413 * followup dirrem.
3414 */
3415 if (isrmdir > 1)
3416 dirrem->dm_state |= DIRCHG;
3417
3418 /*
3419 * Whiteouts have no additional dependencies,
3420 * so just put the dirrem on the correct list.
3421 */
3422 if (newinum == WINO) {
3423 if ((dirrem->dm_state & COMPLETE) == 0) {
3424 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
3425 dm_next);
3426 } else {
3427 dirrem->dm_dirinum = pagedep->pd_ino;
3428 add_to_worklist(&dirrem->dm_list);
3429 }
3430 FREE_LOCK(&lk);
3431 return;
3432 }
3433
3434 /*
3435 * If the COMPLETE flag is clear, then there were no active
3436 * entries and we want to roll back to the previous inode until
3437 * the new inode is committed to disk. If the COMPLETE flag is
3438 * set, then we have deleted an entry that never made it to disk.
3439 * If the entry we deleted resulted from a name change, then the old
3440 * inode reference still resides on disk. Any rollback that we do
3441 * needs to be to that old inode (returned to us in prevdirrem). If
3442 * the entry we deleted resulted from a create, then there is
3443 * no entry on the disk, so we want to roll back to zero rather
3444 * than the uncommitted inode. In either of the COMPLETE cases we
3445 * want to immediately free the unwritten and unreferenced inode.
3446 */
3447 if ((dirrem->dm_state & COMPLETE) == 0) {
3448 dap->da_previous = dirrem;
3449 } else {
3450 if (prevdirrem != NULL) {
3451 dap->da_previous = prevdirrem;
3452 } else {
3453 dap->da_state &= ~DIRCHG;
3454 dap->da_pagedep = pagedep;
3455 }
3456 dirrem->dm_dirinum = pagedep->pd_ino;
3457 add_to_worklist(&dirrem->dm_list);
3458 }
3459 /*
3460 * Link into its inodedep. Put it on the id_bufwait list if the inode
3461 * is not yet written. If it is written, do the post-inode write
3462 * processing to put it on the id_pendinghd list.
3463 */
3464 if (inodedep_lookup(mp, newinum, DEPALLOC, &inodedep) == 0 ||
3465 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
3466 dap->da_state |= COMPLETE;
3467 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3468 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3469 } else {
3470 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
3471 dap, da_pdlist);
3472 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
3473 }
3474 FREE_LOCK(&lk);
3475}
3476
3477/*
3478 * Called whenever the link count on an inode is changed.
3479 * It creates an inode dependency so that the new reference(s)
3480 * to the inode cannot be committed to disk until the updated
3481 * inode has been written.
3482 */
3483void
3484softdep_change_linkcnt(ip)
3485 struct inode *ip; /* the inode with the increased link count */
3486{
3487 struct inodedep *inodedep;
3488
3489 ACQUIRE_LOCK(&lk);
3490 (void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number,
3491 DEPALLOC, &inodedep);
3492 if (ip->i_nlink < ip->i_effnlink)
3493 panic("softdep_change_linkcnt: bad delta");
3494 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3495 FREE_LOCK(&lk);
3496}
3497
3498/*
3499 * Called when the effective link count and the reference count
3500 * on an inode drops to zero. At this point there are no names
3501 * referencing the file in the filesystem and no active file
3502 * references. The space associated with the file will be freed
3503 * as soon as the necessary soft dependencies are cleared.
3504 */
3505void
3506softdep_releasefile(ip)
3507 struct inode *ip; /* inode with the zero effective link count */
3508{
3509 struct inodedep *inodedep;
3510 struct fs *fs;
3511 int extblocks;
3512
3513 if (ip->i_effnlink > 0)
3514 panic("softdep_releasefile: file still referenced");
3515 /*
3516 * We may be called several times as the on-disk link count
3517 * drops to zero. We only want to account for the space once.
3518 */
3519 if (ip->i_flag & IN_SPACECOUNTED)
3520 return;
3521 /*
3522 * We have to deactivate a snapshot otherwise copyonwrites may
3523 * add blocks and the cleanup may remove blocks after we have
3524 * tried to account for them.
3525 */
3526 if ((ip->i_flags & SF_SNAPSHOT) != 0)
3527 ffs_snapremove(ITOV(ip));
3528 /*
3529 * If we are tracking an nlinkdelta, we have to also remember
3530 * whether we accounted for the freed space yet.
3531 */
3532 ACQUIRE_LOCK(&lk);
3533 if ((inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, &inodedep)))
3534 inodedep->id_state |= SPACECOUNTED;
3535 FREE_LOCK(&lk);
3536 fs = ip->i_fs;
3537 extblocks = 0;
3538 if (fs->fs_magic == FS_UFS2_MAGIC)
3539 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
3540 UFS_LOCK(ip->i_ump);
3541 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks;
3542 ip->i_fs->fs_pendinginodes += 1;
3543 UFS_UNLOCK(ip->i_ump);
3544 ip->i_flag |= IN_SPACECOUNTED;
3545}
3546
3547/*
3548 * This workitem decrements the inode's link count.
3549 * If the link count reaches zero, the file is removed.
3550 */
3551static void
3552handle_workitem_remove(dirrem, xp)
3553 struct dirrem *dirrem;
3554 struct vnode *xp;
3555{
3556 struct thread *td = curthread;
3557 struct inodedep *inodedep;
3558 struct vnode *vp;
3559 struct inode *ip;
3560 ino_t oldinum;
3561 int error;
3562
3563 if ((vp = xp) == NULL &&
3564 (error = ffs_vget(dirrem->dm_list.wk_mp,
3565 dirrem->dm_oldinum, LK_EXCLUSIVE, &vp)) != 0) {
3566 softdep_error("handle_workitem_remove: vget", error);
3567 return;
3568 }
3569 ip = VTOI(vp);
3570 ACQUIRE_LOCK(&lk);
3571 if ((inodedep_lookup(dirrem->dm_list.wk_mp,
3572 dirrem->dm_oldinum, 0, &inodedep)) == 0)
3573 panic("handle_workitem_remove: lost inodedep");
3574 /*
3575 * Normal file deletion.
3576 */
3577 if ((dirrem->dm_state & RMDIR) == 0) {
3578 ip->i_nlink--;
3579 DIP_SET(ip, i_nlink, ip->i_nlink);
3580 ip->i_flag |= IN_CHANGE;
3581 if (ip->i_nlink < ip->i_effnlink)
3582 panic("handle_workitem_remove: bad file delta");
3583 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3584 num_dirrem -= 1;
3585 WORKITEM_FREE(dirrem, D_DIRREM);
3586 FREE_LOCK(&lk);
3587 vput(vp);
3588 return;
3589 }
3590 /*
3591 * Directory deletion. Decrement reference count for both the
3592 * just deleted parent directory entry and the reference for ".".
3593 * Next truncate the directory to length zero. When the
3594 * truncation completes, arrange to have the reference count on
3595 * the parent decremented to account for the loss of "..".
3596 */
3597 ip->i_nlink -= 2;
3598 DIP_SET(ip, i_nlink, ip->i_nlink);
3599 ip->i_flag |= IN_CHANGE;
3600 if (ip->i_nlink < ip->i_effnlink)
3601 panic("handle_workitem_remove: bad dir delta");
3602 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
3603 FREE_LOCK(&lk);
3604 if ((error = ffs_truncate(vp, (off_t)0, 0, td->td_ucred, td)) != 0)
3605 softdep_error("handle_workitem_remove: truncate", error);
3606 ACQUIRE_LOCK(&lk);
3607 /*
3608 * Rename a directory to a new parent. Since, we are both deleting
3609 * and creating a new directory entry, the link count on the new
3610 * directory should not change. Thus we skip the followup dirrem.
3611 */
3612 if (dirrem->dm_state & DIRCHG) {
3613 num_dirrem -= 1;
3614 WORKITEM_FREE(dirrem, D_DIRREM);
3615 FREE_LOCK(&lk);
3616 vput(vp);
3617 return;
3618 }
3619 /*
3620 * If the inodedep does not exist, then the zero'ed inode has
3621 * been written to disk. If the allocated inode has never been
3622 * written to disk, then the on-disk inode is zero'ed. In either
3623 * case we can remove the file immediately.
3624 */
3625 dirrem->dm_state = 0;
3626 oldinum = dirrem->dm_oldinum;
3627 dirrem->dm_oldinum = dirrem->dm_dirinum;
3628 if (inodedep_lookup(dirrem->dm_list.wk_mp, oldinum,
3629 0, &inodedep) == 0 || check_inode_unwritten(inodedep)) {
3630 if (xp != NULL)
3631 add_to_worklist(&dirrem->dm_list);
3632 FREE_LOCK(&lk);
3633 vput(vp);
3634 if (xp == NULL)
3635 handle_workitem_remove(dirrem, NULL);
3636 return;
3637 }
3638 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3639 FREE_LOCK(&lk);
3640 ip->i_flag |= IN_CHANGE;
3641 ffs_update(vp, 0);
3642 vput(vp);
3643}
3644
3645/*
3646 * Inode de-allocation dependencies.
3647 *
3648 * When an inode's link count is reduced to zero, it can be de-allocated. We
3649 * found it convenient to postpone de-allocation until after the inode is
3650 * written to disk with its new link count (zero). At this point, all of the
3651 * on-disk inode's block pointers are nullified and, with careful dependency
3652 * list ordering, all dependencies related to the inode will be satisfied and
3653 * the corresponding dependency structures de-allocated. So, if/when the
3654 * inode is reused, there will be no mixing of old dependencies with new
3655 * ones. This artificial dependency is set up by the block de-allocation
3656 * procedure above (softdep_setup_freeblocks) and completed by the
3657 * following procedure.
3658 */
3659static void
3660handle_workitem_freefile(freefile)
3661 struct freefile *freefile;
3662{
3663 struct fs *fs;
3664 struct inodedep *idp;
3665 struct ufsmount *ump;
3666 int error;
3667
3668 ump = VFSTOUFS(freefile->fx_list.wk_mp);
3669 fs = ump->um_fs;
3670#ifdef DEBUG
3671 ACQUIRE_LOCK(&lk);
3672 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
3673 FREE_LOCK(&lk);
3674 if (error)
3675 panic("handle_workitem_freefile: inodedep survived");
3676#endif
3677 UFS_LOCK(ump);
3678 fs->fs_pendinginodes -= 1;
3679 UFS_UNLOCK(ump);
3680 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
3681 freefile->fx_oldinum, freefile->fx_mode)) != 0)
3682 softdep_error("handle_workitem_freefile", error);
3683 ACQUIRE_LOCK(&lk);
3684 WORKITEM_FREE(freefile, D_FREEFILE);
3685 FREE_LOCK(&lk);
3686}
3687
3688
3689/*
3690 * Helper function which unlinks marker element from work list and returns
3691 * the next element on the list.
3692 */
3693static __inline struct worklist *
3694markernext(struct worklist *marker)
3695{
3696 struct worklist *next;
3697
3698 next = LIST_NEXT(marker, wk_list);
3699 LIST_REMOVE(marker, wk_list);
3700 return next;
3701}
3702
3703/*
3704 * Disk writes.
3705 *
3706 * The dependency structures constructed above are most actively used when file
3707 * system blocks are written to disk. No constraints are placed on when a
3708 * block can be written, but unsatisfied update dependencies are made safe by
3709 * modifying (or replacing) the source memory for the duration of the disk
3710 * write. When the disk write completes, the memory block is again brought
3711 * up-to-date.
3712 *
3713 * In-core inode structure reclamation.
3714 *
3715 * Because there are a finite number of "in-core" inode structures, they are
3716 * reused regularly. By transferring all inode-related dependencies to the
3717 * in-memory inode block and indexing them separately (via "inodedep"s), we
3718 * can allow "in-core" inode structures to be reused at any time and avoid
3719 * any increase in contention.
3720 *
3721 * Called just before entering the device driver to initiate a new disk I/O.
3722 * The buffer must be locked, thus, no I/O completion operations can occur
3723 * while we are manipulating its associated dependencies.
3724 */
3725static void
3726softdep_disk_io_initiation(bp)
3727 struct buf *bp; /* structure describing disk write to occur */
3728{
3729 struct worklist *wk;
3730 struct worklist marker;
3731 struct indirdep *indirdep;
3732 struct inodedep *inodedep;
3733
3734 /*
3735 * We only care about write operations. There should never
3736 * be dependencies for reads.
3737 */
3738 if (bp->b_iocmd != BIO_WRITE)
3739 panic("softdep_disk_io_initiation: not write");
3740
3741 marker.wk_type = D_LAST + 1; /* Not a normal workitem */
3742 PHOLD(curproc); /* Don't swap out kernel stack */
3743
3744 ACQUIRE_LOCK(&lk);
3745 /*
3746 * Do any necessary pre-I/O processing.
3747 */
3748 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
3749 wk = markernext(&marker)) {
3750 LIST_INSERT_AFTER(wk, &marker, wk_list);
3751 switch (wk->wk_type) {
3752
3753 case D_PAGEDEP:
3754 initiate_write_filepage(WK_PAGEDEP(wk), bp);
3755 continue;
3756
3757 case D_INODEDEP:
3758 inodedep = WK_INODEDEP(wk);
3759 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
3760 initiate_write_inodeblock_ufs1(inodedep, bp);
3761 else
3762 initiate_write_inodeblock_ufs2(inodedep, bp);
3763 continue;
3764
3765 case D_INDIRDEP:
3766 indirdep = WK_INDIRDEP(wk);
3767 if (indirdep->ir_state & GOINGAWAY)
3768 panic("disk_io_initiation: indirdep gone");
3769 /*
3770 * If there are no remaining dependencies, this
3771 * will be writing the real pointers, so the
3772 * dependency can be freed.
3773 */
3774 if (LIST_EMPTY(&indirdep->ir_deplisthd)) {
3775 struct buf *bp;
3776
3777 bp = indirdep->ir_savebp;
3778 bp->b_flags |= B_INVAL | B_NOCACHE;
3779 /* inline expand WORKLIST_REMOVE(wk); */
3780 wk->wk_state &= ~ONWORKLIST;
3781 LIST_REMOVE(wk, wk_list);
3782 WORKITEM_FREE(indirdep, D_INDIRDEP);
3783 FREE_LOCK(&lk);
3784 brelse(bp);
3785 ACQUIRE_LOCK(&lk);
3786 continue;
3787 }
3788 /*
3789 * Replace up-to-date version with safe version.
3790 */
3791 FREE_LOCK(&lk);
3792 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3793 M_INDIRDEP, M_SOFTDEP_FLAGS);
3794 ACQUIRE_LOCK(&lk);
3795 indirdep->ir_state &= ~ATTACHED;
3796 indirdep->ir_state |= UNDONE;
3797 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3798 bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3799 bp->b_bcount);
3800 continue;
3801
3802 case D_MKDIR:
3803 case D_BMSAFEMAP:
3804 case D_ALLOCDIRECT:
3805 case D_ALLOCINDIR:
3806 continue;
3807
3808 default:
3809 panic("handle_disk_io_initiation: Unexpected type %s",
3810 TYPENAME(wk->wk_type));
3811 /* NOTREACHED */
3812 }
3813 }
3814 FREE_LOCK(&lk);
3815 PRELE(curproc); /* Allow swapout of kernel stack */
3816}
3817
3818/*
3819 * Called from within the procedure above to deal with unsatisfied
3820 * allocation dependencies in a directory. The buffer must be locked,
3821 * thus, no I/O completion operations can occur while we are
3822 * manipulating its associated dependencies.
3823 */
3824static void
3825initiate_write_filepage(pagedep, bp)
3826 struct pagedep *pagedep;
3827 struct buf *bp;
3828{
3829 struct diradd *dap;
3830 struct direct *ep;
3831 int i;
3832
3833 if (pagedep->pd_state & IOSTARTED) {
3834 /*
3835 * This can only happen if there is a driver that does not
3836 * understand chaining. Here biodone will reissue the call
3837 * to strategy for the incomplete buffers.
3838 */
3839 printf("initiate_write_filepage: already started\n");
3840 return;
3841 }
3842 pagedep->pd_state |= IOSTARTED;
3843 for (i = 0; i < DAHASHSZ; i++) {
3844 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3845 ep = (struct direct *)
3846 ((char *)bp->b_data + dap->da_offset);
3847 if (ep->d_ino != dap->da_newinum)
3848 panic("%s: dir inum %d != new %d",
3849 "initiate_write_filepage",
3850 ep->d_ino, dap->da_newinum);
3851 if (dap->da_state & DIRCHG)
3852 ep->d_ino = dap->da_previous->dm_oldinum;
3853 else
3854 ep->d_ino = 0;
3855 dap->da_state &= ~ATTACHED;
3856 dap->da_state |= UNDONE;
3857 }
3858 }
3859}
3860
3861/*
3862 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
3863 * Note that any bug fixes made to this routine must be done in the
3864 * version found below.
3865 *
3866 * Called from within the procedure above to deal with unsatisfied
3867 * allocation dependencies in an inodeblock. The buffer must be
3868 * locked, thus, no I/O completion operations can occur while we
3869 * are manipulating its associated dependencies.
3870 */
3871static void
3872initiate_write_inodeblock_ufs1(inodedep, bp)
3873 struct inodedep *inodedep;
3874 struct buf *bp; /* The inode block */
3875{
3876 struct allocdirect *adp, *lastadp;
3877 struct ufs1_dinode *dp;
3878 struct ufs1_dinode *sip;
3879 struct fs *fs;
3880 ufs_lbn_t i, prevlbn = 0;
3881 int deplist;
3882
3883 if (inodedep->id_state & IOSTARTED)
3884 panic("initiate_write_inodeblock_ufs1: already started");
3885 inodedep->id_state |= IOSTARTED;
3886 fs = inodedep->id_fs;
3887 dp = (struct ufs1_dinode *)bp->b_data +
3888 ino_to_fsbo(fs, inodedep->id_ino);
3889 /*
3890 * If the bitmap is not yet written, then the allocated
3891 * inode cannot be written to disk.
3892 */
3893 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3894 if (inodedep->id_savedino1 != NULL)
3895 panic("initiate_write_inodeblock_ufs1: I/O underway");
3896 FREE_LOCK(&lk);
3897 MALLOC(sip, struct ufs1_dinode *,
3898 sizeof(struct ufs1_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS);
3899 ACQUIRE_LOCK(&lk);
3900 inodedep->id_savedino1 = sip;
3901 *inodedep->id_savedino1 = *dp;
3902 bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3903 dp->di_gen = inodedep->id_savedino1->di_gen;
3904 return;
3905 }
3906 /*
3907 * If no dependencies, then there is nothing to roll back.
3908 */
3909 inodedep->id_savedsize = dp->di_size;
3910 inodedep->id_savedextsize = 0;
3911 if (TAILQ_EMPTY(&inodedep->id_inoupdt))
3912 return;
3913 /*
3914 * Set the dependencies to busy.
3915 */
3916 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3917 adp = TAILQ_NEXT(adp, ad_next)) {
3918#ifdef DIAGNOSTIC
3919 if (deplist != 0 && prevlbn >= adp->ad_lbn)
3920 panic("softdep_write_inodeblock: lbn order");
3921 prevlbn = adp->ad_lbn;
3922 if (adp->ad_lbn < NDADDR &&
3923 dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
3924 panic("%s: direct pointer #%jd mismatch %d != %jd",
3925 "softdep_write_inodeblock",
3926 (intmax_t)adp->ad_lbn,
3927 dp->di_db[adp->ad_lbn],
3928 (intmax_t)adp->ad_newblkno);
3929 if (adp->ad_lbn >= NDADDR &&
3930 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
3931 panic("%s: indirect pointer #%jd mismatch %d != %jd",
3932 "softdep_write_inodeblock",
3933 (intmax_t)adp->ad_lbn - NDADDR,
3934 dp->di_ib[adp->ad_lbn - NDADDR],
3935 (intmax_t)adp->ad_newblkno);
3936 deplist |= 1 << adp->ad_lbn;
3937 if ((adp->ad_state & ATTACHED) == 0)
3938 panic("softdep_write_inodeblock: Unknown state 0x%x",
3939 adp->ad_state);
3940#endif /* DIAGNOSTIC */
3941 adp->ad_state &= ~ATTACHED;
3942 adp->ad_state |= UNDONE;
3943 }
3944 /*
3945 * The on-disk inode cannot claim to be any larger than the last
3946 * fragment that has been written. Otherwise, the on-disk inode
3947 * might have fragments that were not the last block in the file
3948 * which would corrupt the filesystem.
3949 */
3950 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3951 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3952 if (adp->ad_lbn >= NDADDR)
3953 break;
3954 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3955 /* keep going until hitting a rollback to a frag */
3956 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3957 continue;
3958 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3959 for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3960#ifdef DIAGNOSTIC
3961 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
3962 panic("softdep_write_inodeblock: lost dep1");
3963#endif /* DIAGNOSTIC */
3964 dp->di_db[i] = 0;
3965 }
3966 for (i = 0; i < NIADDR; i++) {
3967#ifdef DIAGNOSTIC
3968 if (dp->di_ib[i] != 0 &&
3969 (deplist & ((1 << NDADDR) << i)) == 0)
3970 panic("softdep_write_inodeblock: lost dep2");
3971#endif /* DIAGNOSTIC */
3972 dp->di_ib[i] = 0;
3973 }
3974 return;
3975 }
3976 /*
3977 * If we have zero'ed out the last allocated block of the file,
3978 * roll back the size to the last currently allocated block.
3979 * We know that this last allocated block is a full-sized as
3980 * we already checked for fragments in the loop above.
3981 */
3982 if (lastadp != NULL &&
3983 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3984 for (i = lastadp->ad_lbn; i >= 0; i--)
3985 if (dp->di_db[i] != 0)
3986 break;
3987 dp->di_size = (i + 1) * fs->fs_bsize;
3988 }
3989 /*
3990 * The only dependencies are for indirect blocks.
3991 *
3992 * The file size for indirect block additions is not guaranteed.
3993 * Such a guarantee would be non-trivial to achieve. The conventional
3994 * synchronous write implementation also does not make this guarantee.
3995 * Fsck should catch and fix discrepancies. Arguably, the file size
3996 * can be over-estimated without destroying integrity when the file
3997 * moves into the indirect blocks (i.e., is large). If we want to
3998 * postpone fsck, we are stuck with this argument.
3999 */
4000 for (; adp; adp = TAILQ_NEXT(adp, ad_next))
4001 dp->di_ib[adp->ad_lbn - NDADDR] = 0;
4002}
4003
4004/*
4005 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
4006 * Note that any bug fixes made to this routine must be done in the
4007 * version found above.
4008 *
4009 * Called from within the procedure above to deal with unsatisfied
4010 * allocation dependencies in an inodeblock. The buffer must be
4011 * locked, thus, no I/O completion operations can occur while we
4012 * are manipulating its associated dependencies.
4013 */
4014static void
4015initiate_write_inodeblock_ufs2(inodedep, bp)
4016 struct inodedep *inodedep;
4017 struct buf *bp; /* The inode block */
4018{
4019 struct allocdirect *adp, *lastadp;
4020 struct ufs2_dinode *dp;
4021 struct ufs2_dinode *sip;
4022 struct fs *fs;
4023 ufs_lbn_t i, prevlbn = 0;
4024 int deplist;
4025
4026 if (inodedep->id_state & IOSTARTED)
4027 panic("initiate_write_inodeblock_ufs2: already started");
4028 inodedep->id_state |= IOSTARTED;
4029 fs = inodedep->id_fs;
4030 dp = (struct ufs2_dinode *)bp->b_data +
4031 ino_to_fsbo(fs, inodedep->id_ino);
4032 /*
4033 * If the bitmap is not yet written, then the allocated
4034 * inode cannot be written to disk.
4035 */
4036 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4037 if (inodedep->id_savedino2 != NULL)
4038 panic("initiate_write_inodeblock_ufs2: I/O underway");
4039 FREE_LOCK(&lk);
4040 MALLOC(sip, struct ufs2_dinode *,
4041 sizeof(struct ufs2_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS);
4042 ACQUIRE_LOCK(&lk);
4043 inodedep->id_savedino2 = sip;
4044 *inodedep->id_savedino2 = *dp;
4045 bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
4046 dp->di_gen = inodedep->id_savedino2->di_gen;
4047 return;
4048 }
4049 /*
4050 * If no dependencies, then there is nothing to roll back.
4051 */
4052 inodedep->id_savedsize = dp->di_size;
4053 inodedep->id_savedextsize = dp->di_extsize;
4054 if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
4055 TAILQ_EMPTY(&inodedep->id_extupdt))
4056 return;
4057 /*
4058 * Set the ext data dependencies to busy.
4059 */
4060 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
4061 adp = TAILQ_NEXT(adp, ad_next)) {
4062#ifdef DIAGNOSTIC
4063 if (deplist != 0 && prevlbn >= adp->ad_lbn)
4064 panic("softdep_write_inodeblock: lbn order");
4065 prevlbn = adp->ad_lbn;
4066 if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno)
4067 panic("%s: direct pointer #%jd mismatch %jd != %jd",
4068 "softdep_write_inodeblock",
4069 (intmax_t)adp->ad_lbn,
4070 (intmax_t)dp->di_extb[adp->ad_lbn],
4071 (intmax_t)adp->ad_newblkno);
4072 deplist |= 1 << adp->ad_lbn;
4073 if ((adp->ad_state & ATTACHED) == 0)
4074 panic("softdep_write_inodeblock: Unknown state 0x%x",
4075 adp->ad_state);
4076#endif /* DIAGNOSTIC */
4077 adp->ad_state &= ~ATTACHED;
4078 adp->ad_state |= UNDONE;
4079 }
4080 /*
4081 * The on-disk inode cannot claim to be any larger than the last
4082 * fragment that has been written. Otherwise, the on-disk inode
4083 * might have fragments that were not the last block in the ext
4084 * data which would corrupt the filesystem.
4085 */
4086 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
4087 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
4088 dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno;
4089 /* keep going until hitting a rollback to a frag */
4090 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
4091 continue;
4092 dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
4093 for (i = adp->ad_lbn + 1; i < NXADDR; i++) {
4094#ifdef DIAGNOSTIC
4095 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
4096 panic("softdep_write_inodeblock: lost dep1");
4097#endif /* DIAGNOSTIC */
4098 dp->di_extb[i] = 0;
4099 }
4100 lastadp = NULL;
4101 break;
4102 }
4103 /*
4104 * If we have zero'ed out the last allocated block of the ext
4105 * data, roll back the size to the last currently allocated block.
4106 * We know that this last allocated block is a full-sized as
4107 * we already checked for fragments in the loop above.
4108 */
4109 if (lastadp != NULL &&
4110 dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
4111 for (i = lastadp->ad_lbn; i >= 0; i--)
4112 if (dp->di_extb[i] != 0)
4113 break;
4114 dp->di_extsize = (i + 1) * fs->fs_bsize;
4115 }
4116 /*
4117 * Set the file data dependencies to busy.
4118 */
4119 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
4120 adp = TAILQ_NEXT(adp, ad_next)) {
4121#ifdef DIAGNOSTIC
4122 if (deplist != 0 && prevlbn >= adp->ad_lbn)
4123 panic("softdep_write_inodeblock: lbn order");
4124 prevlbn = adp->ad_lbn;
4125 if (adp->ad_lbn < NDADDR &&
4126 dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
4127 panic("%s: direct pointer #%jd mismatch %jd != %jd",
4128 "softdep_write_inodeblock",
4129 (intmax_t)adp->ad_lbn,
4130 (intmax_t)dp->di_db[adp->ad_lbn],
4131 (intmax_t)adp->ad_newblkno);
4132 if (adp->ad_lbn >= NDADDR &&
4133 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
4134 panic("%s indirect pointer #%jd mismatch %jd != %jd",
4135 "softdep_write_inodeblock:",
4136 (intmax_t)adp->ad_lbn - NDADDR,
4137 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR],
4138 (intmax_t)adp->ad_newblkno);
4139 deplist |= 1 << adp->ad_lbn;
4140 if ((adp->ad_state & ATTACHED) == 0)
4141 panic("softdep_write_inodeblock: Unknown state 0x%x",
4142 adp->ad_state);
4143#endif /* DIAGNOSTIC */
4144 adp->ad_state &= ~ATTACHED;
4145 adp->ad_state |= UNDONE;
4146 }
4147 /*
4148 * The on-disk inode cannot claim to be any larger than the last
4149 * fragment that has been written. Otherwise, the on-disk inode
4150 * might have fragments that were not the last block in the file
4151 * which would corrupt the filesystem.
4152 */
4153 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
4154 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
4155 if (adp->ad_lbn >= NDADDR)
4156 break;
4157 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
4158 /* keep going until hitting a rollback to a frag */
4159 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
4160 continue;
4161 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
4162 for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
4163#ifdef DIAGNOSTIC
4164 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
4165 panic("softdep_write_inodeblock: lost dep2");
4166#endif /* DIAGNOSTIC */
4167 dp->di_db[i] = 0;
4168 }
4169 for (i = 0; i < NIADDR; i++) {
4170#ifdef DIAGNOSTIC
4171 if (dp->di_ib[i] != 0 &&
4172 (deplist & ((1 << NDADDR) << i)) == 0)
4173 panic("softdep_write_inodeblock: lost dep3");
4174#endif /* DIAGNOSTIC */
4175 dp->di_ib[i] = 0;
4176 }
4177 return;
4178 }
4179 /*
4180 * If we have zero'ed out the last allocated block of the file,
4181 * roll back the size to the last currently allocated block.
4182 * We know that this last allocated block is a full-sized as
4183 * we already checked for fragments in the loop above.
4184 */
4185 if (lastadp != NULL &&
4186 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
4187 for (i = lastadp->ad_lbn; i >= 0; i--)
4188 if (dp->di_db[i] != 0)
4189 break;
4190 dp->di_size = (i + 1) * fs->fs_bsize;
4191 }
4192 /*
4193 * The only dependencies are for indirect blocks.
4194 *
4195 * The file size for indirect block additions is not guaranteed.
4196 * Such a guarantee would be non-trivial to achieve. The conventional
4197 * synchronous write implementation also does not make this guarantee.
4198 * Fsck should catch and fix discrepancies. Arguably, the file size
4199 * can be over-estimated without destroying integrity when the file
4200 * moves into the indirect blocks (i.e., is large). If we want to
4201 * postpone fsck, we are stuck with this argument.
4202 */
4203 for (; adp; adp = TAILQ_NEXT(adp, ad_next))
4204 dp->di_ib[adp->ad_lbn - NDADDR] = 0;
4205}
4206
4207/*
4208 * This routine is called during the completion interrupt
4209 * service routine for a disk write (from the procedure called
4210 * by the device driver to inform the filesystem caches of
4211 * a request completion). It should be called early in this
4212 * procedure, before the block is made available to other
4213 * processes or other routines are called.
4214 */
4215static void
4216softdep_disk_write_complete(bp)
4217 struct buf *bp; /* describes the completed disk write */
4218{
4219 struct worklist *wk;
4220 struct worklist *owk;
4221 struct workhead reattach;
4222 struct newblk *newblk;
4223 struct allocindir *aip;
4224 struct allocdirect *adp;
4225 struct indirdep *indirdep;
4226 struct inodedep *inodedep;
4227 struct bmsafemap *bmsafemap;
4228
4229 /*
4230 * If an error occurred while doing the write, then the data
4231 * has not hit the disk and the dependencies cannot be unrolled.
4232 */
4233 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
4234 return;
4235 LIST_INIT(&reattach);
4236 /*
4237 * This lock must not be released anywhere in this code segment.
4238 */
4239 ACQUIRE_LOCK(&lk);
4240 owk = NULL;
4241 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
4242 WORKLIST_REMOVE(wk);
4243 if (wk == owk)
4244 panic("duplicate worklist: %p\n", wk);
4245 owk = wk;
4246 switch (wk->wk_type) {
4247
4248 case D_PAGEDEP:
4249 if (handle_written_filepage(WK_PAGEDEP(wk), bp))
4250 WORKLIST_INSERT(&reattach, wk);
4251 continue;
4252
4253 case D_INODEDEP:
4254 if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
4255 WORKLIST_INSERT(&reattach, wk);
4256 continue;
4257
4258 case D_BMSAFEMAP:
4259 bmsafemap = WK_BMSAFEMAP(wk);
4260 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
4261 newblk->nb_state |= DEPCOMPLETE;
4262 newblk->nb_bmsafemap = NULL;
4263 LIST_REMOVE(newblk, nb_deps);
4264 }
4265 while ((adp =
4266 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
4267 adp->ad_state |= DEPCOMPLETE;
4268 adp->ad_buf = NULL;
4269 LIST_REMOVE(adp, ad_deps);
4270 handle_allocdirect_partdone(adp);
4271 }
4272 while ((aip =
4273 LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
4274 aip->ai_state |= DEPCOMPLETE;
4275 aip->ai_buf = NULL;
4276 LIST_REMOVE(aip, ai_deps);
4277 handle_allocindir_partdone(aip);
4278 }
4279 while ((inodedep =
4280 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
4281 inodedep->id_state |= DEPCOMPLETE;
4282 LIST_REMOVE(inodedep, id_deps);
4283 inodedep->id_buf = NULL;
4284 }
4285 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4286 continue;
4287
4288 case D_MKDIR:
4289 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
4290 continue;
4291
4292 case D_ALLOCDIRECT:
4293 adp = WK_ALLOCDIRECT(wk);
4294 adp->ad_state |= COMPLETE;
4295 handle_allocdirect_partdone(adp);
4296 continue;
4297
4298 case D_ALLOCINDIR:
4299 aip = WK_ALLOCINDIR(wk);
4300 aip->ai_state |= COMPLETE;
4301 handle_allocindir_partdone(aip);
4302 continue;
4303
4304 case D_INDIRDEP:
4305 indirdep = WK_INDIRDEP(wk);
4306 if (indirdep->ir_state & GOINGAWAY)
4307 panic("disk_write_complete: indirdep gone");
4308 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
4309 FREE(indirdep->ir_saveddata, M_INDIRDEP);
4310 indirdep->ir_saveddata = 0;
4311 indirdep->ir_state &= ~UNDONE;
4312 indirdep->ir_state |= ATTACHED;
4313 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
4314 handle_allocindir_partdone(aip);
4315 if (aip == LIST_FIRST(&indirdep->ir_donehd))
4316 panic("disk_write_complete: not gone");
4317 }
4318 WORKLIST_INSERT(&reattach, wk);
4319 if ((bp->b_flags & B_DELWRI) == 0)
4320 stat_indir_blk_ptrs++;
4321 bdirty(bp);
4322 continue;
4323
4324 default:
4325 panic("handle_disk_write_complete: Unknown type %s",
4326 TYPENAME(wk->wk_type));
4327 /* NOTREACHED */
4328 }
4329 }
4330 /*
4331 * Reattach any requests that must be redone.
4332 */
4333 while ((wk = LIST_FIRST(&reattach)) != NULL) {
4334 WORKLIST_REMOVE(wk);
4335 WORKLIST_INSERT(&bp->b_dep, wk);
4336 }
4337 FREE_LOCK(&lk);
4338}
4339
4340/*
4341 * Called from within softdep_disk_write_complete above. Note that
4342 * this routine is always called from interrupt level with further
4343 * splbio interrupts blocked.
4344 */
4345static void
4346handle_allocdirect_partdone(adp)
4347 struct allocdirect *adp; /* the completed allocdirect */
4348{
4349 struct allocdirectlst *listhead;
4350 struct allocdirect *listadp;
4351 struct inodedep *inodedep;
4352 long bsize, delay;
4353
4354 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
4355 return;
4356 if (adp->ad_buf != NULL)
4357 panic("handle_allocdirect_partdone: dangling dep");
4358 /*
4359 * The on-disk inode cannot claim to be any larger than the last
4360 * fragment that has been written. Otherwise, the on-disk inode
4361 * might have fragments that were not the last block in the file
4362 * which would corrupt the filesystem. Thus, we cannot free any
4363 * allocdirects after one whose ad_oldblkno claims a fragment as
4364 * these blocks must be rolled back to zero before writing the inode.
4365 * We check the currently active set of allocdirects in id_inoupdt
4366 * or id_extupdt as appropriate.
4367 */
4368 inodedep = adp->ad_inodedep;
4369 bsize = inodedep->id_fs->fs_bsize;
4370 if (adp->ad_state & EXTDATA)
4371 listhead = &inodedep->id_extupdt;
4372 else
4373 listhead = &inodedep->id_inoupdt;
4374 TAILQ_FOREACH(listadp, listhead, ad_next) {
4375 /* found our block */
4376 if (listadp == adp)
4377 break;
4378 /* continue if ad_oldlbn is not a fragment */
4379 if (listadp->ad_oldsize == 0 ||
4380 listadp->ad_oldsize == bsize)
4381 continue;
4382 /* hit a fragment */
4383 return;
4384 }
4385 /*
4386 * If we have reached the end of the current list without
4387 * finding the just finished dependency, then it must be
4388 * on the future dependency list. Future dependencies cannot
4389 * be freed until they are moved to the current list.
4390 */
4391 if (listadp == NULL) {
4392#ifdef DEBUG
4393 if (adp->ad_state & EXTDATA)
4394 listhead = &inodedep->id_newextupdt;
4395 else
4396 listhead = &inodedep->id_newinoupdt;
4397 TAILQ_FOREACH(listadp, listhead, ad_next)
4398 /* found our block */
4399 if (listadp == adp)
4400 break;
4401 if (listadp == NULL)
4402 panic("handle_allocdirect_partdone: lost dep");
4403#endif /* DEBUG */
4404 return;
4405 }
4406 /*
4407 * If we have found the just finished dependency, then free
4408 * it along with anything that follows it that is complete.
4409 * If the inode still has a bitmap dependency, then it has
4410 * never been written to disk, hence the on-disk inode cannot
4411 * reference the old fragment so we can free it without delay.
4412 */
4413 delay = (inodedep->id_state & DEPCOMPLETE);
4414 for (; adp; adp = listadp) {
4415 listadp = TAILQ_NEXT(adp, ad_next);
4416 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
4417 return;
4418 free_allocdirect(listhead, adp, delay);
4419 }
4420}
4421
4422/*
4423 * Called from within softdep_disk_write_complete above. Note that
4424 * this routine is always called from interrupt level with further
4425 * splbio interrupts blocked.
4426 */
4427static void
4428handle_allocindir_partdone(aip)
4429 struct allocindir *aip; /* the completed allocindir */
4430{
4431 struct indirdep *indirdep;
4432
4433 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
4434 return;
4435 if (aip->ai_buf != NULL)
4436 panic("handle_allocindir_partdone: dangling dependency");
4437 indirdep = aip->ai_indirdep;
4438 if (indirdep->ir_state & UNDONE) {
4439 LIST_REMOVE(aip, ai_next);
4440 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
4441 return;
4442 }
4443 if (indirdep->ir_state & UFS1FMT)
4444 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
4445 aip->ai_newblkno;
4446 else
4447 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
4448 aip->ai_newblkno;
4449 LIST_REMOVE(aip, ai_next);
4450 if (aip->ai_freefrag != NULL)
4451 add_to_worklist(&aip->ai_freefrag->ff_list);
4452 WORKITEM_FREE(aip, D_ALLOCINDIR);
4453}
4454
4455/*
4456 * Called from within softdep_disk_write_complete above to restore
4457 * in-memory inode block contents to their most up-to-date state. Note
4458 * that this routine is always called from interrupt level with further
4459 * splbio interrupts blocked.
4460 */
4461static int
4462handle_written_inodeblock(inodedep, bp)
4463 struct inodedep *inodedep;
4464 struct buf *bp; /* buffer containing the inode block */
4465{
4466 struct worklist *wk, *filefree;
4467 struct allocdirect *adp, *nextadp;
4468 struct ufs1_dinode *dp1 = NULL;
4469 struct ufs2_dinode *dp2 = NULL;
4470 int hadchanges, fstype;
4471
4472 if ((inodedep->id_state & IOSTARTED) == 0)
4473 panic("handle_written_inodeblock: not started");
4474 inodedep->id_state &= ~IOSTARTED;
4475 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
4476 fstype = UFS1;
4477 dp1 = (struct ufs1_dinode *)bp->b_data +
4478 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4479 } else {
4480 fstype = UFS2;
4481 dp2 = (struct ufs2_dinode *)bp->b_data +
4482 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
4483 }
4484 /*
4485 * If we had to rollback the inode allocation because of
4486 * bitmaps being incomplete, then simply restore it.
4487 * Keep the block dirty so that it will not be reclaimed until
4488 * all associated dependencies have been cleared and the
4489 * corresponding updates written to disk.
4490 */
4491 if (inodedep->id_savedino1 != NULL) {
4492 if (fstype == UFS1)
4493 *dp1 = *inodedep->id_savedino1;
4494 else
4495 *dp2 = *inodedep->id_savedino2;
4496 FREE(inodedep->id_savedino1, M_SAVEDINO);
4497 inodedep->id_savedino1 = NULL;
4498 if ((bp->b_flags & B_DELWRI) == 0)
4499 stat_inode_bitmap++;
4500 bdirty(bp);
4501 return (1);
4502 }
4503 inodedep->id_state |= COMPLETE;
4504 /*
4505 * Roll forward anything that had to be rolled back before
4506 * the inode could be updated.
4507 */
4508 hadchanges = 0;
4509 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
4510 nextadp = TAILQ_NEXT(adp, ad_next);
4511 if (adp->ad_state & ATTACHED)
4512 panic("handle_written_inodeblock: new entry");
4513 if (fstype == UFS1) {
4514 if (adp->ad_lbn < NDADDR) {
4515 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno)
4516 panic("%s %s #%jd mismatch %d != %jd",
4517 "handle_written_inodeblock:",
4518 "direct pointer",
4519 (intmax_t)adp->ad_lbn,
4520 dp1->di_db[adp->ad_lbn],
4521 (intmax_t)adp->ad_oldblkno);
4522 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno;
4523 } else {
4524 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0)
4525 panic("%s: %s #%jd allocated as %d",
4526 "handle_written_inodeblock",
4527 "indirect pointer",
4528 (intmax_t)adp->ad_lbn - NDADDR,
4529 dp1->di_ib[adp->ad_lbn - NDADDR]);
4530 dp1->di_ib[adp->ad_lbn - NDADDR] =
4531 adp->ad_newblkno;
4532 }
4533 } else {
4534 if (adp->ad_lbn < NDADDR) {
4535 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno)
4536 panic("%s: %s #%jd %s %jd != %jd",
4537 "handle_written_inodeblock",
4538 "direct pointer",
4539 (intmax_t)adp->ad_lbn, "mismatch",
4540 (intmax_t)dp2->di_db[adp->ad_lbn],
4541 (intmax_t)adp->ad_oldblkno);
4542 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno;
4543 } else {
4544 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0)
4545 panic("%s: %s #%jd allocated as %jd",
4546 "handle_written_inodeblock",
4547 "indirect pointer",
4548 (intmax_t)adp->ad_lbn - NDADDR,
4549 (intmax_t)
4550 dp2->di_ib[adp->ad_lbn - NDADDR]);
4551 dp2->di_ib[adp->ad_lbn - NDADDR] =
4552 adp->ad_newblkno;
4553 }
4554 }
4555 adp->ad_state &= ~UNDONE;
4556 adp->ad_state |= ATTACHED;
4557 hadchanges = 1;
4558 }
4559 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
4560 nextadp = TAILQ_NEXT(adp, ad_next);
4561 if (adp->ad_state & ATTACHED)
4562 panic("handle_written_inodeblock: new entry");
4563 if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno)
4564 panic("%s: direct pointers #%jd %s %jd != %jd",
4565 "handle_written_inodeblock",
4566 (intmax_t)adp->ad_lbn, "mismatch",
4567 (intmax_t)dp2->di_extb[adp->ad_lbn],
4568 (intmax_t)adp->ad_oldblkno);
4569 dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno;
4570 adp->ad_state &= ~UNDONE;
4571 adp->ad_state |= ATTACHED;
4572 hadchanges = 1;
4573 }
4574 if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
4575 stat_direct_blk_ptrs++;
4576 /*
4577 * Reset the file size to its most up-to-date value.
4578 */
4579 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
4580 panic("handle_written_inodeblock: bad size");
4581 if (fstype == UFS1) {
4582 if (dp1->di_size != inodedep->id_savedsize) {
4583 dp1->di_size = inodedep->id_savedsize;
4584 hadchanges = 1;
4585 }
4586 } else {
4587 if (dp2->di_size != inodedep->id_savedsize) {
4588 dp2->di_size = inodedep->id_savedsize;
4589 hadchanges = 1;
4590 }
4591 if (dp2->di_extsize != inodedep->id_savedextsize) {
4592 dp2->di_extsize = inodedep->id_savedextsize;
4593 hadchanges = 1;
4594 }
4595 }
4596 inodedep->id_savedsize = -1;
4597 inodedep->id_savedextsize = -1;
4598 /*
4599 * If there were any rollbacks in the inode block, then it must be
4600 * marked dirty so that its will eventually get written back in
4601 * its correct form.
4602 */
4603 if (hadchanges)
4604 bdirty(bp);
4605 /*
4606 * Process any allocdirects that completed during the update.
4607 */
4608 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
4609 handle_allocdirect_partdone(adp);
4610 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
4611 handle_allocdirect_partdone(adp);
4612 /*
4613 * Process deallocations that were held pending until the
4614 * inode had been written to disk. Freeing of the inode
4615 * is delayed until after all blocks have been freed to
4616 * avoid creation of new <vfsid, inum, lbn> triples
4617 * before the old ones have been deleted.
4618 */
4619 filefree = NULL;
4620 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
4621 WORKLIST_REMOVE(wk);
4622 switch (wk->wk_type) {
4623
4624 case D_FREEFILE:
4625 /*
4626 * We defer adding filefree to the worklist until
4627 * all other additions have been made to ensure
4628 * that it will be done after all the old blocks
4629 * have been freed.
4630 */
4631 if (filefree != NULL)
4632 panic("handle_written_inodeblock: filefree");
4633 filefree = wk;
4634 continue;
4635
4636 case D_MKDIR:
4637 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
4638 continue;
4639
4640 case D_DIRADD:
4641 diradd_inode_written(WK_DIRADD(wk), inodedep);
4642 continue;
4643
4644 case D_FREEBLKS:
4645 wk->wk_state |= COMPLETE;
4646 if ((wk->wk_state & ALLCOMPLETE) != ALLCOMPLETE)
4647 continue;
4648 /* -- fall through -- */
4649 case D_FREEFRAG:
4650 case D_DIRREM:
4651 add_to_worklist(wk);
4652 continue;
4653
4654 case D_NEWDIRBLK:
4655 free_newdirblk(WK_NEWDIRBLK(wk));
4656 continue;
4657
4658 default:
4659 panic("handle_written_inodeblock: Unknown type %s",
4660 TYPENAME(wk->wk_type));
4661 /* NOTREACHED */
4662 }
4663 }
4664 if (filefree != NULL) {
4665 if (free_inodedep(inodedep) == 0)
4666 panic("handle_written_inodeblock: live inodedep");
4667 add_to_worklist(filefree);
4668 return (0);
4669 }
4670
4671 /*
4672 * If no outstanding dependencies, free it.
4673 */
4674 if (free_inodedep(inodedep) ||
4675 (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
4676 TAILQ_FIRST(&inodedep->id_extupdt) == 0))
4677 return (0);
4678 return (hadchanges);
4679}
4680
4681/*
4682 * Process a diradd entry after its dependent inode has been written.
4683 * This routine must be called with splbio interrupts blocked.
4684 */
4685static void
4686diradd_inode_written(dap, inodedep)
4687 struct diradd *dap;
4688 struct inodedep *inodedep;
4689{
4690 struct pagedep *pagedep;
4691
4692 dap->da_state |= COMPLETE;
4693 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4694 if (dap->da_state & DIRCHG)
4695 pagedep = dap->da_previous->dm_pagedep;
4696 else
4697 pagedep = dap->da_pagedep;
4698 LIST_REMOVE(dap, da_pdlist);
4699 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4700 }
4701 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
4702}
4703
4704/*
4705 * Handle the completion of a mkdir dependency.
4706 */
4707static void
4708handle_written_mkdir(mkdir, type)
4709 struct mkdir *mkdir;
4710 int type;
4711{
4712 struct diradd *dap;
4713 struct pagedep *pagedep;
4714
4715 if (mkdir->md_state != type)
4716 panic("handle_written_mkdir: bad type");
4717 dap = mkdir->md_diradd;
4718 dap->da_state &= ~type;
4719 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
4720 dap->da_state |= DEPCOMPLETE;
4721 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4722 if (dap->da_state & DIRCHG)
4723 pagedep = dap->da_previous->dm_pagedep;
4724 else
4725 pagedep = dap->da_pagedep;
4726 LIST_REMOVE(dap, da_pdlist);
4727 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
4728 }
4729 LIST_REMOVE(mkdir, md_mkdirs);
4730 WORKITEM_FREE(mkdir, D_MKDIR);
4731}
4732
4733/*
4734 * Called from within softdep_disk_write_complete above.
4735 * A write operation was just completed. Removed inodes can
4736 * now be freed and associated block pointers may be committed.
4737 * Note that this routine is always called from interrupt level
4738 * with further splbio interrupts blocked.
4739 */
4740static int
4741handle_written_filepage(pagedep, bp)
4742 struct pagedep *pagedep;
4743 struct buf *bp; /* buffer containing the written page */
4744{
4745 struct dirrem *dirrem;
4746 struct diradd *dap, *nextdap;
4747 struct direct *ep;
4748 int i, chgs;
4749
4750 if ((pagedep->pd_state & IOSTARTED) == 0)
4751 panic("handle_written_filepage: not started");
4752 pagedep->pd_state &= ~IOSTARTED;
4753 /*
4754 * Process any directory removals that have been committed.
4755 */
4756 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
4757 LIST_REMOVE(dirrem, dm_next);
4758 dirrem->dm_dirinum = pagedep->pd_ino;
4759 add_to_worklist(&dirrem->dm_list);
4760 }
4761 /*
4762 * Free any directory additions that have been committed.
4763 * If it is a newly allocated block, we have to wait until
4764 * the on-disk directory inode claims the new block.
4765 */
4766 if ((pagedep->pd_state & NEWBLOCK) == 0)
4767 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
4768 free_diradd(dap);
4769 /*
4770 * Uncommitted directory entries must be restored.
4771 */
4772 for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
4773 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
4774 dap = nextdap) {
4775 nextdap = LIST_NEXT(dap, da_pdlist);
4776 if (dap->da_state & ATTACHED)
4777 panic("handle_written_filepage: attached");
4778 ep = (struct direct *)
4779 ((char *)bp->b_data + dap->da_offset);
4780 ep->d_ino = dap->da_newinum;
4781 dap->da_state &= ~UNDONE;
4782 dap->da_state |= ATTACHED;
4783 chgs = 1;
4784 /*
4785 * If the inode referenced by the directory has
4786 * been written out, then the dependency can be
4787 * moved to the pending list.
4788 */
4789 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
4790 LIST_REMOVE(dap, da_pdlist);
4791 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
4792 da_pdlist);
4793 }
4794 }
4795 }
4796 /*
4797 * If there were any rollbacks in the directory, then it must be
4798 * marked dirty so that its will eventually get written back in
4799 * its correct form.
4800 */
4801 if (chgs) {
4802 if ((bp->b_flags & B_DELWRI) == 0)
4803 stat_dir_entry++;
4804 bdirty(bp);
4805 return (1);
4806 }
4807 /*
4808 * If we are not waiting for a new directory block to be
4809 * claimed by its inode, then the pagedep will be freed.
4810 * Otherwise it will remain to track any new entries on
4811 * the page in case they are fsync'ed.
4812 */
4813 if ((pagedep->pd_state & NEWBLOCK) == 0) {
4814 LIST_REMOVE(pagedep, pd_hash);
4815 WORKITEM_FREE(pagedep, D_PAGEDEP);
4816 }
4817 return (0);
4818}
4819
4820/*
4821 * Writing back in-core inode structures.
4822 *
4823 * The filesystem only accesses an inode's contents when it occupies an
4824 * "in-core" inode structure. These "in-core" structures are separate from
4825 * the page frames used to cache inode blocks. Only the latter are
4826 * transferred to/from the disk. So, when the updated contents of the
4827 * "in-core" inode structure are copied to the corresponding in-memory inode
4828 * block, the dependencies are also transferred. The following procedure is
4829 * called when copying a dirty "in-core" inode to a cached inode block.
4830 */
4831
4832/*
4833 * Called when an inode is loaded from disk. If the effective link count
4834 * differed from the actual link count when it was last flushed, then we
4835 * need to ensure that the correct effective link count is put back.
4836 */
4837void
4838softdep_load_inodeblock(ip)
4839 struct inode *ip; /* the "in_core" copy of the inode */
4840{
4841 struct inodedep *inodedep;
4842
4843 /*
4844 * Check for alternate nlink count.
4845 */
4846 ip->i_effnlink = ip->i_nlink;
4847 ACQUIRE_LOCK(&lk);
4848 if (inodedep_lookup(UFSTOVFS(ip->i_ump),
4849 ip->i_number, 0, &inodedep) == 0) {
4850 FREE_LOCK(&lk);
4851 return;
4852 }
4853 ip->i_effnlink -= inodedep->id_nlinkdelta;
4854 if (inodedep->id_state & SPACECOUNTED)
4855 ip->i_flag |= IN_SPACECOUNTED;
4856 FREE_LOCK(&lk);
4857}
4858
4859/*
4860 * This routine is called just before the "in-core" inode
4861 * information is to be copied to the in-memory inode block.
4862 * Recall that an inode block contains several inodes. If
4863 * the force flag is set, then the dependencies will be
4864 * cleared so that the update can always be made. Note that
4865 * the buffer is locked when this routine is called, so we
4866 * will never be in the middle of writing the inode block
4867 * to disk.
4868 */
4869void
4870softdep_update_inodeblock(ip, bp, waitfor)
4871 struct inode *ip; /* the "in_core" copy of the inode */
4872 struct buf *bp; /* the buffer containing the inode block */
4873 int waitfor; /* nonzero => update must be allowed */
4874{
4875 struct inodedep *inodedep;
4876 struct worklist *wk;
4877 struct mount *mp;
4878 struct buf *ibp;
4879 int error;
4880
4881 /*
4882 * If the effective link count is not equal to the actual link
4883 * count, then we must track the difference in an inodedep while
4884 * the inode is (potentially) tossed out of the cache. Otherwise,
4885 * if there is no existing inodedep, then there are no dependencies
4886 * to track.
4887 */
4888 mp = UFSTOVFS(ip->i_ump);
4889 ACQUIRE_LOCK(&lk);
4890 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
4891 FREE_LOCK(&lk);
4892 if (ip->i_effnlink != ip->i_nlink)
4893 panic("softdep_update_inodeblock: bad link count");
4894 return;
4895 }
4896 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
4897 panic("softdep_update_inodeblock: bad delta");
4898 /*
4899 * Changes have been initiated. Anything depending on these
4900 * changes cannot occur until this inode has been written.
4901 */
4902 inodedep->id_state &= ~COMPLETE;
4903 if ((inodedep->id_state & ONWORKLIST) == 0)
4904 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
4905 /*
4906 * Any new dependencies associated with the incore inode must
4907 * now be moved to the list associated with the buffer holding
4908 * the in-memory copy of the inode. Once merged process any
4909 * allocdirects that are completed by the merger.
4910 */
4911 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
4912 if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
4913 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4914 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
4915 if (!TAILQ_EMPTY(&inodedep->id_extupdt))
4916 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt));
4917 /*
4918 * Now that the inode has been pushed into the buffer, the
4919 * operations dependent on the inode being written to disk
4920 * can be moved to the id_bufwait so that they will be
4921 * processed when the buffer I/O completes.
4922 */
4923 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4924 WORKLIST_REMOVE(wk);
4925 WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4926 }
4927 /*
4928 * Newly allocated inodes cannot be written until the bitmap
4929 * that allocates them have been written (indicated by
4930 * DEPCOMPLETE being set in id_state). If we are doing a
4931 * forced sync (e.g., an fsync on a file), we force the bitmap
4932 * to be written so that the update can be done.
4933 */
4934 if (waitfor == 0) {
4935 FREE_LOCK(&lk);
4936 return;
4937 }
4938retry:
4939 if ((inodedep->id_state & DEPCOMPLETE) != 0) {
4940 FREE_LOCK(&lk);
4941 return;
4942 }
4943 ibp = inodedep->id_buf;
4944 ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
4945 if (ibp == NULL) {
4946 /*
4947 * If ibp came back as NULL, the dependency could have been
4948 * freed while we slept. Look it up again, and check to see
4949 * that it has completed.
4950 */
4951 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
4952 goto retry;
4953 FREE_LOCK(&lk);
4954 return;
4955 }
4956 FREE_LOCK(&lk);
4957 if ((error = bwrite(ibp)) != 0)
4958 softdep_error("softdep_update_inodeblock: bwrite", error);
4959}
4960
4961/*
4962 * Merge the a new inode dependency list (such as id_newinoupdt) into an
4963 * old inode dependency list (such as id_inoupdt). This routine must be
4964 * called with splbio interrupts blocked.
4965 */
4966static void
4967merge_inode_lists(newlisthead, oldlisthead)
4968 struct allocdirectlst *newlisthead;
4969 struct allocdirectlst *oldlisthead;
4970{
4971 struct allocdirect *listadp, *newadp;
4972
4973 newadp = TAILQ_FIRST(newlisthead);
4974 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
4975 if (listadp->ad_lbn < newadp->ad_lbn) {
4976 listadp = TAILQ_NEXT(listadp, ad_next);
4977 continue;
4978 }
4979 TAILQ_REMOVE(newlisthead, newadp, ad_next);
4980 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4981 if (listadp->ad_lbn == newadp->ad_lbn) {
4982 allocdirect_merge(oldlisthead, newadp,
4983 listadp);
4984 listadp = newadp;
4985 }
4986 newadp = TAILQ_FIRST(newlisthead);
4987 }
4988 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
4989 TAILQ_REMOVE(newlisthead, newadp, ad_next);
4990 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
4991 }
4992}
4993
4994/*
4995 * If we are doing an fsync, then we must ensure that any directory
4996 * entries for the inode have been written after the inode gets to disk.
4997 */
4998int
4999softdep_fsync(vp)
5000 struct vnode *vp; /* the "in_core" copy of the inode */
5001{
5002 struct inodedep *inodedep;
5003 struct pagedep *pagedep;
5004 struct worklist *wk;
5005 struct diradd *dap;
5006 struct mount *mp;
5007 struct vnode *pvp;
5008 struct inode *ip;
5009 struct buf *bp;
5010 struct fs *fs;
5011 struct thread *td = curthread;
5012 int error, flushparent, pagedep_new_block;
5013 ino_t parentino;
5014 ufs_lbn_t lbn;
5015
5016 ip = VTOI(vp);
5017 fs = ip->i_fs;
5018 mp = vp->v_mount;
5019 ACQUIRE_LOCK(&lk);
5020 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
5021 FREE_LOCK(&lk);
5022 return (0);
5023 }
5024 if (!LIST_EMPTY(&inodedep->id_inowait) ||
5025 !LIST_EMPTY(&inodedep->id_bufwait) ||
5026 !TAILQ_EMPTY(&inodedep->id_extupdt) ||
5027 !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
5028 !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
5029 !TAILQ_EMPTY(&inodedep->id_newinoupdt))
5030 panic("softdep_fsync: pending ops");
5031 for (error = 0, flushparent = 0; ; ) {
5032 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
5033 break;
5034 if (wk->wk_type != D_DIRADD)
5035 panic("softdep_fsync: Unexpected type %s",
5036 TYPENAME(wk->wk_type));
5037 dap = WK_DIRADD(wk);
5038 /*
5039 * Flush our parent if this directory entry has a MKDIR_PARENT
5040 * dependency or is contained in a newly allocated block.
5041 */
5042 if (dap->da_state & DIRCHG)
5043 pagedep = dap->da_previous->dm_pagedep;
5044 else
5045 pagedep = dap->da_pagedep;
5046 parentino = pagedep->pd_ino;
5047 lbn = pagedep->pd_lbn;
5048 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
5049 panic("softdep_fsync: dirty");
5050 if ((dap->da_state & MKDIR_PARENT) ||
5051 (pagedep->pd_state & NEWBLOCK))
5052 flushparent = 1;
5053 else
5054 flushparent = 0;
5055 /*
5056 * If we are being fsync'ed as part of vgone'ing this vnode,
5057 * then we will not be able to release and recover the
5058 * vnode below, so we just have to give up on writing its
5059 * directory entry out. It will eventually be written, just
5060 * not now, but then the user was not asking to have it
5061 * written, so we are not breaking any promises.
5062 */
5063 if (vp->v_iflag & VI_DOOMED)
5064 break;
5065 /*
5066 * We prevent deadlock by always fetching inodes from the
5067 * root, moving down the directory tree. Thus, when fetching
5068 * our parent directory, we first try to get the lock. If
5069 * that fails, we must unlock ourselves before requesting
5070 * the lock on our parent. See the comment in ufs_lookup
5071 * for details on possible races.
5072 */
5073 FREE_LOCK(&lk);
5074 if (ffs_vget(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) {
5075 VOP_UNLOCK(vp, 0, td);
5076 error = ffs_vget(mp, parentino, LK_EXCLUSIVE, &pvp);
5077 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
5078 if (error != 0)
5079 return (error);
5080 }
5081 /*
5082 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
5083 * that are contained in direct blocks will be resolved by
5084 * doing a ffs_update. Pagedeps contained in indirect blocks
5085 * may require a complete sync'ing of the directory. So, we
5086 * try the cheap and fast ffs_update first, and if that fails,
5087 * then we do the slower ffs_syncvnode of the directory.
5088 */
5089 if (flushparent) {
5090 int locked;
5091
5092 if ((error = ffs_update(pvp, 1)) != 0) {
5093 vput(pvp);
5094 return (error);
5095 }
5096 ACQUIRE_LOCK(&lk);
5097 locked = 1;
5098 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
5099 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
5100 if (wk->wk_type != D_DIRADD)
5101 panic("softdep_fsync: Unexpected type %s",
5102 TYPENAME(wk->wk_type));
5103 dap = WK_DIRADD(wk);
5104 if (dap->da_state & DIRCHG)
5105 pagedep = dap->da_previous->dm_pagedep;
5106 else
5107 pagedep = dap->da_pagedep;
5108 pagedep_new_block = pagedep->pd_state & NEWBLOCK;
5109 FREE_LOCK(&lk);
5110 locked = 0;
5111 if (pagedep_new_block &&
5112 (error = ffs_syncvnode(pvp, MNT_WAIT))) {
5113 vput(pvp);
5114 return (error);
5115 }
5116 }
5117 }
5118 if (locked)
5119 FREE_LOCK(&lk);
5120 }
5121 /*
5122 * Flush directory page containing the inode's name.
5123 */
5124 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
5125 &bp);
5126 if (error == 0)
5127 error = bwrite(bp);
5128 else
5129 brelse(bp);
5130 vput(pvp);
5131 if (error != 0)
5132 return (error);
5133 ACQUIRE_LOCK(&lk);
5134 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
5135 break;
5136 }
5137 FREE_LOCK(&lk);
5138 return (0);
5139}
5140
5141/*
5142 * Flush all the dirty bitmaps associated with the block device
5143 * before flushing the rest of the dirty blocks so as to reduce
5144 * the number of dependencies that will have to be rolled back.
5145 */
5146void
5147softdep_fsync_mountdev(vp)
5148 struct vnode *vp;
5149{
5150 struct buf *bp, *nbp;
5151 struct worklist *wk;
5152
5153 if (!vn_isdisk(vp, NULL))
5154 panic("softdep_fsync_mountdev: vnode not a disk");
5155restart:
5156 ACQUIRE_LOCK(&lk);
5157 VI_LOCK(vp);
5158 TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) {
5159 /*
5160 * If it is already scheduled, skip to the next buffer.
5161 */
5162 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
5163 continue;
5164
5165 if ((bp->b_flags & B_DELWRI) == 0)
5166 panic("softdep_fsync_mountdev: not dirty");
5167 /*
5168 * We are only interested in bitmaps with outstanding
5169 * dependencies.
5170 */
5171 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
5172 wk->wk_type != D_BMSAFEMAP ||
5173 (bp->b_vflags & BV_BKGRDINPROG)) {
5174 BUF_UNLOCK(bp);
5175 continue;
5176 }
5177 VI_UNLOCK(vp);
5178 FREE_LOCK(&lk);
5179 bremfree(bp);
5180 (void) bawrite(bp);
5181 goto restart;
5182 }
5183 FREE_LOCK(&lk);
5184 drain_output(vp);
5185 VI_UNLOCK(vp);
5186}
5187
5188/*
5189 * This routine is called when we are trying to synchronously flush a
5190 * file. This routine must eliminate any filesystem metadata dependencies
5191 * so that the syncing routine can succeed by pushing the dirty blocks
5192 * associated with the file. If any I/O errors occur, they are returned.
5193 */
5194int
5195softdep_sync_metadata(struct vnode *vp)
5196{
5197 struct pagedep *pagedep;
5198 struct allocdirect *adp;
5199 struct allocindir *aip;
5200 struct buf *bp, *nbp;
5201 struct worklist *wk;
5202 int i, error, waitfor;
5203
5204 if (!DOINGSOFTDEP(vp))
5205 return (0);
5206 /*
5207 * Ensure that any direct block dependencies have been cleared.
5208 */
5209 ACQUIRE_LOCK(&lk);
5210 if ((error = flush_inodedep_deps(vp->v_mount, VTOI(vp)->i_number))) {
5211 FREE_LOCK(&lk);
5212 return (error);
5213 }
5214 FREE_LOCK(&lk);
5215 /*
5216 * For most files, the only metadata dependencies are the
5217 * cylinder group maps that allocate their inode or blocks.
5218 * The block allocation dependencies can be found by traversing
5219 * the dependency lists for any buffers that remain on their
5220 * dirty buffer list. The inode allocation dependency will
5221 * be resolved when the inode is updated with MNT_WAIT.
5222 * This work is done in two passes. The first pass grabs most
5223 * of the buffers and begins asynchronously writing them. The
5224 * only way to wait for these asynchronous writes is to sleep
5225 * on the filesystem vnode which may stay busy for a long time
5226 * if the filesystem is active. So, instead, we make a second
5227 * pass over the dependencies blocking on each write. In the
5228 * usual case we will be blocking against a write that we
5229 * initiated, so when it is done the dependency will have been
5230 * resolved. Thus the second pass is expected to end quickly.
5231 */
5232 waitfor = MNT_NOWAIT;
5233
5234top:
5235 /*
5236 * We must wait for any I/O in progress to finish so that
5237 * all potential buffers on the dirty list will be visible.
5238 */
5239 VI_LOCK(vp);
5240 drain_output(vp);
5241 while ((bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd)) != NULL) {
5242 bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT);
5243 if (bp)
5244 break;
5245 }
5246 VI_UNLOCK(vp);
5247 if (bp == NULL)
5248 return (0);
5249loop:
5250 /* While syncing snapshots, we must allow recursive lookups */
5251 bp->b_lock.lk_flags |= LK_CANRECURSE;
5252 ACQUIRE_LOCK(&lk);
5253 /*
5254 * As we hold the buffer locked, none of its dependencies
5255 * will disappear.
5256 */
5257 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5258 switch (wk->wk_type) {
5259
5260 case D_ALLOCDIRECT:
5261 adp = WK_ALLOCDIRECT(wk);
5262 if (adp->ad_state & DEPCOMPLETE)
5263 continue;
5264 nbp = adp->ad_buf;
5265 nbp = getdirtybuf(nbp, &lk, waitfor);
5266 if (nbp == NULL)
5267 continue;
5268 FREE_LOCK(&lk);
5269 if (waitfor == MNT_NOWAIT) {
5270 bawrite(nbp);
5271 } else if ((error = bwrite(nbp)) != 0) {
5272 break;
5273 }
5274 ACQUIRE_LOCK(&lk);
5275 continue;
5276
5277 case D_ALLOCINDIR:
5278 aip = WK_ALLOCINDIR(wk);
5279 if (aip->ai_state & DEPCOMPLETE)
5280 continue;
5281 nbp = aip->ai_buf;
5282 nbp = getdirtybuf(nbp, &lk, waitfor);
5283 if (nbp == NULL)
5284 continue;
5285 FREE_LOCK(&lk);
5286 if (waitfor == MNT_NOWAIT) {
5287 bawrite(nbp);
5288 } else if ((error = bwrite(nbp)) != 0) {
5289 break;
5290 }
5291 ACQUIRE_LOCK(&lk);
5292 continue;
5293
5294 case D_INDIRDEP:
5295 restart:
5296
5297 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
5298 if (aip->ai_state & DEPCOMPLETE)
5299 continue;
5300 nbp = aip->ai_buf;
5301 nbp = getdirtybuf(nbp, &lk, MNT_WAIT);
5302 if (nbp == NULL)
5303 goto restart;
5304 FREE_LOCK(&lk);
5305 if ((error = bwrite(nbp)) != 0) {
5306 goto loop_end;
5307 }
5308 ACQUIRE_LOCK(&lk);
5309 goto restart;
5310 }
5311 continue;
5312
5313 case D_INODEDEP:
5314 if ((error = flush_inodedep_deps(wk->wk_mp,
5315 WK_INODEDEP(wk)->id_ino)) != 0) {
5316 FREE_LOCK(&lk);
5317 break;
5318 }
5319 continue;
5320
5321 case D_PAGEDEP:
5322 /*
5323 * We are trying to sync a directory that may
5324 * have dependencies on both its own metadata
5325 * and/or dependencies on the inodes of any
5326 * recently allocated files. We walk its diradd
5327 * lists pushing out the associated inode.
5328 */
5329 pagedep = WK_PAGEDEP(wk);
5330 for (i = 0; i < DAHASHSZ; i++) {
5331 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
5332 continue;
5333 if ((error =
5334 flush_pagedep_deps(vp, wk->wk_mp,
5335 &pagedep->pd_diraddhd[i]))) {
5336 FREE_LOCK(&lk);
5337 goto loop_end;
5338 }
5339 }
5340 continue;
5341
5342 case D_MKDIR:
5343 /*
5344 * This case should never happen if the vnode has
5345 * been properly sync'ed. However, if this function
5346 * is used at a place where the vnode has not yet
5347 * been sync'ed, this dependency can show up. So,
5348 * rather than panic, just flush it.
5349 */
5350 nbp = WK_MKDIR(wk)->md_buf;
5351 nbp = getdirtybuf(nbp, &lk, waitfor);
5352 if (nbp == NULL)
5353 continue;
5354 FREE_LOCK(&lk);
5355 if (waitfor == MNT_NOWAIT) {
5356 bawrite(nbp);
5357 } else if ((error = bwrite(nbp)) != 0) {
5358 break;
5359 }
5360 ACQUIRE_LOCK(&lk);
5361 continue;
5362
5363 case D_BMSAFEMAP:
5364 /*
5365 * This case should never happen if the vnode has
5366 * been properly sync'ed. However, if this function
5367 * is used at a place where the vnode has not yet
5368 * been sync'ed, this dependency can show up. So,
5369 * rather than panic, just flush it.
5370 */
5371 nbp = WK_BMSAFEMAP(wk)->sm_buf;
5372 nbp = getdirtybuf(nbp, &lk, waitfor);
5373 if (nbp == NULL)
5374 continue;
5375 FREE_LOCK(&lk);
5376 if (waitfor == MNT_NOWAIT) {
5377 bawrite(nbp);
5378 } else if ((error = bwrite(nbp)) != 0) {
5379 break;
5380 }
5381 ACQUIRE_LOCK(&lk);
5382 continue;
5383
5384 default:
5385 panic("softdep_sync_metadata: Unknown type %s",
5386 TYPENAME(wk->wk_type));
5387 /* NOTREACHED */
5388 }
5389 loop_end:
5390 /* We reach here only in error and unlocked */
5391 if (error == 0)
5392 panic("softdep_sync_metadata: zero error");
5393 bp->b_lock.lk_flags &= ~LK_CANRECURSE;
5394 bawrite(bp);
5395 return (error);
5396 }
5397 FREE_LOCK(&lk);
5398 VI_LOCK(vp);
5399 while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) {
5400 nbp = getdirtybuf(nbp, VI_MTX(vp), MNT_WAIT);
5401 if (nbp)
5402 break;
5403 }
5404 VI_UNLOCK(vp);
5405 bp->b_lock.lk_flags &= ~LK_CANRECURSE;
5406 bawrite(bp);
5407 if (nbp != NULL) {
5408 bp = nbp;
5409 goto loop;
5410 }
5411 /*
5412 * The brief unlock is to allow any pent up dependency
5413 * processing to be done. Then proceed with the second pass.
5414 */
5415 if (waitfor == MNT_NOWAIT) {
5416 waitfor = MNT_WAIT;
5417 goto top;
5418 }
5419
5420 /*
5421 * If we have managed to get rid of all the dirty buffers,
5422 * then we are done. For certain directories and block
5423 * devices, we may need to do further work.
5424 *
5425 * We must wait for any I/O in progress to finish so that
5426 * all potential buffers on the dirty list will be visible.
5427 */
5428 VI_LOCK(vp);
5429 drain_output(vp);
5430 VI_UNLOCK(vp);
5431 return (0);
5432}
5433
5434/*
5435 * Flush the dependencies associated with an inodedep.
5436 * Called with splbio blocked.
5437 */
5438static int
5439flush_inodedep_deps(mp, ino)
5440 struct mount *mp;
5441 ino_t ino;
5442{
5443 struct inodedep *inodedep;
5444 int error, waitfor;
5445
5446 /*
5447 * This work is done in two passes. The first pass grabs most
5448 * of the buffers and begins asynchronously writing them. The
5449 * only way to wait for these asynchronous writes is to sleep
5450 * on the filesystem vnode which may stay busy for a long time
5451 * if the filesystem is active. So, instead, we make a second
5452 * pass over the dependencies blocking on each write. In the
5453 * usual case we will be blocking against a write that we
5454 * initiated, so when it is done the dependency will have been
5455 * resolved. Thus the second pass is expected to end quickly.
5456 * We give a brief window at the top of the loop to allow
5457 * any pending I/O to complete.
5458 */
5459 for (error = 0, waitfor = MNT_NOWAIT; ; ) {
5460 if (error)
5461 return (error);
5462 FREE_LOCK(&lk);
5463 ACQUIRE_LOCK(&lk);
5464 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
5465 return (0);
5466 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
5467 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
5468 flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
5469 flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
5470 continue;
5471 /*
5472 * If pass2, we are done, otherwise do pass 2.
5473 */
5474 if (waitfor == MNT_WAIT)
5475 break;
5476 waitfor = MNT_WAIT;
5477 }
5478 /*
5479 * Try freeing inodedep in case all dependencies have been removed.
5480 */
5481 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
5482 (void) free_inodedep(inodedep);
5483 return (0);
5484}
5485
5486/*
5487 * Flush an inode dependency list.
5488 * Called with splbio blocked.
5489 */
5490static int
5491flush_deplist(listhead, waitfor, errorp)
5492 struct allocdirectlst *listhead;
5493 int waitfor;
5494 int *errorp;
5495{
5496 struct allocdirect *adp;
5497 struct buf *bp;
5498
5499 mtx_assert(&lk, MA_OWNED);
5500 TAILQ_FOREACH(adp, listhead, ad_next) {
5501 if (adp->ad_state & DEPCOMPLETE)
5502 continue;
5503 bp = adp->ad_buf;
5504 bp = getdirtybuf(bp, &lk, waitfor);
5505 if (bp == NULL) {
5506 if (waitfor == MNT_NOWAIT)
5507 continue;
5508 return (1);
5509 }
5510 FREE_LOCK(&lk);
5511 if (waitfor == MNT_NOWAIT) {
5512 bawrite(bp);
5513 } else if ((*errorp = bwrite(bp)) != 0) {
5514 ACQUIRE_LOCK(&lk);
5515 return (1);
5516 }
5517 ACQUIRE_LOCK(&lk);
5518 return (1);
5519 }
5520 return (0);
5521}
5522
5523/*
5524 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
5525 * Called with splbio blocked.
5526 */
5527static int
5528flush_pagedep_deps(pvp, mp, diraddhdp)
5529 struct vnode *pvp;
5530 struct mount *mp;
5531 struct diraddhd *diraddhdp;
5532{
5533 struct inodedep *inodedep;
5534 struct ufsmount *ump;
5535 struct diradd *dap;
5536 struct vnode *vp;
5537 int error = 0;
5538 struct buf *bp;
5539 ino_t inum;
5540 struct worklist *wk;
5541
5542 ump = VFSTOUFS(mp);
5543 while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
5544 /*
5545 * Flush ourselves if this directory entry
5546 * has a MKDIR_PARENT dependency.
5547 */
5548 if (dap->da_state & MKDIR_PARENT) {
5549 FREE_LOCK(&lk);
5550 if ((error = ffs_update(pvp, 1)) != 0)
5551 break;
5552 ACQUIRE_LOCK(&lk);
5553 /*
5554 * If that cleared dependencies, go on to next.
5555 */
5556 if (dap != LIST_FIRST(diraddhdp))
5557 continue;
5558 if (dap->da_state & MKDIR_PARENT)
5559 panic("flush_pagedep_deps: MKDIR_PARENT");
5560 }
5561 /*
5562 * A newly allocated directory must have its "." and
5563 * ".." entries written out before its name can be
5564 * committed in its parent. We do not want or need
5565 * the full semantics of a synchronous ffs_syncvnode as
5566 * that may end up here again, once for each directory
5567 * level in the filesystem. Instead, we push the blocks
5568 * and wait for them to clear. We have to fsync twice
5569 * because the first call may choose to defer blocks
5570 * that still have dependencies, but deferral will
5571 * happen at most once.
5572 */
5573 inum = dap->da_newinum;
5574 if (dap->da_state & MKDIR_BODY) {
5575 FREE_LOCK(&lk);
5576 if ((error = ffs_vget(mp, inum, LK_EXCLUSIVE, &vp)))
5577 break;
5578 if ((error=ffs_syncvnode(vp, MNT_NOWAIT)) ||
5579 (error=ffs_syncvnode(vp, MNT_NOWAIT))) {
5580 vput(vp);
5581 break;
5582 }
5583 VI_LOCK(vp);
5584 drain_output(vp);
5585 /*
5586 * If first block is still dirty with a D_MKDIR
5587 * dependency then it needs to be written now.
5588 */
5589 for (;;) {
5590 error = 0;
5591 bp = gbincore(&vp->v_bufobj, 0);
5592 if (bp == NULL)
5593 break; /* First block not present */
5594 error = BUF_LOCK(bp,
5595 LK_EXCLUSIVE |
5596 LK_SLEEPFAIL |
5597 LK_INTERLOCK,
5598 VI_MTX(vp));
5599 VI_LOCK(vp);
5600 if (error == ENOLCK)
5601 continue; /* Slept, retry */
5602 if (error != 0)
5603 break; /* Failed */
5604 if ((bp->b_flags & B_DELWRI) == 0) {
5605 BUF_UNLOCK(bp);
5606 break; /* Buffer not dirty */
5607 }
5608 for (wk = LIST_FIRST(&bp->b_dep);
5609 wk != NULL;
5610 wk = LIST_NEXT(wk, wk_list))
5611 if (wk->wk_type == D_MKDIR)
5612 break;
5613 if (wk == NULL)
5614 BUF_UNLOCK(bp); /* Dependency gone */
5615 else {
5616 /*
5617 * D_MKDIR dependency remains,
5618 * must write buffer to stable
5619 * storage.
5620 */
5621 VI_UNLOCK(vp);
5622 bremfree(bp);
5623 error = bwrite(bp);
5624 VI_LOCK(vp);
5625 }
5626 break;
5627 }
5628 VI_UNLOCK(vp);
5629 vput(vp);
5630 if (error != 0)
5631 break; /* Flushing of first block failed */
5632 ACQUIRE_LOCK(&lk);
5633 /*
5634 * If that cleared dependencies, go on to next.
5635 */
5636 if (dap != LIST_FIRST(diraddhdp))
5637 continue;
5638 if (dap->da_state & MKDIR_BODY)
5639 panic("flush_pagedep_deps: MKDIR_BODY");
5640 }
5641 /*
5642 * Flush the inode on which the directory entry depends.
5643 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
5644 * the only remaining dependency is that the updated inode
5645 * count must get pushed to disk. The inode has already
5646 * been pushed into its inode buffer (via VOP_UPDATE) at
5647 * the time of the reference count change. So we need only
5648 * locate that buffer, ensure that there will be no rollback
5649 * caused by a bitmap dependency, then write the inode buffer.
5650 */
5651retry:
5652 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
5653 panic("flush_pagedep_deps: lost inode");
5654 /*
5655 * If the inode still has bitmap dependencies,
5656 * push them to disk.
5657 */
5658 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5659 bp = inodedep->id_buf;
5660 bp = getdirtybuf(bp, &lk, MNT_WAIT);
5661 if (bp == NULL)
5662 goto retry;
5663 FREE_LOCK(&lk);
5664 if ((error = bwrite(bp)) != 0)
5665 break;
5666 ACQUIRE_LOCK(&lk);
5667 if (dap != LIST_FIRST(diraddhdp))
5668 continue;
5669 }
5670 /*
5671 * If the inode is still sitting in a buffer waiting
5672 * to be written, push it to disk.
5673 */
5674 FREE_LOCK(&lk);
5675 if ((error = bread(ump->um_devvp,
5676 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
5677 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) {
5678 brelse(bp);
5679 break;
5680 }
5681 if ((error = bwrite(bp)) != 0)
5682 break;
5683 ACQUIRE_LOCK(&lk);
5684 /*
5685 * If we have failed to get rid of all the dependencies
5686 * then something is seriously wrong.
5687 */
5688 if (dap == LIST_FIRST(diraddhdp))
5689 panic("flush_pagedep_deps: flush failed");
5690 }
5691 if (error)
5692 ACQUIRE_LOCK(&lk);
5693 return (error);
5694}
5695
5696/*
5697 * A large burst of file addition or deletion activity can drive the
5698 * memory load excessively high. First attempt to slow things down
5699 * using the techniques below. If that fails, this routine requests
5700 * the offending operations to fall back to running synchronously
5701 * until the memory load returns to a reasonable level.
5702 */
5703int
5704softdep_slowdown(vp)
5705 struct vnode *vp;
5706{
5707 int max_softdeps_hard;
5708
5709 ACQUIRE_LOCK(&lk);
5710 max_softdeps_hard = max_softdeps * 11 / 10;
5711 if (num_dirrem < max_softdeps_hard / 2 &&
5712 num_inodedep < max_softdeps_hard &&
5713 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) {
5714 FREE_LOCK(&lk);
5715 return (0);
5716 }
5717 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps)
5718 softdep_speedup();
5719 stat_sync_limit_hit += 1;
5720 FREE_LOCK(&lk);
5721 return (1);
5722}
5723
5724/*
5725 * Called by the allocation routines when they are about to fail
5726 * in the hope that we can free up some disk space.
5727 *
5728 * First check to see if the work list has anything on it. If it has,
5729 * clean up entries until we successfully free some space. Because this
5730 * process holds inodes locked, we cannot handle any remove requests
5731 * that might block on a locked inode as that could lead to deadlock.
5732 * If the worklist yields no free space, encourage the syncer daemon
5733 * to help us. In no event will we try for longer than tickdelay seconds.
5734 */
5735int
5736softdep_request_cleanup(fs, vp)
5737 struct fs *fs;
5738 struct vnode *vp;
5739{
5740 struct ufsmount *ump;
5741 long starttime;
5742 ufs2_daddr_t needed;
5743 int error;
5744
5745 ump = VTOI(vp)->i_ump;
5746 mtx_assert(UFS_MTX(ump), MA_OWNED);
5747 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize;
5748 starttime = time_second + tickdelay;
5749 /*
5750 * If we are being called because of a process doing a
5751 * copy-on-write, then it is not safe to update the vnode
5752 * as we may recurse into the copy-on-write routine.
5753 */
5754 if (!(curthread->td_pflags & TDP_COWINPROGRESS)) {
5755 UFS_UNLOCK(ump);
5756 error = ffs_update(vp, 1);
5757 UFS_LOCK(ump);
5758 if (error != 0)
5759 return (0);
5760 }
5761 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) {
5762 if (time_second > starttime)
5763 return (0);
5764 UFS_UNLOCK(ump);
5765 ACQUIRE_LOCK(&lk);
5766 if (ump->softdep_on_worklist > 0 &&
5767 process_worklist_item(UFSTOVFS(ump), LK_NOWAIT) != -1) {
5768 stat_worklist_push += 1;
5769 FREE_LOCK(&lk);
5770 UFS_LOCK(ump);
5771 continue;
5772 }
5773 request_cleanup(UFSTOVFS(ump), FLUSH_REMOVE_WAIT);
5774 FREE_LOCK(&lk);
5775 UFS_LOCK(ump);
5776 }
5777 return (1);
5778}
5779
5780/*
5781 * If memory utilization has gotten too high, deliberately slow things
5782 * down and speed up the I/O processing.
5783 */
5784extern struct thread *syncertd;
5785static int
5786request_cleanup(mp, resource)
5787 struct mount *mp;
5788 int resource;
5789{
5790 struct thread *td = curthread;
5791 struct ufsmount *ump;
5792
5793 mtx_assert(&lk, MA_OWNED);
5794 /*
5795 * We never hold up the filesystem syncer or buf daemon.
5796 */
5797 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
5798 return (0);
5799 ump = VFSTOUFS(mp);
5800 /*
5801 * First check to see if the work list has gotten backlogged.
5802 * If it has, co-opt this process to help clean up two entries.
5803 * Because this process may hold inodes locked, we cannot
5804 * handle any remove requests that might block on a locked
5805 * inode as that could lead to deadlock. We set TDP_SOFTDEP
5806 * to avoid recursively processing the worklist.
5807 */
5808 if (ump->softdep_on_worklist > max_softdeps / 10) {
5809 td->td_pflags |= TDP_SOFTDEP;
5810 process_worklist_item(mp, LK_NOWAIT);
5811 process_worklist_item(mp, LK_NOWAIT);
5812 td->td_pflags &= ~TDP_SOFTDEP;
5813 stat_worklist_push += 2;
5814 return(1);
5815 }
5816 /*
5817 * Next, we attempt to speed up the syncer process. If that
5818 * is successful, then we allow the process to continue.
5819 */
5820 if (softdep_speedup() && resource != FLUSH_REMOVE_WAIT)
5821 return(0);
5822 /*
5823 * If we are resource constrained on inode dependencies, try
5824 * flushing some dirty inodes. Otherwise, we are constrained
5825 * by file deletions, so try accelerating flushes of directories
5826 * with removal dependencies. We would like to do the cleanup
5827 * here, but we probably hold an inode locked at this point and
5828 * that might deadlock against one that we try to clean. So,
5829 * the best that we can do is request the syncer daemon to do
5830 * the cleanup for us.
5831 */
5832 switch (resource) {
5833
5834 case FLUSH_INODES:
5835 stat_ino_limit_push += 1;
5836 req_clear_inodedeps += 1;
5837 stat_countp = &stat_ino_limit_hit;
5838 break;
5839
5840 case FLUSH_REMOVE:
5841 case FLUSH_REMOVE_WAIT:
5842 stat_blk_limit_push += 1;
5843 req_clear_remove += 1;
5844 stat_countp = &stat_blk_limit_hit;
5845 break;
5846
5847 default:
5848 panic("request_cleanup: unknown type");
5849 }
5850 /*
5851 * Hopefully the syncer daemon will catch up and awaken us.
5852 * We wait at most tickdelay before proceeding in any case.
5853 */
5854 proc_waiting += 1;
5855 if (handle.callout == NULL)
5856 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5857 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
5858 proc_waiting -= 1;
5859 return (1);
5860}
5861
5862/*
5863 * Awaken processes pausing in request_cleanup and clear proc_waiting
5864 * to indicate that there is no longer a timer running.
5865 */
5866static void
5867pause_timer(arg)
5868 void *arg;
5869{
5870
5871 ACQUIRE_LOCK(&lk);
5872 *stat_countp += 1;
5873 wakeup_one(&proc_waiting);
5874 if (proc_waiting > 0)
5875 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
5876 else
5877 handle.callout = NULL;
5878 FREE_LOCK(&lk);
5879}
5880
5881/*
5882 * Flush out a directory with at least one removal dependency in an effort to
5883 * reduce the number of dirrem, freefile, and freeblks dependency structures.
5884 */
5885static void
5886clear_remove(td)
5887 struct thread *td;
5888{
5889 struct pagedep_hashhead *pagedephd;
5890 struct pagedep *pagedep;
5891 static int next = 0;
5892 struct mount *mp;
5893 struct vnode *vp;
5894 int error, cnt;
5895 ino_t ino;
5896
5897 mtx_assert(&lk, MA_OWNED);
5898
5899 for (cnt = 0; cnt < pagedep_hash; cnt++) {
5900 pagedephd = &pagedep_hashtbl[next++];
5901 if (next >= pagedep_hash)
5902 next = 0;
5903 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
5904 if (LIST_EMPTY(&pagedep->pd_dirremhd))
5905 continue;
5906 mp = pagedep->pd_list.wk_mp;
5907 ino = pagedep->pd_ino;
5908 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5909 continue;
5910 FREE_LOCK(&lk);
5911 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp))) {
5912 softdep_error("clear_remove: vget", error);
5913 vn_finished_write(mp);
5914 ACQUIRE_LOCK(&lk);
5915 return;
5916 }
5917 if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
5918 softdep_error("clear_remove: fsync", error);
5919 VI_LOCK(vp);
5920 drain_output(vp);
5921 VI_UNLOCK(vp);
5922 vput(vp);
5923 vn_finished_write(mp);
5924 ACQUIRE_LOCK(&lk);
5925 return;
5926 }
5927 }
5928}
5929
5930/*
5931 * Clear out a block of dirty inodes in an effort to reduce
5932 * the number of inodedep dependency structures.
5933 */
5934static void
5935clear_inodedeps(td)
5936 struct thread *td;
5937{
5938 struct inodedep_hashhead *inodedephd;
5939 struct inodedep *inodedep;
5940 static int next = 0;
5941 struct mount *mp;
5942 struct vnode *vp;
5943 struct fs *fs;
5944 int error, cnt;
5945 ino_t firstino, lastino, ino;
5946
5947 mtx_assert(&lk, MA_OWNED);
5948 /*
5949 * Pick a random inode dependency to be cleared.
5950 * We will then gather up all the inodes in its block
5951 * that have dependencies and flush them out.
5952 */
5953 for (cnt = 0; cnt < inodedep_hash; cnt++) {
5954 inodedephd = &inodedep_hashtbl[next++];
5955 if (next >= inodedep_hash)
5956 next = 0;
5957 if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
5958 break;
5959 }
5960 if (inodedep == NULL)
5961 return;
5962 fs = inodedep->id_fs;
5963 mp = inodedep->id_list.wk_mp;
5964 /*
5965 * Find the last inode in the block with dependencies.
5966 */
5967 firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
5968 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
5969 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
5970 break;
5971 /*
5972 * Asynchronously push all but the last inode with dependencies.
5973 * Synchronously push the last inode with dependencies to ensure
5974 * that the inode block gets written to free up the inodedeps.
5975 */
5976 for (ino = firstino; ino <= lastino; ino++) {
5977 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
5978 continue;
5979 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
5980 continue;
5981 FREE_LOCK(&lk);
5982 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp)) != 0) {
5983 softdep_error("clear_inodedeps: vget", error);
5984 vn_finished_write(mp);
5985 ACQUIRE_LOCK(&lk);
5986 return;
5987 }
5988 if (ino == lastino) {
5989 if ((error = ffs_syncvnode(vp, MNT_WAIT)))
5990 softdep_error("clear_inodedeps: fsync1", error);
5991 } else {
5992 if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
5993 softdep_error("clear_inodedeps: fsync2", error);
5994 VI_LOCK(vp);
5995 drain_output(vp);
5996 VI_UNLOCK(vp);
5997 }
5998 vput(vp);
5999 vn_finished_write(mp);
6000 ACQUIRE_LOCK(&lk);
6001 }
6002}
6003
6004/*
6005 * Function to determine if the buffer has outstanding dependencies
6006 * that will cause a roll-back if the buffer is written. If wantcount
6007 * is set, return number of dependencies, otherwise just yes or no.
6008 */
6009static int
6010softdep_count_dependencies(bp, wantcount)
6011 struct buf *bp;
6012 int wantcount;
6013{
6014 struct worklist *wk;
6015 struct inodedep *inodedep;
6016 struct indirdep *indirdep;
6017 struct allocindir *aip;
6018 struct pagedep *pagedep;
6019 struct diradd *dap;
6020 int i, retval;
6021
6022 retval = 0;
6023 ACQUIRE_LOCK(&lk);
6024 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6025 switch (wk->wk_type) {
6026
6027 case D_INODEDEP:
6028 inodedep = WK_INODEDEP(wk);
6029 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
6030 /* bitmap allocation dependency */
6031 retval += 1;
6032 if (!wantcount)
6033 goto out;
6034 }
6035 if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
6036 /* direct block pointer dependency */
6037 retval += 1;
6038 if (!wantcount)
6039 goto out;
6040 }
6041 if (TAILQ_FIRST(&inodedep->id_extupdt)) {
6042 /* direct block pointer dependency */
6043 retval += 1;
6044 if (!wantcount)
6045 goto out;
6046 }
6047 continue;
6048
6049 case D_INDIRDEP:
6050 indirdep = WK_INDIRDEP(wk);
6051
6052 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
6053 /* indirect block pointer dependency */
6054 retval += 1;
6055 if (!wantcount)
6056 goto out;
6057 }
6058 continue;
6059
6060 case D_PAGEDEP:
6061 pagedep = WK_PAGEDEP(wk);
6062 for (i = 0; i < DAHASHSZ; i++) {
6063
6064 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
6065 /* directory entry dependency */
6066 retval += 1;
6067 if (!wantcount)
6068 goto out;
6069 }
6070 }
6071 continue;
6072
6073 case D_BMSAFEMAP:
6074 case D_ALLOCDIRECT:
6075 case D_ALLOCINDIR:
6076 case D_MKDIR:
6077 /* never a dependency on these blocks */
6078 continue;
6079
6080 default:
6081 panic("softdep_check_for_rollback: Unexpected type %s",
6082 TYPENAME(wk->wk_type));
6083 /* NOTREACHED */
6084 }
6085 }
6086out:
6087 FREE_LOCK(&lk);
6088 return retval;
6089}
6090
6091/*
6092 * Acquire exclusive access to a buffer.
6093 * Must be called with a locked mtx parameter.
6094 * Return acquired buffer or NULL on failure.
6095 */
6096static struct buf *
6097getdirtybuf(bp, mtx, waitfor)
6098 struct buf *bp;
6099 struct mtx *mtx;
6100 int waitfor;
6101{
6102 int error;
6103
6104 mtx_assert(mtx, MA_OWNED);
6105 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
6106 if (waitfor != MNT_WAIT)
6107 return (NULL);
6108 error = BUF_LOCK(bp,
6109 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
6110 /*
6111 * Even if we sucessfully acquire bp here, we have dropped
6112 * mtx, which may violates our guarantee.
6113 */
6114 if (error == 0)
6115 BUF_UNLOCK(bp);
6116 else if (error != ENOLCK)
6117 panic("getdirtybuf: inconsistent lock: %d", error);
6118 mtx_lock(mtx);
6119 return (NULL);
6120 }
6121 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
6122 if (mtx == &lk && waitfor == MNT_WAIT) {
6123 mtx_unlock(mtx);
6124 BO_LOCK(bp->b_bufobj);
6125 BUF_UNLOCK(bp);
6126 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
6127 bp->b_vflags |= BV_BKGRDWAIT;
6128 msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
6129 PRIBIO | PDROP, "getbuf", 0);
6130 } else
6131 BO_UNLOCK(bp->b_bufobj);
6132 mtx_lock(mtx);
6133 return (NULL);
6134 }
6135 BUF_UNLOCK(bp);
6136 if (waitfor != MNT_WAIT)
6137 return (NULL);
6138 /*
6139 * The mtx argument must be bp->b_vp's mutex in
6140 * this case.
6141 */
6142#ifdef DEBUG_VFS_LOCKS
6143 if (bp->b_vp->v_type != VCHR)
6144 ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf");
6145#endif
6146 bp->b_vflags |= BV_BKGRDWAIT;
6147 msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
6148 return (NULL);
6149 }
6150 if ((bp->b_flags & B_DELWRI) == 0) {
6151 BUF_UNLOCK(bp);
6152 return (NULL);
6153 }
6154 bremfree(bp);
6155 return (bp);
6156}
6157
6158
6159/*
6160 * Check if it is safe to suspend the file system now. On entry,
6161 * the vnode interlock for devvp should be held. Return 0 with
6162 * the mount interlock held if the file system can be suspended now,
6163 * otherwise return EAGAIN with the mount interlock held.
6164 */
6165int
6166softdep_check_suspend(struct mount *mp,
6167 struct vnode *devvp,
6168 int softdep_deps,
6169 int softdep_accdeps,
6170 int secondary_writes,
6171 int secondary_accwrites)
6172{
6173 struct bufobj *bo;
6174 struct ufsmount *ump;
6175 int error;
6176
6177 ASSERT_VI_LOCKED(devvp, "softdep_check_suspend");
6178 ump = VFSTOUFS(mp);
6179 bo = &devvp->v_bufobj;
6180
6181 for (;;) {
6182 if (!TRY_ACQUIRE_LOCK(&lk)) {
6183 VI_UNLOCK(devvp);
6184 ACQUIRE_LOCK(&lk);
6185 FREE_LOCK(&lk);
6186 VI_LOCK(devvp);
6187 continue;
6188 }
6189 if (!MNT_ITRYLOCK(mp)) {
6190 FREE_LOCK(&lk);
6191 VI_UNLOCK(devvp);
6192 MNT_ILOCK(mp);
6193 MNT_IUNLOCK(mp);
6194 VI_LOCK(devvp);
6195 continue;
6196 }
6197 if (mp->mnt_secondary_writes != 0) {
6198 FREE_LOCK(&lk);
6199 VI_UNLOCK(devvp);
6200 msleep(&mp->mnt_secondary_writes,
6201 MNT_MTX(mp),
6202 (PUSER - 1) | PDROP, "secwr", 0);
6203 VI_LOCK(devvp);
6204 continue;
6205 }
6206 break;
6207 }
6208
6209 /*
6210 * Reasons for needing more work before suspend:
6211 * - Dirty buffers on devvp.
6212 * - Softdep activity occurred after start of vnode sync loop
6213 * - Secondary writes occurred after start of vnode sync loop
6214 */
6215 error = 0;
6216 if (bo->bo_numoutput > 0 ||
6217 bo->bo_dirty.bv_cnt > 0 ||
6218 softdep_deps != 0 ||
6219 ump->softdep_deps != 0 ||
6220 softdep_accdeps != ump->softdep_accdeps ||
6221 secondary_writes != 0 ||
6222 mp->mnt_secondary_writes != 0 ||
6223 secondary_accwrites != mp->mnt_secondary_accwrites)
6224 error = EAGAIN;
6225 FREE_LOCK(&lk);
6226 VI_UNLOCK(devvp);
6227 return (error);
6228}
6229
6230
6231/*
6232 * Get the number of dependency structures for the file system, both
6233 * the current number and the total number allocated. These will
6234 * later be used to detect that softdep processing has occurred.
6235 */
6236void
6237softdep_get_depcounts(struct mount *mp,
6238 int *softdep_depsp,
6239 int *softdep_accdepsp)
6240{
6241 struct ufsmount *ump;
6242
6243 ump = VFSTOUFS(mp);
6244 ACQUIRE_LOCK(&lk);
6245 *softdep_depsp = ump->softdep_deps;
6246 *softdep_accdepsp = ump->softdep_accdeps;
6247 FREE_LOCK(&lk);
6248}
6249
6250/*
6251 * Wait for pending output on a vnode to complete.
6252 * Must be called with vnode lock and interlock locked.
6253 *
6254 * XXX: Should just be a call to bufobj_wwait().
6255 */
6256static void
6257drain_output(vp)
6258 struct vnode *vp;
6259{
6260 ASSERT_VOP_LOCKED(vp, "drain_output");
6261 ASSERT_VI_LOCKED(vp, "drain_output");
6262
6263 while (vp->v_bufobj.bo_numoutput) {
6264 vp->v_bufobj.bo_flag |= BO_WWAIT;
6265 msleep((caddr_t)&vp->v_bufobj.bo_numoutput,
6266 VI_MTX(vp), PRIBIO + 1, "drainvp", 0);
6267 }
6268}
6269
6270/*
6271 * Called whenever a buffer that is being invalidated or reallocated
6272 * contains dependencies. This should only happen if an I/O error has
6273 * occurred. The routine is called with the buffer locked.
6274 */
6275static void
6276softdep_deallocate_dependencies(bp)
6277 struct buf *bp;
6278{
6279
6280 if ((bp->b_ioflags & BIO_ERROR) == 0)
6281 panic("softdep_deallocate_dependencies: dangling deps");
6282 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
6283 panic("softdep_deallocate_dependencies: unrecovered I/O error");
6284}
6285
6286/*
6287 * Function to handle asynchronous write errors in the filesystem.
6288 */
6289static void
6290softdep_error(func, error)
6291 char *func;
6292 int error;
6293{
6294
6295 /* XXX should do something better! */
6296 printf("%s: got error %d while accessing filesystem\n", func, error);
6297}
6298
6299#endif /* SOFTUPDATES */