Deleted Added
full compact
1/* $FreeBSD: head/sys/netipsec/key.c 157123 2006-03-25 13:38:52Z gnn $ */
1/* $FreeBSD: head/sys/netipsec/key.c 158767 2006-05-20 15:35:36Z pjd $ */
2/* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * This code is referd to RFC 2367
35 */
36
37#include "opt_inet.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40
41#include <sys/types.h>
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/mbuf.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/malloc.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53#include <sys/sysctl.h>
54#include <sys/errno.h>
55#include <sys/proc.h>
56#include <sys/queue.h>
57#include <sys/refcount.h>
58#include <sys/syslog.h>
59
60#include <net/if.h>
61#include <net/route.h>
62#include <net/raw_cb.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#include <netinet/in_var.h>
68
69#ifdef INET6
70#include <netinet/ip6.h>
71#include <netinet6/in6_var.h>
72#include <netinet6/ip6_var.h>
73#endif /* INET6 */
74
75#ifdef INET
76#include <netinet/in_pcb.h>
77#endif
78#ifdef INET6
79#include <netinet6/in6_pcb.h>
80#endif /* INET6 */
81
82#include <net/pfkeyv2.h>
83#include <netipsec/keydb.h>
84#include <netipsec/key.h>
85#include <netipsec/keysock.h>
86#include <netipsec/key_debug.h>
87
88#include <netipsec/ipsec.h>
89#ifdef INET6
90#include <netipsec/ipsec6.h>
91#endif
92
93#include <netipsec/xform.h>
94
95#include <machine/stdarg.h>
96
97/* randomness */
98#include <sys/random.h>
99
100#define FULLMASK 0xff
101#define _BITS(bytes) ((bytes) << 3)
102
103/*
104 * Note on SA reference counting:
105 * - SAs that are not in DEAD state will have (total external reference + 1)
106 * following value in reference count field. they cannot be freed and are
107 * referenced from SA header.
108 * - SAs that are in DEAD state will have (total external reference)
109 * in reference count field. they are ready to be freed. reference from
110 * SA header will be removed in key_delsav(), when the reference count
111 * field hits 0 (= no external reference other than from SA header.
112 */
113
114u_int32_t key_debug_level = 0;
115static u_int key_spi_trycnt = 1000;
116static u_int32_t key_spi_minval = 0x100;
117static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
118static u_int32_t policy_id = 0;
119static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
120static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
121static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
122static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
123static int key_preferred_oldsa = 1; /* preferred old sa rather than new sa.*/
124
125static u_int32_t acq_seq = 0;
126
127static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
128static struct mtx sptree_lock;
129#define SPTREE_LOCK_INIT() \
130 mtx_init(&sptree_lock, "sptree", \
131 "fast ipsec security policy database", MTX_DEF)
132#define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock)
133#define SPTREE_LOCK() mtx_lock(&sptree_lock)
134#define SPTREE_UNLOCK() mtx_unlock(&sptree_lock)
135#define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED)
136
137static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
138static struct mtx sahtree_lock;
139#define SAHTREE_LOCK_INIT() \
140 mtx_init(&sahtree_lock, "sahtree", \
141 "fast ipsec security association database", MTX_DEF)
142#define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock)
143#define SAHTREE_LOCK() mtx_lock(&sahtree_lock)
144#define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock)
145#define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED)
146
147 /* registed list */
148static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
149static struct mtx regtree_lock;
150#define REGTREE_LOCK_INIT() \
151 mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
152#define REGTREE_LOCK_DESTROY() mtx_destroy(&regtree_lock)
153#define REGTREE_LOCK() mtx_lock(&regtree_lock)
154#define REGTREE_UNLOCK() mtx_unlock(&regtree_lock)
155#define REGTREE_LOCK_ASSERT() mtx_assert(&regtree_lock, MA_OWNED)
156
157static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
158static struct mtx acq_lock;
159#define ACQ_LOCK_INIT() \
160 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
161#define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock)
162#define ACQ_LOCK() mtx_lock(&acq_lock)
163#define ACQ_UNLOCK() mtx_unlock(&acq_lock)
164#define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED)
165
166static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
167static struct mtx spacq_lock;
168#define SPACQ_LOCK_INIT() \
169 mtx_init(&spacq_lock, "spacqtree", \
170 "fast ipsec security policy acquire list", MTX_DEF)
171#define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock)
172#define SPACQ_LOCK() mtx_lock(&spacq_lock)
173#define SPACQ_UNLOCK() mtx_unlock(&spacq_lock)
174#define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED)
175
176/* search order for SAs */
177static const u_int saorder_state_valid_prefer_old[] = {
178 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
179};
180static const u_int saorder_state_valid_prefer_new[] = {
181 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
182};
183static u_int saorder_state_alive[] = {
184 /* except DEAD */
185 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
186};
187static u_int saorder_state_any[] = {
188 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
189 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
190};
191
192static const int minsize[] = {
193 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
194 sizeof(struct sadb_sa), /* SADB_EXT_SA */
195 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
196 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
197 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
198 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
199 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
200 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
201 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
202 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
203 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
204 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
205 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
206 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
207 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
208 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
209 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
210 0, /* SADB_X_EXT_KMPRIVATE */
211 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
212 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
213};
214static const int maxsize[] = {
215 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
216 sizeof(struct sadb_sa), /* SADB_EXT_SA */
217 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
220 0, /* SADB_EXT_ADDRESS_SRC */
221 0, /* SADB_EXT_ADDRESS_DST */
222 0, /* SADB_EXT_ADDRESS_PROXY */
223 0, /* SADB_EXT_KEY_AUTH */
224 0, /* SADB_EXT_KEY_ENCRYPT */
225 0, /* SADB_EXT_IDENTITY_SRC */
226 0, /* SADB_EXT_IDENTITY_DST */
227 0, /* SADB_EXT_SENSITIVITY */
228 0, /* SADB_EXT_PROPOSAL */
229 0, /* SADB_EXT_SUPPORTED_AUTH */
230 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
231 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
232 0, /* SADB_X_EXT_KMPRIVATE */
233 0, /* SADB_X_EXT_POLICY */
234 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
235};
236
237static int ipsec_esp_keymin = 256;
238static int ipsec_esp_auth = 0;
239static int ipsec_ah_keymin = 128;
240
241#ifdef SYSCTL_DECL
242SYSCTL_DECL(_net_key);
243#endif
244
245SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
246 &key_debug_level, 0, "");
247
248/* max count of trial for the decision of spi value */
249SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
250 &key_spi_trycnt, 0, "");
251
252/* minimum spi value to allocate automatically. */
253SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
254 &key_spi_minval, 0, "");
255
256/* maximun spi value to allocate automatically. */
257SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
258 &key_spi_maxval, 0, "");
259
260/* interval to initialize randseed */
261SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
262 &key_int_random, 0, "");
263
264/* lifetime for larval SA */
265SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
266 &key_larval_lifetime, 0, "");
267
268/* counter for blocking to send SADB_ACQUIRE to IKEd */
269SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
270 &key_blockacq_count, 0, "");
271
272/* lifetime for blocking to send SADB_ACQUIRE to IKEd */
273SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
274 &key_blockacq_lifetime, 0, "");
275
276/* ESP auth */
277SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
278 &ipsec_esp_auth, 0, "");
279
280/* minimum ESP key length */
281SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
282 &ipsec_esp_keymin, 0, "");
283
284/* minimum AH key length */
285SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
286 &ipsec_ah_keymin, 0, "");
287
288/* perfered old SA rather than new SA */
289SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, CTLFLAG_RW,\
290 &key_preferred_oldsa, 0, "");
291
292#define __LIST_CHAINED(elm) \
293 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
294#define LIST_INSERT_TAIL(head, elm, type, field) \
295do {\
296 struct type *curelm = LIST_FIRST(head); \
297 if (curelm == NULL) {\
298 LIST_INSERT_HEAD(head, elm, field); \
299 } else { \
300 while (LIST_NEXT(curelm, field)) \
301 curelm = LIST_NEXT(curelm, field);\
302 LIST_INSERT_AFTER(curelm, elm, field);\
303 }\
304} while (0)
305
306#define KEY_CHKSASTATE(head, sav, name) \
307do { \
308 if ((head) != (sav)) { \
309 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
310 (name), (head), (sav))); \
311 continue; \
312 } \
313} while (0)
314
315#define KEY_CHKSPDIR(head, sp, name) \
316do { \
317 if ((head) != (sp)) { \
318 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
319 "anyway continue.\n", \
320 (name), (head), (sp))); \
321 } \
322} while (0)
323
324MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
325MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
326MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
327MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
328MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
329MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
330MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
331
332/*
333 * set parameters into secpolicyindex buffer.
334 * Must allocate secpolicyindex buffer passed to this function.
335 */
336#define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
337do { \
338 bzero((idx), sizeof(struct secpolicyindex)); \
339 (idx)->dir = (_dir); \
340 (idx)->prefs = (ps); \
341 (idx)->prefd = (pd); \
342 (idx)->ul_proto = (ulp); \
343 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
344 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
345} while (0)
346
347/*
348 * set parameters into secasindex buffer.
349 * Must allocate secasindex buffer before calling this function.
350 */
351#define KEY_SETSECASIDX(p, m, r, s, d, idx) \
352do { \
353 bzero((idx), sizeof(struct secasindex)); \
354 (idx)->proto = (p); \
355 (idx)->mode = (m); \
356 (idx)->reqid = (r); \
357 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
358 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
359} while (0)
360
361/* key statistics */
362struct _keystat {
363 u_long getspi_count; /* the avarage of count to try to get new SPI */
364} keystat;
365
366struct sadb_msghdr {
367 struct sadb_msg *msg;
368 struct sadb_ext *ext[SADB_EXT_MAX + 1];
369 int extoff[SADB_EXT_MAX + 1];
370 int extlen[SADB_EXT_MAX + 1];
371};
372
373static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
374static void key_freesp_so __P((struct secpolicy **));
375static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
376static void key_delsp __P((struct secpolicy *));
377static struct secpolicy *key_getsp __P((struct secpolicyindex *));
378static void _key_delsp(struct secpolicy *sp);
379static struct secpolicy *key_getspbyid __P((u_int32_t));
380static u_int32_t key_newreqid __P((void));
381static struct mbuf *key_gather_mbuf __P((struct mbuf *,
382 const struct sadb_msghdr *, int, int, ...));
383static int key_spdadd __P((struct socket *, struct mbuf *,
384 const struct sadb_msghdr *));
385static u_int32_t key_getnewspid __P((void));
386static int key_spddelete __P((struct socket *, struct mbuf *,
387 const struct sadb_msghdr *));
388static int key_spddelete2 __P((struct socket *, struct mbuf *,
389 const struct sadb_msghdr *));
390static int key_spdget __P((struct socket *, struct mbuf *,
391 const struct sadb_msghdr *));
392static int key_spdflush __P((struct socket *, struct mbuf *,
393 const struct sadb_msghdr *));
394static int key_spddump __P((struct socket *, struct mbuf *,
395 const struct sadb_msghdr *));
396static struct mbuf *key_setdumpsp __P((struct secpolicy *,
397 u_int8_t, u_int32_t, u_int32_t));
398static u_int key_getspreqmsglen __P((struct secpolicy *));
399static int key_spdexpire __P((struct secpolicy *));
400static struct secashead *key_newsah __P((struct secasindex *));
401static void key_delsah __P((struct secashead *));
402static struct secasvar *key_newsav __P((struct mbuf *,
403 const struct sadb_msghdr *, struct secashead *, int *,
404 const char*, int));
405#define KEY_NEWSAV(m, sadb, sah, e) \
406 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
407static void key_delsav __P((struct secasvar *));
408static struct secashead *key_getsah __P((struct secasindex *));
409static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
410static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
411static int key_setsaval __P((struct secasvar *, struct mbuf *,
412 const struct sadb_msghdr *));
413static int key_mature __P((struct secasvar *));
414static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
415 u_int8_t, u_int32_t, u_int32_t));
416static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
417 u_int32_t, pid_t, u_int16_t));
418static struct mbuf *key_setsadbsa __P((struct secasvar *));
419static struct mbuf *key_setsadbaddr __P((u_int16_t,
420 const struct sockaddr *, u_int8_t, u_int16_t));
421static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
422static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
423 u_int32_t));
424static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
425 struct malloc_type *);
426static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
427 struct malloc_type *type);
428#ifdef INET6
429static int key_ismyaddr6 __P((struct sockaddr_in6 *));
430#endif
431
432/* flags for key_cmpsaidx() */
433#define CMP_HEAD 1 /* protocol, addresses. */
434#define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
435#define CMP_REQID 3 /* additionally HEAD, reaid. */
436#define CMP_EXACTLY 4 /* all elements. */
437static int key_cmpsaidx
438 __P((const struct secasindex *, const struct secasindex *, int));
439
440static int key_cmpspidx_exactly
441 __P((struct secpolicyindex *, struct secpolicyindex *));
442static int key_cmpspidx_withmask
443 __P((struct secpolicyindex *, struct secpolicyindex *));
444static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
445static int key_bbcmp __P((const void *, const void *, u_int));
446static u_int16_t key_satype2proto __P((u_int8_t));
447static u_int8_t key_proto2satype __P((u_int16_t));
448
449static int key_getspi __P((struct socket *, struct mbuf *,
450 const struct sadb_msghdr *));
451static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
452 struct secasindex *));
453static int key_update __P((struct socket *, struct mbuf *,
454 const struct sadb_msghdr *));
455#ifdef IPSEC_DOSEQCHECK
456static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
457#endif
458static int key_add __P((struct socket *, struct mbuf *,
459 const struct sadb_msghdr *));
460static int key_setident __P((struct secashead *, struct mbuf *,
461 const struct sadb_msghdr *));
462static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
463 const struct sadb_msghdr *));
464static int key_delete __P((struct socket *, struct mbuf *,
465 const struct sadb_msghdr *));
466static int key_get __P((struct socket *, struct mbuf *,
467 const struct sadb_msghdr *));
468
469static void key_getcomb_setlifetime __P((struct sadb_comb *));
470static struct mbuf *key_getcomb_esp __P((void));
471static struct mbuf *key_getcomb_ah __P((void));
472static struct mbuf *key_getcomb_ipcomp __P((void));
473static struct mbuf *key_getprop __P((const struct secasindex *));
474
475static int key_acquire __P((const struct secasindex *, struct secpolicy *));
476static struct secacq *key_newacq __P((const struct secasindex *));
477static struct secacq *key_getacq __P((const struct secasindex *));
478static struct secacq *key_getacqbyseq __P((u_int32_t));
479static struct secspacq *key_newspacq __P((struct secpolicyindex *));
480static struct secspacq *key_getspacq __P((struct secpolicyindex *));
481static int key_acquire2 __P((struct socket *, struct mbuf *,
482 const struct sadb_msghdr *));
483static int key_register __P((struct socket *, struct mbuf *,
484 const struct sadb_msghdr *));
485static int key_expire __P((struct secasvar *));
486static int key_flush __P((struct socket *, struct mbuf *,
487 const struct sadb_msghdr *));
488static int key_dump __P((struct socket *, struct mbuf *,
489 const struct sadb_msghdr *));
490static int key_promisc __P((struct socket *, struct mbuf *,
491 const struct sadb_msghdr *));
492static int key_senderror __P((struct socket *, struct mbuf *, int));
493static int key_validate_ext __P((const struct sadb_ext *, int));
494static int key_align __P((struct mbuf *, struct sadb_msghdr *));
495static struct mbuf *key_setlifetime(struct seclifetime *src,
496 u_int16_t exttype);
497static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
498
499#if 0
500static const char *key_getfqdn __P((void));
501static const char *key_getuserfqdn __P((void));
502#endif
503static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
504static struct mbuf *key_alloc_mbuf __P((int));
505
505#define SA_ADDREF(p) do { \
506 (p)->refcnt++; \
507 IPSEC_ASSERT((p)->refcnt != 0, ("SA refcnt overflow")); \
508} while (0)
509#define SA_DELREF(p) do { \
510 IPSEC_ASSERT((p)->refcnt > 0, ("SA refcnt underflow")); \
511 (p)->refcnt--; \
512} while (0)
506static __inline void
507sa_initref(struct secasvar *sav)
508{
509
510 refcount_init(&sav->refcnt, 1);
511}
512static __inline void
513sa_addref(struct secasvar *sav)
514{
515
516 refcount_acquire(&sav->refcnt);
517 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
518}
519static __inline int
520sa_delref(struct secasvar *sav)
521{
522
523 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
524 return (refcount_release(&sav->refcnt));
525}
526
527#define SP_ADDREF(p) do { \
528 (p)->refcnt++; \
529 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \
530} while (0)
531#define SP_DELREF(p) do { \
532 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \
533 (p)->refcnt--; \
534} while (0)
535
536
537/*
538 * Update the refcnt while holding the SPTREE lock.
539 */
540void
541key_addref(struct secpolicy *sp)
542{
543 SPTREE_LOCK();
544 SP_ADDREF(sp);
545 SPTREE_UNLOCK();
546}
547
548/*
549 * Return 0 when there are known to be no SP's for the specified
550 * direction. Otherwise return 1. This is used by IPsec code
551 * to optimize performance.
552 */
553int
554key_havesp(u_int dir)
555{
556 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
557 LIST_FIRST(&sptree[dir]) != NULL : 1);
558}
559
560/* %%% IPsec policy management */
561/*
562 * allocating a SP for OUTBOUND or INBOUND packet.
563 * Must call key_freesp() later.
564 * OUT: NULL: not found
565 * others: found and return the pointer.
566 */
567struct secpolicy *
568key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
569{
570 struct secpolicy *sp;
571
572 IPSEC_ASSERT(spidx != NULL, ("null spidx"));
573 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
574 ("invalid direction %u", dir));
575
576 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
577 printf("DP %s from %s:%u\n", __func__, where, tag));
578
579 /* get a SP entry */
580 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
581 printf("*** objects\n");
582 kdebug_secpolicyindex(spidx));
583
584 SPTREE_LOCK();
585 LIST_FOREACH(sp, &sptree[dir], chain) {
586 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
587 printf("*** in SPD\n");
588 kdebug_secpolicyindex(&sp->spidx));
589
590 if (sp->state == IPSEC_SPSTATE_DEAD)
591 continue;
592 if (key_cmpspidx_withmask(&sp->spidx, spidx))
593 goto found;
594 }
595 sp = NULL;
596found:
597 if (sp) {
598 /* sanity check */
599 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
600
601 /* found a SPD entry */
602 sp->lastused = time_second;
603 SP_ADDREF(sp);
604 }
605 SPTREE_UNLOCK();
606
607 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
608 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
609 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
610 return sp;
611}
612
613/*
614 * allocating a SP for OUTBOUND or INBOUND packet.
615 * Must call key_freesp() later.
616 * OUT: NULL: not found
617 * others: found and return the pointer.
618 */
619struct secpolicy *
620key_allocsp2(u_int32_t spi,
621 union sockaddr_union *dst,
622 u_int8_t proto,
623 u_int dir,
624 const char* where, int tag)
625{
626 struct secpolicy *sp;
627
628 IPSEC_ASSERT(dst != NULL, ("null dst"));
629 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
630 ("invalid direction %u", dir));
631
632 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
633 printf("DP %s from %s:%u\n", __func__, where, tag));
634
635 /* get a SP entry */
636 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
637 printf("*** objects\n");
638 printf("spi %u proto %u dir %u\n", spi, proto, dir);
639 kdebug_sockaddr(&dst->sa));
640
641 SPTREE_LOCK();
642 LIST_FOREACH(sp, &sptree[dir], chain) {
643 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
644 printf("*** in SPD\n");
645 kdebug_secpolicyindex(&sp->spidx));
646
647 if (sp->state == IPSEC_SPSTATE_DEAD)
648 continue;
649 /* compare simple values, then dst address */
650 if (sp->spidx.ul_proto != proto)
651 continue;
652 /* NB: spi's must exist and match */
653 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
654 continue;
655 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
656 goto found;
657 }
658 sp = NULL;
659found:
660 if (sp) {
661 /* sanity check */
662 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
663
664 /* found a SPD entry */
665 sp->lastused = time_second;
666 SP_ADDREF(sp);
667 }
668 SPTREE_UNLOCK();
669
670 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
671 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
672 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
673 return sp;
674}
675
676/*
677 * return a policy that matches this particular inbound packet.
678 * XXX slow
679 */
680struct secpolicy *
681key_gettunnel(const struct sockaddr *osrc,
682 const struct sockaddr *odst,
683 const struct sockaddr *isrc,
684 const struct sockaddr *idst,
685 const char* where, int tag)
686{
687 struct secpolicy *sp;
688 const int dir = IPSEC_DIR_INBOUND;
689 struct ipsecrequest *r1, *r2, *p;
690 struct secpolicyindex spidx;
691
692 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
693 printf("DP %s from %s:%u\n", __func__, where, tag));
694
695 if (isrc->sa_family != idst->sa_family) {
696 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
697 __func__, isrc->sa_family, idst->sa_family));
698 sp = NULL;
699 goto done;
700 }
701
702 SPTREE_LOCK();
703 LIST_FOREACH(sp, &sptree[dir], chain) {
704 if (sp->state == IPSEC_SPSTATE_DEAD)
705 continue;
706
707 r1 = r2 = NULL;
708 for (p = sp->req; p; p = p->next) {
709 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
710 continue;
711
712 r1 = r2;
713 r2 = p;
714
715 if (!r1) {
716 /* here we look at address matches only */
717 spidx = sp->spidx;
718 if (isrc->sa_len > sizeof(spidx.src) ||
719 idst->sa_len > sizeof(spidx.dst))
720 continue;
721 bcopy(isrc, &spidx.src, isrc->sa_len);
722 bcopy(idst, &spidx.dst, idst->sa_len);
723 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
724 continue;
725 } else {
726 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
727 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
728 continue;
729 }
730
731 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
732 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
733 continue;
734
735 goto found;
736 }
737 }
738 sp = NULL;
739found:
740 if (sp) {
741 sp->lastused = time_second;
742 SP_ADDREF(sp);
743 }
744 SPTREE_UNLOCK();
745done:
746 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
747 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
748 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
749 return sp;
750}
751
752/*
753 * allocating an SA entry for an *OUTBOUND* packet.
754 * checking each request entries in SP, and acquire an SA if need.
755 * OUT: 0: there are valid requests.
756 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
757 */
758int
759key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
760{
761 u_int level;
762 int error;
763
764 IPSEC_ASSERT(isr != NULL, ("null isr"));
765 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
766 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
767 saidx->mode == IPSEC_MODE_TUNNEL,
768 ("unexpected policy %u", saidx->mode));
769
770 /*
771 * XXX guard against protocol callbacks from the crypto
772 * thread as they reference ipsecrequest.sav which we
773 * temporarily null out below. Need to rethink how we
774 * handle bundled SA's in the callback thread.
775 */
776 IPSECREQUEST_LOCK_ASSERT(isr);
777
778 /* get current level */
779 level = ipsec_get_reqlevel(isr);
780#if 0
781 /*
782 * We do allocate new SA only if the state of SA in the holder is
783 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest.
784 */
785 if (isr->sav != NULL) {
786 if (isr->sav->sah == NULL)
787 panic("%s: sah is null.\n", __func__);
788 if (isr->sav == (struct secasvar *)LIST_FIRST(
789 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
790 KEY_FREESAV(&isr->sav);
791 isr->sav = NULL;
792 }
793 }
794#else
795 /*
796 * we free any SA stashed in the IPsec request because a different
797 * SA may be involved each time this request is checked, either
798 * because new SAs are being configured, or this request is
799 * associated with an unconnected datagram socket, or this request
800 * is associated with a system default policy.
801 *
802 * The operation may have negative impact to performance. We may
803 * want to check cached SA carefully, rather than picking new SA
804 * every time.
805 */
806 if (isr->sav != NULL) {
807 KEY_FREESAV(&isr->sav);
808 isr->sav = NULL;
809 }
810#endif
811
812 /*
813 * new SA allocation if no SA found.
814 * key_allocsa_policy should allocate the oldest SA available.
815 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
816 */
817 if (isr->sav == NULL)
818 isr->sav = key_allocsa_policy(saidx);
819
820 /* When there is SA. */
821 if (isr->sav != NULL) {
822 if (isr->sav->state != SADB_SASTATE_MATURE &&
823 isr->sav->state != SADB_SASTATE_DYING)
824 return EINVAL;
825 return 0;
826 }
827
828 /* there is no SA */
829 error = key_acquire(saidx, isr->sp);
830 if (error != 0) {
831 /* XXX What should I do ? */
832 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
833 __func__, error));
834 return error;
835 }
836
837 if (level != IPSEC_LEVEL_REQUIRE) {
838 /* XXX sigh, the interface to this routine is botched */
839 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
840 return 0;
841 } else {
842 return ENOENT;
843 }
844}
845
846/*
847 * allocating a SA for policy entry from SAD.
848 * NOTE: searching SAD of aliving state.
849 * OUT: NULL: not found.
850 * others: found and return the pointer.
851 */
852static struct secasvar *
853key_allocsa_policy(const struct secasindex *saidx)
854{
855#define N(a) _ARRAYLEN(a)
856 struct secashead *sah;
857 struct secasvar *sav;
858 u_int stateidx, arraysize;
859 const u_int *state_valid;
860
861 SAHTREE_LOCK();
862 LIST_FOREACH(sah, &sahtree, chain) {
863 if (sah->state == SADB_SASTATE_DEAD)
864 continue;
865 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
866 if (key_preferred_oldsa) {
867 state_valid = saorder_state_valid_prefer_old;
868 arraysize = N(saorder_state_valid_prefer_old);
869 } else {
870 state_valid = saorder_state_valid_prefer_new;
871 arraysize = N(saorder_state_valid_prefer_new);
872 }
873 SAHTREE_UNLOCK();
874 goto found;
875 }
876 }
877 SAHTREE_UNLOCK();
878
879 return NULL;
880
881 found:
882 /* search valid state */
883 for (stateidx = 0; stateidx < arraysize; stateidx++) {
884 sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
885 if (sav != NULL)
886 return sav;
887 }
888
889 return NULL;
890#undef N
891}
892
893/*
894 * searching SAD with direction, protocol, mode and state.
895 * called by key_allocsa_policy().
896 * OUT:
897 * NULL : not found
898 * others : found, pointer to a SA.
899 */
900static struct secasvar *
901key_do_allocsa_policy(struct secashead *sah, u_int state)
902{
903 struct secasvar *sav, *nextsav, *candidate, *d;
904
905 /* initilize */
906 candidate = NULL;
907
908 SAHTREE_LOCK();
909 for (sav = LIST_FIRST(&sah->savtree[state]);
910 sav != NULL;
911 sav = nextsav) {
912
913 nextsav = LIST_NEXT(sav, chain);
914
915 /* sanity check */
916 KEY_CHKSASTATE(sav->state, state, __func__);
917
918 /* initialize */
919 if (candidate == NULL) {
920 candidate = sav;
921 continue;
922 }
923
924 /* Which SA is the better ? */
925
926 IPSEC_ASSERT(candidate->lft_c != NULL,
927 ("null candidate lifetime"));
928 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
929
930 /* What the best method is to compare ? */
931 if (key_preferred_oldsa) {
932 if (candidate->lft_c->addtime >
933 sav->lft_c->addtime) {
934 candidate = sav;
935 }
936 continue;
937 /*NOTREACHED*/
938 }
939
940 /* preferred new sa rather than old sa */
941 if (candidate->lft_c->addtime <
942 sav->lft_c->addtime) {
943 d = candidate;
944 candidate = sav;
945 } else
946 d = sav;
947
948 /*
949 * prepared to delete the SA when there is more
950 * suitable candidate and the lifetime of the SA is not
951 * permanent.
952 */
953 if (d->lft_c->addtime != 0) {
954 struct mbuf *m, *result;
955 u_int8_t satype;
956
957 key_sa_chgstate(d, SADB_SASTATE_DEAD);
958
959 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
960
961 satype = key_proto2satype(d->sah->saidx.proto);
962 if (satype == 0)
963 goto msgfail;
964
965 m = key_setsadbmsg(SADB_DELETE, 0,
966 satype, 0, 0, d->refcnt - 1);
967 if (!m)
968 goto msgfail;
969 result = m;
970
971 /* set sadb_address for saidx's. */
972 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
973 &d->sah->saidx.src.sa,
974 d->sah->saidx.src.sa.sa_len << 3,
975 IPSEC_ULPROTO_ANY);
976 if (!m)
977 goto msgfail;
978 m_cat(result, m);
979
980 /* set sadb_address for saidx's. */
981 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
982 &d->sah->saidx.dst.sa,
983 d->sah->saidx.dst.sa.sa_len << 3,
984 IPSEC_ULPROTO_ANY);
985 if (!m)
986 goto msgfail;
987 m_cat(result, m);
988
989 /* create SA extension */
990 m = key_setsadbsa(d);
991 if (!m)
992 goto msgfail;
993 m_cat(result, m);
994
995 if (result->m_len < sizeof(struct sadb_msg)) {
996 result = m_pullup(result,
997 sizeof(struct sadb_msg));
998 if (result == NULL)
999 goto msgfail;
1000 }
1001
1002 result->m_pkthdr.len = 0;
1003 for (m = result; m; m = m->m_next)
1004 result->m_pkthdr.len += m->m_len;
1005 mtod(result, struct sadb_msg *)->sadb_msg_len =
1006 PFKEY_UNIT64(result->m_pkthdr.len);
1007
1008 if (key_sendup_mbuf(NULL, result,
1009 KEY_SENDUP_REGISTERED))
1010 goto msgfail;
1011 msgfail:
1012 KEY_FREESAV(&d);
1013 }
1014 }
1015 if (candidate) {
1003 SA_ADDREF(candidate);
1016 sa_addref(candidate);
1017 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1018 printf("DP %s cause refcnt++:%d SA:%p\n",
1019 __func__, candidate->refcnt, candidate));
1020 }
1021 SAHTREE_UNLOCK();
1022
1023 return candidate;
1024}
1025
1026/*
1027 * allocating a usable SA entry for a *INBOUND* packet.
1028 * Must call key_freesav() later.
1029 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1030 * NULL: not found, or error occured.
1031 *
1032 * In the comparison, no source address is used--for RFC2401 conformance.
1033 * To quote, from section 4.1:
1034 * A security association is uniquely identified by a triple consisting
1035 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1036 * security protocol (AH or ESP) identifier.
1037 * Note that, however, we do need to keep source address in IPsec SA.
1038 * IKE specification and PF_KEY specification do assume that we
1039 * keep source address in IPsec SA. We see a tricky situation here.
1040 */
1041struct secasvar *
1042key_allocsa(
1043 union sockaddr_union *dst,
1044 u_int proto,
1045 u_int32_t spi,
1046 const char* where, int tag)
1047{
1048 struct secashead *sah;
1049 struct secasvar *sav;
1050 u_int stateidx, arraysize, state;
1051 const u_int *saorder_state_valid;
1052
1053 IPSEC_ASSERT(dst != NULL, ("null dst address"));
1054
1055 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1056 printf("DP %s from %s:%u\n", __func__, where, tag));
1057
1058 /*
1059 * searching SAD.
1060 * XXX: to be checked internal IP header somewhere. Also when
1061 * IPsec tunnel packet is received. But ESP tunnel mode is
1062 * encrypted so we can't check internal IP header.
1063 */
1064 SAHTREE_LOCK();
1065 if (key_preferred_oldsa) {
1066 saorder_state_valid = saorder_state_valid_prefer_old;
1067 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1068 } else {
1069 saorder_state_valid = saorder_state_valid_prefer_new;
1070 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1071 }
1072 LIST_FOREACH(sah, &sahtree, chain) {
1073 /* search valid state */
1074 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1075 state = saorder_state_valid[stateidx];
1076 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1077 /* sanity check */
1078 KEY_CHKSASTATE(sav->state, state, __func__);
1079 /* do not return entries w/ unusable state */
1080 if (sav->state != SADB_SASTATE_MATURE &&
1081 sav->state != SADB_SASTATE_DYING)
1082 continue;
1083 if (proto != sav->sah->saidx.proto)
1084 continue;
1085 if (spi != sav->spi)
1086 continue;
1087#if 0 /* don't check src */
1088 /* check src address */
1089 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1090 continue;
1091#endif
1092 /* check dst address */
1093 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1094 continue;
1082 SA_ADDREF(sav);
1095 sa_addref(sav);
1096 goto done;
1097 }
1098 }
1099 }
1100 sav = NULL;
1101done:
1102 SAHTREE_UNLOCK();
1103
1104 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1105 printf("DP %s return SA:%p; refcnt %u\n", __func__,
1106 sav, sav ? sav->refcnt : 0));
1107 return sav;
1108}
1109
1110/*
1111 * Must be called after calling key_allocsp().
1112 * For both the packet without socket and key_freeso().
1113 */
1114void
1115_key_freesp(struct secpolicy **spp, const char* where, int tag)
1116{
1117 struct secpolicy *sp = *spp;
1118
1119 IPSEC_ASSERT(sp != NULL, ("null sp"));
1120
1121 SPTREE_LOCK();
1122 SP_DELREF(sp);
1123
1124 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1125 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1126 __func__, sp, sp->id, where, tag, sp->refcnt));
1127
1128 if (sp->refcnt == 0) {
1129 *spp = NULL;
1130 key_delsp(sp);
1131 }
1132 SPTREE_UNLOCK();
1133}
1134
1135/*
1136 * Must be called after calling key_allocsp().
1137 * For the packet with socket.
1138 */
1139void
1140key_freeso(struct socket *so)
1141{
1142 IPSEC_ASSERT(so != NULL, ("null so"));
1143
1144 switch (so->so_proto->pr_domain->dom_family) {
1145#ifdef INET
1146 case PF_INET:
1147 {
1148 struct inpcb *pcb = sotoinpcb(so);
1149
1150 /* Does it have a PCB ? */
1151 if (pcb == NULL)
1152 return;
1153 key_freesp_so(&pcb->inp_sp->sp_in);
1154 key_freesp_so(&pcb->inp_sp->sp_out);
1155 }
1156 break;
1157#endif
1158#ifdef INET6
1159 case PF_INET6:
1160 {
1161#ifdef HAVE_NRL_INPCB
1162 struct inpcb *pcb = sotoinpcb(so);
1163
1164 /* Does it have a PCB ? */
1165 if (pcb == NULL)
1166 return;
1167 key_freesp_so(&pcb->inp_sp->sp_in);
1168 key_freesp_so(&pcb->inp_sp->sp_out);
1169#else
1170 struct in6pcb *pcb = sotoin6pcb(so);
1171
1172 /* Does it have a PCB ? */
1173 if (pcb == NULL)
1174 return;
1175 key_freesp_so(&pcb->in6p_sp->sp_in);
1176 key_freesp_so(&pcb->in6p_sp->sp_out);
1177#endif
1178 }
1179 break;
1180#endif /* INET6 */
1181 default:
1182 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1183 __func__, so->so_proto->pr_domain->dom_family));
1184 return;
1185 }
1186}
1187
1188static void
1189key_freesp_so(struct secpolicy **sp)
1190{
1191 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1192
1193 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1194 (*sp)->policy == IPSEC_POLICY_BYPASS)
1195 return;
1196
1197 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1198 ("invalid policy %u", (*sp)->policy));
1199 KEY_FREESP(sp);
1200}
1201
1202/*
1203 * Must be called after calling key_allocsa().
1204 * This function is called by key_freesp() to free some SA allocated
1205 * for a policy.
1206 */
1207void
1208key_freesav(struct secasvar **psav, const char* where, int tag)
1209{
1210 struct secasvar *sav = *psav;
1211
1212 IPSEC_ASSERT(sav != NULL, ("null sav"));
1213
1201 /* XXX unguarded? */
1202 SA_DELREF(sav);
1203
1204 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1205 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1206 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1207
1208 if (sav->refcnt == 0) {
1214 if (sa_delref(sav)) {
1215 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1216 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1217 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1218 *psav = NULL;
1219 key_delsav(sav);
1220 } else {
1221 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1222 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1223 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1224 }
1225}
1226
1227/* %%% SPD management */
1228/*
1229 * free security policy entry.
1230 */
1231static void
1232key_delsp(struct secpolicy *sp)
1233{
1234 struct ipsecrequest *isr, *nextisr;
1235
1236 IPSEC_ASSERT(sp != NULL, ("null sp"));
1237 SPTREE_LOCK_ASSERT();
1238
1239 sp->state = IPSEC_SPSTATE_DEAD;
1240
1241 IPSEC_ASSERT(sp->refcnt == 0,
1242 ("SP with references deleted (refcnt %u)", sp->refcnt));
1243
1244 /* remove from SP index */
1245 if (__LIST_CHAINED(sp))
1246 LIST_REMOVE(sp, chain);
1247
1248 for (isr = sp->req; isr != NULL; isr = nextisr) {
1249 if (isr->sav != NULL) {
1250 KEY_FREESAV(&isr->sav);
1251 isr->sav = NULL;
1252 }
1253
1254 nextisr = isr->next;
1255 ipsec_delisr(isr);
1256 }
1257 _key_delsp(sp);
1258}
1259
1260/*
1261 * search SPD
1262 * OUT: NULL : not found
1263 * others : found, pointer to a SP.
1264 */
1265static struct secpolicy *
1266key_getsp(struct secpolicyindex *spidx)
1267{
1268 struct secpolicy *sp;
1269
1270 IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1271
1272 SPTREE_LOCK();
1273 LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
1274 if (sp->state == IPSEC_SPSTATE_DEAD)
1275 continue;
1276 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1277 SP_ADDREF(sp);
1278 break;
1279 }
1280 }
1281 SPTREE_UNLOCK();
1282
1283 return sp;
1284}
1285
1286/*
1287 * get SP by index.
1288 * OUT: NULL : not found
1289 * others : found, pointer to a SP.
1290 */
1291static struct secpolicy *
1292key_getspbyid(u_int32_t id)
1293{
1294 struct secpolicy *sp;
1295
1296 SPTREE_LOCK();
1297 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
1298 if (sp->state == IPSEC_SPSTATE_DEAD)
1299 continue;
1300 if (sp->id == id) {
1301 SP_ADDREF(sp);
1302 goto done;
1303 }
1304 }
1305
1306 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
1307 if (sp->state == IPSEC_SPSTATE_DEAD)
1308 continue;
1309 if (sp->id == id) {
1310 SP_ADDREF(sp);
1311 goto done;
1312 }
1313 }
1314done:
1315 SPTREE_UNLOCK();
1316
1317 return sp;
1318}
1319
1320struct secpolicy *
1321key_newsp(const char* where, int tag)
1322{
1323 struct secpolicy *newsp = NULL;
1324
1325 newsp = (struct secpolicy *)
1326 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1327 if (newsp) {
1328 SECPOLICY_LOCK_INIT(newsp);
1329 newsp->refcnt = 1;
1330 newsp->req = NULL;
1331 }
1332
1333 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1334 printf("DP %s from %s:%u return SP:%p\n", __func__,
1335 where, tag, newsp));
1336 return newsp;
1337}
1338
1339static void
1340_key_delsp(struct secpolicy *sp)
1341{
1342 SECPOLICY_LOCK_DESTROY(sp);
1343 free(sp, M_IPSEC_SP);
1344}
1345
1346/*
1347 * create secpolicy structure from sadb_x_policy structure.
1348 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1349 * so must be set properly later.
1350 */
1351struct secpolicy *
1352key_msg2sp(xpl0, len, error)
1353 struct sadb_x_policy *xpl0;
1354 size_t len;
1355 int *error;
1356{
1357 struct secpolicy *newsp;
1358
1359 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1360 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1361
1362 if (len != PFKEY_EXTLEN(xpl0)) {
1363 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1364 *error = EINVAL;
1365 return NULL;
1366 }
1367
1368 if ((newsp = KEY_NEWSP()) == NULL) {
1369 *error = ENOBUFS;
1370 return NULL;
1371 }
1372
1373 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1374 newsp->policy = xpl0->sadb_x_policy_type;
1375
1376 /* check policy */
1377 switch (xpl0->sadb_x_policy_type) {
1378 case IPSEC_POLICY_DISCARD:
1379 case IPSEC_POLICY_NONE:
1380 case IPSEC_POLICY_ENTRUST:
1381 case IPSEC_POLICY_BYPASS:
1382 newsp->req = NULL;
1383 break;
1384
1385 case IPSEC_POLICY_IPSEC:
1386 {
1387 int tlen;
1388 struct sadb_x_ipsecrequest *xisr;
1389 struct ipsecrequest **p_isr = &newsp->req;
1390
1391 /* validity check */
1392 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1393 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1394 __func__));
1395 KEY_FREESP(&newsp);
1396 *error = EINVAL;
1397 return NULL;
1398 }
1399
1400 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1401 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1402
1403 while (tlen > 0) {
1404 /* length check */
1405 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1406 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1407 "length.\n", __func__));
1408 KEY_FREESP(&newsp);
1409 *error = EINVAL;
1410 return NULL;
1411 }
1412
1413 /* allocate request buffer */
1414 /* NB: data structure is zero'd */
1415 *p_isr = ipsec_newisr();
1416 if ((*p_isr) == NULL) {
1417 ipseclog((LOG_DEBUG,
1418 "%s: No more memory.\n", __func__));
1419 KEY_FREESP(&newsp);
1420 *error = ENOBUFS;
1421 return NULL;
1422 }
1423
1424 /* set values */
1425 switch (xisr->sadb_x_ipsecrequest_proto) {
1426 case IPPROTO_ESP:
1427 case IPPROTO_AH:
1428 case IPPROTO_IPCOMP:
1429 break;
1430 default:
1431 ipseclog((LOG_DEBUG,
1432 "%s: invalid proto type=%u\n", __func__,
1433 xisr->sadb_x_ipsecrequest_proto));
1434 KEY_FREESP(&newsp);
1435 *error = EPROTONOSUPPORT;
1436 return NULL;
1437 }
1438 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1439
1440 switch (xisr->sadb_x_ipsecrequest_mode) {
1441 case IPSEC_MODE_TRANSPORT:
1442 case IPSEC_MODE_TUNNEL:
1443 break;
1444 case IPSEC_MODE_ANY:
1445 default:
1446 ipseclog((LOG_DEBUG,
1447 "%s: invalid mode=%u\n", __func__,
1448 xisr->sadb_x_ipsecrequest_mode));
1449 KEY_FREESP(&newsp);
1450 *error = EINVAL;
1451 return NULL;
1452 }
1453 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1454
1455 switch (xisr->sadb_x_ipsecrequest_level) {
1456 case IPSEC_LEVEL_DEFAULT:
1457 case IPSEC_LEVEL_USE:
1458 case IPSEC_LEVEL_REQUIRE:
1459 break;
1460 case IPSEC_LEVEL_UNIQUE:
1461 /* validity check */
1462 /*
1463 * If range violation of reqid, kernel will
1464 * update it, don't refuse it.
1465 */
1466 if (xisr->sadb_x_ipsecrequest_reqid
1467 > IPSEC_MANUAL_REQID_MAX) {
1468 ipseclog((LOG_DEBUG,
1469 "%s: reqid=%d range "
1470 "violation, updated by kernel.\n",
1471 __func__,
1472 xisr->sadb_x_ipsecrequest_reqid));
1473 xisr->sadb_x_ipsecrequest_reqid = 0;
1474 }
1475
1476 /* allocate new reqid id if reqid is zero. */
1477 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1478 u_int32_t reqid;
1479 if ((reqid = key_newreqid()) == 0) {
1480 KEY_FREESP(&newsp);
1481 *error = ENOBUFS;
1482 return NULL;
1483 }
1484 (*p_isr)->saidx.reqid = reqid;
1485 xisr->sadb_x_ipsecrequest_reqid = reqid;
1486 } else {
1487 /* set it for manual keying. */
1488 (*p_isr)->saidx.reqid =
1489 xisr->sadb_x_ipsecrequest_reqid;
1490 }
1491 break;
1492
1493 default:
1494 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1495 __func__,
1496 xisr->sadb_x_ipsecrequest_level));
1497 KEY_FREESP(&newsp);
1498 *error = EINVAL;
1499 return NULL;
1500 }
1501 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1502
1503 /* set IP addresses if there */
1504 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1505 struct sockaddr *paddr;
1506
1507 paddr = (struct sockaddr *)(xisr + 1);
1508
1509 /* validity check */
1510 if (paddr->sa_len
1511 > sizeof((*p_isr)->saidx.src)) {
1512 ipseclog((LOG_DEBUG, "%s: invalid "
1513 "request address length.\n",
1514 __func__));
1515 KEY_FREESP(&newsp);
1516 *error = EINVAL;
1517 return NULL;
1518 }
1519 bcopy(paddr, &(*p_isr)->saidx.src,
1520 paddr->sa_len);
1521
1522 paddr = (struct sockaddr *)((caddr_t)paddr
1523 + paddr->sa_len);
1524
1525 /* validity check */
1526 if (paddr->sa_len
1527 > sizeof((*p_isr)->saidx.dst)) {
1528 ipseclog((LOG_DEBUG, "%s: invalid "
1529 "request address length.\n",
1530 __func__));
1531 KEY_FREESP(&newsp);
1532 *error = EINVAL;
1533 return NULL;
1534 }
1535 bcopy(paddr, &(*p_isr)->saidx.dst,
1536 paddr->sa_len);
1537 }
1538
1539 (*p_isr)->sp = newsp;
1540
1541 /* initialization for the next. */
1542 p_isr = &(*p_isr)->next;
1543 tlen -= xisr->sadb_x_ipsecrequest_len;
1544
1545 /* validity check */
1546 if (tlen < 0) {
1547 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1548 __func__));
1549 KEY_FREESP(&newsp);
1550 *error = EINVAL;
1551 return NULL;
1552 }
1553
1554 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1555 + xisr->sadb_x_ipsecrequest_len);
1556 }
1557 }
1558 break;
1559 default:
1560 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1561 KEY_FREESP(&newsp);
1562 *error = EINVAL;
1563 return NULL;
1564 }
1565
1566 *error = 0;
1567 return newsp;
1568}
1569
1570static u_int32_t
1571key_newreqid()
1572{
1573 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1574
1575 auto_reqid = (auto_reqid == ~0
1576 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1577
1578 /* XXX should be unique check */
1579
1580 return auto_reqid;
1581}
1582
1583/*
1584 * copy secpolicy struct to sadb_x_policy structure indicated.
1585 */
1586struct mbuf *
1587key_sp2msg(sp)
1588 struct secpolicy *sp;
1589{
1590 struct sadb_x_policy *xpl;
1591 int tlen;
1592 caddr_t p;
1593 struct mbuf *m;
1594
1595 IPSEC_ASSERT(sp != NULL, ("null policy"));
1596
1597 tlen = key_getspreqmsglen(sp);
1598
1599 m = key_alloc_mbuf(tlen);
1600 if (!m || m->m_next) { /*XXX*/
1601 if (m)
1602 m_freem(m);
1603 return NULL;
1604 }
1605
1606 m->m_len = tlen;
1607 m->m_next = NULL;
1608 xpl = mtod(m, struct sadb_x_policy *);
1609 bzero(xpl, tlen);
1610
1611 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1612 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1613 xpl->sadb_x_policy_type = sp->policy;
1614 xpl->sadb_x_policy_dir = sp->spidx.dir;
1615 xpl->sadb_x_policy_id = sp->id;
1616 p = (caddr_t)xpl + sizeof(*xpl);
1617
1618 /* if is the policy for ipsec ? */
1619 if (sp->policy == IPSEC_POLICY_IPSEC) {
1620 struct sadb_x_ipsecrequest *xisr;
1621 struct ipsecrequest *isr;
1622
1623 for (isr = sp->req; isr != NULL; isr = isr->next) {
1624
1625 xisr = (struct sadb_x_ipsecrequest *)p;
1626
1627 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1628 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1629 xisr->sadb_x_ipsecrequest_level = isr->level;
1630 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1631
1632 p += sizeof(*xisr);
1633 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1634 p += isr->saidx.src.sa.sa_len;
1635 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1636 p += isr->saidx.src.sa.sa_len;
1637
1638 xisr->sadb_x_ipsecrequest_len =
1639 PFKEY_ALIGN8(sizeof(*xisr)
1640 + isr->saidx.src.sa.sa_len
1641 + isr->saidx.dst.sa.sa_len);
1642 }
1643 }
1644
1645 return m;
1646}
1647
1648/* m will not be freed nor modified */
1649static struct mbuf *
1650#ifdef __STDC__
1651key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1652 int ndeep, int nitem, ...)
1653#else
1654key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1655 struct mbuf *m;
1656 const struct sadb_msghdr *mhp;
1657 int ndeep;
1658 int nitem;
1659 va_dcl
1660#endif
1661{
1662 va_list ap;
1663 int idx;
1664 int i;
1665 struct mbuf *result = NULL, *n;
1666 int len;
1667
1668 IPSEC_ASSERT(m != NULL, ("null mbuf"));
1669 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1670
1671 va_start(ap, nitem);
1672 for (i = 0; i < nitem; i++) {
1673 idx = va_arg(ap, int);
1674 if (idx < 0 || idx > SADB_EXT_MAX)
1675 goto fail;
1676 /* don't attempt to pull empty extension */
1677 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1678 continue;
1679 if (idx != SADB_EXT_RESERVED &&
1680 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1681 continue;
1682
1683 if (idx == SADB_EXT_RESERVED) {
1684 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1685
1686 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1687
1688 MGETHDR(n, M_DONTWAIT, MT_DATA);
1689 if (!n)
1690 goto fail;
1691 n->m_len = len;
1692 n->m_next = NULL;
1693 m_copydata(m, 0, sizeof(struct sadb_msg),
1694 mtod(n, caddr_t));
1695 } else if (i < ndeep) {
1696 len = mhp->extlen[idx];
1697 n = key_alloc_mbuf(len);
1698 if (!n || n->m_next) { /*XXX*/
1699 if (n)
1700 m_freem(n);
1701 goto fail;
1702 }
1703 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1704 mtod(n, caddr_t));
1705 } else {
1706 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1707 M_DONTWAIT);
1708 }
1709 if (n == NULL)
1710 goto fail;
1711
1712 if (result)
1713 m_cat(result, n);
1714 else
1715 result = n;
1716 }
1717 va_end(ap);
1718
1719 if ((result->m_flags & M_PKTHDR) != 0) {
1720 result->m_pkthdr.len = 0;
1721 for (n = result; n; n = n->m_next)
1722 result->m_pkthdr.len += n->m_len;
1723 }
1724
1725 return result;
1726
1727fail:
1728 m_freem(result);
1729 return NULL;
1730}
1731
1732/*
1733 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1734 * add an entry to SP database, when received
1735 * <base, address(SD), (lifetime(H),) policy>
1736 * from the user(?).
1737 * Adding to SP database,
1738 * and send
1739 * <base, address(SD), (lifetime(H),) policy>
1740 * to the socket which was send.
1741 *
1742 * SPDADD set a unique policy entry.
1743 * SPDSETIDX like SPDADD without a part of policy requests.
1744 * SPDUPDATE replace a unique policy entry.
1745 *
1746 * m will always be freed.
1747 */
1748static int
1749key_spdadd(so, m, mhp)
1750 struct socket *so;
1751 struct mbuf *m;
1752 const struct sadb_msghdr *mhp;
1753{
1754 struct sadb_address *src0, *dst0;
1755 struct sadb_x_policy *xpl0, *xpl;
1756 struct sadb_lifetime *lft = NULL;
1757 struct secpolicyindex spidx;
1758 struct secpolicy *newsp;
1759 int error;
1760
1761 IPSEC_ASSERT(so != NULL, ("null socket"));
1762 IPSEC_ASSERT(m != NULL, ("null mbuf"));
1763 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1764 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1765
1766 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1767 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1768 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1769 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1770 return key_senderror(so, m, EINVAL);
1771 }
1772 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1773 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1774 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1775 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1776 __func__));
1777 return key_senderror(so, m, EINVAL);
1778 }
1779 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1780 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1781 < sizeof(struct sadb_lifetime)) {
1782 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1783 __func__));
1784 return key_senderror(so, m, EINVAL);
1785 }
1786 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1787 }
1788
1789 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1790 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1791 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1792
1793 /* make secindex */
1794 /* XXX boundary check against sa_len */
1795 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1796 src0 + 1,
1797 dst0 + 1,
1798 src0->sadb_address_prefixlen,
1799 dst0->sadb_address_prefixlen,
1800 src0->sadb_address_proto,
1801 &spidx);
1802
1803 /* checking the direciton. */
1804 switch (xpl0->sadb_x_policy_dir) {
1805 case IPSEC_DIR_INBOUND:
1806 case IPSEC_DIR_OUTBOUND:
1807 break;
1808 default:
1809 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1810 mhp->msg->sadb_msg_errno = EINVAL;
1811 return 0;
1812 }
1813
1814 /* check policy */
1815 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1816 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1817 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1818 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1819 return key_senderror(so, m, EINVAL);
1820 }
1821
1822 /* policy requests are mandatory when action is ipsec. */
1823 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1824 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1825 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1826 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1827 __func__));
1828 return key_senderror(so, m, EINVAL);
1829 }
1830
1831 /*
1832 * checking there is SP already or not.
1833 * SPDUPDATE doesn't depend on whether there is a SP or not.
1834 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1835 * then error.
1836 */
1837 newsp = key_getsp(&spidx);
1838 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1839 if (newsp) {
1840 newsp->state = IPSEC_SPSTATE_DEAD;
1841 KEY_FREESP(&newsp);
1842 }
1843 } else {
1844 if (newsp != NULL) {
1845 KEY_FREESP(&newsp);
1846 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1847 __func__));
1848 return key_senderror(so, m, EEXIST);
1849 }
1850 }
1851
1852 /* allocation new SP entry */
1853 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1854 return key_senderror(so, m, error);
1855 }
1856
1857 if ((newsp->id = key_getnewspid()) == 0) {
1858 _key_delsp(newsp);
1859 return key_senderror(so, m, ENOBUFS);
1860 }
1861
1862 /* XXX boundary check against sa_len */
1863 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1864 src0 + 1,
1865 dst0 + 1,
1866 src0->sadb_address_prefixlen,
1867 dst0->sadb_address_prefixlen,
1868 src0->sadb_address_proto,
1869 &newsp->spidx);
1870
1871 /* sanity check on addr pair */
1872 if (((struct sockaddr *)(src0 + 1))->sa_family !=
1873 ((struct sockaddr *)(dst0+ 1))->sa_family) {
1874 _key_delsp(newsp);
1875 return key_senderror(so, m, EINVAL);
1876 }
1877 if (((struct sockaddr *)(src0 + 1))->sa_len !=
1878 ((struct sockaddr *)(dst0+ 1))->sa_len) {
1879 _key_delsp(newsp);
1880 return key_senderror(so, m, EINVAL);
1881 }
1882#if 1
1883 if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1884 struct sockaddr *sa;
1885 sa = (struct sockaddr *)(src0 + 1);
1886 if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1887 _key_delsp(newsp);
1888 return key_senderror(so, m, EINVAL);
1889 }
1890 }
1891 if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1892 struct sockaddr *sa;
1893 sa = (struct sockaddr *)(dst0 + 1);
1894 if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1895 _key_delsp(newsp);
1896 return key_senderror(so, m, EINVAL);
1897 }
1898 }
1899#endif
1900
1901 newsp->created = time_second;
1902 newsp->lastused = newsp->created;
1903 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1904 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1905
1906 newsp->refcnt = 1; /* do not reclaim until I say I do */
1907 newsp->state = IPSEC_SPSTATE_ALIVE;
1908 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1909
1910 /* delete the entry in spacqtree */
1911 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1912 struct secspacq *spacq = key_getspacq(&spidx);
1913 if (spacq != NULL) {
1914 /* reset counter in order to deletion by timehandler. */
1915 spacq->created = time_second;
1916 spacq->count = 0;
1917 SPACQ_UNLOCK();
1918 }
1919 }
1920
1921 {
1922 struct mbuf *n, *mpolicy;
1923 struct sadb_msg *newmsg;
1924 int off;
1925
1926 /* create new sadb_msg to reply. */
1927 if (lft) {
1928 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1929 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1930 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1931 } else {
1932 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1933 SADB_X_EXT_POLICY,
1934 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1935 }
1936 if (!n)
1937 return key_senderror(so, m, ENOBUFS);
1938
1939 if (n->m_len < sizeof(*newmsg)) {
1940 n = m_pullup(n, sizeof(*newmsg));
1941 if (!n)
1942 return key_senderror(so, m, ENOBUFS);
1943 }
1944 newmsg = mtod(n, struct sadb_msg *);
1945 newmsg->sadb_msg_errno = 0;
1946 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1947
1948 off = 0;
1949 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1950 sizeof(*xpl), &off);
1951 if (mpolicy == NULL) {
1952 /* n is already freed */
1953 return key_senderror(so, m, ENOBUFS);
1954 }
1955 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1956 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1957 m_freem(n);
1958 return key_senderror(so, m, EINVAL);
1959 }
1960 xpl->sadb_x_policy_id = newsp->id;
1961
1962 m_freem(m);
1963 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1964 }
1965}
1966
1967/*
1968 * get new policy id.
1969 * OUT:
1970 * 0: failure.
1971 * others: success.
1972 */
1973static u_int32_t
1974key_getnewspid()
1975{
1976 u_int32_t newid = 0;
1977 int count = key_spi_trycnt; /* XXX */
1978 struct secpolicy *sp;
1979
1980 /* when requesting to allocate spi ranged */
1981 while (count--) {
1982 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
1983
1984 if ((sp = key_getspbyid(newid)) == NULL)
1985 break;
1986
1987 KEY_FREESP(&sp);
1988 }
1989
1990 if (count == 0 || newid == 0) {
1991 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
1992 __func__));
1993 return 0;
1994 }
1995
1996 return newid;
1997}
1998
1999/*
2000 * SADB_SPDDELETE processing
2001 * receive
2002 * <base, address(SD), policy(*)>
2003 * from the user(?), and set SADB_SASTATE_DEAD,
2004 * and send,
2005 * <base, address(SD), policy(*)>
2006 * to the ikmpd.
2007 * policy(*) including direction of policy.
2008 *
2009 * m will always be freed.
2010 */
2011static int
2012key_spddelete(so, m, mhp)
2013 struct socket *so;
2014 struct mbuf *m;
2015 const struct sadb_msghdr *mhp;
2016{
2017 struct sadb_address *src0, *dst0;
2018 struct sadb_x_policy *xpl0;
2019 struct secpolicyindex spidx;
2020 struct secpolicy *sp;
2021
2022 IPSEC_ASSERT(so != NULL, ("null so"));
2023 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2024 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2025 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2026
2027 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2028 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2029 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2030 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2031 __func__));
2032 return key_senderror(so, m, EINVAL);
2033 }
2034 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2035 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2036 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2037 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2038 __func__));
2039 return key_senderror(so, m, EINVAL);
2040 }
2041
2042 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2043 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2044 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2045
2046 /* make secindex */
2047 /* XXX boundary check against sa_len */
2048 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2049 src0 + 1,
2050 dst0 + 1,
2051 src0->sadb_address_prefixlen,
2052 dst0->sadb_address_prefixlen,
2053 src0->sadb_address_proto,
2054 &spidx);
2055
2056 /* checking the direciton. */
2057 switch (xpl0->sadb_x_policy_dir) {
2058 case IPSEC_DIR_INBOUND:
2059 case IPSEC_DIR_OUTBOUND:
2060 break;
2061 default:
2062 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2063 return key_senderror(so, m, EINVAL);
2064 }
2065
2066 /* Is there SP in SPD ? */
2067 if ((sp = key_getsp(&spidx)) == NULL) {
2068 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2069 return key_senderror(so, m, EINVAL);
2070 }
2071
2072 /* save policy id to buffer to be returned. */
2073 xpl0->sadb_x_policy_id = sp->id;
2074
2075 sp->state = IPSEC_SPSTATE_DEAD;
2076 KEY_FREESP(&sp);
2077
2078 {
2079 struct mbuf *n;
2080 struct sadb_msg *newmsg;
2081
2082 /* create new sadb_msg to reply. */
2083 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2084 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2085 if (!n)
2086 return key_senderror(so, m, ENOBUFS);
2087
2088 newmsg = mtod(n, struct sadb_msg *);
2089 newmsg->sadb_msg_errno = 0;
2090 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2091
2092 m_freem(m);
2093 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2094 }
2095}
2096
2097/*
2098 * SADB_SPDDELETE2 processing
2099 * receive
2100 * <base, policy(*)>
2101 * from the user(?), and set SADB_SASTATE_DEAD,
2102 * and send,
2103 * <base, policy(*)>
2104 * to the ikmpd.
2105 * policy(*) including direction of policy.
2106 *
2107 * m will always be freed.
2108 */
2109static int
2110key_spddelete2(so, m, mhp)
2111 struct socket *so;
2112 struct mbuf *m;
2113 const struct sadb_msghdr *mhp;
2114{
2115 u_int32_t id;
2116 struct secpolicy *sp;
2117
2118 IPSEC_ASSERT(so != NULL, ("null socket"));
2119 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2120 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2121 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2122
2123 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2124 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2125 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2126 key_senderror(so, m, EINVAL);
2127 return 0;
2128 }
2129
2130 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2131
2132 /* Is there SP in SPD ? */
2133 if ((sp = key_getspbyid(id)) == NULL) {
2134 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2135 key_senderror(so, m, EINVAL);
2136 }
2137
2138 sp->state = IPSEC_SPSTATE_DEAD;
2139 KEY_FREESP(&sp);
2140
2141 {
2142 struct mbuf *n, *nn;
2143 struct sadb_msg *newmsg;
2144 int off, len;
2145
2146 /* create new sadb_msg to reply. */
2147 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2148
2149 if (len > MCLBYTES)
2150 return key_senderror(so, m, ENOBUFS);
2151 MGETHDR(n, M_DONTWAIT, MT_DATA);
2152 if (n && len > MHLEN) {
2153 MCLGET(n, M_DONTWAIT);
2154 if ((n->m_flags & M_EXT) == 0) {
2155 m_freem(n);
2156 n = NULL;
2157 }
2158 }
2159 if (!n)
2160 return key_senderror(so, m, ENOBUFS);
2161
2162 n->m_len = len;
2163 n->m_next = NULL;
2164 off = 0;
2165
2166 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2167 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2168
2169 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2170 off, len));
2171
2172 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2173 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2174 if (!n->m_next) {
2175 m_freem(n);
2176 return key_senderror(so, m, ENOBUFS);
2177 }
2178
2179 n->m_pkthdr.len = 0;
2180 for (nn = n; nn; nn = nn->m_next)
2181 n->m_pkthdr.len += nn->m_len;
2182
2183 newmsg = mtod(n, struct sadb_msg *);
2184 newmsg->sadb_msg_errno = 0;
2185 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2186
2187 m_freem(m);
2188 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2189 }
2190}
2191
2192/*
2193 * SADB_X_GET processing
2194 * receive
2195 * <base, policy(*)>
2196 * from the user(?),
2197 * and send,
2198 * <base, address(SD), policy>
2199 * to the ikmpd.
2200 * policy(*) including direction of policy.
2201 *
2202 * m will always be freed.
2203 */
2204static int
2205key_spdget(so, m, mhp)
2206 struct socket *so;
2207 struct mbuf *m;
2208 const struct sadb_msghdr *mhp;
2209{
2210 u_int32_t id;
2211 struct secpolicy *sp;
2212 struct mbuf *n;
2213
2214 IPSEC_ASSERT(so != NULL, ("null socket"));
2215 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2216 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2217 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2218
2219 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2220 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2221 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2222 __func__));
2223 return key_senderror(so, m, EINVAL);
2224 }
2225
2226 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2227
2228 /* Is there SP in SPD ? */
2229 if ((sp = key_getspbyid(id)) == NULL) {
2230 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2231 return key_senderror(so, m, ENOENT);
2232 }
2233
2234 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2235 if (n != NULL) {
2236 m_freem(m);
2237 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2238 } else
2239 return key_senderror(so, m, ENOBUFS);
2240}
2241
2242/*
2243 * SADB_X_SPDACQUIRE processing.
2244 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2245 * send
2246 * <base, policy(*)>
2247 * to KMD, and expect to receive
2248 * <base> with SADB_X_SPDACQUIRE if error occured,
2249 * or
2250 * <base, policy>
2251 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2252 * policy(*) is without policy requests.
2253 *
2254 * 0 : succeed
2255 * others: error number
2256 */
2257int
2258key_spdacquire(sp)
2259 struct secpolicy *sp;
2260{
2261 struct mbuf *result = NULL, *m;
2262 struct secspacq *newspacq;
2263 int error;
2264
2265 IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2266 IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2267 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2268 ("policy not IPSEC %u", sp->policy));
2269
2270 /* Get an entry to check whether sent message or not. */
2271 newspacq = key_getspacq(&sp->spidx);
2272 if (newspacq != NULL) {
2273 if (key_blockacq_count < newspacq->count) {
2274 /* reset counter and do send message. */
2275 newspacq->count = 0;
2276 } else {
2277 /* increment counter and do nothing. */
2278 newspacq->count++;
2279 return 0;
2280 }
2281 SPACQ_UNLOCK();
2282 } else {
2283 /* make new entry for blocking to send SADB_ACQUIRE. */
2284 newspacq = key_newspacq(&sp->spidx);
2285 if (newspacq == NULL)
2286 return ENOBUFS;
2287 }
2288
2289 /* create new sadb_msg to reply. */
2290 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2291 if (!m) {
2292 error = ENOBUFS;
2293 goto fail;
2294 }
2295 result = m;
2296
2297 result->m_pkthdr.len = 0;
2298 for (m = result; m; m = m->m_next)
2299 result->m_pkthdr.len += m->m_len;
2300
2301 mtod(result, struct sadb_msg *)->sadb_msg_len =
2302 PFKEY_UNIT64(result->m_pkthdr.len);
2303
2304 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2305
2306fail:
2307 if (result)
2308 m_freem(result);
2309 return error;
2310}
2311
2312/*
2313 * SADB_SPDFLUSH processing
2314 * receive
2315 * <base>
2316 * from the user, and free all entries in secpctree.
2317 * and send,
2318 * <base>
2319 * to the user.
2320 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2321 *
2322 * m will always be freed.
2323 */
2324static int
2325key_spdflush(so, m, mhp)
2326 struct socket *so;
2327 struct mbuf *m;
2328 const struct sadb_msghdr *mhp;
2329{
2330 struct sadb_msg *newmsg;
2331 struct secpolicy *sp;
2332 u_int dir;
2333
2334 IPSEC_ASSERT(so != NULL, ("null socket"));
2335 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2336 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2337 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2338
2339 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2340 return key_senderror(so, m, EINVAL);
2341
2342 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2343 SPTREE_LOCK();
2344 LIST_FOREACH(sp, &sptree[dir], chain)
2345 sp->state = IPSEC_SPSTATE_DEAD;
2346 SPTREE_UNLOCK();
2347 }
2348
2349 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2350 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2351 return key_senderror(so, m, ENOBUFS);
2352 }
2353
2354 if (m->m_next)
2355 m_freem(m->m_next);
2356 m->m_next = NULL;
2357 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2358 newmsg = mtod(m, struct sadb_msg *);
2359 newmsg->sadb_msg_errno = 0;
2360 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2361
2362 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2363}
2364
2365/*
2366 * SADB_SPDDUMP processing
2367 * receive
2368 * <base>
2369 * from the user, and dump all SP leaves
2370 * and send,
2371 * <base> .....
2372 * to the ikmpd.
2373 *
2374 * m will always be freed.
2375 */
2376static int
2377key_spddump(so, m, mhp)
2378 struct socket *so;
2379 struct mbuf *m;
2380 const struct sadb_msghdr *mhp;
2381{
2382 struct secpolicy *sp;
2383 int cnt;
2384 u_int dir;
2385 struct mbuf *n;
2386
2387 IPSEC_ASSERT(so != NULL, ("null socket"));
2388 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2389 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2390 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2391
2392 /* search SPD entry and get buffer size. */
2393 cnt = 0;
2394 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2395 LIST_FOREACH(sp, &sptree[dir], chain) {
2396 cnt++;
2397 }
2398 }
2399
2400 if (cnt == 0)
2401 return key_senderror(so, m, ENOENT);
2402
2403 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2404 LIST_FOREACH(sp, &sptree[dir], chain) {
2405 --cnt;
2406 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2407 mhp->msg->sadb_msg_pid);
2408
2409 if (n)
2410 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2411 }
2412 }
2413
2414 m_freem(m);
2415 return 0;
2416}
2417
2418static struct mbuf *
2419key_setdumpsp(sp, type, seq, pid)
2420 struct secpolicy *sp;
2421 u_int8_t type;
2422 u_int32_t seq, pid;
2423{
2424 struct mbuf *result = NULL, *m;
2425
2426 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2427 if (!m)
2428 goto fail;
2429 result = m;
2430
2431 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2432 &sp->spidx.src.sa, sp->spidx.prefs,
2433 sp->spidx.ul_proto);
2434 if (!m)
2435 goto fail;
2436 m_cat(result, m);
2437
2438 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2439 &sp->spidx.dst.sa, sp->spidx.prefd,
2440 sp->spidx.ul_proto);
2441 if (!m)
2442 goto fail;
2443 m_cat(result, m);
2444
2445 m = key_sp2msg(sp);
2446 if (!m)
2447 goto fail;
2448 m_cat(result, m);
2449
2450 if ((result->m_flags & M_PKTHDR) == 0)
2451 goto fail;
2452
2453 if (result->m_len < sizeof(struct sadb_msg)) {
2454 result = m_pullup(result, sizeof(struct sadb_msg));
2455 if (result == NULL)
2456 goto fail;
2457 }
2458
2459 result->m_pkthdr.len = 0;
2460 for (m = result; m; m = m->m_next)
2461 result->m_pkthdr.len += m->m_len;
2462
2463 mtod(result, struct sadb_msg *)->sadb_msg_len =
2464 PFKEY_UNIT64(result->m_pkthdr.len);
2465
2466 return result;
2467
2468fail:
2469 m_freem(result);
2470 return NULL;
2471}
2472
2473/*
2474 * get PFKEY message length for security policy and request.
2475 */
2476static u_int
2477key_getspreqmsglen(sp)
2478 struct secpolicy *sp;
2479{
2480 u_int tlen;
2481
2482 tlen = sizeof(struct sadb_x_policy);
2483
2484 /* if is the policy for ipsec ? */
2485 if (sp->policy != IPSEC_POLICY_IPSEC)
2486 return tlen;
2487
2488 /* get length of ipsec requests */
2489 {
2490 struct ipsecrequest *isr;
2491 int len;
2492
2493 for (isr = sp->req; isr != NULL; isr = isr->next) {
2494 len = sizeof(struct sadb_x_ipsecrequest)
2495 + isr->saidx.src.sa.sa_len
2496 + isr->saidx.dst.sa.sa_len;
2497
2498 tlen += PFKEY_ALIGN8(len);
2499 }
2500 }
2501
2502 return tlen;
2503}
2504
2505/*
2506 * SADB_SPDEXPIRE processing
2507 * send
2508 * <base, address(SD), lifetime(CH), policy>
2509 * to KMD by PF_KEY.
2510 *
2511 * OUT: 0 : succeed
2512 * others : error number
2513 */
2514static int
2515key_spdexpire(sp)
2516 struct secpolicy *sp;
2517{
2518 struct mbuf *result = NULL, *m;
2519 int len;
2520 int error = -1;
2521 struct sadb_lifetime *lt;
2522
2523 /* XXX: Why do we lock ? */
2524
2525 IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2526
2527 /* set msg header */
2528 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2529 if (!m) {
2530 error = ENOBUFS;
2531 goto fail;
2532 }
2533 result = m;
2534
2535 /* create lifetime extension (current and hard) */
2536 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2537 m = key_alloc_mbuf(len);
2538 if (!m || m->m_next) { /*XXX*/
2539 if (m)
2540 m_freem(m);
2541 error = ENOBUFS;
2542 goto fail;
2543 }
2544 bzero(mtod(m, caddr_t), len);
2545 lt = mtod(m, struct sadb_lifetime *);
2546 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2547 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2548 lt->sadb_lifetime_allocations = 0;
2549 lt->sadb_lifetime_bytes = 0;
2550 lt->sadb_lifetime_addtime = sp->created;
2551 lt->sadb_lifetime_usetime = sp->lastused;
2552 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2553 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2554 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2555 lt->sadb_lifetime_allocations = 0;
2556 lt->sadb_lifetime_bytes = 0;
2557 lt->sadb_lifetime_addtime = sp->lifetime;
2558 lt->sadb_lifetime_usetime = sp->validtime;
2559 m_cat(result, m);
2560
2561 /* set sadb_address for source */
2562 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2563 &sp->spidx.src.sa,
2564 sp->spidx.prefs, sp->spidx.ul_proto);
2565 if (!m) {
2566 error = ENOBUFS;
2567 goto fail;
2568 }
2569 m_cat(result, m);
2570
2571 /* set sadb_address for destination */
2572 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2573 &sp->spidx.dst.sa,
2574 sp->spidx.prefd, sp->spidx.ul_proto);
2575 if (!m) {
2576 error = ENOBUFS;
2577 goto fail;
2578 }
2579 m_cat(result, m);
2580
2581 /* set secpolicy */
2582 m = key_sp2msg(sp);
2583 if (!m) {
2584 error = ENOBUFS;
2585 goto fail;
2586 }
2587 m_cat(result, m);
2588
2589 if ((result->m_flags & M_PKTHDR) == 0) {
2590 error = EINVAL;
2591 goto fail;
2592 }
2593
2594 if (result->m_len < sizeof(struct sadb_msg)) {
2595 result = m_pullup(result, sizeof(struct sadb_msg));
2596 if (result == NULL) {
2597 error = ENOBUFS;
2598 goto fail;
2599 }
2600 }
2601
2602 result->m_pkthdr.len = 0;
2603 for (m = result; m; m = m->m_next)
2604 result->m_pkthdr.len += m->m_len;
2605
2606 mtod(result, struct sadb_msg *)->sadb_msg_len =
2607 PFKEY_UNIT64(result->m_pkthdr.len);
2608
2609 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2610
2611 fail:
2612 if (result)
2613 m_freem(result);
2614 return error;
2615}
2616
2617/* %%% SAD management */
2618/*
2619 * allocating a memory for new SA head, and copy from the values of mhp.
2620 * OUT: NULL : failure due to the lack of memory.
2621 * others : pointer to new SA head.
2622 */
2623static struct secashead *
2624key_newsah(saidx)
2625 struct secasindex *saidx;
2626{
2627 struct secashead *newsah;
2628
2629 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2630
2631 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2632 if (newsah != NULL) {
2633 int i;
2634 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2635 LIST_INIT(&newsah->savtree[i]);
2636 newsah->saidx = *saidx;
2637
2638 /* add to saidxtree */
2639 newsah->state = SADB_SASTATE_MATURE;
2640
2641 SAHTREE_LOCK();
2642 LIST_INSERT_HEAD(&sahtree, newsah, chain);
2643 SAHTREE_UNLOCK();
2644 }
2645 return(newsah);
2646}
2647
2648/*
2649 * delete SA index and all SA registerd.
2650 */
2651static void
2652key_delsah(sah)
2653 struct secashead *sah;
2654{
2655 struct secasvar *sav, *nextsav;
2656 u_int stateidx;
2657 int zombie = 0;
2658
2659 IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2660 SAHTREE_LOCK_ASSERT();
2661
2662 /* searching all SA registerd in the secindex. */
2663 for (stateidx = 0;
2664 stateidx < _ARRAYLEN(saorder_state_any);
2665 stateidx++) {
2666 u_int state = saorder_state_any[stateidx];
2667 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2668 if (sav->refcnt == 0) {
2669 /* sanity check */
2670 KEY_CHKSASTATE(state, sav->state, __func__);
2671 KEY_FREESAV(&sav);
2672 } else {
2673 /* give up to delete this sa */
2674 zombie++;
2675 }
2676 }
2677 }
2678 if (!zombie) { /* delete only if there are savs */
2679 /* remove from tree of SA index */
2680 if (__LIST_CHAINED(sah))
2681 LIST_REMOVE(sah, chain);
2682 if (sah->sa_route.ro_rt) {
2683 RTFREE(sah->sa_route.ro_rt);
2684 sah->sa_route.ro_rt = (struct rtentry *)NULL;
2685 }
2686 free(sah, M_IPSEC_SAH);
2687 }
2688}
2689
2690/*
2691 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2692 * and copy the values of mhp into new buffer.
2693 * When SAD message type is GETSPI:
2694 * to set sequence number from acq_seq++,
2695 * to set zero to SPI.
2696 * not to call key_setsava().
2697 * OUT: NULL : fail
2698 * others : pointer to new secasvar.
2699 *
2700 * does not modify mbuf. does not free mbuf on error.
2701 */
2702static struct secasvar *
2703key_newsav(m, mhp, sah, errp, where, tag)
2704 struct mbuf *m;
2705 const struct sadb_msghdr *mhp;
2706 struct secashead *sah;
2707 int *errp;
2708 const char* where;
2709 int tag;
2710{
2711 struct secasvar *newsav;
2712 const struct sadb_sa *xsa;
2713
2714 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2715 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2716 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2717 IPSEC_ASSERT(sah != NULL, ("null secashead"));
2718
2719 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2720 if (newsav == NULL) {
2721 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2722 *errp = ENOBUFS;
2723 goto done;
2724 }
2725
2726 switch (mhp->msg->sadb_msg_type) {
2727 case SADB_GETSPI:
2728 newsav->spi = 0;
2729
2730#ifdef IPSEC_DOSEQCHECK
2731 /* sync sequence number */
2732 if (mhp->msg->sadb_msg_seq == 0)
2733 newsav->seq =
2734 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
2735 else
2736#endif
2737 newsav->seq = mhp->msg->sadb_msg_seq;
2738 break;
2739
2740 case SADB_ADD:
2741 /* sanity check */
2742 if (mhp->ext[SADB_EXT_SA] == NULL) {
2743 free(newsav, M_IPSEC_SA);
2744 newsav = NULL;
2745 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2746 __func__));
2747 *errp = EINVAL;
2748 goto done;
2749 }
2750 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2751 newsav->spi = xsa->sadb_sa_spi;
2752 newsav->seq = mhp->msg->sadb_msg_seq;
2753 break;
2754 default:
2755 free(newsav, M_IPSEC_SA);
2756 newsav = NULL;
2757 *errp = EINVAL;
2758 goto done;
2759 }
2760
2761
2762 /* copy sav values */
2763 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2764 *errp = key_setsaval(newsav, m, mhp);
2765 if (*errp) {
2766 free(newsav, M_IPSEC_SA);
2767 newsav = NULL;
2768 goto done;
2769 }
2770 }
2771
2772 SECASVAR_LOCK_INIT(newsav);
2773
2774 /* reset created */
2775 newsav->created = time_second;
2776 newsav->pid = mhp->msg->sadb_msg_pid;
2777
2778 /* add to satree */
2779 newsav->sah = sah;
2767 newsav->refcnt = 1;
2780 sa_initref(newsav);
2781 newsav->state = SADB_SASTATE_LARVAL;
2782
2783 /* XXX locking??? */
2784 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2785 secasvar, chain);
2786done:
2787 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2788 printf("DP %s from %s:%u return SP:%p\n", __func__,
2789 where, tag, newsav));
2790
2791 return newsav;
2792}
2793
2794/*
2795 * free() SA variable entry.
2796 */
2797static void
2798key_cleansav(struct secasvar *sav)
2799{
2800 /*
2801 * Cleanup xform state. Note that zeroize'ing causes the
2802 * keys to be cleared; otherwise we must do it ourself.
2803 */
2804 if (sav->tdb_xform != NULL) {
2805 sav->tdb_xform->xf_zeroize(sav);
2806 sav->tdb_xform = NULL;
2807 } else {
2808 KASSERT(sav->iv == NULL, ("iv but no xform"));
2809 if (sav->key_auth != NULL)
2810 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2811 if (sav->key_enc != NULL)
2812 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2813 }
2814 if (sav->key_auth != NULL) {
2815 if (sav->key_auth->key_data != NULL)
2816 free(sav->key_auth->key_data, M_IPSEC_MISC);
2817 free(sav->key_auth, M_IPSEC_MISC);
2818 sav->key_auth = NULL;
2819 }
2820 if (sav->key_enc != NULL) {
2821 if (sav->key_enc->key_data != NULL)
2822 free(sav->key_enc->key_data, M_IPSEC_MISC);
2823 free(sav->key_enc, M_IPSEC_MISC);
2824 sav->key_enc = NULL;
2825 }
2826 if (sav->sched) {
2827 bzero(sav->sched, sav->schedlen);
2828 free(sav->sched, M_IPSEC_MISC);
2829 sav->sched = NULL;
2830 }
2831 if (sav->replay != NULL) {
2832 free(sav->replay, M_IPSEC_MISC);
2833 sav->replay = NULL;
2834 }
2835 if (sav->lft_c != NULL) {
2836 free(sav->lft_c, M_IPSEC_MISC);
2837 sav->lft_c = NULL;
2838 }
2839 if (sav->lft_h != NULL) {
2840 free(sav->lft_h, M_IPSEC_MISC);
2841 sav->lft_h = NULL;
2842 }
2843 if (sav->lft_s != NULL) {
2844 free(sav->lft_s, M_IPSEC_MISC);
2845 sav->lft_s = NULL;
2846 }
2847}
2848
2849/*
2850 * free() SA variable entry.
2851 */
2852static void
2853key_delsav(sav)
2854 struct secasvar *sav;
2855{
2856 IPSEC_ASSERT(sav != NULL, ("null sav"));
2857 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2858
2859 /* remove from SA header */
2860 if (__LIST_CHAINED(sav))
2861 LIST_REMOVE(sav, chain);
2862 key_cleansav(sav);
2863 SECASVAR_LOCK_DESTROY(sav);
2864 free(sav, M_IPSEC_SA);
2865}
2866
2867/*
2868 * search SAD.
2869 * OUT:
2870 * NULL : not found
2871 * others : found, pointer to a SA.
2872 */
2873static struct secashead *
2874key_getsah(saidx)
2875 struct secasindex *saidx;
2876{
2877 struct secashead *sah;
2878
2879 SAHTREE_LOCK();
2880 LIST_FOREACH(sah, &sahtree, chain) {
2881 if (sah->state == SADB_SASTATE_DEAD)
2882 continue;
2883 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2884 break;
2885 }
2886 SAHTREE_UNLOCK();
2887
2888 return sah;
2889}
2890
2891/*
2892 * check not to be duplicated SPI.
2893 * NOTE: this function is too slow due to searching all SAD.
2894 * OUT:
2895 * NULL : not found
2896 * others : found, pointer to a SA.
2897 */
2898static struct secasvar *
2899key_checkspidup(saidx, spi)
2900 struct secasindex *saidx;
2901 u_int32_t spi;
2902{
2903 struct secashead *sah;
2904 struct secasvar *sav;
2905
2906 /* check address family */
2907 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2908 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2909 __func__));
2910 return NULL;
2911 }
2912
2913 sav = NULL;
2914 /* check all SAD */
2915 SAHTREE_LOCK();
2916 LIST_FOREACH(sah, &sahtree, chain) {
2917 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2918 continue;
2919 sav = key_getsavbyspi(sah, spi);
2920 if (sav != NULL)
2921 break;
2922 }
2923 SAHTREE_UNLOCK();
2924
2925 return sav;
2926}
2927
2928/*
2929 * search SAD litmited alive SA, protocol, SPI.
2930 * OUT:
2931 * NULL : not found
2932 * others : found, pointer to a SA.
2933 */
2934static struct secasvar *
2935key_getsavbyspi(sah, spi)
2936 struct secashead *sah;
2937 u_int32_t spi;
2938{
2939 struct secasvar *sav;
2940 u_int stateidx, state;
2941
2942 sav = NULL;
2943 SAHTREE_LOCK_ASSERT();
2944 /* search all status */
2945 for (stateidx = 0;
2946 stateidx < _ARRAYLEN(saorder_state_alive);
2947 stateidx++) {
2948
2949 state = saorder_state_alive[stateidx];
2950 LIST_FOREACH(sav, &sah->savtree[state], chain) {
2951
2952 /* sanity check */
2953 if (sav->state != state) {
2954 ipseclog((LOG_DEBUG, "%s: "
2955 "invalid sav->state (queue: %d SA: %d)\n",
2956 __func__, state, sav->state));
2957 continue;
2958 }
2959
2960 if (sav->spi == spi)
2961 return sav;
2962 }
2963 }
2964
2965 return NULL;
2966}
2967
2968/*
2969 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
2970 * You must update these if need.
2971 * OUT: 0: success.
2972 * !0: failure.
2973 *
2974 * does not modify mbuf. does not free mbuf on error.
2975 */
2976static int
2977key_setsaval(sav, m, mhp)
2978 struct secasvar *sav;
2979 struct mbuf *m;
2980 const struct sadb_msghdr *mhp;
2981{
2982 int error = 0;
2983
2984 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2985 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2986 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2987
2988 /* initialization */
2989 sav->replay = NULL;
2990 sav->key_auth = NULL;
2991 sav->key_enc = NULL;
2992 sav->sched = NULL;
2993 sav->schedlen = 0;
2994 sav->iv = NULL;
2995 sav->lft_c = NULL;
2996 sav->lft_h = NULL;
2997 sav->lft_s = NULL;
2998 sav->tdb_xform = NULL; /* transform */
2999 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3000 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3001 sav->tdb_compalgxform = NULL; /* compression algorithm */
3002
3003 /* SA */
3004 if (mhp->ext[SADB_EXT_SA] != NULL) {
3005 const struct sadb_sa *sa0;
3006
3007 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3008 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3009 error = EINVAL;
3010 goto fail;
3011 }
3012
3013 sav->alg_auth = sa0->sadb_sa_auth;
3014 sav->alg_enc = sa0->sadb_sa_encrypt;
3015 sav->flags = sa0->sadb_sa_flags;
3016
3017 /* replay window */
3018 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3019 sav->replay = (struct secreplay *)
3020 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3021 if (sav->replay == NULL) {
3022 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3023 __func__));
3024 error = ENOBUFS;
3025 goto fail;
3026 }
3027 if (sa0->sadb_sa_replay != 0)
3028 sav->replay->bitmap = (caddr_t)(sav->replay+1);
3029 sav->replay->wsize = sa0->sadb_sa_replay;
3030 }
3031 }
3032
3033 /* Authentication keys */
3034 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3035 const struct sadb_key *key0;
3036 int len;
3037
3038 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3039 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3040
3041 error = 0;
3042 if (len < sizeof(*key0)) {
3043 error = EINVAL;
3044 goto fail;
3045 }
3046 switch (mhp->msg->sadb_msg_satype) {
3047 case SADB_SATYPE_AH:
3048 case SADB_SATYPE_ESP:
3049 case SADB_X_SATYPE_TCPSIGNATURE:
3050 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3051 sav->alg_auth != SADB_X_AALG_NULL)
3052 error = EINVAL;
3053 break;
3054 case SADB_X_SATYPE_IPCOMP:
3055 default:
3056 error = EINVAL;
3057 break;
3058 }
3059 if (error) {
3060 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3061 __func__));
3062 goto fail;
3063 }
3064
3065 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3066 M_IPSEC_MISC);
3067 if (sav->key_auth == NULL ) {
3068 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3069 __func__));
3070 error = ENOBUFS;
3071 goto fail;
3072 }
3073 }
3074
3075 /* Encryption key */
3076 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3077 const struct sadb_key *key0;
3078 int len;
3079
3080 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3081 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3082
3083 error = 0;
3084 if (len < sizeof(*key0)) {
3085 error = EINVAL;
3086 goto fail;
3087 }
3088 switch (mhp->msg->sadb_msg_satype) {
3089 case SADB_SATYPE_ESP:
3090 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3091 sav->alg_enc != SADB_EALG_NULL) {
3092 error = EINVAL;
3093 break;
3094 }
3095 sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3096 len,
3097 M_IPSEC_MISC);
3098 if (sav->key_enc == NULL) {
3099 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3100 __func__));
3101 error = ENOBUFS;
3102 goto fail;
3103 }
3104 break;
3105 case SADB_X_SATYPE_IPCOMP:
3106 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3107 error = EINVAL;
3108 sav->key_enc = NULL; /*just in case*/
3109 break;
3110 case SADB_SATYPE_AH:
3111 case SADB_X_SATYPE_TCPSIGNATURE:
3112 default:
3113 error = EINVAL;
3114 break;
3115 }
3116 if (error) {
3117 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3118 __func__));
3119 goto fail;
3120 }
3121 }
3122
3123 /* set iv */
3124 sav->ivlen = 0;
3125
3126 switch (mhp->msg->sadb_msg_satype) {
3127 case SADB_SATYPE_AH:
3128 error = xform_init(sav, XF_AH);
3129 break;
3130 case SADB_SATYPE_ESP:
3131 error = xform_init(sav, XF_ESP);
3132 break;
3133 case SADB_X_SATYPE_IPCOMP:
3134 error = xform_init(sav, XF_IPCOMP);
3135 break;
3136 case SADB_X_SATYPE_TCPSIGNATURE:
3137 error = xform_init(sav, XF_TCPSIGNATURE);
3138 break;
3139 }
3140 if (error) {
3141 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3142 __func__, mhp->msg->sadb_msg_satype));
3143 goto fail;
3144 }
3145
3146 /* reset created */
3147 sav->created = time_second;
3148
3149 /* make lifetime for CURRENT */
3150 sav->lft_c = malloc(sizeof(struct sadb_lifetime), M_IPSEC_MISC, M_NOWAIT);
3151 if (sav->lft_c == NULL) {
3152 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3153 error = ENOBUFS;
3154 goto fail;
3155 }
3156
3157 sav->lft_c->allocations = 0;
3158 sav->lft_c->bytes = 0;
3159 sav->lft_c->addtime = time_second;
3160 sav->lft_c->usetime = 0;
3161
3162 /* lifetimes for HARD and SOFT */
3163 {
3164 const struct sadb_lifetime *lft0;
3165
3166 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3167 if (lft0 != NULL) {
3168 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3169 error = EINVAL;
3170 goto fail;
3171 }
3172 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3173 if (sav->lft_h == NULL) {
3174 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3175 error = ENOBUFS;
3176 goto fail;
3177 }
3178 /* to be initialize ? */
3179 }
3180
3181 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3182 if (lft0 != NULL) {
3183 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3184 error = EINVAL;
3185 goto fail;
3186 }
3187 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3188 if (sav->lft_s == NULL) {
3189 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3190 error = ENOBUFS;
3191 goto fail;
3192 }
3193 /* to be initialize ? */
3194 }
3195 }
3196
3197 return 0;
3198
3199 fail:
3200 /* initialization */
3201 key_cleansav(sav);
3202
3203 return error;
3204}
3205
3206/*
3207 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3208 * OUT: 0: valid
3209 * other: errno
3210 */
3211static int
3212key_mature(struct secasvar *sav)
3213{
3214 int error;
3215
3216 /* check SPI value */
3217 switch (sav->sah->saidx.proto) {
3218 case IPPROTO_ESP:
3219 case IPPROTO_AH:
3220 if (ntohl(sav->spi) >= 0 && ntohl(sav->spi) <= 255) {
3221 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3222 __func__, (u_int32_t)ntohl(sav->spi)));
3223 return EINVAL;
3224 }
3225 break;
3226 }
3227
3228 /* check satype */
3229 switch (sav->sah->saidx.proto) {
3230 case IPPROTO_ESP:
3231 /* check flags */
3232 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3233 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3234 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3235 "given to old-esp.\n", __func__));
3236 return EINVAL;
3237 }
3238 error = xform_init(sav, XF_ESP);
3239 break;
3240 case IPPROTO_AH:
3241 /* check flags */
3242 if (sav->flags & SADB_X_EXT_DERIV) {
3243 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3244 "given to AH SA.\n", __func__));
3245 return EINVAL;
3246 }
3247 if (sav->alg_enc != SADB_EALG_NONE) {
3248 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3249 "mismated.\n", __func__));
3250 return(EINVAL);
3251 }
3252 error = xform_init(sav, XF_AH);
3253 break;
3254 case IPPROTO_IPCOMP:
3255 if (sav->alg_auth != SADB_AALG_NONE) {
3256 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3257 "mismated.\n", __func__));
3258 return(EINVAL);
3259 }
3260 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3261 && ntohl(sav->spi) >= 0x10000) {
3262 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3263 __func__));
3264 return(EINVAL);
3265 }
3266 error = xform_init(sav, XF_IPCOMP);
3267 break;
3268 case IPPROTO_TCP:
3269 if (sav->alg_enc != SADB_EALG_NONE) {
3270 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3271 "mismated.\n", __func__));
3272 return(EINVAL);
3273 }
3274 error = xform_init(sav, XF_TCPSIGNATURE);
3275 break;
3276 default:
3277 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3278 error = EPROTONOSUPPORT;
3279 break;
3280 }
3281 if (error == 0) {
3282 SAHTREE_LOCK();
3283 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3284 SAHTREE_UNLOCK();
3285 }
3286 return (error);
3287}
3288
3289/*
3290 * subroutine for SADB_GET and SADB_DUMP.
3291 */
3292static struct mbuf *
3293key_setdumpsa(sav, type, satype, seq, pid)
3294 struct secasvar *sav;
3295 u_int8_t type, satype;
3296 u_int32_t seq, pid;
3297{
3298 struct mbuf *result = NULL, *tres = NULL, *m;
3299 int i;
3300 int dumporder[] = {
3301 SADB_EXT_SA, SADB_X_EXT_SA2,
3302 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3303 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3304 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3305 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3306 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3307 };
3308
3309 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3310 if (m == NULL)
3311 goto fail;
3312 result = m;
3313
3314 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3315 m = NULL;
3316 switch (dumporder[i]) {
3317 case SADB_EXT_SA:
3318 m = key_setsadbsa(sav);
3319 if (!m)
3320 goto fail;
3321 break;
3322
3323 case SADB_X_EXT_SA2:
3324 m = key_setsadbxsa2(sav->sah->saidx.mode,
3325 sav->replay ? sav->replay->count : 0,
3326 sav->sah->saidx.reqid);
3327 if (!m)
3328 goto fail;
3329 break;
3330
3331 case SADB_EXT_ADDRESS_SRC:
3332 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3333 &sav->sah->saidx.src.sa,
3334 FULLMASK, IPSEC_ULPROTO_ANY);
3335 if (!m)
3336 goto fail;
3337 break;
3338
3339 case SADB_EXT_ADDRESS_DST:
3340 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3341 &sav->sah->saidx.dst.sa,
3342 FULLMASK, IPSEC_ULPROTO_ANY);
3343 if (!m)
3344 goto fail;
3345 break;
3346
3347 case SADB_EXT_KEY_AUTH:
3348 if (!sav->key_auth)
3349 continue;
3350 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3351 if (!m)
3352 goto fail;
3353 break;
3354
3355 case SADB_EXT_KEY_ENCRYPT:
3356 if (!sav->key_enc)
3357 continue;
3358 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3359 if (!m)
3360 goto fail;
3361 break;
3362
3363 case SADB_EXT_LIFETIME_CURRENT:
3364 if (!sav->lft_c)
3365 continue;
3366 m = key_setlifetime(sav->lft_c,
3367 SADB_EXT_LIFETIME_CURRENT);
3368 if (!m)
3369 goto fail;
3370 break;
3371
3372 case SADB_EXT_LIFETIME_HARD:
3373 if (!sav->lft_h)
3374 continue;
3375 m = key_setlifetime(sav->lft_h,
3376 SADB_EXT_LIFETIME_HARD);
3377 if (!m)
3378 goto fail;
3379 break;
3380
3381 case SADB_EXT_LIFETIME_SOFT:
3382 if (!sav->lft_s)
3383 continue;
3384 m = key_setlifetime(sav->lft_h,
3385 SADB_EXT_LIFETIME_SOFT);
3386
3387 if (!m)
3388 goto fail;
3389 break;
3390
3391 case SADB_EXT_ADDRESS_PROXY:
3392 case SADB_EXT_IDENTITY_SRC:
3393 case SADB_EXT_IDENTITY_DST:
3394 /* XXX: should we brought from SPD ? */
3395 case SADB_EXT_SENSITIVITY:
3396 default:
3397 continue;
3398 }
3399
3400 if (!m)
3401 goto fail;
3402 if (tres)
3403 m_cat(m, tres);
3404 tres = m;
3405
3406 }
3407
3408 m_cat(result, tres);
3409 if (result->m_len < sizeof(struct sadb_msg)) {
3410 result = m_pullup(result, sizeof(struct sadb_msg));
3411 if (result == NULL)
3412 goto fail;
3413 }
3414
3415 result->m_pkthdr.len = 0;
3416 for (m = result; m; m = m->m_next)
3417 result->m_pkthdr.len += m->m_len;
3418
3419 mtod(result, struct sadb_msg *)->sadb_msg_len =
3420 PFKEY_UNIT64(result->m_pkthdr.len);
3421
3422 return result;
3423
3424fail:
3425 m_freem(result);
3426 m_freem(tres);
3427 return NULL;
3428}
3429
3430/*
3431 * set data into sadb_msg.
3432 */
3433static struct mbuf *
3434key_setsadbmsg(type, tlen, satype, seq, pid, reserved)
3435 u_int8_t type, satype;
3436 u_int16_t tlen;
3437 u_int32_t seq;
3438 pid_t pid;
3439 u_int16_t reserved;
3440{
3441 struct mbuf *m;
3442 struct sadb_msg *p;
3443 int len;
3444
3445 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3446 if (len > MCLBYTES)
3447 return NULL;
3448 MGETHDR(m, M_DONTWAIT, MT_DATA);
3449 if (m && len > MHLEN) {
3450 MCLGET(m, M_DONTWAIT);
3451 if ((m->m_flags & M_EXT) == 0) {
3452 m_freem(m);
3453 m = NULL;
3454 }
3455 }
3456 if (!m)
3457 return NULL;
3458 m->m_pkthdr.len = m->m_len = len;
3459 m->m_next = NULL;
3460
3461 p = mtod(m, struct sadb_msg *);
3462
3463 bzero(p, len);
3464 p->sadb_msg_version = PF_KEY_V2;
3465 p->sadb_msg_type = type;
3466 p->sadb_msg_errno = 0;
3467 p->sadb_msg_satype = satype;
3468 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3469 p->sadb_msg_reserved = reserved;
3470 p->sadb_msg_seq = seq;
3471 p->sadb_msg_pid = (u_int32_t)pid;
3472
3473 return m;
3474}
3475
3476/*
3477 * copy secasvar data into sadb_address.
3478 */
3479static struct mbuf *
3480key_setsadbsa(sav)
3481 struct secasvar *sav;
3482{
3483 struct mbuf *m;
3484 struct sadb_sa *p;
3485 int len;
3486
3487 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3488 m = key_alloc_mbuf(len);
3489 if (!m || m->m_next) { /*XXX*/
3490 if (m)
3491 m_freem(m);
3492 return NULL;
3493 }
3494
3495 p = mtod(m, struct sadb_sa *);
3496
3497 bzero(p, len);
3498 p->sadb_sa_len = PFKEY_UNIT64(len);
3499 p->sadb_sa_exttype = SADB_EXT_SA;
3500 p->sadb_sa_spi = sav->spi;
3501 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3502 p->sadb_sa_state = sav->state;
3503 p->sadb_sa_auth = sav->alg_auth;
3504 p->sadb_sa_encrypt = sav->alg_enc;
3505 p->sadb_sa_flags = sav->flags;
3506
3507 return m;
3508}
3509
3510/*
3511 * set data into sadb_address.
3512 */
3513static struct mbuf *
3514key_setsadbaddr(exttype, saddr, prefixlen, ul_proto)
3515 u_int16_t exttype;
3516 const struct sockaddr *saddr;
3517 u_int8_t prefixlen;
3518 u_int16_t ul_proto;
3519{
3520 struct mbuf *m;
3521 struct sadb_address *p;
3522 size_t len;
3523
3524 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3525 PFKEY_ALIGN8(saddr->sa_len);
3526 m = key_alloc_mbuf(len);
3527 if (!m || m->m_next) { /*XXX*/
3528 if (m)
3529 m_freem(m);
3530 return NULL;
3531 }
3532
3533 p = mtod(m, struct sadb_address *);
3534
3535 bzero(p, len);
3536 p->sadb_address_len = PFKEY_UNIT64(len);
3537 p->sadb_address_exttype = exttype;
3538 p->sadb_address_proto = ul_proto;
3539 if (prefixlen == FULLMASK) {
3540 switch (saddr->sa_family) {
3541 case AF_INET:
3542 prefixlen = sizeof(struct in_addr) << 3;
3543 break;
3544 case AF_INET6:
3545 prefixlen = sizeof(struct in6_addr) << 3;
3546 break;
3547 default:
3548 ; /*XXX*/
3549 }
3550 }
3551 p->sadb_address_prefixlen = prefixlen;
3552 p->sadb_address_reserved = 0;
3553
3554 bcopy(saddr,
3555 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3556 saddr->sa_len);
3557
3558 return m;
3559}
3560
3561/*
3562 * set data into sadb_x_sa2.
3563 */
3564static struct mbuf *
3565key_setsadbxsa2(mode, seq, reqid)
3566 u_int8_t mode;
3567 u_int32_t seq, reqid;
3568{
3569 struct mbuf *m;
3570 struct sadb_x_sa2 *p;
3571 size_t len;
3572
3573 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3574 m = key_alloc_mbuf(len);
3575 if (!m || m->m_next) { /*XXX*/
3576 if (m)
3577 m_freem(m);
3578 return NULL;
3579 }
3580
3581 p = mtod(m, struct sadb_x_sa2 *);
3582
3583 bzero(p, len);
3584 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3585 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3586 p->sadb_x_sa2_mode = mode;
3587 p->sadb_x_sa2_reserved1 = 0;
3588 p->sadb_x_sa2_reserved2 = 0;
3589 p->sadb_x_sa2_sequence = seq;
3590 p->sadb_x_sa2_reqid = reqid;
3591
3592 return m;
3593}
3594
3595/*
3596 * set data into sadb_x_policy
3597 */
3598static struct mbuf *
3599key_setsadbxpolicy(type, dir, id)
3600 u_int16_t type;
3601 u_int8_t dir;
3602 u_int32_t id;
3603{
3604 struct mbuf *m;
3605 struct sadb_x_policy *p;
3606 size_t len;
3607
3608 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3609 m = key_alloc_mbuf(len);
3610 if (!m || m->m_next) { /*XXX*/
3611 if (m)
3612 m_freem(m);
3613 return NULL;
3614 }
3615
3616 p = mtod(m, struct sadb_x_policy *);
3617
3618 bzero(p, len);
3619 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3620 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3621 p->sadb_x_policy_type = type;
3622 p->sadb_x_policy_dir = dir;
3623 p->sadb_x_policy_id = id;
3624
3625 return m;
3626}
3627
3628/* %%% utilities */
3629/* Take a key message (sadb_key) from the socket and turn it into one
3630 * of the kernel's key structures (seckey).
3631 *
3632 * IN: pointer to the src
3633 * OUT: NULL no more memory
3634 */
3635struct seckey *
3636key_dup_keymsg(const struct sadb_key *src, u_int len,
3637 struct malloc_type *type)
3638{
3639 struct seckey *dst;
3640 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3641 if (dst != NULL) {
3642 dst->bits = src->sadb_key_bits;
3643 dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3644 if (dst->key_data != NULL) {
3645 bcopy((const char *)src + sizeof(struct sadb_key),
3646 dst->key_data, len);
3647 } else {
3648 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3649 __func__));
3650 free(dst, type);
3651 dst = NULL;
3652 }
3653 } else {
3654 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3655 __func__));
3656
3657 }
3658 return dst;
3659}
3660
3661/* Take a lifetime message (sadb_lifetime) passed in on a socket and
3662 * turn it into one of the kernel's lifetime structures (seclifetime).
3663 *
3664 * IN: pointer to the destination, source and malloc type
3665 * OUT: NULL, no more memory
3666 */
3667
3668static struct seclifetime *
3669key_dup_lifemsg(const struct sadb_lifetime *src,
3670 struct malloc_type *type)
3671{
3672 struct seclifetime *dst = NULL;
3673
3674 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3675 type, M_NOWAIT);
3676 if (dst == NULL) {
3677 /* XXX counter */
3678 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3679 } else {
3680 dst->allocations = src->sadb_lifetime_allocations;
3681 dst->bytes = src->sadb_lifetime_bytes;
3682 dst->addtime = src->sadb_lifetime_addtime;
3683 dst->usetime = src->sadb_lifetime_usetime;
3684 }
3685 return dst;
3686}
3687
3688/* compare my own address
3689 * OUT: 1: true, i.e. my address.
3690 * 0: false
3691 */
3692int
3693key_ismyaddr(sa)
3694 struct sockaddr *sa;
3695{
3696#ifdef INET
3697 struct sockaddr_in *sin;
3698 struct in_ifaddr *ia;
3699#endif
3700
3701 IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3702
3703 switch (sa->sa_family) {
3704#ifdef INET
3705 case AF_INET:
3706 sin = (struct sockaddr_in *)sa;
3707 for (ia = in_ifaddrhead.tqh_first; ia;
3708 ia = ia->ia_link.tqe_next)
3709 {
3710 if (sin->sin_family == ia->ia_addr.sin_family &&
3711 sin->sin_len == ia->ia_addr.sin_len &&
3712 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3713 {
3714 return 1;
3715 }
3716 }
3717 break;
3718#endif
3719#ifdef INET6
3720 case AF_INET6:
3721 return key_ismyaddr6((struct sockaddr_in6 *)sa);
3722#endif
3723 }
3724
3725 return 0;
3726}
3727
3728#ifdef INET6
3729/*
3730 * compare my own address for IPv6.
3731 * 1: ours
3732 * 0: other
3733 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3734 */
3735#include <netinet6/in6_var.h>
3736
3737static int
3738key_ismyaddr6(sin6)
3739 struct sockaddr_in6 *sin6;
3740{
3741 struct in6_ifaddr *ia;
3742 struct in6_multi *in6m;
3743
3744 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
3745 if (key_sockaddrcmp((struct sockaddr *)&sin6,
3746 (struct sockaddr *)&ia->ia_addr, 0) == 0)
3747 return 1;
3748
3749 /*
3750 * XXX Multicast
3751 * XXX why do we care about multlicast here while we don't care
3752 * about IPv4 multicast??
3753 * XXX scope
3754 */
3755 in6m = NULL;
3756 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3757 if (in6m)
3758 return 1;
3759 }
3760
3761 /* loopback, just for safety */
3762 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3763 return 1;
3764
3765 return 0;
3766}
3767#endif /*INET6*/
3768
3769/*
3770 * compare two secasindex structure.
3771 * flag can specify to compare 2 saidxes.
3772 * compare two secasindex structure without both mode and reqid.
3773 * don't compare port.
3774 * IN:
3775 * saidx0: source, it can be in SAD.
3776 * saidx1: object.
3777 * OUT:
3778 * 1 : equal
3779 * 0 : not equal
3780 */
3781static int
3782key_cmpsaidx(
3783 const struct secasindex *saidx0,
3784 const struct secasindex *saidx1,
3785 int flag)
3786{
3787 /* sanity */
3788 if (saidx0 == NULL && saidx1 == NULL)
3789 return 1;
3790
3791 if (saidx0 == NULL || saidx1 == NULL)
3792 return 0;
3793
3794 if (saidx0->proto != saidx1->proto)
3795 return 0;
3796
3797 if (flag == CMP_EXACTLY) {
3798 if (saidx0->mode != saidx1->mode)
3799 return 0;
3800 if (saidx0->reqid != saidx1->reqid)
3801 return 0;
3802 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3803 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3804 return 0;
3805 } else {
3806
3807 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3808 if (flag == CMP_MODE_REQID
3809 ||flag == CMP_REQID) {
3810 /*
3811 * If reqid of SPD is non-zero, unique SA is required.
3812 * The result must be of same reqid in this case.
3813 */
3814 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3815 return 0;
3816 }
3817
3818 if (flag == CMP_MODE_REQID) {
3819 if (saidx0->mode != IPSEC_MODE_ANY
3820 && saidx0->mode != saidx1->mode)
3821 return 0;
3822 }
3823
3824 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
3825 return 0;
3826 }
3827 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
3828 return 0;
3829 }
3830 }
3831
3832 return 1;
3833}
3834
3835/*
3836 * compare two secindex structure exactly.
3837 * IN:
3838 * spidx0: source, it is often in SPD.
3839 * spidx1: object, it is often from PFKEY message.
3840 * OUT:
3841 * 1 : equal
3842 * 0 : not equal
3843 */
3844static int
3845key_cmpspidx_exactly(
3846 struct secpolicyindex *spidx0,
3847 struct secpolicyindex *spidx1)
3848{
3849 /* sanity */
3850 if (spidx0 == NULL && spidx1 == NULL)
3851 return 1;
3852
3853 if (spidx0 == NULL || spidx1 == NULL)
3854 return 0;
3855
3856 if (spidx0->prefs != spidx1->prefs
3857 || spidx0->prefd != spidx1->prefd
3858 || spidx0->ul_proto != spidx1->ul_proto)
3859 return 0;
3860
3861 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
3862 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
3863}
3864
3865/*
3866 * compare two secindex structure with mask.
3867 * IN:
3868 * spidx0: source, it is often in SPD.
3869 * spidx1: object, it is often from IP header.
3870 * OUT:
3871 * 1 : equal
3872 * 0 : not equal
3873 */
3874static int
3875key_cmpspidx_withmask(
3876 struct secpolicyindex *spidx0,
3877 struct secpolicyindex *spidx1)
3878{
3879 /* sanity */
3880 if (spidx0 == NULL && spidx1 == NULL)
3881 return 1;
3882
3883 if (spidx0 == NULL || spidx1 == NULL)
3884 return 0;
3885
3886 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
3887 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
3888 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
3889 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
3890 return 0;
3891
3892 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
3893 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
3894 && spidx0->ul_proto != spidx1->ul_proto)
3895 return 0;
3896
3897 switch (spidx0->src.sa.sa_family) {
3898 case AF_INET:
3899 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
3900 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
3901 return 0;
3902 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
3903 &spidx1->src.sin.sin_addr, spidx0->prefs))
3904 return 0;
3905 break;
3906 case AF_INET6:
3907 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
3908 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
3909 return 0;
3910 /*
3911 * scope_id check. if sin6_scope_id is 0, we regard it
3912 * as a wildcard scope, which matches any scope zone ID.
3913 */
3914 if (spidx0->src.sin6.sin6_scope_id &&
3915 spidx1->src.sin6.sin6_scope_id &&
3916 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
3917 return 0;
3918 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
3919 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
3920 return 0;
3921 break;
3922 default:
3923 /* XXX */
3924 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
3925 return 0;
3926 break;
3927 }
3928
3929 switch (spidx0->dst.sa.sa_family) {
3930 case AF_INET:
3931 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
3932 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
3933 return 0;
3934 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
3935 &spidx1->dst.sin.sin_addr, spidx0->prefd))
3936 return 0;
3937 break;
3938 case AF_INET6:
3939 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
3940 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
3941 return 0;
3942 /*
3943 * scope_id check. if sin6_scope_id is 0, we regard it
3944 * as a wildcard scope, which matches any scope zone ID.
3945 */
3946 if (spidx0->dst.sin6.sin6_scope_id &&
3947 spidx1->dst.sin6.sin6_scope_id &&
3948 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
3949 return 0;
3950 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
3951 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
3952 return 0;
3953 break;
3954 default:
3955 /* XXX */
3956 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
3957 return 0;
3958 break;
3959 }
3960
3961 /* XXX Do we check other field ? e.g. flowinfo */
3962
3963 return 1;
3964}
3965
3966/* returns 0 on match */
3967static int
3968key_sockaddrcmp(
3969 const struct sockaddr *sa1,
3970 const struct sockaddr *sa2,
3971 int port)
3972{
3973#ifdef satosin
3974#undef satosin
3975#endif
3976#define satosin(s) ((const struct sockaddr_in *)s)
3977#ifdef satosin6
3978#undef satosin6
3979#endif
3980#define satosin6(s) ((const struct sockaddr_in6 *)s)
3981 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
3982 return 1;
3983
3984 switch (sa1->sa_family) {
3985 case AF_INET:
3986 if (sa1->sa_len != sizeof(struct sockaddr_in))
3987 return 1;
3988 if (satosin(sa1)->sin_addr.s_addr !=
3989 satosin(sa2)->sin_addr.s_addr) {
3990 return 1;
3991 }
3992 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
3993 return 1;
3994 break;
3995 case AF_INET6:
3996 if (sa1->sa_len != sizeof(struct sockaddr_in6))
3997 return 1; /*EINVAL*/
3998 if (satosin6(sa1)->sin6_scope_id !=
3999 satosin6(sa2)->sin6_scope_id) {
4000 return 1;
4001 }
4002 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4003 &satosin6(sa2)->sin6_addr)) {
4004 return 1;
4005 }
4006 if (port &&
4007 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4008 return 1;
4009 }
4010 default:
4011 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4012 return 1;
4013 break;
4014 }
4015
4016 return 0;
4017#undef satosin
4018#undef satosin6
4019}
4020
4021/*
4022 * compare two buffers with mask.
4023 * IN:
4024 * addr1: source
4025 * addr2: object
4026 * bits: Number of bits to compare
4027 * OUT:
4028 * 1 : equal
4029 * 0 : not equal
4030 */
4031static int
4032key_bbcmp(const void *a1, const void *a2, u_int bits)
4033{
4034 const unsigned char *p1 = a1;
4035 const unsigned char *p2 = a2;
4036
4037 /* XXX: This could be considerably faster if we compare a word
4038 * at a time, but it is complicated on LSB Endian machines */
4039
4040 /* Handle null pointers */
4041 if (p1 == NULL || p2 == NULL)
4042 return (p1 == p2);
4043
4044 while (bits >= 8) {
4045 if (*p1++ != *p2++)
4046 return 0;
4047 bits -= 8;
4048 }
4049
4050 if (bits > 0) {
4051 u_int8_t mask = ~((1<<(8-bits))-1);
4052 if ((*p1 & mask) != (*p2 & mask))
4053 return 0;
4054 }
4055 return 1; /* Match! */
4056}
4057
4058static void
4059key_flush_spd(time_t now)
4060{
4061 static u_int16_t sptree_scangen = 0;
4062 u_int16_t gen = sptree_scangen++;
4063 struct secpolicy *sp;
4064 u_int dir;
4065
4066 /* SPD */
4067 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4068restart:
4069 SPTREE_LOCK();
4070 LIST_FOREACH(sp, &sptree[dir], chain) {
4071 if (sp->scangen == gen) /* previously handled */
4072 continue;
4073 sp->scangen = gen;
4074 if (sp->state == IPSEC_SPSTATE_DEAD) {
4075 /* NB: clean entries created by key_spdflush */
4076 SPTREE_UNLOCK();
4077 KEY_FREESP(&sp);
4078 goto restart;
4079 }
4080 if (sp->lifetime == 0 && sp->validtime == 0)
4081 continue;
4082 if ((sp->lifetime && now - sp->created > sp->lifetime)
4083 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4084 sp->state = IPSEC_SPSTATE_DEAD;
4085 SPTREE_UNLOCK();
4086 key_spdexpire(sp);
4087 KEY_FREESP(&sp);
4088 goto restart;
4089 }
4090 }
4091 SPTREE_UNLOCK();
4092 }
4093}
4094
4095static void
4096key_flush_sad(time_t now)
4097{
4098 struct secashead *sah, *nextsah;
4099 struct secasvar *sav, *nextsav;
4100
4101 /* SAD */
4102 SAHTREE_LOCK();
4103 LIST_FOREACH_SAFE(sah, &sahtree, chain, nextsah) {
4104 /* if sah has been dead, then delete it and process next sah. */
4105 if (sah->state == SADB_SASTATE_DEAD) {
4106 key_delsah(sah);
4107 continue;
4108 }
4109
4110 /* if LARVAL entry doesn't become MATURE, delete it. */
4111 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4112 if (now - sav->created > key_larval_lifetime)
4113 KEY_FREESAV(&sav);
4114 }
4115
4116 /*
4117 * check MATURE entry to start to send expire message
4118 * whether or not.
4119 */
4120 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4121 /* we don't need to check. */
4122 if (sav->lft_s == NULL)
4123 continue;
4124
4125 /* sanity check */
4126 if (sav->lft_c == NULL) {
4127 ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4128 "time, why?\n", __func__));
4129 continue;
4130 }
4131
4132 /* check SOFT lifetime */
4133 if (sav->lft_s->addtime != 0 &&
4134 now - sav->created > sav->lft_s->addtime) {
4135 /*
4136 * check SA to be used whether or not.
4137 * when SA hasn't been used, delete it.
4138 */
4139 if (sav->lft_c->usetime == 0) {
4140 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4141 KEY_FREESAV(&sav);
4142 } else {
4143 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4144 /*
4145 * XXX If we keep to send expire
4146 * message in the status of
4147 * DYING. Do remove below code.
4148 */
4149 key_expire(sav);
4150 }
4151 }
4152 /* check SOFT lifetime by bytes */
4153 /*
4154 * XXX I don't know the way to delete this SA
4155 * when new SA is installed. Caution when it's
4156 * installed too big lifetime by time.
4157 */
4158 else if (sav->lft_s->bytes != 0 &&
4159 sav->lft_s->bytes < sav->lft_c->bytes) {
4160
4161 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4162 /*
4163 * XXX If we keep to send expire
4164 * message in the status of
4165 * DYING. Do remove below code.
4166 */
4167 key_expire(sav);
4168 }
4169 }
4170
4171 /* check DYING entry to change status to DEAD. */
4172 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4173 /* we don't need to check. */
4174 if (sav->lft_h == NULL)
4175 continue;
4176
4177 /* sanity check */
4178 if (sav->lft_c == NULL) {
4179 ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4180 "time, why?\n", __func__));
4181 continue;
4182 }
4183
4184 if (sav->lft_h->addtime != 0 &&
4185 now - sav->created > sav->lft_h->addtime) {
4186 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4187 KEY_FREESAV(&sav);
4188 }
4189#if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4190 else if (sav->lft_s != NULL
4191 && sav->lft_s->addtime != 0
4192 && now - sav->created > sav->lft_s->addtime) {
4193 /*
4194 * XXX: should be checked to be
4195 * installed the valid SA.
4196 */
4197
4198 /*
4199 * If there is no SA then sending
4200 * expire message.
4201 */
4202 key_expire(sav);
4203 }
4204#endif
4205 /* check HARD lifetime by bytes */
4206 else if (sav->lft_h->bytes != 0 &&
4207 sav->lft_h->bytes < sav->lft_c->bytes) {
4208 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4209 KEY_FREESAV(&sav);
4210 }
4211 }
4212
4213 /* delete entry in DEAD */
4214 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4215 /* sanity check */
4216 if (sav->state != SADB_SASTATE_DEAD) {
4217 ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4218 "(queue: %d SA: %d): kill it anyway\n",
4219 __func__,
4220 SADB_SASTATE_DEAD, sav->state));
4221 }
4222 /*
4223 * do not call key_freesav() here.
4224 * sav should already be freed, and sav->refcnt
4225 * shows other references to sav
4226 * (such as from SPD).
4227 */
4228 }
4229 }
4230 SAHTREE_UNLOCK();
4231}
4232
4233static void
4234key_flush_acq(time_t now)
4235{
4236 struct secacq *acq, *nextacq;
4237
4238 /* ACQ tree */
4239 ACQ_LOCK();
4240 for (acq = LIST_FIRST(&acqtree); acq != NULL; acq = nextacq) {
4241 nextacq = LIST_NEXT(acq, chain);
4242 if (now - acq->created > key_blockacq_lifetime
4243 && __LIST_CHAINED(acq)) {
4244 LIST_REMOVE(acq, chain);
4245 free(acq, M_IPSEC_SAQ);
4246 }
4247 }
4248 ACQ_UNLOCK();
4249}
4250
4251static void
4252key_flush_spacq(time_t now)
4253{
4254 struct secspacq *acq, *nextacq;
4255
4256 /* SP ACQ tree */
4257 SPACQ_LOCK();
4258 for (acq = LIST_FIRST(&spacqtree); acq != NULL; acq = nextacq) {
4259 nextacq = LIST_NEXT(acq, chain);
4260 if (now - acq->created > key_blockacq_lifetime
4261 && __LIST_CHAINED(acq)) {
4262 LIST_REMOVE(acq, chain);
4263 free(acq, M_IPSEC_SAQ);
4264 }
4265 }
4266 SPACQ_UNLOCK();
4267}
4268
4269/*
4270 * time handler.
4271 * scanning SPD and SAD to check status for each entries,
4272 * and do to remove or to expire.
4273 * XXX: year 2038 problem may remain.
4274 */
4275void
4276key_timehandler(void)
4277{
4278 time_t now = time_second;
4279
4280 key_flush_spd(now);
4281 key_flush_sad(now);
4282 key_flush_acq(now);
4283 key_flush_spacq(now);
4284
4285#ifndef IPSEC_DEBUG2
4286 /* do exchange to tick time !! */
4287 (void)timeout((void *)key_timehandler, (void *)0, hz);
4288#endif /* IPSEC_DEBUG2 */
4289}
4290
4291u_long
4292key_random()
4293{
4294 u_long value;
4295
4296 key_randomfill(&value, sizeof(value));
4297 return value;
4298}
4299
4300void
4301key_randomfill(p, l)
4302 void *p;
4303 size_t l;
4304{
4305 size_t n;
4306 u_long v;
4307 static int warn = 1;
4308
4309 n = 0;
4310 n = (size_t)read_random(p, (u_int)l);
4311 /* last resort */
4312 while (n < l) {
4313 v = random();
4314 bcopy(&v, (u_int8_t *)p + n,
4315 l - n < sizeof(v) ? l - n : sizeof(v));
4316 n += sizeof(v);
4317
4318 if (warn) {
4319 printf("WARNING: pseudo-random number generator "
4320 "used for IPsec processing\n");
4321 warn = 0;
4322 }
4323 }
4324}
4325
4326/*
4327 * map SADB_SATYPE_* to IPPROTO_*.
4328 * if satype == SADB_SATYPE then satype is mapped to ~0.
4329 * OUT:
4330 * 0: invalid satype.
4331 */
4332static u_int16_t
4333key_satype2proto(satype)
4334 u_int8_t satype;
4335{
4336 switch (satype) {
4337 case SADB_SATYPE_UNSPEC:
4338 return IPSEC_PROTO_ANY;
4339 case SADB_SATYPE_AH:
4340 return IPPROTO_AH;
4341 case SADB_SATYPE_ESP:
4342 return IPPROTO_ESP;
4343 case SADB_X_SATYPE_IPCOMP:
4344 return IPPROTO_IPCOMP;
4345 case SADB_X_SATYPE_TCPSIGNATURE:
4346 return IPPROTO_TCP;
4347 default:
4348 return 0;
4349 }
4350 /* NOTREACHED */
4351}
4352
4353/*
4354 * map IPPROTO_* to SADB_SATYPE_*
4355 * OUT:
4356 * 0: invalid protocol type.
4357 */
4358static u_int8_t
4359key_proto2satype(proto)
4360 u_int16_t proto;
4361{
4362 switch (proto) {
4363 case IPPROTO_AH:
4364 return SADB_SATYPE_AH;
4365 case IPPROTO_ESP:
4366 return SADB_SATYPE_ESP;
4367 case IPPROTO_IPCOMP:
4368 return SADB_X_SATYPE_IPCOMP;
4369 case IPPROTO_TCP:
4370 return SADB_X_SATYPE_TCPSIGNATURE;
4371 default:
4372 return 0;
4373 }
4374 /* NOTREACHED */
4375}
4376
4377/* %%% PF_KEY */
4378/*
4379 * SADB_GETSPI processing is to receive
4380 * <base, (SA2), src address, dst address, (SPI range)>
4381 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4382 * tree with the status of LARVAL, and send
4383 * <base, SA(*), address(SD)>
4384 * to the IKMPd.
4385 *
4386 * IN: mhp: pointer to the pointer to each header.
4387 * OUT: NULL if fail.
4388 * other if success, return pointer to the message to send.
4389 */
4390static int
4391key_getspi(so, m, mhp)
4392 struct socket *so;
4393 struct mbuf *m;
4394 const struct sadb_msghdr *mhp;
4395{
4396 struct sadb_address *src0, *dst0;
4397 struct secasindex saidx;
4398 struct secashead *newsah;
4399 struct secasvar *newsav;
4400 u_int8_t proto;
4401 u_int32_t spi;
4402 u_int8_t mode;
4403 u_int32_t reqid;
4404 int error;
4405
4406 IPSEC_ASSERT(so != NULL, ("null socket"));
4407 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4408 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4409 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4410
4411 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4412 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4413 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4414 __func__));
4415 return key_senderror(so, m, EINVAL);
4416 }
4417 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4418 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4419 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4420 __func__));
4421 return key_senderror(so, m, EINVAL);
4422 }
4423 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4424 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4425 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4426 } else {
4427 mode = IPSEC_MODE_ANY;
4428 reqid = 0;
4429 }
4430
4431 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4432 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4433
4434 /* map satype to proto */
4435 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4436 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4437 __func__));
4438 return key_senderror(so, m, EINVAL);
4439 }
4440
4441 /* make sure if port number is zero. */
4442 switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4443 case AF_INET:
4444 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4445 sizeof(struct sockaddr_in))
4446 return key_senderror(so, m, EINVAL);
4447 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4448 break;
4449 case AF_INET6:
4450 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4451 sizeof(struct sockaddr_in6))
4452 return key_senderror(so, m, EINVAL);
4453 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4454 break;
4455 default:
4456 ; /*???*/
4457 }
4458 switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4459 case AF_INET:
4460 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4461 sizeof(struct sockaddr_in))
4462 return key_senderror(so, m, EINVAL);
4463 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4464 break;
4465 case AF_INET6:
4466 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4467 sizeof(struct sockaddr_in6))
4468 return key_senderror(so, m, EINVAL);
4469 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4470 break;
4471 default:
4472 ; /*???*/
4473 }
4474
4475 /* XXX boundary check against sa_len */
4476 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4477
4478 /* SPI allocation */
4479 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4480 &saidx);
4481 if (spi == 0)
4482 return key_senderror(so, m, EINVAL);
4483
4484 /* get a SA index */
4485 if ((newsah = key_getsah(&saidx)) == NULL) {
4486 /* create a new SA index */
4487 if ((newsah = key_newsah(&saidx)) == NULL) {
4488 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4489 return key_senderror(so, m, ENOBUFS);
4490 }
4491 }
4492
4493 /* get a new SA */
4494 /* XXX rewrite */
4495 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4496 if (newsav == NULL) {
4497 /* XXX don't free new SA index allocated in above. */
4498 return key_senderror(so, m, error);
4499 }
4500
4501 /* set spi */
4502 newsav->spi = htonl(spi);
4503
4504 /* delete the entry in acqtree */
4505 if (mhp->msg->sadb_msg_seq != 0) {
4506 struct secacq *acq;
4507 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4508 /* reset counter in order to deletion by timehandler. */
4509 acq->created = time_second;
4510 acq->count = 0;
4511 }
4512 }
4513
4514 {
4515 struct mbuf *n, *nn;
4516 struct sadb_sa *m_sa;
4517 struct sadb_msg *newmsg;
4518 int off, len;
4519
4520 /* create new sadb_msg to reply. */
4521 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4522 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4523 if (len > MCLBYTES)
4524 return key_senderror(so, m, ENOBUFS);
4525
4526 MGETHDR(n, M_DONTWAIT, MT_DATA);
4527 if (len > MHLEN) {
4528 MCLGET(n, M_DONTWAIT);
4529 if ((n->m_flags & M_EXT) == 0) {
4530 m_freem(n);
4531 n = NULL;
4532 }
4533 }
4534 if (!n)
4535 return key_senderror(so, m, ENOBUFS);
4536
4537 n->m_len = len;
4538 n->m_next = NULL;
4539 off = 0;
4540
4541 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4542 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4543
4544 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4545 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4546 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4547 m_sa->sadb_sa_spi = htonl(spi);
4548 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4549
4550 IPSEC_ASSERT(off == len,
4551 ("length inconsistency (off %u len %u)", off, len));
4552
4553 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4554 SADB_EXT_ADDRESS_DST);
4555 if (!n->m_next) {
4556 m_freem(n);
4557 return key_senderror(so, m, ENOBUFS);
4558 }
4559
4560 if (n->m_len < sizeof(struct sadb_msg)) {
4561 n = m_pullup(n, sizeof(struct sadb_msg));
4562 if (n == NULL)
4563 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4564 }
4565
4566 n->m_pkthdr.len = 0;
4567 for (nn = n; nn; nn = nn->m_next)
4568 n->m_pkthdr.len += nn->m_len;
4569
4570 newmsg = mtod(n, struct sadb_msg *);
4571 newmsg->sadb_msg_seq = newsav->seq;
4572 newmsg->sadb_msg_errno = 0;
4573 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4574
4575 m_freem(m);
4576 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4577 }
4578}
4579
4580/*
4581 * allocating new SPI
4582 * called by key_getspi().
4583 * OUT:
4584 * 0: failure.
4585 * others: success.
4586 */
4587static u_int32_t
4588key_do_getnewspi(spirange, saidx)
4589 struct sadb_spirange *spirange;
4590 struct secasindex *saidx;
4591{
4592 u_int32_t newspi;
4593 u_int32_t min, max;
4594 int count = key_spi_trycnt;
4595
4596 /* set spi range to allocate */
4597 if (spirange != NULL) {
4598 min = spirange->sadb_spirange_min;
4599 max = spirange->sadb_spirange_max;
4600 } else {
4601 min = key_spi_minval;
4602 max = key_spi_maxval;
4603 }
4604 /* IPCOMP needs 2-byte SPI */
4605 if (saidx->proto == IPPROTO_IPCOMP) {
4606 u_int32_t t;
4607 if (min >= 0x10000)
4608 min = 0xffff;
4609 if (max >= 0x10000)
4610 max = 0xffff;
4611 if (min > max) {
4612 t = min; min = max; max = t;
4613 }
4614 }
4615
4616 if (min == max) {
4617 if (key_checkspidup(saidx, min) != NULL) {
4618 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4619 __func__, min));
4620 return 0;
4621 }
4622
4623 count--; /* taking one cost. */
4624 newspi = min;
4625
4626 } else {
4627
4628 /* init SPI */
4629 newspi = 0;
4630
4631 /* when requesting to allocate spi ranged */
4632 while (count--) {
4633 /* generate pseudo-random SPI value ranged. */
4634 newspi = min + (key_random() % (max - min + 1));
4635
4636 if (key_checkspidup(saidx, newspi) == NULL)
4637 break;
4638 }
4639
4640 if (count == 0 || newspi == 0) {
4641 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4642 __func__));
4643 return 0;
4644 }
4645 }
4646
4647 /* statistics */
4648 keystat.getspi_count =
4649 (keystat.getspi_count + key_spi_trycnt - count) / 2;
4650
4651 return newspi;
4652}
4653
4654/*
4655 * SADB_UPDATE processing
4656 * receive
4657 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4658 * key(AE), (identity(SD),) (sensitivity)>
4659 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4660 * and send
4661 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4662 * (identity(SD),) (sensitivity)>
4663 * to the ikmpd.
4664 *
4665 * m will always be freed.
4666 */
4667static int
4668key_update(so, m, mhp)
4669 struct socket *so;
4670 struct mbuf *m;
4671 const struct sadb_msghdr *mhp;
4672{
4673 struct sadb_sa *sa0;
4674 struct sadb_address *src0, *dst0;
4675 struct secasindex saidx;
4676 struct secashead *sah;
4677 struct secasvar *sav;
4678 u_int16_t proto;
4679 u_int8_t mode;
4680 u_int32_t reqid;
4681 int error;
4682
4683 IPSEC_ASSERT(so != NULL, ("null socket"));
4684 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4685 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4686 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4687
4688 /* map satype to proto */
4689 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4690 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4691 __func__));
4692 return key_senderror(so, m, EINVAL);
4693 }
4694
4695 if (mhp->ext[SADB_EXT_SA] == NULL ||
4696 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4697 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4698 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4699 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4700 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4701 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4702 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4703 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4704 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4705 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4706 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4707 __func__));
4708 return key_senderror(so, m, EINVAL);
4709 }
4710 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4711 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4712 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4713 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4714 __func__));
4715 return key_senderror(so, m, EINVAL);
4716 }
4717 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4718 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4719 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4720 } else {
4721 mode = IPSEC_MODE_ANY;
4722 reqid = 0;
4723 }
4724 /* XXX boundary checking for other extensions */
4725
4726 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4727 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4728 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4729
4730 /* XXX boundary check against sa_len */
4731 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4732
4733 /* get a SA header */
4734 if ((sah = key_getsah(&saidx)) == NULL) {
4735 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4736 return key_senderror(so, m, ENOENT);
4737 }
4738
4739 /* set spidx if there */
4740 /* XXX rewrite */
4741 error = key_setident(sah, m, mhp);
4742 if (error)
4743 return key_senderror(so, m, error);
4744
4745 /* find a SA with sequence number. */
4746#ifdef IPSEC_DOSEQCHECK
4747 if (mhp->msg->sadb_msg_seq != 0
4748 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4749 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
4750 "exists.\n", __func__, mhp->msg->sadb_msg_seq));
4751 return key_senderror(so, m, ENOENT);
4752 }
4753#else
4754 SAHTREE_LOCK();
4755 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
4756 SAHTREE_UNLOCK();
4757 if (sav == NULL) {
4758 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
4759 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4760 return key_senderror(so, m, EINVAL);
4761 }
4762#endif
4763
4764 /* validity check */
4765 if (sav->sah->saidx.proto != proto) {
4766 ipseclog((LOG_DEBUG, "%s: protocol mismatched "
4767 "(DB=%u param=%u)\n", __func__,
4768 sav->sah->saidx.proto, proto));
4769 return key_senderror(so, m, EINVAL);
4770 }
4771#ifdef IPSEC_DOSEQCHECK
4772 if (sav->spi != sa0->sadb_sa_spi) {
4773 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
4774 __func__,
4775 (u_int32_t)ntohl(sav->spi),
4776 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4777 return key_senderror(so, m, EINVAL);
4778 }
4779#endif
4780 if (sav->pid != mhp->msg->sadb_msg_pid) {
4781 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
4782 __func__, sav->pid, mhp->msg->sadb_msg_pid));
4783 return key_senderror(so, m, EINVAL);
4784 }
4785
4786 /* copy sav values */
4787 error = key_setsaval(sav, m, mhp);
4788 if (error) {
4789 KEY_FREESAV(&sav);
4790 return key_senderror(so, m, error);
4791 }
4792
4793 /* check SA values to be mature. */
4794 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
4795 KEY_FREESAV(&sav);
4796 return key_senderror(so, m, 0);
4797 }
4798
4799 {
4800 struct mbuf *n;
4801
4802 /* set msg buf from mhp */
4803 n = key_getmsgbuf_x1(m, mhp);
4804 if (n == NULL) {
4805 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4806 return key_senderror(so, m, ENOBUFS);
4807 }
4808
4809 m_freem(m);
4810 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4811 }
4812}
4813
4814/*
4815 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
4816 * only called by key_update().
4817 * OUT:
4818 * NULL : not found
4819 * others : found, pointer to a SA.
4820 */
4821#ifdef IPSEC_DOSEQCHECK
4822static struct secasvar *
4823key_getsavbyseq(sah, seq)
4824 struct secashead *sah;
4825 u_int32_t seq;
4826{
4827 struct secasvar *sav;
4828 u_int state;
4829
4830 state = SADB_SASTATE_LARVAL;
4831
4832 /* search SAD with sequence number ? */
4833 LIST_FOREACH(sav, &sah->savtree[state], chain) {
4834
4835 KEY_CHKSASTATE(state, sav->state, __func__);
4836
4837 if (sav->seq == seq) {
4825 SA_ADDREF(sav);
4838 sa_addref(sav);
4839 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
4840 printf("DP %s cause refcnt++:%d SA:%p\n",
4841 __func__, sav->refcnt, sav));
4842 return sav;
4843 }
4844 }
4845
4846 return NULL;
4847}
4848#endif
4849
4850/*
4851 * SADB_ADD processing
4852 * add an entry to SA database, when received
4853 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4854 * key(AE), (identity(SD),) (sensitivity)>
4855 * from the ikmpd,
4856 * and send
4857 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4858 * (identity(SD),) (sensitivity)>
4859 * to the ikmpd.
4860 *
4861 * IGNORE identity and sensitivity messages.
4862 *
4863 * m will always be freed.
4864 */
4865static int
4866key_add(so, m, mhp)
4867 struct socket *so;
4868 struct mbuf *m;
4869 const struct sadb_msghdr *mhp;
4870{
4871 struct sadb_sa *sa0;
4872 struct sadb_address *src0, *dst0;
4873 struct secasindex saidx;
4874 struct secashead *newsah;
4875 struct secasvar *newsav;
4876 u_int16_t proto;
4877 u_int8_t mode;
4878 u_int32_t reqid;
4879 int error;
4880
4881 IPSEC_ASSERT(so != NULL, ("null socket"));
4882 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4883 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4884 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4885
4886 /* map satype to proto */
4887 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4888 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4889 __func__));
4890 return key_senderror(so, m, EINVAL);
4891 }
4892
4893 if (mhp->ext[SADB_EXT_SA] == NULL ||
4894 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4895 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4896 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4897 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4898 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4899 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4900 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4901 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4902 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4903 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4904 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4905 __func__));
4906 return key_senderror(so, m, EINVAL);
4907 }
4908 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4909 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4910 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4911 /* XXX need more */
4912 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4913 __func__));
4914 return key_senderror(so, m, EINVAL);
4915 }
4916 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4917 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4918 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4919 } else {
4920 mode = IPSEC_MODE_ANY;
4921 reqid = 0;
4922 }
4923
4924 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4925 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4926 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4927
4928 /* XXX boundary check against sa_len */
4929 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4930
4931 /* get a SA header */
4932 if ((newsah = key_getsah(&saidx)) == NULL) {
4933 /* create a new SA header */
4934 if ((newsah = key_newsah(&saidx)) == NULL) {
4935 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4936 return key_senderror(so, m, ENOBUFS);
4937 }
4938 }
4939
4940 /* set spidx if there */
4941 /* XXX rewrite */
4942 error = key_setident(newsah, m, mhp);
4943 if (error) {
4944 return key_senderror(so, m, error);
4945 }
4946
4947 /* create new SA entry. */
4948 /* We can create new SA only if SPI is differenct. */
4949 SAHTREE_LOCK();
4950 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
4951 SAHTREE_UNLOCK();
4952 if (newsav != NULL) {
4953 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
4954 return key_senderror(so, m, EEXIST);
4955 }
4956 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4957 if (newsav == NULL) {
4958 return key_senderror(so, m, error);
4959 }
4960
4961 /* check SA values to be mature. */
4962 if ((error = key_mature(newsav)) != 0) {
4963 KEY_FREESAV(&newsav);
4964 return key_senderror(so, m, error);
4965 }
4966
4967 /*
4968 * don't call key_freesav() here, as we would like to keep the SA
4969 * in the database on success.
4970 */
4971
4972 {
4973 struct mbuf *n;
4974
4975 /* set msg buf from mhp */
4976 n = key_getmsgbuf_x1(m, mhp);
4977 if (n == NULL) {
4978 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4979 return key_senderror(so, m, ENOBUFS);
4980 }
4981
4982 m_freem(m);
4983 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4984 }
4985}
4986
4987/* m is retained */
4988static int
4989key_setident(sah, m, mhp)
4990 struct secashead *sah;
4991 struct mbuf *m;
4992 const struct sadb_msghdr *mhp;
4993{
4994 const struct sadb_ident *idsrc, *iddst;
4995 int idsrclen, iddstlen;
4996
4997 IPSEC_ASSERT(sah != NULL, ("null secashead"));
4998 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4999 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5000 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5001
5002 /* don't make buffer if not there */
5003 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5004 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5005 sah->idents = NULL;
5006 sah->identd = NULL;
5007 return 0;
5008 }
5009
5010 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5011 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5012 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5013 return EINVAL;
5014 }
5015
5016 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5017 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5018 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5019 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5020
5021 /* validity check */
5022 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5023 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5024 return EINVAL;
5025 }
5026
5027 switch (idsrc->sadb_ident_type) {
5028 case SADB_IDENTTYPE_PREFIX:
5029 case SADB_IDENTTYPE_FQDN:
5030 case SADB_IDENTTYPE_USERFQDN:
5031 default:
5032 /* XXX do nothing */
5033 sah->idents = NULL;
5034 sah->identd = NULL;
5035 return 0;
5036 }
5037
5038 /* make structure */
5039 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5040 if (sah->idents == NULL) {
5041 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5042 return ENOBUFS;
5043 }
5044 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5045 if (sah->identd == NULL) {
5046 free(sah->idents, M_IPSEC_MISC);
5047 sah->idents = NULL;
5048 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5049 return ENOBUFS;
5050 }
5051 sah->idents->type = idsrc->sadb_ident_type;
5052 sah->idents->id = idsrc->sadb_ident_id;
5053
5054 sah->identd->type = iddst->sadb_ident_type;
5055 sah->identd->id = iddst->sadb_ident_id;
5056
5057 return 0;
5058}
5059
5060/*
5061 * m will not be freed on return.
5062 * it is caller's responsibility to free the result.
5063 */
5064static struct mbuf *
5065key_getmsgbuf_x1(m, mhp)
5066 struct mbuf *m;
5067 const struct sadb_msghdr *mhp;
5068{
5069 struct mbuf *n;
5070
5071 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5072 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5073 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5074
5075 /* create new sadb_msg to reply. */
5076 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5077 SADB_EXT_SA, SADB_X_EXT_SA2,
5078 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5079 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5080 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5081 if (!n)
5082 return NULL;
5083
5084 if (n->m_len < sizeof(struct sadb_msg)) {
5085 n = m_pullup(n, sizeof(struct sadb_msg));
5086 if (n == NULL)
5087 return NULL;
5088 }
5089 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5090 mtod(n, struct sadb_msg *)->sadb_msg_len =
5091 PFKEY_UNIT64(n->m_pkthdr.len);
5092
5093 return n;
5094}
5095
5096static int key_delete_all __P((struct socket *, struct mbuf *,
5097 const struct sadb_msghdr *, u_int16_t));
5098
5099/*
5100 * SADB_DELETE processing
5101 * receive
5102 * <base, SA(*), address(SD)>
5103 * from the ikmpd, and set SADB_SASTATE_DEAD,
5104 * and send,
5105 * <base, SA(*), address(SD)>
5106 * to the ikmpd.
5107 *
5108 * m will always be freed.
5109 */
5110static int
5111key_delete(so, m, mhp)
5112 struct socket *so;
5113 struct mbuf *m;
5114 const struct sadb_msghdr *mhp;
5115{
5116 struct sadb_sa *sa0;
5117 struct sadb_address *src0, *dst0;
5118 struct secasindex saidx;
5119 struct secashead *sah;
5120 struct secasvar *sav = NULL;
5121 u_int16_t proto;
5122
5123 IPSEC_ASSERT(so != NULL, ("null socket"));
5124 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5125 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5126 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5127
5128 /* map satype to proto */
5129 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5130 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5131 __func__));
5132 return key_senderror(so, m, EINVAL);
5133 }
5134
5135 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5136 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5137 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5138 __func__));
5139 return key_senderror(so, m, EINVAL);
5140 }
5141
5142 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5143 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5144 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5145 __func__));
5146 return key_senderror(so, m, EINVAL);
5147 }
5148
5149 if (mhp->ext[SADB_EXT_SA] == NULL) {
5150 /*
5151 * Caller wants us to delete all non-LARVAL SAs
5152 * that match the src/dst. This is used during
5153 * IKE INITIAL-CONTACT.
5154 */
5155 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5156 return key_delete_all(so, m, mhp, proto);
5157 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5158 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5159 __func__));
5160 return key_senderror(so, m, EINVAL);
5161 }
5162
5163 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5164 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5165 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5166
5167 /* XXX boundary check against sa_len */
5168 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5169
5170 /* get a SA header */
5171 SAHTREE_LOCK();
5172 LIST_FOREACH(sah, &sahtree, chain) {
5173 if (sah->state == SADB_SASTATE_DEAD)
5174 continue;
5175 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5176 continue;
5177
5178 /* get a SA with SPI. */
5179 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5180 if (sav)
5181 break;
5182 }
5183 if (sah == NULL) {
5184 SAHTREE_UNLOCK();
5185 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5186 return key_senderror(so, m, ENOENT);
5187 }
5188
5189 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5190 SAHTREE_UNLOCK();
5191 KEY_FREESAV(&sav);
5192
5193 {
5194 struct mbuf *n;
5195 struct sadb_msg *newmsg;
5196
5197 /* create new sadb_msg to reply. */
5198 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5199 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5200 if (!n)
5201 return key_senderror(so, m, ENOBUFS);
5202
5203 if (n->m_len < sizeof(struct sadb_msg)) {
5204 n = m_pullup(n, sizeof(struct sadb_msg));
5205 if (n == NULL)
5206 return key_senderror(so, m, ENOBUFS);
5207 }
5208 newmsg = mtod(n, struct sadb_msg *);
5209 newmsg->sadb_msg_errno = 0;
5210 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5211
5212 m_freem(m);
5213 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5214 }
5215}
5216
5217/*
5218 * delete all SAs for src/dst. Called from key_delete().
5219 */
5220static int
5221key_delete_all(so, m, mhp, proto)
5222 struct socket *so;
5223 struct mbuf *m;
5224 const struct sadb_msghdr *mhp;
5225 u_int16_t proto;
5226{
5227 struct sadb_address *src0, *dst0;
5228 struct secasindex saidx;
5229 struct secashead *sah;
5230 struct secasvar *sav, *nextsav;
5231 u_int stateidx, state;
5232
5233 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5234 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5235
5236 /* XXX boundary check against sa_len */
5237 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5238
5239 SAHTREE_LOCK();
5240 LIST_FOREACH(sah, &sahtree, chain) {
5241 if (sah->state == SADB_SASTATE_DEAD)
5242 continue;
5243 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5244 continue;
5245
5246 /* Delete all non-LARVAL SAs. */
5247 for (stateidx = 0;
5248 stateidx < _ARRAYLEN(saorder_state_alive);
5249 stateidx++) {
5250 state = saorder_state_alive[stateidx];
5251 if (state == SADB_SASTATE_LARVAL)
5252 continue;
5253 for (sav = LIST_FIRST(&sah->savtree[state]);
5254 sav != NULL; sav = nextsav) {
5255 nextsav = LIST_NEXT(sav, chain);
5256 /* sanity check */
5257 if (sav->state != state) {
5258 ipseclog((LOG_DEBUG, "%s: invalid "
5259 "sav->state (queue %d SA %d)\n",
5260 __func__, state, sav->state));
5261 continue;
5262 }
5263
5264 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5265 KEY_FREESAV(&sav);
5266 }
5267 }
5268 }
5269 SAHTREE_UNLOCK();
5270 {
5271 struct mbuf *n;
5272 struct sadb_msg *newmsg;
5273
5274 /* create new sadb_msg to reply. */
5275 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5276 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5277 if (!n)
5278 return key_senderror(so, m, ENOBUFS);
5279
5280 if (n->m_len < sizeof(struct sadb_msg)) {
5281 n = m_pullup(n, sizeof(struct sadb_msg));
5282 if (n == NULL)
5283 return key_senderror(so, m, ENOBUFS);
5284 }
5285 newmsg = mtod(n, struct sadb_msg *);
5286 newmsg->sadb_msg_errno = 0;
5287 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5288
5289 m_freem(m);
5290 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5291 }
5292}
5293
5294/*
5295 * SADB_GET processing
5296 * receive
5297 * <base, SA(*), address(SD)>
5298 * from the ikmpd, and get a SP and a SA to respond,
5299 * and send,
5300 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5301 * (identity(SD),) (sensitivity)>
5302 * to the ikmpd.
5303 *
5304 * m will always be freed.
5305 */
5306static int
5307key_get(so, m, mhp)
5308 struct socket *so;
5309 struct mbuf *m;
5310 const struct sadb_msghdr *mhp;
5311{
5312 struct sadb_sa *sa0;
5313 struct sadb_address *src0, *dst0;
5314 struct secasindex saidx;
5315 struct secashead *sah;
5316 struct secasvar *sav = NULL;
5317 u_int16_t proto;
5318
5319 IPSEC_ASSERT(so != NULL, ("null socket"));
5320 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5321 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5322 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5323
5324 /* map satype to proto */
5325 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5326 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5327 __func__));
5328 return key_senderror(so, m, EINVAL);
5329 }
5330
5331 if (mhp->ext[SADB_EXT_SA] == NULL ||
5332 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5333 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5334 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5335 __func__));
5336 return key_senderror(so, m, EINVAL);
5337 }
5338 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5339 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5340 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5341 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5342 __func__));
5343 return key_senderror(so, m, EINVAL);
5344 }
5345
5346 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5347 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5348 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5349
5350 /* XXX boundary check against sa_len */
5351 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5352
5353 /* get a SA header */
5354 SAHTREE_LOCK();
5355 LIST_FOREACH(sah, &sahtree, chain) {
5356 if (sah->state == SADB_SASTATE_DEAD)
5357 continue;
5358 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5359 continue;
5360
5361 /* get a SA with SPI. */
5362 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5363 if (sav)
5364 break;
5365 }
5366 SAHTREE_UNLOCK();
5367 if (sah == NULL) {
5368 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5369 return key_senderror(so, m, ENOENT);
5370 }
5371
5372 {
5373 struct mbuf *n;
5374 u_int8_t satype;
5375
5376 /* map proto to satype */
5377 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5378 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5379 __func__));
5380 return key_senderror(so, m, EINVAL);
5381 }
5382
5383 /* create new sadb_msg to reply. */
5384 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5385 mhp->msg->sadb_msg_pid);
5386 if (!n)
5387 return key_senderror(so, m, ENOBUFS);
5388
5389 m_freem(m);
5390 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5391 }
5392}
5393
5394/* XXX make it sysctl-configurable? */
5395static void
5396key_getcomb_setlifetime(comb)
5397 struct sadb_comb *comb;
5398{
5399
5400 comb->sadb_comb_soft_allocations = 1;
5401 comb->sadb_comb_hard_allocations = 1;
5402 comb->sadb_comb_soft_bytes = 0;
5403 comb->sadb_comb_hard_bytes = 0;
5404 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5405 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5406 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5407 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5408}
5409
5410/*
5411 * XXX reorder combinations by preference
5412 * XXX no idea if the user wants ESP authentication or not
5413 */
5414static struct mbuf *
5415key_getcomb_esp()
5416{
5417 struct sadb_comb *comb;
5418 struct enc_xform *algo;
5419 struct mbuf *result = NULL, *m, *n;
5420 int encmin;
5421 int i, off, o;
5422 int totlen;
5423 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5424
5425 m = NULL;
5426 for (i = 1; i <= SADB_EALG_MAX; i++) {
5427 algo = esp_algorithm_lookup(i);
5428 if (algo == NULL)
5429 continue;
5430
5431 /* discard algorithms with key size smaller than system min */
5432 if (_BITS(algo->maxkey) < ipsec_esp_keymin)
5433 continue;
5434 if (_BITS(algo->minkey) < ipsec_esp_keymin)
5435 encmin = ipsec_esp_keymin;
5436 else
5437 encmin = _BITS(algo->minkey);
5438
5439 if (ipsec_esp_auth)
5440 m = key_getcomb_ah();
5441 else {
5442 IPSEC_ASSERT(l <= MLEN,
5443 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
5444 MGET(m, M_DONTWAIT, MT_DATA);
5445 if (m) {
5446 M_ALIGN(m, l);
5447 m->m_len = l;
5448 m->m_next = NULL;
5449 bzero(mtod(m, caddr_t), m->m_len);
5450 }
5451 }
5452 if (!m)
5453 goto fail;
5454
5455 totlen = 0;
5456 for (n = m; n; n = n->m_next)
5457 totlen += n->m_len;
5458 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5459
5460 for (off = 0; off < totlen; off += l) {
5461 n = m_pulldown(m, off, l, &o);
5462 if (!n) {
5463 /* m is already freed */
5464 goto fail;
5465 }
5466 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5467 bzero(comb, sizeof(*comb));
5468 key_getcomb_setlifetime(comb);
5469 comb->sadb_comb_encrypt = i;
5470 comb->sadb_comb_encrypt_minbits = encmin;
5471 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5472 }
5473
5474 if (!result)
5475 result = m;
5476 else
5477 m_cat(result, m);
5478 }
5479
5480 return result;
5481
5482 fail:
5483 if (result)
5484 m_freem(result);
5485 return NULL;
5486}
5487
5488static void
5489key_getsizes_ah(
5490 const struct auth_hash *ah,
5491 int alg,
5492 u_int16_t* min,
5493 u_int16_t* max)
5494{
5495 *min = *max = ah->keysize;
5496 if (ah->keysize == 0) {
5497 /*
5498 * Transform takes arbitrary key size but algorithm
5499 * key size is restricted. Enforce this here.
5500 */
5501 switch (alg) {
5502 case SADB_X_AALG_MD5: *min = *max = 16; break;
5503 case SADB_X_AALG_SHA: *min = *max = 20; break;
5504 case SADB_X_AALG_NULL: *min = 1; *max = 256; break;
5505 default:
5506 DPRINTF(("%s: unknown AH algorithm %u\n",
5507 __func__, alg));
5508 break;
5509 }
5510 }
5511}
5512
5513/*
5514 * XXX reorder combinations by preference
5515 */
5516static struct mbuf *
5517key_getcomb_ah()
5518{
5519 struct sadb_comb *comb;
5520 struct auth_hash *algo;
5521 struct mbuf *m;
5522 u_int16_t minkeysize, maxkeysize;
5523 int i;
5524 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5525
5526 m = NULL;
5527 for (i = 1; i <= SADB_AALG_MAX; i++) {
5528#if 1
5529 /* we prefer HMAC algorithms, not old algorithms */
5530 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5531 continue;
5532#endif
5533 algo = ah_algorithm_lookup(i);
5534 if (!algo)
5535 continue;
5536 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5537 /* discard algorithms with key size smaller than system min */
5538 if (_BITS(minkeysize) < ipsec_ah_keymin)
5539 continue;
5540
5541 if (!m) {
5542 IPSEC_ASSERT(l <= MLEN,
5543 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
5544 MGET(m, M_DONTWAIT, MT_DATA);
5545 if (m) {
5546 M_ALIGN(m, l);
5547 m->m_len = l;
5548 m->m_next = NULL;
5549 }
5550 } else
5551 M_PREPEND(m, l, M_DONTWAIT);
5552 if (!m)
5553 return NULL;
5554
5555 comb = mtod(m, struct sadb_comb *);
5556 bzero(comb, sizeof(*comb));
5557 key_getcomb_setlifetime(comb);
5558 comb->sadb_comb_auth = i;
5559 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5560 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5561 }
5562
5563 return m;
5564}
5565
5566/*
5567 * not really an official behavior. discussed in pf_key@inner.net in Sep2000.
5568 * XXX reorder combinations by preference
5569 */
5570static struct mbuf *
5571key_getcomb_ipcomp()
5572{
5573 struct sadb_comb *comb;
5574 struct comp_algo *algo;
5575 struct mbuf *m;
5576 int i;
5577 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5578
5579 m = NULL;
5580 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5581 algo = ipcomp_algorithm_lookup(i);
5582 if (!algo)
5583 continue;
5584
5585 if (!m) {
5586 IPSEC_ASSERT(l <= MLEN,
5587 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
5588 MGET(m, M_DONTWAIT, MT_DATA);
5589 if (m) {
5590 M_ALIGN(m, l);
5591 m->m_len = l;
5592 m->m_next = NULL;
5593 }
5594 } else
5595 M_PREPEND(m, l, M_DONTWAIT);
5596 if (!m)
5597 return NULL;
5598
5599 comb = mtod(m, struct sadb_comb *);
5600 bzero(comb, sizeof(*comb));
5601 key_getcomb_setlifetime(comb);
5602 comb->sadb_comb_encrypt = i;
5603 /* what should we set into sadb_comb_*_{min,max}bits? */
5604 }
5605
5606 return m;
5607}
5608
5609/*
5610 * XXX no way to pass mode (transport/tunnel) to userland
5611 * XXX replay checking?
5612 * XXX sysctl interface to ipsec_{ah,esp}_keymin
5613 */
5614static struct mbuf *
5615key_getprop(saidx)
5616 const struct secasindex *saidx;
5617{
5618 struct sadb_prop *prop;
5619 struct mbuf *m, *n;
5620 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5621 int totlen;
5622
5623 switch (saidx->proto) {
5624 case IPPROTO_ESP:
5625 m = key_getcomb_esp();
5626 break;
5627 case IPPROTO_AH:
5628 m = key_getcomb_ah();
5629 break;
5630 case IPPROTO_IPCOMP:
5631 m = key_getcomb_ipcomp();
5632 break;
5633 default:
5634 return NULL;
5635 }
5636
5637 if (!m)
5638 return NULL;
5639 M_PREPEND(m, l, M_DONTWAIT);
5640 if (!m)
5641 return NULL;
5642
5643 totlen = 0;
5644 for (n = m; n; n = n->m_next)
5645 totlen += n->m_len;
5646
5647 prop = mtod(m, struct sadb_prop *);
5648 bzero(prop, sizeof(*prop));
5649 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5650 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5651 prop->sadb_prop_replay = 32; /* XXX */
5652
5653 return m;
5654}
5655
5656/*
5657 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5658 * send
5659 * <base, SA, address(SD), (address(P)), x_policy,
5660 * (identity(SD),) (sensitivity,) proposal>
5661 * to KMD, and expect to receive
5662 * <base> with SADB_ACQUIRE if error occured,
5663 * or
5664 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
5665 * from KMD by PF_KEY.
5666 *
5667 * XXX x_policy is outside of RFC2367 (KAME extension).
5668 * XXX sensitivity is not supported.
5669 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5670 * see comment for key_getcomb_ipcomp().
5671 *
5672 * OUT:
5673 * 0 : succeed
5674 * others: error number
5675 */
5676static int
5677key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5678{
5679 struct mbuf *result = NULL, *m;
5680 struct secacq *newacq;
5681 u_int8_t satype;
5682 int error = -1;
5683 u_int32_t seq;
5684
5685 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
5686 satype = key_proto2satype(saidx->proto);
5687 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
5688
5689 /*
5690 * We never do anything about acquirng SA. There is anather
5691 * solution that kernel blocks to send SADB_ACQUIRE message until
5692 * getting something message from IKEd. In later case, to be
5693 * managed with ACQUIRING list.
5694 */
5695 /* Get an entry to check whether sending message or not. */
5696 if ((newacq = key_getacq(saidx)) != NULL) {
5697 if (key_blockacq_count < newacq->count) {
5698 /* reset counter and do send message. */
5699 newacq->count = 0;
5700 } else {
5701 /* increment counter and do nothing. */
5702 newacq->count++;
5703 return 0;
5704 }
5705 } else {
5706 /* make new entry for blocking to send SADB_ACQUIRE. */
5707 if ((newacq = key_newacq(saidx)) == NULL)
5708 return ENOBUFS;
5709 }
5710
5711
5712 seq = newacq->seq;
5713 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5714 if (!m) {
5715 error = ENOBUFS;
5716 goto fail;
5717 }
5718 result = m;
5719
5720 /* set sadb_address for saidx's. */
5721 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5722 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5723 if (!m) {
5724 error = ENOBUFS;
5725 goto fail;
5726 }
5727 m_cat(result, m);
5728
5729 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5730 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5731 if (!m) {
5732 error = ENOBUFS;
5733 goto fail;
5734 }
5735 m_cat(result, m);
5736
5737 /* XXX proxy address (optional) */
5738
5739 /* set sadb_x_policy */
5740 if (sp) {
5741 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5742 if (!m) {
5743 error = ENOBUFS;
5744 goto fail;
5745 }
5746 m_cat(result, m);
5747 }
5748
5749 /* XXX identity (optional) */
5750#if 0
5751 if (idexttype && fqdn) {
5752 /* create identity extension (FQDN) */
5753 struct sadb_ident *id;
5754 int fqdnlen;
5755
5756 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
5757 id = (struct sadb_ident *)p;
5758 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5759 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5760 id->sadb_ident_exttype = idexttype;
5761 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5762 bcopy(fqdn, id + 1, fqdnlen);
5763 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5764 }
5765
5766 if (idexttype) {
5767 /* create identity extension (USERFQDN) */
5768 struct sadb_ident *id;
5769 int userfqdnlen;
5770
5771 if (userfqdn) {
5772 /* +1 for terminating-NUL */
5773 userfqdnlen = strlen(userfqdn) + 1;
5774 } else
5775 userfqdnlen = 0;
5776 id = (struct sadb_ident *)p;
5777 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5778 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5779 id->sadb_ident_exttype = idexttype;
5780 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5781 /* XXX is it correct? */
5782 if (curproc && curproc->p_cred)
5783 id->sadb_ident_id = curproc->p_cred->p_ruid;
5784 if (userfqdn && userfqdnlen)
5785 bcopy(userfqdn, id + 1, userfqdnlen);
5786 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5787 }
5788#endif
5789
5790 /* XXX sensitivity (optional) */
5791
5792 /* create proposal/combination extension */
5793 m = key_getprop(saidx);
5794#if 0
5795 /*
5796 * spec conformant: always attach proposal/combination extension,
5797 * the problem is that we have no way to attach it for ipcomp,
5798 * due to the way sadb_comb is declared in RFC2367.
5799 */
5800 if (!m) {
5801 error = ENOBUFS;
5802 goto fail;
5803 }
5804 m_cat(result, m);
5805#else
5806 /*
5807 * outside of spec; make proposal/combination extension optional.
5808 */
5809 if (m)
5810 m_cat(result, m);
5811#endif
5812
5813 if ((result->m_flags & M_PKTHDR) == 0) {
5814 error = EINVAL;
5815 goto fail;
5816 }
5817
5818 if (result->m_len < sizeof(struct sadb_msg)) {
5819 result = m_pullup(result, sizeof(struct sadb_msg));
5820 if (result == NULL) {
5821 error = ENOBUFS;
5822 goto fail;
5823 }
5824 }
5825
5826 result->m_pkthdr.len = 0;
5827 for (m = result; m; m = m->m_next)
5828 result->m_pkthdr.len += m->m_len;
5829
5830 mtod(result, struct sadb_msg *)->sadb_msg_len =
5831 PFKEY_UNIT64(result->m_pkthdr.len);
5832
5833 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
5834
5835 fail:
5836 if (result)
5837 m_freem(result);
5838 return error;
5839}
5840
5841static struct secacq *
5842key_newacq(const struct secasindex *saidx)
5843{
5844 struct secacq *newacq;
5845
5846 /* get new entry */
5847 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5848 if (newacq == NULL) {
5849 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5850 return NULL;
5851 }
5852
5853 /* copy secindex */
5854 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
5855 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
5856 newacq->created = time_second;
5857 newacq->count = 0;
5858
5859 /* add to acqtree */
5860 ACQ_LOCK();
5861 LIST_INSERT_HEAD(&acqtree, newacq, chain);
5862 ACQ_UNLOCK();
5863
5864 return newacq;
5865}
5866
5867static struct secacq *
5868key_getacq(const struct secasindex *saidx)
5869{
5870 struct secacq *acq;
5871
5872 ACQ_LOCK();
5873 LIST_FOREACH(acq, &acqtree, chain) {
5874 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
5875 break;
5876 }
5877 ACQ_UNLOCK();
5878
5879 return acq;
5880}
5881
5882static struct secacq *
5883key_getacqbyseq(seq)
5884 u_int32_t seq;
5885{
5886 struct secacq *acq;
5887
5888 ACQ_LOCK();
5889 LIST_FOREACH(acq, &acqtree, chain) {
5890 if (acq->seq == seq)
5891 break;
5892 }
5893 ACQ_UNLOCK();
5894
5895 return acq;
5896}
5897
5898static struct secspacq *
5899key_newspacq(spidx)
5900 struct secpolicyindex *spidx;
5901{
5902 struct secspacq *acq;
5903
5904 /* get new entry */
5905 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5906 if (acq == NULL) {
5907 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5908 return NULL;
5909 }
5910
5911 /* copy secindex */
5912 bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
5913 acq->created = time_second;
5914 acq->count = 0;
5915
5916 /* add to spacqtree */
5917 SPACQ_LOCK();
5918 LIST_INSERT_HEAD(&spacqtree, acq, chain);
5919 SPACQ_UNLOCK();
5920
5921 return acq;
5922}
5923
5924static struct secspacq *
5925key_getspacq(spidx)
5926 struct secpolicyindex *spidx;
5927{
5928 struct secspacq *acq;
5929
5930 SPACQ_LOCK();
5931 LIST_FOREACH(acq, &spacqtree, chain) {
5932 if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
5933 /* NB: return holding spacq_lock */
5934 return acq;
5935 }
5936 }
5937 SPACQ_UNLOCK();
5938
5939 return NULL;
5940}
5941
5942/*
5943 * SADB_ACQUIRE processing,
5944 * in first situation, is receiving
5945 * <base>
5946 * from the ikmpd, and clear sequence of its secasvar entry.
5947 *
5948 * In second situation, is receiving
5949 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5950 * from a user land process, and return
5951 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
5952 * to the socket.
5953 *
5954 * m will always be freed.
5955 */
5956static int
5957key_acquire2(so, m, mhp)
5958 struct socket *so;
5959 struct mbuf *m;
5960 const struct sadb_msghdr *mhp;
5961{
5962 const struct sadb_address *src0, *dst0;
5963 struct secasindex saidx;
5964 struct secashead *sah;
5965 u_int16_t proto;
5966 int error;
5967
5968 IPSEC_ASSERT(so != NULL, ("null socket"));
5969 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5970 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5971 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5972
5973 /*
5974 * Error message from KMd.
5975 * We assume that if error was occured in IKEd, the length of PFKEY
5976 * message is equal to the size of sadb_msg structure.
5977 * We do not raise error even if error occured in this function.
5978 */
5979 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
5980 struct secacq *acq;
5981
5982 /* check sequence number */
5983 if (mhp->msg->sadb_msg_seq == 0) {
5984 ipseclog((LOG_DEBUG, "%s: must specify sequence "
5985 "number.\n", __func__));
5986 m_freem(m);
5987 return 0;
5988 }
5989
5990 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
5991 /*
5992 * the specified larval SA is already gone, or we got
5993 * a bogus sequence number. we can silently ignore it.
5994 */
5995 m_freem(m);
5996 return 0;
5997 }
5998
5999 /* reset acq counter in order to deletion by timehander. */
6000 acq->created = time_second;
6001 acq->count = 0;
6002 m_freem(m);
6003 return 0;
6004 }
6005
6006 /*
6007 * This message is from user land.
6008 */
6009
6010 /* map satype to proto */
6011 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6012 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6013 __func__));
6014 return key_senderror(so, m, EINVAL);
6015 }
6016
6017 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6018 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6019 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6020 /* error */
6021 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6022 __func__));
6023 return key_senderror(so, m, EINVAL);
6024 }
6025 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6026 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6027 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6028 /* error */
6029 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6030 __func__));
6031 return key_senderror(so, m, EINVAL);
6032 }
6033
6034 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6035 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6036
6037 /* XXX boundary check against sa_len */
6038 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6039
6040 /* get a SA index */
6041 SAHTREE_LOCK();
6042 LIST_FOREACH(sah, &sahtree, chain) {
6043 if (sah->state == SADB_SASTATE_DEAD)
6044 continue;
6045 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6046 break;
6047 }
6048 SAHTREE_UNLOCK();
6049 if (sah != NULL) {
6050 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6051 return key_senderror(so, m, EEXIST);
6052 }
6053
6054 error = key_acquire(&saidx, NULL);
6055 if (error != 0) {
6056 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6057 __func__, mhp->msg->sadb_msg_errno));
6058 return key_senderror(so, m, error);
6059 }
6060
6061 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6062}
6063
6064/*
6065 * SADB_REGISTER processing.
6066 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6067 * receive
6068 * <base>
6069 * from the ikmpd, and register a socket to send PF_KEY messages,
6070 * and send
6071 * <base, supported>
6072 * to KMD by PF_KEY.
6073 * If socket is detached, must free from regnode.
6074 *
6075 * m will always be freed.
6076 */
6077static int
6078key_register(so, m, mhp)
6079 struct socket *so;
6080 struct mbuf *m;
6081 const struct sadb_msghdr *mhp;
6082{
6083 struct secreg *reg, *newreg = 0;
6084
6085 IPSEC_ASSERT(so != NULL, ("null socket"));
6086 IPSEC_ASSERT(m != NULL, ("null mbuf"));
6087 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6088 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6089
6090 /* check for invalid register message */
6091 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0]))
6092 return key_senderror(so, m, EINVAL);
6093
6094 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6095 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6096 goto setmsg;
6097
6098 /* check whether existing or not */
6099 REGTREE_LOCK();
6100 LIST_FOREACH(reg, &regtree[mhp->msg->sadb_msg_satype], chain) {
6101 if (reg->so == so) {
6102 REGTREE_UNLOCK();
6103 ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6104 __func__));
6105 return key_senderror(so, m, EEXIST);
6106 }
6107 }
6108
6109 /* create regnode */
6110 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6111 if (newreg == NULL) {
6112 REGTREE_UNLOCK();
6113 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6114 return key_senderror(so, m, ENOBUFS);
6115 }
6116
6117 newreg->so = so;
6118 ((struct keycb *)sotorawcb(so))->kp_registered++;
6119
6120 /* add regnode to regtree. */
6121 LIST_INSERT_HEAD(&regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6122 REGTREE_UNLOCK();
6123
6124 setmsg:
6125 {
6126 struct mbuf *n;
6127 struct sadb_msg *newmsg;
6128 struct sadb_supported *sup;
6129 u_int len, alen, elen;
6130 int off;
6131 int i;
6132 struct sadb_alg *alg;
6133
6134 /* create new sadb_msg to reply. */
6135 alen = 0;
6136 for (i = 1; i <= SADB_AALG_MAX; i++) {
6137 if (ah_algorithm_lookup(i))
6138 alen += sizeof(struct sadb_alg);
6139 }
6140 if (alen)
6141 alen += sizeof(struct sadb_supported);
6142 elen = 0;
6143 for (i = 1; i <= SADB_EALG_MAX; i++) {
6144 if (esp_algorithm_lookup(i))
6145 elen += sizeof(struct sadb_alg);
6146 }
6147 if (elen)
6148 elen += sizeof(struct sadb_supported);
6149
6150 len = sizeof(struct sadb_msg) + alen + elen;
6151
6152 if (len > MCLBYTES)
6153 return key_senderror(so, m, ENOBUFS);
6154
6155 MGETHDR(n, M_DONTWAIT, MT_DATA);
6156 if (len > MHLEN) {
6157 MCLGET(n, M_DONTWAIT);
6158 if ((n->m_flags & M_EXT) == 0) {
6159 m_freem(n);
6160 n = NULL;
6161 }
6162 }
6163 if (!n)
6164 return key_senderror(so, m, ENOBUFS);
6165
6166 n->m_pkthdr.len = n->m_len = len;
6167 n->m_next = NULL;
6168 off = 0;
6169
6170 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6171 newmsg = mtod(n, struct sadb_msg *);
6172 newmsg->sadb_msg_errno = 0;
6173 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6174 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6175
6176 /* for authentication algorithm */
6177 if (alen) {
6178 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6179 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6180 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6181 off += PFKEY_ALIGN8(sizeof(*sup));
6182
6183 for (i = 1; i <= SADB_AALG_MAX; i++) {
6184 struct auth_hash *aalgo;
6185 u_int16_t minkeysize, maxkeysize;
6186
6187 aalgo = ah_algorithm_lookup(i);
6188 if (!aalgo)
6189 continue;
6190 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6191 alg->sadb_alg_id = i;
6192 alg->sadb_alg_ivlen = 0;
6193 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6194 alg->sadb_alg_minbits = _BITS(minkeysize);
6195 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6196 off += PFKEY_ALIGN8(sizeof(*alg));
6197 }
6198 }
6199
6200 /* for encryption algorithm */
6201 if (elen) {
6202 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6203 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6204 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6205 off += PFKEY_ALIGN8(sizeof(*sup));
6206
6207 for (i = 1; i <= SADB_EALG_MAX; i++) {
6208 struct enc_xform *ealgo;
6209
6210 ealgo = esp_algorithm_lookup(i);
6211 if (!ealgo)
6212 continue;
6213 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6214 alg->sadb_alg_id = i;
6215 alg->sadb_alg_ivlen = ealgo->blocksize;
6216 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6217 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6218 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6219 }
6220 }
6221
6222 IPSEC_ASSERT(off == len,
6223 ("length assumption failed (off %u len %u)", off, len));
6224
6225 m_freem(m);
6226 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6227 }
6228}
6229
6230/*
6231 * free secreg entry registered.
6232 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6233 */
6234void
6235key_freereg(struct socket *so)
6236{
6237 struct secreg *reg;
6238 int i;
6239
6240 IPSEC_ASSERT(so != NULL, ("NULL so"));
6241
6242 /*
6243 * check whether existing or not.
6244 * check all type of SA, because there is a potential that
6245 * one socket is registered to multiple type of SA.
6246 */
6247 REGTREE_LOCK();
6248 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6249 LIST_FOREACH(reg, &regtree[i], chain) {
6250 if (reg->so == so && __LIST_CHAINED(reg)) {
6251 LIST_REMOVE(reg, chain);
6252 free(reg, M_IPSEC_SAR);
6253 break;
6254 }
6255 }
6256 }
6257 REGTREE_UNLOCK();
6258}
6259
6260/*
6261 * SADB_EXPIRE processing
6262 * send
6263 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6264 * to KMD by PF_KEY.
6265 * NOTE: We send only soft lifetime extension.
6266 *
6267 * OUT: 0 : succeed
6268 * others : error number
6269 */
6270static int
6271key_expire(struct secasvar *sav)
6272{
6273 int s;
6274 int satype;
6275 struct mbuf *result = NULL, *m;
6276 int len;
6277 int error = -1;
6278 struct sadb_lifetime *lt;
6279
6280 /* XXX: Why do we lock ? */
6281 s = splnet(); /*called from softclock()*/
6282
6283 IPSEC_ASSERT (sav != NULL, ("null sav"));
6284 IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6285
6286 /* set msg header */
6287 satype = key_proto2satype(sav->sah->saidx.proto);
6288 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6289 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6290 if (!m) {
6291 error = ENOBUFS;
6292 goto fail;
6293 }
6294 result = m;
6295
6296 /* create SA extension */
6297 m = key_setsadbsa(sav);
6298 if (!m) {
6299 error = ENOBUFS;
6300 goto fail;
6301 }
6302 m_cat(result, m);
6303
6304 /* create SA extension */
6305 m = key_setsadbxsa2(sav->sah->saidx.mode,
6306 sav->replay ? sav->replay->count : 0,
6307 sav->sah->saidx.reqid);
6308 if (!m) {
6309 error = ENOBUFS;
6310 goto fail;
6311 }
6312 m_cat(result, m);
6313
6314 /* create lifetime extension (current and soft) */
6315 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6316 m = key_alloc_mbuf(len);
6317 if (!m || m->m_next) { /*XXX*/
6318 if (m)
6319 m_freem(m);
6320 error = ENOBUFS;
6321 goto fail;
6322 }
6323 bzero(mtod(m, caddr_t), len);
6324 lt = mtod(m, struct sadb_lifetime *);
6325 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6326 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6327 lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6328 lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6329 lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6330 lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6331 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6332 bcopy(sav->lft_s, lt, sizeof(*lt));
6333 m_cat(result, m);
6334
6335 /* set sadb_address for source */
6336 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6337 &sav->sah->saidx.src.sa,
6338 FULLMASK, IPSEC_ULPROTO_ANY);
6339 if (!m) {
6340 error = ENOBUFS;
6341 goto fail;
6342 }
6343 m_cat(result, m);
6344
6345 /* set sadb_address for destination */
6346 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6347 &sav->sah->saidx.dst.sa,
6348 FULLMASK, IPSEC_ULPROTO_ANY);
6349 if (!m) {
6350 error = ENOBUFS;
6351 goto fail;
6352 }
6353 m_cat(result, m);
6354
6355 if ((result->m_flags & M_PKTHDR) == 0) {
6356 error = EINVAL;
6357 goto fail;
6358 }
6359
6360 if (result->m_len < sizeof(struct sadb_msg)) {
6361 result = m_pullup(result, sizeof(struct sadb_msg));
6362 if (result == NULL) {
6363 error = ENOBUFS;
6364 goto fail;
6365 }
6366 }
6367
6368 result->m_pkthdr.len = 0;
6369 for (m = result; m; m = m->m_next)
6370 result->m_pkthdr.len += m->m_len;
6371
6372 mtod(result, struct sadb_msg *)->sadb_msg_len =
6373 PFKEY_UNIT64(result->m_pkthdr.len);
6374
6375 splx(s);
6376 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6377
6378 fail:
6379 if (result)
6380 m_freem(result);
6381 splx(s);
6382 return error;
6383}
6384
6385/*
6386 * SADB_FLUSH processing
6387 * receive
6388 * <base>
6389 * from the ikmpd, and free all entries in secastree.
6390 * and send,
6391 * <base>
6392 * to the ikmpd.
6393 * NOTE: to do is only marking SADB_SASTATE_DEAD.
6394 *
6395 * m will always be freed.
6396 */
6397static int
6398key_flush(so, m, mhp)
6399 struct socket *so;
6400 struct mbuf *m;
6401 const struct sadb_msghdr *mhp;
6402{
6403 struct sadb_msg *newmsg;
6404 struct secashead *sah, *nextsah;
6405 struct secasvar *sav, *nextsav;
6406 u_int16_t proto;
6407 u_int8_t state;
6408 u_int stateidx;
6409
6410 IPSEC_ASSERT(so != NULL, ("null socket"));
6411 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6412 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6413
6414 /* map satype to proto */
6415 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6416 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6417 __func__));
6418 return key_senderror(so, m, EINVAL);
6419 }
6420
6421 /* no SATYPE specified, i.e. flushing all SA. */
6422 SAHTREE_LOCK();
6423 for (sah = LIST_FIRST(&sahtree);
6424 sah != NULL;
6425 sah = nextsah) {
6426 nextsah = LIST_NEXT(sah, chain);
6427
6428 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6429 && proto != sah->saidx.proto)
6430 continue;
6431
6432 for (stateidx = 0;
6433 stateidx < _ARRAYLEN(saorder_state_alive);
6434 stateidx++) {
6435 state = saorder_state_any[stateidx];
6436 for (sav = LIST_FIRST(&sah->savtree[state]);
6437 sav != NULL;
6438 sav = nextsav) {
6439
6440 nextsav = LIST_NEXT(sav, chain);
6441
6442 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6443 KEY_FREESAV(&sav);
6444 }
6445 }
6446
6447 sah->state = SADB_SASTATE_DEAD;
6448 }
6449 SAHTREE_UNLOCK();
6450
6451 if (m->m_len < sizeof(struct sadb_msg) ||
6452 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6453 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6454 return key_senderror(so, m, ENOBUFS);
6455 }
6456
6457 if (m->m_next)
6458 m_freem(m->m_next);
6459 m->m_next = NULL;
6460 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6461 newmsg = mtod(m, struct sadb_msg *);
6462 newmsg->sadb_msg_errno = 0;
6463 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6464
6465 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6466}
6467
6468/*
6469 * SADB_DUMP processing
6470 * dump all entries including status of DEAD in SAD.
6471 * receive
6472 * <base>
6473 * from the ikmpd, and dump all secasvar leaves
6474 * and send,
6475 * <base> .....
6476 * to the ikmpd.
6477 *
6478 * m will always be freed.
6479 */
6480static int
6481key_dump(so, m, mhp)
6482 struct socket *so;
6483 struct mbuf *m;
6484 const struct sadb_msghdr *mhp;
6485{
6486 struct secashead *sah;
6487 struct secasvar *sav;
6488 u_int16_t proto;
6489 u_int stateidx;
6490 u_int8_t satype;
6491 u_int8_t state;
6492 int cnt;
6493 struct sadb_msg *newmsg;
6494 struct mbuf *n;
6495
6496 IPSEC_ASSERT(so != NULL, ("null socket"));
6497 IPSEC_ASSERT(m != NULL, ("null mbuf"));
6498 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6499 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6500
6501 /* map satype to proto */
6502 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6503 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6504 __func__));
6505 return key_senderror(so, m, EINVAL);
6506 }
6507
6508 /* count sav entries to be sent to the userland. */
6509 cnt = 0;
6510 SAHTREE_LOCK();
6511 LIST_FOREACH(sah, &sahtree, chain) {
6512 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6513 && proto != sah->saidx.proto)
6514 continue;
6515
6516 for (stateidx = 0;
6517 stateidx < _ARRAYLEN(saorder_state_any);
6518 stateidx++) {
6519 state = saorder_state_any[stateidx];
6520 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6521 cnt++;
6522 }
6523 }
6524 }
6525
6526 if (cnt == 0) {
6527 SAHTREE_UNLOCK();
6528 return key_senderror(so, m, ENOENT);
6529 }
6530
6531 /* send this to the userland, one at a time. */
6532 newmsg = NULL;
6533 LIST_FOREACH(sah, &sahtree, chain) {
6534 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6535 && proto != sah->saidx.proto)
6536 continue;
6537
6538 /* map proto to satype */
6539 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6540 SAHTREE_UNLOCK();
6541 ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
6542 "SAD.\n", __func__));
6543 return key_senderror(so, m, EINVAL);
6544 }
6545
6546 for (stateidx = 0;
6547 stateidx < _ARRAYLEN(saorder_state_any);
6548 stateidx++) {
6549 state = saorder_state_any[stateidx];
6550 LIST_FOREACH(sav, &sah->savtree[state], chain) {
6551 n = key_setdumpsa(sav, SADB_DUMP, satype,
6552 --cnt, mhp->msg->sadb_msg_pid);
6553 if (!n) {
6554 SAHTREE_UNLOCK();
6555 return key_senderror(so, m, ENOBUFS);
6556 }
6557 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6558 }
6559 }
6560 }
6561 SAHTREE_UNLOCK();
6562
6563 m_freem(m);
6564 return 0;
6565}
6566
6567/*
6568 * SADB_X_PROMISC processing
6569 *
6570 * m will always be freed.
6571 */
6572static int
6573key_promisc(so, m, mhp)
6574 struct socket *so;
6575 struct mbuf *m;
6576 const struct sadb_msghdr *mhp;
6577{
6578 int olen;
6579
6580 IPSEC_ASSERT(so != NULL, ("null socket"));
6581 IPSEC_ASSERT(m != NULL, ("null mbuf"));
6582 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6583 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6584
6585 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6586
6587 if (olen < sizeof(struct sadb_msg)) {
6588#if 1
6589 return key_senderror(so, m, EINVAL);
6590#else
6591 m_freem(m);
6592 return 0;
6593#endif
6594 } else if (olen == sizeof(struct sadb_msg)) {
6595 /* enable/disable promisc mode */
6596 struct keycb *kp;
6597
6598 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6599 return key_senderror(so, m, EINVAL);
6600 mhp->msg->sadb_msg_errno = 0;
6601 switch (mhp->msg->sadb_msg_satype) {
6602 case 0:
6603 case 1:
6604 kp->kp_promisc = mhp->msg->sadb_msg_satype;
6605 break;
6606 default:
6607 return key_senderror(so, m, EINVAL);
6608 }
6609
6610 /* send the original message back to everyone */
6611 mhp->msg->sadb_msg_errno = 0;
6612 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6613 } else {
6614 /* send packet as is */
6615
6616 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6617
6618 /* TODO: if sadb_msg_seq is specified, send to specific pid */
6619 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6620 }
6621}
6622
6623static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6624 const struct sadb_msghdr *)) = {
6625 NULL, /* SADB_RESERVED */
6626 key_getspi, /* SADB_GETSPI */
6627 key_update, /* SADB_UPDATE */
6628 key_add, /* SADB_ADD */
6629 key_delete, /* SADB_DELETE */
6630 key_get, /* SADB_GET */
6631 key_acquire2, /* SADB_ACQUIRE */
6632 key_register, /* SADB_REGISTER */
6633 NULL, /* SADB_EXPIRE */
6634 key_flush, /* SADB_FLUSH */
6635 key_dump, /* SADB_DUMP */
6636 key_promisc, /* SADB_X_PROMISC */
6637 NULL, /* SADB_X_PCHANGE */
6638 key_spdadd, /* SADB_X_SPDUPDATE */
6639 key_spdadd, /* SADB_X_SPDADD */
6640 key_spddelete, /* SADB_X_SPDDELETE */
6641 key_spdget, /* SADB_X_SPDGET */
6642 NULL, /* SADB_X_SPDACQUIRE */
6643 key_spddump, /* SADB_X_SPDDUMP */
6644 key_spdflush, /* SADB_X_SPDFLUSH */
6645 key_spdadd, /* SADB_X_SPDSETIDX */
6646 NULL, /* SADB_X_SPDEXPIRE */
6647 key_spddelete2, /* SADB_X_SPDDELETE2 */
6648};
6649
6650/*
6651 * parse sadb_msg buffer to process PFKEYv2,
6652 * and create a data to response if needed.
6653 * I think to be dealed with mbuf directly.
6654 * IN:
6655 * msgp : pointer to pointer to a received buffer pulluped.
6656 * This is rewrited to response.
6657 * so : pointer to socket.
6658 * OUT:
6659 * length for buffer to send to user process.
6660 */
6661int
6662key_parse(m, so)
6663 struct mbuf *m;
6664 struct socket *so;
6665{
6666 struct sadb_msg *msg;
6667 struct sadb_msghdr mh;
6668 u_int orglen;
6669 int error;
6670 int target;
6671
6672 IPSEC_ASSERT(so != NULL, ("null socket"));
6673 IPSEC_ASSERT(m != NULL, ("null mbuf"));
6674
6675#if 0 /*kdebug_sadb assumes msg in linear buffer*/
6676 KEYDEBUG(KEYDEBUG_KEY_DUMP,
6677 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
6678 kdebug_sadb(msg));
6679#endif
6680
6681 if (m->m_len < sizeof(struct sadb_msg)) {
6682 m = m_pullup(m, sizeof(struct sadb_msg));
6683 if (!m)
6684 return ENOBUFS;
6685 }
6686 msg = mtod(m, struct sadb_msg *);
6687 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6688 target = KEY_SENDUP_ONE;
6689
6690 if ((m->m_flags & M_PKTHDR) == 0 ||
6691 m->m_pkthdr.len != m->m_pkthdr.len) {
6692 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
6693 pfkeystat.out_invlen++;
6694 error = EINVAL;
6695 goto senderror;
6696 }
6697
6698 if (msg->sadb_msg_version != PF_KEY_V2) {
6699 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
6700 __func__, msg->sadb_msg_version));
6701 pfkeystat.out_invver++;
6702 error = EINVAL;
6703 goto senderror;
6704 }
6705
6706 if (msg->sadb_msg_type > SADB_MAX) {
6707 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6708 __func__, msg->sadb_msg_type));
6709 pfkeystat.out_invmsgtype++;
6710 error = EINVAL;
6711 goto senderror;
6712 }
6713
6714 /* for old-fashioned code - should be nuked */
6715 if (m->m_pkthdr.len > MCLBYTES) {
6716 m_freem(m);
6717 return ENOBUFS;
6718 }
6719 if (m->m_next) {
6720 struct mbuf *n;
6721
6722 MGETHDR(n, M_DONTWAIT, MT_DATA);
6723 if (n && m->m_pkthdr.len > MHLEN) {
6724 MCLGET(n, M_DONTWAIT);
6725 if ((n->m_flags & M_EXT) == 0) {
6726 m_free(n);
6727 n = NULL;
6728 }
6729 }
6730 if (!n) {
6731 m_freem(m);
6732 return ENOBUFS;
6733 }
6734 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
6735 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
6736 n->m_next = NULL;
6737 m_freem(m);
6738 m = n;
6739 }
6740
6741 /* align the mbuf chain so that extensions are in contiguous region. */
6742 error = key_align(m, &mh);
6743 if (error)
6744 return error;
6745
6746 msg = mh.msg;
6747
6748 /* check SA type */
6749 switch (msg->sadb_msg_satype) {
6750 case SADB_SATYPE_UNSPEC:
6751 switch (msg->sadb_msg_type) {
6752 case SADB_GETSPI:
6753 case SADB_UPDATE:
6754 case SADB_ADD:
6755 case SADB_DELETE:
6756 case SADB_GET:
6757 case SADB_ACQUIRE:
6758 case SADB_EXPIRE:
6759 ipseclog((LOG_DEBUG, "%s: must specify satype "
6760 "when msg type=%u.\n", __func__,
6761 msg->sadb_msg_type));
6762 pfkeystat.out_invsatype++;
6763 error = EINVAL;
6764 goto senderror;
6765 }
6766 break;
6767 case SADB_SATYPE_AH:
6768 case SADB_SATYPE_ESP:
6769 case SADB_X_SATYPE_IPCOMP:
6770 case SADB_X_SATYPE_TCPSIGNATURE:
6771 switch (msg->sadb_msg_type) {
6772 case SADB_X_SPDADD:
6773 case SADB_X_SPDDELETE:
6774 case SADB_X_SPDGET:
6775 case SADB_X_SPDDUMP:
6776 case SADB_X_SPDFLUSH:
6777 case SADB_X_SPDSETIDX:
6778 case SADB_X_SPDUPDATE:
6779 case SADB_X_SPDDELETE2:
6780 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
6781 __func__, msg->sadb_msg_type));
6782 pfkeystat.out_invsatype++;
6783 error = EINVAL;
6784 goto senderror;
6785 }
6786 break;
6787 case SADB_SATYPE_RSVP:
6788 case SADB_SATYPE_OSPFV2:
6789 case SADB_SATYPE_RIPV2:
6790 case SADB_SATYPE_MIP:
6791 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
6792 __func__, msg->sadb_msg_satype));
6793 pfkeystat.out_invsatype++;
6794 error = EOPNOTSUPP;
6795 goto senderror;
6796 case 1: /* XXX: What does it do? */
6797 if (msg->sadb_msg_type == SADB_X_PROMISC)
6798 break;
6799 /*FALLTHROUGH*/
6800 default:
6801 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6802 __func__, msg->sadb_msg_satype));
6803 pfkeystat.out_invsatype++;
6804 error = EINVAL;
6805 goto senderror;
6806 }
6807
6808 /* check field of upper layer protocol and address family */
6809 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
6810 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
6811 struct sadb_address *src0, *dst0;
6812 u_int plen;
6813
6814 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
6815 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
6816
6817 /* check upper layer protocol */
6818 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
6819 ipseclog((LOG_DEBUG, "%s: upper layer protocol "
6820 "mismatched.\n", __func__));
6821 pfkeystat.out_invaddr++;
6822 error = EINVAL;
6823 goto senderror;
6824 }
6825
6826 /* check family */
6827 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
6828 PFKEY_ADDR_SADDR(dst0)->sa_family) {
6829 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
6830 __func__));
6831 pfkeystat.out_invaddr++;
6832 error = EINVAL;
6833 goto senderror;
6834 }
6835 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6836 PFKEY_ADDR_SADDR(dst0)->sa_len) {
6837 ipseclog((LOG_DEBUG, "%s: address struct size "
6838 "mismatched.\n", __func__));
6839 pfkeystat.out_invaddr++;
6840 error = EINVAL;
6841 goto senderror;
6842 }
6843
6844 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6845 case AF_INET:
6846 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6847 sizeof(struct sockaddr_in)) {
6848 pfkeystat.out_invaddr++;
6849 error = EINVAL;
6850 goto senderror;
6851 }
6852 break;
6853 case AF_INET6:
6854 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6855 sizeof(struct sockaddr_in6)) {
6856 pfkeystat.out_invaddr++;
6857 error = EINVAL;
6858 goto senderror;
6859 }
6860 break;
6861 default:
6862 ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
6863 __func__));
6864 pfkeystat.out_invaddr++;
6865 error = EAFNOSUPPORT;
6866 goto senderror;
6867 }
6868
6869 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6870 case AF_INET:
6871 plen = sizeof(struct in_addr) << 3;
6872 break;
6873 case AF_INET6:
6874 plen = sizeof(struct in6_addr) << 3;
6875 break;
6876 default:
6877 plen = 0; /*fool gcc*/
6878 break;
6879 }
6880
6881 /* check max prefix length */
6882 if (src0->sadb_address_prefixlen > plen ||
6883 dst0->sadb_address_prefixlen > plen) {
6884 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
6885 __func__));
6886 pfkeystat.out_invaddr++;
6887 error = EINVAL;
6888 goto senderror;
6889 }
6890
6891 /*
6892 * prefixlen == 0 is valid because there can be a case when
6893 * all addresses are matched.
6894 */
6895 }
6896
6897 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
6898 key_typesw[msg->sadb_msg_type] == NULL) {
6899 pfkeystat.out_invmsgtype++;
6900 error = EINVAL;
6901 goto senderror;
6902 }
6903
6904 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
6905
6906senderror:
6907 msg->sadb_msg_errno = error;
6908 return key_sendup_mbuf(so, m, target);
6909}
6910
6911static int
6912key_senderror(so, m, code)
6913 struct socket *so;
6914 struct mbuf *m;
6915 int code;
6916{
6917 struct sadb_msg *msg;
6918
6919 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6920 ("mbuf too small, len %u", m->m_len));
6921
6922 msg = mtod(m, struct sadb_msg *);
6923 msg->sadb_msg_errno = code;
6924 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
6925}
6926
6927/*
6928 * set the pointer to each header into message buffer.
6929 * m will be freed on error.
6930 * XXX larger-than-MCLBYTES extension?
6931 */
6932static int
6933key_align(m, mhp)
6934 struct mbuf *m;
6935 struct sadb_msghdr *mhp;
6936{
6937 struct mbuf *n;
6938 struct sadb_ext *ext;
6939 size_t off, end;
6940 int extlen;
6941 int toff;
6942
6943 IPSEC_ASSERT(m != NULL, ("null mbuf"));
6944 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6945 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6946 ("mbuf too small, len %u", m->m_len));
6947
6948 /* initialize */
6949 bzero(mhp, sizeof(*mhp));
6950
6951 mhp->msg = mtod(m, struct sadb_msg *);
6952 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
6953
6954 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6955 extlen = end; /*just in case extlen is not updated*/
6956 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
6957 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
6958 if (!n) {
6959 /* m is already freed */
6960 return ENOBUFS;
6961 }
6962 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
6963
6964 /* set pointer */
6965 switch (ext->sadb_ext_type) {
6966 case SADB_EXT_SA:
6967 case SADB_EXT_ADDRESS_SRC:
6968 case SADB_EXT_ADDRESS_DST:
6969 case SADB_EXT_ADDRESS_PROXY:
6970 case SADB_EXT_LIFETIME_CURRENT:
6971 case SADB_EXT_LIFETIME_HARD:
6972 case SADB_EXT_LIFETIME_SOFT:
6973 case SADB_EXT_KEY_AUTH:
6974 case SADB_EXT_KEY_ENCRYPT:
6975 case SADB_EXT_IDENTITY_SRC:
6976 case SADB_EXT_IDENTITY_DST:
6977 case SADB_EXT_SENSITIVITY:
6978 case SADB_EXT_PROPOSAL:
6979 case SADB_EXT_SUPPORTED_AUTH:
6980 case SADB_EXT_SUPPORTED_ENCRYPT:
6981 case SADB_EXT_SPIRANGE:
6982 case SADB_X_EXT_POLICY:
6983 case SADB_X_EXT_SA2:
6984 /* duplicate check */
6985 /*
6986 * XXX Are there duplication payloads of either
6987 * KEY_AUTH or KEY_ENCRYPT ?
6988 */
6989 if (mhp->ext[ext->sadb_ext_type] != NULL) {
6990 ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
6991 "%u\n", __func__, ext->sadb_ext_type));
6992 m_freem(m);
6993 pfkeystat.out_dupext++;
6994 return EINVAL;
6995 }
6996 break;
6997 default:
6998 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
6999 __func__, ext->sadb_ext_type));
7000 m_freem(m);
7001 pfkeystat.out_invexttype++;
7002 return EINVAL;
7003 }
7004
7005 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7006
7007 if (key_validate_ext(ext, extlen)) {
7008 m_freem(m);
7009 pfkeystat.out_invlen++;
7010 return EINVAL;
7011 }
7012
7013 n = m_pulldown(m, off, extlen, &toff);
7014 if (!n) {
7015 /* m is already freed */
7016 return ENOBUFS;
7017 }
7018 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7019
7020 mhp->ext[ext->sadb_ext_type] = ext;
7021 mhp->extoff[ext->sadb_ext_type] = off;
7022 mhp->extlen[ext->sadb_ext_type] = extlen;
7023 }
7024
7025 if (off != end) {
7026 m_freem(m);
7027 pfkeystat.out_invlen++;
7028 return EINVAL;
7029 }
7030
7031 return 0;
7032}
7033
7034static int
7035key_validate_ext(ext, len)
7036 const struct sadb_ext *ext;
7037 int len;
7038{
7039 const struct sockaddr *sa;
7040 enum { NONE, ADDR } checktype = NONE;
7041 int baselen = 0;
7042 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7043
7044 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7045 return EINVAL;
7046
7047 /* if it does not match minimum/maximum length, bail */
7048 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7049 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7050 return EINVAL;
7051 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7052 return EINVAL;
7053 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7054 return EINVAL;
7055
7056 /* more checks based on sadb_ext_type XXX need more */
7057 switch (ext->sadb_ext_type) {
7058 case SADB_EXT_ADDRESS_SRC:
7059 case SADB_EXT_ADDRESS_DST:
7060 case SADB_EXT_ADDRESS_PROXY:
7061 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7062 checktype = ADDR;
7063 break;
7064 case SADB_EXT_IDENTITY_SRC:
7065 case SADB_EXT_IDENTITY_DST:
7066 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7067 SADB_X_IDENTTYPE_ADDR) {
7068 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7069 checktype = ADDR;
7070 } else
7071 checktype = NONE;
7072 break;
7073 default:
7074 checktype = NONE;
7075 break;
7076 }
7077
7078 switch (checktype) {
7079 case NONE:
7080 break;
7081 case ADDR:
7082 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7083 if (len < baselen + sal)
7084 return EINVAL;
7085 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7086 return EINVAL;
7087 break;
7088 }
7089
7090 return 0;
7091}
7092
7093void
7094key_init()
7095{
7096 int i;
7097
7098 SPTREE_LOCK_INIT();
7099 REGTREE_LOCK_INIT();
7100 SAHTREE_LOCK_INIT();
7101 ACQ_LOCK_INIT();
7102 SPACQ_LOCK_INIT();
7103
7104 for (i = 0; i < IPSEC_DIR_MAX; i++)
7105 LIST_INIT(&sptree[i]);
7106
7107 LIST_INIT(&sahtree);
7108
7109 for (i = 0; i <= SADB_SATYPE_MAX; i++)
7110 LIST_INIT(&regtree[i]);
7111
7112 LIST_INIT(&acqtree);
7113 LIST_INIT(&spacqtree);
7114
7115 /* system default */
7116 ip4_def_policy.policy = IPSEC_POLICY_NONE;
7117 ip4_def_policy.refcnt++; /*never reclaim this*/
7118
7119#ifndef IPSEC_DEBUG2
7120 timeout((void *)key_timehandler, (void *)0, hz);
7121#endif /*IPSEC_DEBUG2*/
7122
7123 /* initialize key statistics */
7124 keystat.getspi_count = 1;
7125
7126 printf("Fast IPsec: Initialized Security Association Processing.\n");
7127
7128 return;
7129}
7130
7131/*
7132 * XXX: maybe This function is called after INBOUND IPsec processing.
7133 *
7134 * Special check for tunnel-mode packets.
7135 * We must make some checks for consistency between inner and outer IP header.
7136 *
7137 * xxx more checks to be provided
7138 */
7139int
7140key_checktunnelsanity(sav, family, src, dst)
7141 struct secasvar *sav;
7142 u_int family;
7143 caddr_t src;
7144 caddr_t dst;
7145{
7146 IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7147
7148 /* XXX: check inner IP header */
7149
7150 return 1;
7151}
7152
7153/* record data transfer on SA, and update timestamps */
7154void
7155key_sa_recordxfer(sav, m)
7156 struct secasvar *sav;
7157 struct mbuf *m;
7158{
7159 IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7160 IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7161 if (!sav->lft_c)
7162 return;
7163
7164 /*
7165 * XXX Currently, there is a difference of bytes size
7166 * between inbound and outbound processing.
7167 */
7168 sav->lft_c->bytes += m->m_pkthdr.len;
7169 /* to check bytes lifetime is done in key_timehandler(). */
7170
7171 /*
7172 * We use the number of packets as the unit of
7173 * allocations. We increment the variable
7174 * whenever {esp,ah}_{in,out}put is called.
7175 */
7176 sav->lft_c->allocations++;
7177 /* XXX check for expires? */
7178
7179 /*
7180 * NOTE: We record CURRENT usetime by using wall clock,
7181 * in seconds. HARD and SOFT lifetime are measured by the time
7182 * difference (again in seconds) from usetime.
7183 *
7184 * usetime
7185 * v expire expire
7186 * -----+-----+--------+---> t
7187 * <--------------> HARD
7188 * <-----> SOFT
7189 */
7190 sav->lft_c->usetime = time_second;
7191 /* XXX check for expires? */
7192
7193 return;
7194}
7195
7196/* dumb version */
7197void
7198key_sa_routechange(dst)
7199 struct sockaddr *dst;
7200{
7201 struct secashead *sah;
7202 struct route *ro;
7203
7204 SAHTREE_LOCK();
7205 LIST_FOREACH(sah, &sahtree, chain) {
7206 ro = &sah->sa_route;
7207 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7208 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7209 RTFREE(ro->ro_rt);
7210 ro->ro_rt = (struct rtentry *)NULL;
7211 }
7212 }
7213 SAHTREE_UNLOCK();
7214}
7215
7216static void
7217key_sa_chgstate(sav, state)
7218 struct secasvar *sav;
7219 u_int8_t state;
7220{
7221 IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7222 SAHTREE_LOCK_ASSERT();
7223
7224 if (sav->state != state) {
7225 if (__LIST_CHAINED(sav))
7226 LIST_REMOVE(sav, chain);
7227 sav->state = state;
7228 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7229 }
7230}
7231
7232void
7233key_sa_stir_iv(sav)
7234 struct secasvar *sav;
7235{
7236
7237 IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7238 key_randomfill(sav->iv, sav->ivlen);
7239}
7240
7241/* XXX too much? */
7242static struct mbuf *
7243key_alloc_mbuf(l)
7244 int l;
7245{
7246 struct mbuf *m = NULL, *n;
7247 int len, t;
7248
7249 len = l;
7250 while (len > 0) {
7251 MGET(n, M_DONTWAIT, MT_DATA);
7252 if (n && len > MLEN)
7253 MCLGET(n, M_DONTWAIT);
7254 if (!n) {
7255 m_freem(m);
7256 return NULL;
7257 }
7258
7259 n->m_next = NULL;
7260 n->m_len = 0;
7261 n->m_len = M_TRAILINGSPACE(n);
7262 /* use the bottom of mbuf, hoping we can prepend afterwards */
7263 if (n->m_len > len) {
7264 t = (n->m_len - len) & ~(sizeof(long) - 1);
7265 n->m_data += t;
7266 n->m_len = len;
7267 }
7268
7269 len -= n->m_len;
7270
7271 if (m)
7272 m_cat(m, n);
7273 else
7274 m = n;
7275 }
7276
7277 return m;
7278}
7279
7280/*
7281 * Take one of the kernel's security keys and convert it into a PF_KEY
7282 * structure within an mbuf, suitable for sending up to a waiting
7283 * application in user land.
7284 *
7285 * IN:
7286 * src: A pointer to a kernel security key.
7287 * exttype: Which type of key this is. Refer to the PF_KEY data structures.
7288 * OUT:
7289 * a valid mbuf or NULL indicating an error
7290 *
7291 */
7292
7293static struct mbuf *
7294key_setkey(struct seckey *src, u_int16_t exttype)
7295{
7296 struct mbuf *m;
7297 struct sadb_key *p;
7298 int len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
7299
7300 if (src == NULL)
7301 return NULL;
7302
7303 m = key_alloc_mbuf(len);
7304 if (m == NULL)
7305 return NULL;
7306 p = mtod(m, struct sadb_key *);
7307 bzero(p, len);
7308 p->sadb_key_len = PFKEY_UNIT64(len);
7309 p->sadb_key_exttype = exttype;
7310 p->sadb_key_bits = src->bits;
7311 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
7312
7313 return m;
7314}
7315
7316/*
7317 * Take one of the kernel's lifetime data structures and convert it
7318 * into a PF_KEY structure within an mbuf, suitable for sending up to
7319 * a waiting application in user land.
7320 *
7321 * IN:
7322 * src: A pointer to a kernel lifetime structure.
7323 * exttype: Which type of lifetime this is. Refer to the PF_KEY
7324 * data structures for more information.
7325 * OUT:
7326 * a valid mbuf or NULL indicating an error
7327 *
7328 */
7329
7330static struct mbuf *
7331key_setlifetime(struct seclifetime *src, u_int16_t exttype)
7332{
7333 struct mbuf *m = NULL;
7334 struct sadb_lifetime *p;
7335 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
7336
7337 if (src == NULL)
7338 return NULL;
7339
7340 m = key_alloc_mbuf(len);
7341 if (m == NULL)
7342 return m;
7343 p = mtod(m, struct sadb_lifetime *);
7344
7345 bzero(p, len);
7346 p->sadb_lifetime_len = PFKEY_UNIT64(len);
7347 p->sadb_lifetime_exttype = exttype;
7348 p->sadb_lifetime_allocations = src->allocations;
7349 p->sadb_lifetime_bytes = src->bytes;
7350 p->sadb_lifetime_addtime = src->addtime;
7351 p->sadb_lifetime_usetime = src->usetime;
7352
7353 return m;
7354
7355}