Deleted Added
sdiff udiff text old ( 71207 ) new ( 78064 )
full compact
1/* $FreeBSD: head/sys/netinet6/in6.c 78064 2001-06-11 12:39:29Z ume $ */
2/* $KAME: in6.c,v 1.187 2001/05/24 07:43:59 itojun Exp $ */
3
4/*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1982, 1986, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)in.c 8.2 (Berkeley) 11/15/93
66 */
67
68#include "opt_inet.h"
69#include "opt_inet6.h"
70
71#include <sys/param.h>
72#include <sys/errno.h>
73#include <sys/malloc.h>
74#include <sys/socket.h>
75#include <sys/socketvar.h>
76#include <sys/sockio.h>
77#include <sys/systm.h>
78#include <sys/proc.h>
79#include <sys/time.h>
80#include <sys/kernel.h>
81#include <sys/syslog.h>
82
83#include <net/if.h>
84#include <net/if_types.h>
85#include <net/route.h>
86#include <net/if_dl.h>
87
88#include <netinet/in.h>
89#include <netinet/in_var.h>
90#include <netinet/if_ether.h>
91#ifndef SCOPEDROUTING
92#include <netinet/in_systm.h>
93#include <netinet/ip.h>
94#include <netinet/in_pcb.h>
95#endif
96
97#include <netinet6/nd6.h>
98#include <netinet/ip6.h>
99#include <netinet6/ip6_var.h>
100#include <netinet6/mld6_var.h>
101#include <netinet6/ip6_mroute.h>
102#include <netinet6/in6_ifattach.h>
103#include <netinet6/scope6_var.h>
104#ifndef SCOPEDROUTING
105#include <netinet6/in6_pcb.h>
106#endif
107
108#include "gif.h"
109#if NGIF > 0
110#include <net/if_gif.h>
111#endif
112
113#include <net/net_osdep.h>
114
115MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address");
116
117/*
118 * Definitions of some costant IP6 addresses.
119 */
120const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
121const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
122const struct in6_addr in6addr_nodelocal_allnodes =
123 IN6ADDR_NODELOCAL_ALLNODES_INIT;
124const struct in6_addr in6addr_linklocal_allnodes =
125 IN6ADDR_LINKLOCAL_ALLNODES_INIT;
126const struct in6_addr in6addr_linklocal_allrouters =
127 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
128
129const struct in6_addr in6mask0 = IN6MASK0;
130const struct in6_addr in6mask32 = IN6MASK32;
131const struct in6_addr in6mask64 = IN6MASK64;
132const struct in6_addr in6mask96 = IN6MASK96;
133const struct in6_addr in6mask128 = IN6MASK128;
134
135const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
136 0, 0, IN6ADDR_ANY_INIT, 0};
137
138static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
139 struct ifnet *, struct proc *));
140static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
141 struct sockaddr_in6 *, int));
142static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
143
144struct in6_multihead in6_multihead; /* XXX BSS initialization */
145
146/*
147 * Subroutine for in6_ifaddloop() and in6_ifremloop().
148 * This routine does actual work.
149 */
150static void
151in6_ifloop_request(int cmd, struct ifaddr *ifa)
152{
153 struct sockaddr_in6 all1_sa;
154 struct rtentry *nrt = NULL;
155 int e;
156
157 bzero(&all1_sa, sizeof(all1_sa));
158 all1_sa.sin6_family = AF_INET6;
159 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
160 all1_sa.sin6_addr = in6mask128;
161
162 /*
163 * We specify the address itself as the gateway, and set the
164 * RTF_LLINFO flag, so that the corresponding host route would have
165 * the flag, and thus applications that assume traditional behavior
166 * would be happy. Note that we assume the caller of the function
167 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
168 * which changes the outgoing interface to the loopback interface.
169 */
170 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
171 (struct sockaddr *)&all1_sa,
172 RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
173 if (e != 0) {
174 log(LOG_ERR, "in6_ifloop_request: "
175 "%s operation failed for %s (errno=%d)\n",
176 cmd == RTM_ADD ? "ADD" : "DELETE",
177 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
178 e);
179 }
180
181 /*
182 * Make sure rt_ifa be equal to IFA, the second argument of the
183 * function.
184 * We need this because when we refer to rt_ifa->ia6_flags in
185 * ip6_input, we assume that the rt_ifa points to the address instead
186 * of the loopback address.
187 */
188 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
189 IFAFREE(nrt->rt_ifa);
190 IFAREF(ifa);
191 nrt->rt_ifa = ifa;
192 }
193
194 /*
195 * Report the addition/removal of the address to the routing socket.
196 * XXX: since we called rtinit for a p2p interface with a destination,
197 * we end up reporting twice in such a case. Should we rather
198 * omit the second report?
199 */
200 if (nrt) {
201 rt_newaddrmsg(cmd, ifa, e, nrt);
202 if (cmd == RTM_DELETE) {
203 if (nrt->rt_refcnt <= 0) {
204 /* XXX: we should free the entry ourselves. */
205 nrt->rt_refcnt++;
206 rtfree(nrt);
207 }
208 } else {
209 /* the cmd must be RTM_ADD here */
210 nrt->rt_refcnt--;
211 }
212 }
213}
214
215/*
216 * Add ownaddr as loopback rtentry. We previously add the route only if
217 * necessary (ex. on a p2p link). However, since we now manage addresses
218 * separately from prefixes, we should always add the route. We can't
219 * rely on the cloning mechanism from the corresponding interface route
220 * any more.
221 */
222static void
223in6_ifaddloop(struct ifaddr *ifa)
224{
225 struct rtentry *rt;
226
227 /* If there is no loopback entry, allocate one. */
228 rt = rtalloc1(ifa->ifa_addr, 0, 0);
229 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
230 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
231 in6_ifloop_request(RTM_ADD, ifa);
232 if (rt)
233 rt->rt_refcnt--;
234}
235
236/*
237 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
238 * if it exists.
239 */
240static void
241in6_ifremloop(struct ifaddr *ifa)
242{
243 struct in6_ifaddr *ia;
244 struct rtentry *rt;
245 int ia_count = 0;
246
247 /*
248 * Some of BSD variants do not remove cloned routes
249 * from an interface direct route, when removing the direct route
250 * (see comments in net/net_osdep.h). Even for variants that do remove
251 * cloned routes, they could fail to remove the cloned routes when
252 * we handle multple addresses that share a common prefix.
253 * So, we should remove the route corresponding to the deleted address
254 * regardless of the result of in6_is_ifloop_auto().
255 */
256
257 /*
258 * Delete the entry only if exact one ifa exists. More than one ifa
259 * can exist if we assign a same single address to multiple
260 * (probably p2p) interfaces.
261 * XXX: we should avoid such a configuration in IPv6...
262 */
263 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
264 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
265 ia_count++;
266 if (ia_count > 1)
267 break;
268 }
269 }
270
271 if (ia_count == 1) {
272 /*
273 * Before deleting, check if a corresponding loopbacked host
274 * route surely exists. With this check, we can avoid to
275 * delete an interface direct route whose destination is same
276 * as the address being removed. This can happen when remofing
277 * a subnet-router anycast address on an interface attahced
278 * to a shared medium.
279 */
280 rt = rtalloc1(ifa->ifa_addr, 0, 0);
281 if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 &&
282 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
283 rt->rt_refcnt--;
284 in6_ifloop_request(RTM_DELETE, ifa);
285 }
286 }
287}
288
289int
290in6_ifindex2scopeid(idx)
291 int idx;
292{
293 struct ifnet *ifp;
294 struct ifaddr *ifa;
295 struct sockaddr_in6 *sin6;
296
297 if (idx < 0 || if_index < idx)
298 return -1;
299 ifp = ifindex2ifnet[idx];
300
301 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
302 {
303 if (ifa->ifa_addr->sa_family != AF_INET6)
304 continue;
305 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
306 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
307 return sin6->sin6_scope_id & 0xffff;
308 }
309
310 return -1;
311}
312
313int
314in6_mask2len(mask, lim0)
315 struct in6_addr *mask;
316 u_char *lim0;
317{
318 int x = 0, y;
319 u_char *lim = lim0, *p;
320
321 if (lim0 == NULL ||
322 lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */
323 lim = (u_char *)mask + sizeof(*mask);
324 for (p = (u_char *)mask; p < lim; x++, p++) {
325 if (*p != 0xff)
326 break;
327 }
328 y = 0;
329 if (p < lim) {
330 for (y = 0; y < 8; y++) {
331 if ((*p & (0x80 >> y)) == 0)
332 break;
333 }
334 }
335
336 /*
337 * when the limit pointer is given, do a stricter check on the
338 * remaining bits.
339 */
340 if (p < lim) {
341 if (y != 0 && (*p & (0x00ff >> y)) != 0)
342 return(-1);
343 for (p = p + 1; p < lim; p++)
344 if (*p != 0)
345 return(-1);
346 }
347
348 return x * 8 + y;
349}
350
351void
352in6_len2mask(mask, len)
353 struct in6_addr *mask;
354 int len;
355{
356 int i;
357
358 bzero(mask, sizeof(*mask));
359 for (i = 0; i < len / 8; i++)
360 mask->s6_addr8[i] = 0xff;
361 if (len % 8)
362 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff;
363}
364
365#define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa))
366#define ia62ifa(ia6) (&((ia6)->ia_ifa))
367
368int
369in6_control(so, cmd, data, ifp, p)
370 struct socket *so;
371 u_long cmd;
372 caddr_t data;
373 struct ifnet *ifp;
374 struct proc *p;
375{
376 struct in6_ifreq *ifr = (struct in6_ifreq *)data;
377 struct in6_ifaddr *ia = NULL;
378 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data;
379 int privileged;
380
381 privileged = 0;
382 if (p == NULL || !suser(p))
383 privileged++;
384
385 switch (cmd) {
386 case SIOCGETSGCNT_IN6:
387 case SIOCGETMIFCNT_IN6:
388 return (mrt6_ioctl(cmd, data));
389 }
390
391 if (ifp == NULL)
392 return(EOPNOTSUPP);
393
394 switch (cmd) {
395 case SIOCSNDFLUSH_IN6:
396 case SIOCSPFXFLUSH_IN6:
397 case SIOCSRTRFLUSH_IN6:
398 case SIOCSDEFIFACE_IN6:
399 case SIOCSIFINFO_FLAGS:
400 if (!privileged)
401 return(EPERM);
402 /*fall through*/
403 case OSIOCGIFINFO_IN6:
404 case SIOCGIFINFO_IN6:
405 case SIOCGDRLST_IN6:
406 case SIOCGPRLST_IN6:
407 case SIOCGNBRINFO_IN6:
408 case SIOCGDEFIFACE_IN6:
409 return(nd6_ioctl(cmd, data, ifp));
410 }
411
412 switch (cmd) {
413 case SIOCSIFPREFIX_IN6:
414 case SIOCDIFPREFIX_IN6:
415 case SIOCAIFPREFIX_IN6:
416 case SIOCCIFPREFIX_IN6:
417 case SIOCSGIFPREFIX_IN6:
418 case SIOCGIFPREFIX_IN6:
419 log(LOG_NOTICE,
420 "prefix ioctls are now invalidated. "
421 "please use ifconfig.\n");
422 return(EOPNOTSUPP);
423 }
424
425 switch(cmd) {
426 case SIOCSSCOPE6:
427 if (!privileged)
428 return(EPERM);
429 return(scope6_set(ifp, ifr->ifr_ifru.ifru_scope_id));
430 break;
431 case SIOCGSCOPE6:
432 return(scope6_get(ifp, ifr->ifr_ifru.ifru_scope_id));
433 break;
434 case SIOCGSCOPE6DEF:
435 return(scope6_get_default(ifr->ifr_ifru.ifru_scope_id));
436 break;
437 }
438
439 switch (cmd) {
440 case SIOCALIFADDR:
441 case SIOCDLIFADDR:
442 if (!privileged)
443 return(EPERM);
444 /*fall through*/
445 case SIOCGLIFADDR:
446 return in6_lifaddr_ioctl(so, cmd, data, ifp, p);
447 }
448
449 /*
450 * Find address for this interface, if it exists.
451 */
452 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */
453 struct sockaddr_in6 *sa6 =
454 (struct sockaddr_in6 *)&ifra->ifra_addr;
455
456 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
457 if (sa6->sin6_addr.s6_addr16[1] == 0) {
458 /* link ID is not embedded by the user */
459 sa6->sin6_addr.s6_addr16[1] =
460 htons(ifp->if_index);
461 } else if (sa6->sin6_addr.s6_addr16[1] !=
462 htons(ifp->if_index)) {
463 return(EINVAL); /* link ID contradicts */
464 }
465 if (sa6->sin6_scope_id) {
466 if (sa6->sin6_scope_id !=
467 (u_int32_t)ifp->if_index)
468 return(EINVAL);
469 sa6->sin6_scope_id = 0; /* XXX: good way? */
470 }
471 }
472 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr);
473 }
474
475 switch (cmd) {
476 case SIOCSIFADDR_IN6:
477 case SIOCSIFDSTADDR_IN6:
478 case SIOCSIFNETMASK_IN6:
479 /*
480 * Since IPv6 allows a node to assign multiple addresses
481 * on a single interface, SIOCSIFxxx ioctls are not suitable
482 * and should be unused.
483 */
484 /* we decided to obsolete this command (20000704) */
485 return(EINVAL);
486
487 case SIOCDIFADDR_IN6:
488 /*
489 * for IPv4, we look for existing in_ifaddr here to allow
490 * "ifconfig if0 delete" to remove first IPv4 address on the
491 * interface. For IPv6, as the spec allow multiple interface
492 * address from the day one, we consider "remove the first one"
493 * semantics to be not preferable.
494 */
495 if (ia == NULL)
496 return(EADDRNOTAVAIL);
497 /* FALLTHROUGH */
498 case SIOCAIFADDR_IN6:
499 /*
500 * We always require users to specify a valid IPv6 address for
501 * the corresponding operation.
502 */
503 if (ifra->ifra_addr.sin6_family != AF_INET6 ||
504 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
505 return(EAFNOSUPPORT);
506 if (!privileged)
507 return(EPERM);
508
509 break;
510
511 case SIOCGIFADDR_IN6:
512 /* This interface is basically deprecated. use SIOCGIFCONF. */
513 /* fall through */
514 case SIOCGIFAFLAG_IN6:
515 case SIOCGIFNETMASK_IN6:
516 case SIOCGIFDSTADDR_IN6:
517 case SIOCGIFALIFETIME_IN6:
518 /* must think again about its semantics */
519 if (ia == NULL)
520 return(EADDRNOTAVAIL);
521 break;
522 case SIOCSIFALIFETIME_IN6:
523 {
524 struct in6_addrlifetime *lt;
525
526 if (!privileged)
527 return(EPERM);
528 if (ia == NULL)
529 return(EADDRNOTAVAIL);
530 /* sanity for overflow - beware unsigned */
531 lt = &ifr->ifr_ifru.ifru_lifetime;
532 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
533 && lt->ia6t_vltime + time_second < time_second) {
534 return EINVAL;
535 }
536 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
537 && lt->ia6t_pltime + time_second < time_second) {
538 return EINVAL;
539 }
540 break;
541 }
542 }
543
544 switch (cmd) {
545
546 case SIOCGIFADDR_IN6:
547 ifr->ifr_addr = ia->ia_addr;
548 break;
549
550 case SIOCGIFDSTADDR_IN6:
551 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
552 return(EINVAL);
553 /*
554 * XXX: should we check if ifa_dstaddr is NULL and return
555 * an error?
556 */
557 ifr->ifr_dstaddr = ia->ia_dstaddr;
558 break;
559
560 case SIOCGIFNETMASK_IN6:
561 ifr->ifr_addr = ia->ia_prefixmask;
562 break;
563
564 case SIOCGIFAFLAG_IN6:
565 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
566 break;
567
568 case SIOCGIFSTAT_IN6:
569 if (ifp == NULL)
570 return EINVAL;
571 if (in6_ifstat == NULL || ifp->if_index >= in6_ifstatmax
572 || in6_ifstat[ifp->if_index] == NULL) {
573 /* return EAFNOSUPPORT? */
574 bzero(&ifr->ifr_ifru.ifru_stat,
575 sizeof(ifr->ifr_ifru.ifru_stat));
576 } else
577 ifr->ifr_ifru.ifru_stat = *in6_ifstat[ifp->if_index];
578 break;
579
580 case SIOCGIFSTAT_ICMP6:
581 if (ifp == NULL)
582 return EINVAL;
583 if (icmp6_ifstat == NULL || ifp->if_index >= icmp6_ifstatmax ||
584 icmp6_ifstat[ifp->if_index] == NULL) {
585 /* return EAFNOSUPPORT? */
586 bzero(&ifr->ifr_ifru.ifru_stat,
587 sizeof(ifr->ifr_ifru.ifru_icmp6stat));
588 } else
589 ifr->ifr_ifru.ifru_icmp6stat =
590 *icmp6_ifstat[ifp->if_index];
591 break;
592
593 case SIOCGIFALIFETIME_IN6:
594 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
595 break;
596
597 case SIOCSIFALIFETIME_IN6:
598 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
599 /* for sanity */
600 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
601 ia->ia6_lifetime.ia6t_expire =
602 time_second + ia->ia6_lifetime.ia6t_vltime;
603 } else
604 ia->ia6_lifetime.ia6t_expire = 0;
605 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
606 ia->ia6_lifetime.ia6t_preferred =
607 time_second + ia->ia6_lifetime.ia6t_pltime;
608 } else
609 ia->ia6_lifetime.ia6t_preferred = 0;
610 break;
611
612 case SIOCAIFADDR_IN6:
613 {
614 int i, error = 0;
615 struct nd_prefix pr0, *pr;
616
617 /*
618 * first, make or update the interface address structure,
619 * and link it to the list.
620 */
621 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0)
622 return(error);
623
624 /*
625 * then, make the prefix on-link on the interface.
626 * XXX: we'd rather create the prefix before the address, but
627 * we need at least one address to install the corresponding
628 * interface route, so we configure the address first.
629 */
630
631 /*
632 * convert mask to prefix length (prefixmask has already
633 * been validated in in6_update_ifa().
634 */
635 bzero(&pr0, sizeof(pr0));
636 pr0.ndpr_ifp = ifp;
637 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
638 NULL);
639 if (pr0.ndpr_plen == 128)
640 break; /* we don't need to install a host route. */
641 pr0.ndpr_prefix = ifra->ifra_addr;
642 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
643 /* apply the mask for safety. */
644 for (i = 0; i < 4; i++) {
645 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
646 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
647 }
648 /*
649 * XXX: since we don't have enough APIs, we just set inifinity
650 * to lifetimes. They can be overridden by later advertised
651 * RAs (when accept_rtadv is non 0), but we'd rather intend
652 * such a behavior.
653 */
654 pr0.ndpr_raf_onlink = 1; /* should be configurable? */
655 pr0.ndpr_raf_auto =
656 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
657 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
658 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
659
660 /* add the prefix if there's one. */
661 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
662 /*
663 * nd6_prelist_add will install the corresponding
664 * interface route.
665 */
666 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
667 return(error);
668 if (pr == NULL) {
669 log(LOG_ERR, "nd6_prelist_add succedded but "
670 "no prefix\n");
671 return(EINVAL); /* XXX panic here? */
672 }
673 }
674 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
675 == NULL) {
676 /* XXX: this should not happen! */
677 log(LOG_ERR, "in6_control: addition succeeded, but"
678 " no ifaddr\n");
679 } else {
680 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 &&
681 ia->ia6_ndpr == NULL) { /* new autoconfed addr */
682 ia->ia6_ndpr = pr;
683 pr->ndpr_refcnt++;
684
685 /*
686 * If this is the first autoconf address from
687 * the prefix, create a temporary address
688 * as well (when specified).
689 */
690 if (ip6_use_tempaddr &&
691 pr->ndpr_refcnt == 1) {
692 int e;
693 if ((e = in6_tmpifadd(ia, 1)) != 0) {
694 log(LOG_NOTICE, "in6_control: "
695 "failed to create a "
696 "temporary address, "
697 "errno=%d\n",
698 e);
699 }
700 }
701 }
702
703 /*
704 * this might affect the status of autoconfigured
705 * addresses, that is, this address might make
706 * other addresses detached.
707 */
708 pfxlist_onlink_check();
709 }
710 break;
711 }
712
713 case SIOCDIFADDR_IN6:
714 {
715 int i = 0;
716 struct nd_prefix pr0, *pr;
717
718 /*
719 * If the address being deleted is the only one that owns
720 * the corresponding prefix, expire the prefix as well.
721 * XXX: theoretically, we don't have to warry about such
722 * relationship, since we separate the address management
723 * and the prefix management. We do this, however, to provide
724 * as much backward compatibility as possible in terms of
725 * the ioctl operation.
726 */
727 bzero(&pr0, sizeof(pr0));
728 pr0.ndpr_ifp = ifp;
729 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr,
730 NULL);
731 if (pr0.ndpr_plen == 128)
732 goto purgeaddr;
733 pr0.ndpr_prefix = ia->ia_addr;
734 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
735 for (i = 0; i < 4; i++) {
736 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
737 ia->ia_prefixmask.sin6_addr.s6_addr32[i];
738 }
739 /*
740 * The logic of the following condition is a bit complicated.
741 * We expire the prefix when
742 * 1. the address obeys autoconfiguration and it is the
743 * only owner of the associated prefix, or
744 * 2. the address does not obey autoconf and there is no
745 * other owner of the prefix.
746 */
747 if ((pr = nd6_prefix_lookup(&pr0)) != NULL &&
748 (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 &&
749 pr->ndpr_refcnt == 1) ||
750 ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 &&
751 pr->ndpr_refcnt == 0))) {
752 pr->ndpr_expire = 1; /* XXX: just for expiration */
753 }
754
755 purgeaddr:
756 in6_purgeaddr(&ia->ia_ifa);
757 break;
758 }
759
760 default:
761 if (ifp == NULL || ifp->if_ioctl == 0)
762 return(EOPNOTSUPP);
763 return((*ifp->if_ioctl)(ifp, cmd, data));
764 }
765
766 return(0);
767}
768
769/*
770 * Update parameters of an IPv6 interface address.
771 * If necessary, a new entry is created and linked into address chains.
772 * This function is separated from in6_control().
773 * XXX: should this be performed under splnet()?
774 */
775int
776in6_update_ifa(ifp, ifra, ia)
777 struct ifnet *ifp;
778 struct in6_aliasreq *ifra;
779 struct in6_ifaddr *ia;
780{
781 int error = 0, hostIsNew = 0, plen = -1;
782 struct in6_ifaddr *oia;
783 struct sockaddr_in6 dst6;
784 struct in6_addrlifetime *lt;
785
786 /* Validate parameters */
787 if (ifp == NULL || ifra == NULL) /* this maybe redundant */
788 return(EINVAL);
789
790 /*
791 * The destination address for a p2p link must have a family
792 * of AF_UNSPEC or AF_INET6.
793 */
794 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
795 ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
796 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
797 return(EAFNOSUPPORT);
798 /*
799 * validate ifra_prefixmask. don't check sin6_family, netmask
800 * does not carry fields other than sin6_len.
801 */
802 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
803 return(EINVAL);
804 /*
805 * Because the IPv6 address architecture is classless, we require
806 * users to specify a (non 0) prefix length (mask) for a new address.
807 * We also require the prefix (when specified) mask is valid, and thus
808 * reject a non-consecutive mask.
809 */
810 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
811 return(EINVAL);
812 if (ifra->ifra_prefixmask.sin6_len != 0) {
813 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
814 (u_char *)&ifra->ifra_prefixmask +
815 ifra->ifra_prefixmask.sin6_len);
816 if (plen <= 0)
817 return(EINVAL);
818 }
819 else {
820 /*
821 * In this case, ia must not be NULL. We just use its prefix
822 * length.
823 */
824 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
825 }
826 /*
827 * If the destination address on a p2p interface is specified,
828 * and the address is a scoped one, validate/set the scope
829 * zone identifier.
830 */
831 dst6 = ifra->ifra_dstaddr;
832 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) &&
833 (dst6.sin6_family == AF_INET6)) {
834 int scopeid;
835
836#ifndef SCOPEDROUTING
837 if ((error = in6_recoverscope(&dst6,
838 &ifra->ifra_dstaddr.sin6_addr,
839 ifp)) != 0)
840 return(error);
841#endif
842 scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr);
843 if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */
844 dst6.sin6_scope_id = scopeid;
845 else if (dst6.sin6_scope_id != scopeid)
846 return(EINVAL); /* scope ID mismatch. */
847#ifndef SCOPEDROUTING
848 if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL))
849 != 0)
850 return(error);
851 dst6.sin6_scope_id = 0; /* XXX */
852#endif
853 }
854 /*
855 * The destination address can be specified only for a p2p or a
856 * loopback interface. If specified, the corresponding prefix length
857 * must be 128.
858 */
859 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
860 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
861 /* XXX: noisy message */
862 log(LOG_INFO, "in6_update_ifa: a destination can be "
863 "specified for a p2p or a loopback IF only\n");
864 return(EINVAL);
865 }
866 if (plen != 128) {
867 /*
868 * The following message seems noisy, but we dare to
869 * add it for diagnosis.
870 */
871 log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 "
872 "when dstaddr is specified\n");
873 return(EINVAL);
874 }
875 }
876 /* lifetime consistency check */
877 lt = &ifra->ifra_lifetime;
878 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
879 && lt->ia6t_vltime + time_second < time_second) {
880 return EINVAL;
881 }
882 if (lt->ia6t_vltime == 0) {
883 /*
884 * the following log might be noisy, but this is a typical
885 * configuration mistake or a tool's bug.
886 */
887 log(LOG_INFO,
888 "in6_update_ifa: valid lifetime is 0 for %s\n",
889 ip6_sprintf(&ifra->ifra_addr.sin6_addr));
890 }
891 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
892 && lt->ia6t_pltime + time_second < time_second) {
893 return EINVAL;
894 }
895
896 /*
897 * If this is a new address, allocate a new ifaddr and link it
898 * into chains.
899 */
900 if (ia == NULL) {
901 hostIsNew = 1;
902 ia = (struct in6_ifaddr *)
903 malloc(sizeof(*ia), M_IFADDR, M_WAITOK);
904 if (ia == NULL)
905 return (ENOBUFS);
906 bzero((caddr_t)ia, sizeof(*ia));
907 /* Initialize the address and masks */
908 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
909 ia->ia_addr.sin6_family = AF_INET6;
910 ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
911 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
912 /*
913 * XXX: some functions expect that ifa_dstaddr is not
914 * NULL for p2p interfaces.
915 */
916 ia->ia_ifa.ifa_dstaddr
917 = (struct sockaddr *)&ia->ia_dstaddr;
918 } else {
919 ia->ia_ifa.ifa_dstaddr = NULL;
920 }
921 ia->ia_ifa.ifa_netmask
922 = (struct sockaddr *)&ia->ia_prefixmask;
923
924 ia->ia_ifp = ifp;
925 if ((oia = in6_ifaddr) != NULL) {
926 for ( ; oia->ia_next; oia = oia->ia_next)
927 continue;
928 oia->ia_next = ia;
929 } else
930 in6_ifaddr = ia;
931
932 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa,
933 ifa_list);
934 }
935
936 /* set prefix mask */
937 if (ifra->ifra_prefixmask.sin6_len) {
938 /*
939 * We prohibit changing the prefix length of an existing
940 * address, because
941 * + such an operation should be rare in IPv6, and
942 * + the operation would confuse prefix management.
943 */
944 if (ia->ia_prefixmask.sin6_len &&
945 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
946 log(LOG_INFO, "in6_update_ifa: the prefix length of an"
947 " existing (%s) address should not be changed\n",
948 ip6_sprintf(&ia->ia_addr.sin6_addr));
949 error = EINVAL;
950 goto unlink;
951 }
952 ia->ia_prefixmask = ifra->ifra_prefixmask;
953 }
954
955 /*
956 * If a new destination address is specified, scrub the old one and
957 * install the new destination. Note that the interface must be
958 * p2p or loopback (see the check above.)
959 */
960 if (dst6.sin6_family == AF_INET6 &&
961 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr,
962 &ia->ia_dstaddr.sin6_addr)) {
963 int e;
964
965 if ((ia->ia_flags & IFA_ROUTE) != 0 &&
966 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
967 != 0) {
968 log(LOG_ERR, "in6_update_ifa: failed to remove "
969 "a route to the old destination: %s\n",
970 ip6_sprintf(&ia->ia_addr.sin6_addr));
971 /* proceed anyway... */
972 }
973 else
974 ia->ia_flags &= ~IFA_ROUTE;
975 ia->ia_dstaddr = dst6;
976 }
977
978 /* reset the interface and routing table appropriately. */
979 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
980 goto unlink;
981
982 /*
983 * Beyond this point, we should call in6_purgeaddr upon an error,
984 * not just go to unlink.
985 */
986
987#if 0 /* disable this mechanism for now */
988 /* update prefix list */
989 if (hostIsNew &&
990 (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */
991 int iilen;
992
993 iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen;
994 if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) {
995 in6_purgeaddr((struct ifaddr *)ia);
996 return(error);
997 }
998 }
999#endif
1000
1001 if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1002 struct sockaddr_in6 mltaddr, mltmask;
1003 struct in6_multi *in6m;
1004
1005 if (hostIsNew) {
1006 /*
1007 * join solicited multicast addr for new host id
1008 */
1009 struct in6_addr llsol;
1010 bzero(&llsol, sizeof(struct in6_addr));
1011 llsol.s6_addr16[0] = htons(0xff02);
1012 llsol.s6_addr16[1] = htons(ifp->if_index);
1013 llsol.s6_addr32[1] = 0;
1014 llsol.s6_addr32[2] = htonl(1);
1015 llsol.s6_addr32[3] =
1016 ifra->ifra_addr.sin6_addr.s6_addr32[3];
1017 llsol.s6_addr8[12] = 0xff;
1018 (void)in6_addmulti(&llsol, ifp, &error);
1019 if (error != 0) {
1020 log(LOG_WARNING,
1021 "in6_update_ifa: addmulti failed for "
1022 "%s on %s (errno=%d)\n",
1023 ip6_sprintf(&llsol), if_name(ifp),
1024 error);
1025 in6_purgeaddr((struct ifaddr *)ia);
1026 return(error);
1027 }
1028 }
1029
1030 bzero(&mltmask, sizeof(mltmask));
1031 mltmask.sin6_len = sizeof(struct sockaddr_in6);
1032 mltmask.sin6_family = AF_INET6;
1033 mltmask.sin6_addr = in6mask32;
1034
1035 /*
1036 * join link-local all-nodes address
1037 */
1038 bzero(&mltaddr, sizeof(mltaddr));
1039 mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1040 mltaddr.sin6_family = AF_INET6;
1041 mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1042 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
1043
1044 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1045 if (in6m == NULL) {
1046 rtrequest(RTM_ADD,
1047 (struct sockaddr *)&mltaddr,
1048 (struct sockaddr *)&ia->ia_addr,
1049 (struct sockaddr *)&mltmask,
1050 RTF_UP|RTF_CLONING, /* xxx */
1051 (struct rtentry **)0);
1052 (void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error);
1053 if (error != 0) {
1054 log(LOG_WARNING,
1055 "in6_update_ifa: addmulti failed for "
1056 "%s on %s (errno=%d)\n",
1057 ip6_sprintf(&mltaddr.sin6_addr),
1058 if_name(ifp), error);
1059 }
1060 }
1061
1062 /*
1063 * join node information group address
1064 */
1065#define hostnamelen strlen(hostname)
1066 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
1067 == 0) {
1068 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1069 if (in6m == NULL && ia != NULL) {
1070 (void)in6_addmulti(&mltaddr.sin6_addr,
1071 ifp, &error);
1072 if (error != 0) {
1073 log(LOG_WARNING, "in6_update_ifa: "
1074 "addmulti failed for "
1075 "%s on %s (errno=%d)\n",
1076 ip6_sprintf(&mltaddr.sin6_addr),
1077 if_name(ifp), error);
1078 }
1079 }
1080 }
1081#undef hostnamelen
1082
1083 /*
1084 * join node-local all-nodes address, on loopback.
1085 * XXX: since "node-local" is obsoleted by interface-local,
1086 * we have to join the group on every interface with
1087 * some interface-boundary restriction.
1088 */
1089 if (ifp->if_flags & IFF_LOOPBACK) {
1090 struct in6_addr loop6 = in6addr_loopback;
1091 ia = in6ifa_ifpwithaddr(ifp, &loop6);
1092
1093 mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1094
1095 IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1096 if (in6m == NULL && ia != NULL) {
1097 rtrequest(RTM_ADD,
1098 (struct sockaddr *)&mltaddr,
1099 (struct sockaddr *)&ia->ia_addr,
1100 (struct sockaddr *)&mltmask,
1101 RTF_UP,
1102 (struct rtentry **)0);
1103 (void)in6_addmulti(&mltaddr.sin6_addr, ifp,
1104 &error);
1105 if (error != 0) {
1106 log(LOG_WARNING, "in6_update_ifa: "
1107 "addmulti failed for %s on %s "
1108 "(errno=%d)\n",
1109 ip6_sprintf(&mltaddr.sin6_addr),
1110 if_name(ifp), error);
1111 }
1112 }
1113 }
1114 }
1115
1116 ia->ia6_flags = ifra->ifra_flags;
1117 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/
1118 ia->ia6_flags &= ~IN6_IFF_NODAD; /* Mobile IPv6 */
1119
1120 ia->ia6_lifetime = ifra->ifra_lifetime;
1121 /* for sanity */
1122 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1123 ia->ia6_lifetime.ia6t_expire =
1124 time_second + ia->ia6_lifetime.ia6t_vltime;
1125 } else
1126 ia->ia6_lifetime.ia6t_expire = 0;
1127 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1128 ia->ia6_lifetime.ia6t_preferred =
1129 time_second + ia->ia6_lifetime.ia6t_pltime;
1130 } else
1131 ia->ia6_lifetime.ia6t_preferred = 0;
1132
1133 /*
1134 * make sure to initialize ND6 information. this is to workaround
1135 * issues with interfaces with IPv6 addresses, which have never brought
1136 * up. We are assuming that it is safe to nd6_ifattach multiple times.
1137 */
1138 nd6_ifattach(ifp);
1139
1140 /*
1141 * Perform DAD, if needed.
1142 * XXX It may be of use, if we can administratively
1143 * disable DAD.
1144 */
1145 if (in6if_do_dad(ifp) && (ifra->ifra_flags & IN6_IFF_NODAD) == 0) {
1146 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1147 nd6_dad_start((struct ifaddr *)ia, NULL);
1148 }
1149
1150 return(error);
1151
1152 unlink:
1153 /*
1154 * XXX: if a change of an existing address failed, keep the entry
1155 * anyway.
1156 */
1157 if (hostIsNew)
1158 in6_unlink_ifa(ia, ifp);
1159 return(error);
1160}
1161
1162void
1163in6_purgeaddr(ifa)
1164 struct ifaddr *ifa;
1165{
1166 struct ifnet *ifp = ifa->ifa_ifp;
1167 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1168
1169 /* stop DAD processing */
1170 nd6_dad_stop(ifa);
1171
1172 /*
1173 * delete route to the destination of the address being purged.
1174 * The interface must be p2p or loopback in this case.
1175 */
1176 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1177 int e;
1178
1179 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1180 != 0) {
1181 log(LOG_ERR, "in6_purgeaddr: failed to remove "
1182 "a route to the p2p destination: %s on %s, "
1183 "errno=%d\n",
1184 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1185 e);
1186 /* proceed anyway... */
1187 }
1188 else
1189 ia->ia_flags &= ~IFA_ROUTE;
1190 }
1191
1192 /* Remove ownaddr's loopback rtentry, if it exists. */
1193 in6_ifremloop(&(ia->ia_ifa));
1194
1195 if (ifp->if_flags & IFF_MULTICAST) {
1196 /*
1197 * delete solicited multicast addr for deleting host id
1198 */
1199 struct in6_multi *in6m;
1200 struct in6_addr llsol;
1201 bzero(&llsol, sizeof(struct in6_addr));
1202 llsol.s6_addr16[0] = htons(0xff02);
1203 llsol.s6_addr16[1] = htons(ifp->if_index);
1204 llsol.s6_addr32[1] = 0;
1205 llsol.s6_addr32[2] = htonl(1);
1206 llsol.s6_addr32[3] =
1207 ia->ia_addr.sin6_addr.s6_addr32[3];
1208 llsol.s6_addr8[12] = 0xff;
1209
1210 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1211 if (in6m)
1212 in6_delmulti(in6m);
1213 }
1214
1215 in6_unlink_ifa(ia, ifp);
1216}
1217
1218static void
1219in6_unlink_ifa(ia, ifp)
1220 struct in6_ifaddr *ia;
1221 struct ifnet *ifp;
1222{
1223 int plen, iilen;
1224 struct in6_ifaddr *oia;
1225 int s = splnet();
1226
1227 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
1228
1229 oia = ia;
1230 if (oia == (ia = in6_ifaddr))
1231 in6_ifaddr = ia->ia_next;
1232 else {
1233 while (ia->ia_next && (ia->ia_next != oia))
1234 ia = ia->ia_next;
1235 if (ia->ia_next)
1236 ia->ia_next = oia->ia_next;
1237 else {
1238 /* search failed */
1239 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1240 }
1241 }
1242
1243 if (oia->ia6_ifpr) { /* check for safety */
1244 plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL);
1245 iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen;
1246 in6_prefix_remove_ifid(iilen, oia);
1247 }
1248
1249 /*
1250 * When an autoconfigured address is being removed, release the
1251 * reference to the base prefix. Also, since the release might
1252 * affect the status of other (detached) addresses, call
1253 * pfxlist_onlink_check().
1254 */
1255 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) {
1256 if (oia->ia6_ndpr == NULL) {
1257 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
1258 "%p has no prefix\n", oia);
1259 } else {
1260 oia->ia6_ndpr->ndpr_refcnt--;
1261 oia->ia6_flags &= ~IN6_IFF_AUTOCONF;
1262 oia->ia6_ndpr = NULL;
1263 }
1264
1265 pfxlist_onlink_check();
1266 }
1267
1268 /*
1269 * release another refcnt for the link from in6_ifaddr.
1270 * Note that we should decrement the refcnt at least once for all *BSD.
1271 */
1272 IFAFREE(&oia->ia_ifa);
1273
1274 splx(s);
1275}
1276
1277void
1278in6_purgeif(ifp)
1279 struct ifnet *ifp;
1280{
1281 struct ifaddr *ifa, *nifa;
1282
1283 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa)
1284 {
1285 nifa = TAILQ_NEXT(ifa, ifa_list);
1286 if (ifa->ifa_addr->sa_family != AF_INET6)
1287 continue;
1288 in6_purgeaddr(ifa);
1289 }
1290
1291 in6_ifdetach(ifp);
1292}
1293
1294/*
1295 * SIOC[GAD]LIFADDR.
1296 * SIOCGLIFADDR: get first address. (?)
1297 * SIOCGLIFADDR with IFLR_PREFIX:
1298 * get first address that matches the specified prefix.
1299 * SIOCALIFADDR: add the specified address.
1300 * SIOCALIFADDR with IFLR_PREFIX:
1301 * add the specified prefix, filling hostid part from
1302 * the first link-local address. prefixlen must be <= 64.
1303 * SIOCDLIFADDR: delete the specified address.
1304 * SIOCDLIFADDR with IFLR_PREFIX:
1305 * delete the first address that matches the specified prefix.
1306 * return values:
1307 * EINVAL on invalid parameters
1308 * EADDRNOTAVAIL on prefix match failed/specified address not found
1309 * other values may be returned from in6_ioctl()
1310 *
1311 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1312 * this is to accomodate address naming scheme other than RFC2374,
1313 * in the future.
1314 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1315 * address encoding scheme. (see figure on page 8)
1316 */
1317static int
1318in6_lifaddr_ioctl(so, cmd, data, ifp, p)
1319 struct socket *so;
1320 u_long cmd;
1321 caddr_t data;
1322 struct ifnet *ifp;
1323 struct proc *p;
1324{
1325 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1326 struct ifaddr *ifa;
1327 struct sockaddr *sa;
1328
1329 /* sanity checks */
1330 if (!data || !ifp) {
1331 panic("invalid argument to in6_lifaddr_ioctl");
1332 /*NOTRECHED*/
1333 }
1334
1335 switch (cmd) {
1336 case SIOCGLIFADDR:
1337 /* address must be specified on GET with IFLR_PREFIX */
1338 if ((iflr->flags & IFLR_PREFIX) == 0)
1339 break;
1340 /*FALLTHROUGH*/
1341 case SIOCALIFADDR:
1342 case SIOCDLIFADDR:
1343 /* address must be specified on ADD and DELETE */
1344 sa = (struct sockaddr *)&iflr->addr;
1345 if (sa->sa_family != AF_INET6)
1346 return EINVAL;
1347 if (sa->sa_len != sizeof(struct sockaddr_in6))
1348 return EINVAL;
1349 /* XXX need improvement */
1350 sa = (struct sockaddr *)&iflr->dstaddr;
1351 if (sa->sa_family && sa->sa_family != AF_INET6)
1352 return EINVAL;
1353 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1354 return EINVAL;
1355 break;
1356 default: /*shouldn't happen*/
1357#if 0
1358 panic("invalid cmd to in6_lifaddr_ioctl");
1359 /*NOTREACHED*/
1360#else
1361 return EOPNOTSUPP;
1362#endif
1363 }
1364 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1365 return EINVAL;
1366
1367 switch (cmd) {
1368 case SIOCALIFADDR:
1369 {
1370 struct in6_aliasreq ifra;
1371 struct in6_addr *hostid = NULL;
1372 int prefixlen;
1373
1374 if ((iflr->flags & IFLR_PREFIX) != 0) {
1375 struct sockaddr_in6 *sin6;
1376
1377 /*
1378 * hostid is to fill in the hostid part of the
1379 * address. hostid points to the first link-local
1380 * address attached to the interface.
1381 */
1382 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1383 if (!ifa)
1384 return EADDRNOTAVAIL;
1385 hostid = IFA_IN6(ifa);
1386
1387 /* prefixlen must be <= 64. */
1388 if (64 < iflr->prefixlen)
1389 return EINVAL;
1390 prefixlen = iflr->prefixlen;
1391
1392 /* hostid part must be zero. */
1393 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1394 if (sin6->sin6_addr.s6_addr32[2] != 0
1395 || sin6->sin6_addr.s6_addr32[3] != 0) {
1396 return EINVAL;
1397 }
1398 } else
1399 prefixlen = iflr->prefixlen;
1400
1401 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1402 bzero(&ifra, sizeof(ifra));
1403 bcopy(iflr->iflr_name, ifra.ifra_name,
1404 sizeof(ifra.ifra_name));
1405
1406 bcopy(&iflr->addr, &ifra.ifra_addr,
1407 ((struct sockaddr *)&iflr->addr)->sa_len);
1408 if (hostid) {
1409 /* fill in hostid part */
1410 ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1411 hostid->s6_addr32[2];
1412 ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1413 hostid->s6_addr32[3];
1414 }
1415
1416 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
1417 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1418 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1419 if (hostid) {
1420 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1421 hostid->s6_addr32[2];
1422 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1423 hostid->s6_addr32[3];
1424 }
1425 }
1426
1427 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1428 in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1429
1430 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1431 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p);
1432 }
1433 case SIOCGLIFADDR:
1434 case SIOCDLIFADDR:
1435 {
1436 struct in6_ifaddr *ia;
1437 struct in6_addr mask, candidate, match;
1438 struct sockaddr_in6 *sin6;
1439 int cmp;
1440
1441 bzero(&mask, sizeof(mask));
1442 if (iflr->flags & IFLR_PREFIX) {
1443 /* lookup a prefix rather than address. */
1444 in6_len2mask(&mask, iflr->prefixlen);
1445
1446 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1447 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1448 match.s6_addr32[0] &= mask.s6_addr32[0];
1449 match.s6_addr32[1] &= mask.s6_addr32[1];
1450 match.s6_addr32[2] &= mask.s6_addr32[2];
1451 match.s6_addr32[3] &= mask.s6_addr32[3];
1452
1453 /* if you set extra bits, that's wrong */
1454 if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1455 return EINVAL;
1456
1457 cmp = 1;
1458 } else {
1459 if (cmd == SIOCGLIFADDR) {
1460 /* on getting an address, take the 1st match */
1461 cmp = 0; /*XXX*/
1462 } else {
1463 /* on deleting an address, do exact match */
1464 in6_len2mask(&mask, 128);
1465 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1466 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1467
1468 cmp = 1;
1469 }
1470 }
1471
1472 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1473 {
1474 if (ifa->ifa_addr->sa_family != AF_INET6)
1475 continue;
1476 if (!cmp)
1477 break;
1478
1479 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1480#ifndef SCOPEDROUTING
1481 /*
1482 * XXX: this is adhoc, but is necessary to allow
1483 * a user to specify fe80::/64 (not /10) for a
1484 * link-local address.
1485 */
1486 if (IN6_IS_ADDR_LINKLOCAL(&candidate))
1487 candidate.s6_addr16[1] = 0;
1488#endif
1489 candidate.s6_addr32[0] &= mask.s6_addr32[0];
1490 candidate.s6_addr32[1] &= mask.s6_addr32[1];
1491 candidate.s6_addr32[2] &= mask.s6_addr32[2];
1492 candidate.s6_addr32[3] &= mask.s6_addr32[3];
1493 if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1494 break;
1495 }
1496 if (!ifa)
1497 return EADDRNOTAVAIL;
1498 ia = ifa2ia6(ifa);
1499
1500 if (cmd == SIOCGLIFADDR) {
1501#ifndef SCOPEDROUTING
1502 struct sockaddr_in6 *s6;
1503#endif
1504
1505 /* fill in the if_laddrreq structure */
1506 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1507#ifndef SCOPEDROUTING /* XXX see above */
1508 s6 = (struct sockaddr_in6 *)&iflr->addr;
1509 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) {
1510 s6->sin6_addr.s6_addr16[1] = 0;
1511 s6->sin6_scope_id =
1512 in6_addr2scopeid(ifp, &s6->sin6_addr);
1513 }
1514#endif
1515 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1516 bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1517 ia->ia_dstaddr.sin6_len);
1518#ifndef SCOPEDROUTING /* XXX see above */
1519 s6 = (struct sockaddr_in6 *)&iflr->dstaddr;
1520 if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) {
1521 s6->sin6_addr.s6_addr16[1] = 0;
1522 s6->sin6_scope_id =
1523 in6_addr2scopeid(ifp,
1524 &s6->sin6_addr);
1525 }
1526#endif
1527 } else
1528 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1529
1530 iflr->prefixlen =
1531 in6_mask2len(&ia->ia_prefixmask.sin6_addr,
1532 NULL);
1533
1534 iflr->flags = ia->ia6_flags; /*XXX*/
1535
1536 return 0;
1537 } else {
1538 struct in6_aliasreq ifra;
1539
1540 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1541 bzero(&ifra, sizeof(ifra));
1542 bcopy(iflr->iflr_name, ifra.ifra_name,
1543 sizeof(ifra.ifra_name));
1544
1545 bcopy(&ia->ia_addr, &ifra.ifra_addr,
1546 ia->ia_addr.sin6_len);
1547 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1548 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1549 ia->ia_dstaddr.sin6_len);
1550 } else {
1551 bzero(&ifra.ifra_dstaddr,
1552 sizeof(ifra.ifra_dstaddr));
1553 }
1554 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1555 ia->ia_prefixmask.sin6_len);
1556
1557 ifra.ifra_flags = ia->ia6_flags;
1558 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1559 ifp, p);
1560 }
1561 }
1562 }
1563
1564 return EOPNOTSUPP; /*just for safety*/
1565}
1566
1567/*
1568 * Initialize an interface's intetnet6 address
1569 * and routing table entry.
1570 */
1571static int
1572in6_ifinit(ifp, ia, sin6, newhost)
1573 struct ifnet *ifp;
1574 struct in6_ifaddr *ia;
1575 struct sockaddr_in6 *sin6;
1576 int newhost;
1577{
1578 int error = 0, plen, ifacount = 0;
1579 int s = splimp();
1580 struct ifaddr *ifa;
1581
1582 /*
1583 * Give the interface a chance to initialize
1584 * if this is its first address,
1585 * and to validate the address if necessary.
1586 */
1587 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1588 {
1589 if (ifa->ifa_addr == NULL)
1590 continue; /* just for safety */
1591 if (ifa->ifa_addr->sa_family != AF_INET6)
1592 continue;
1593 ifacount++;
1594 }
1595
1596 ia->ia_addr = *sin6;
1597
1598 if (ifacount <= 1 && ifp->if_ioctl &&
1599 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) {
1600 splx(s);
1601 return(error);
1602 }
1603 splx(s);
1604
1605 ia->ia_ifa.ifa_metric = ifp->if_metric;
1606
1607 /* we could do in(6)_socktrim here, but just omit it at this moment. */
1608
1609 /*
1610 * Special case:
1611 * If the destination address is specified for a point-to-point
1612 * interface, install a route to the destination as an interface
1613 * direct route.
1614 */
1615 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1616 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
1617 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD,
1618 RTF_UP | RTF_HOST)) != 0)
1619 return(error);
1620 ia->ia_flags |= IFA_ROUTE;
1621 }
1622 if (plen < 128) {
1623 /*
1624 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
1625 */
1626 ia->ia_ifa.ifa_flags |= RTF_CLONING;
1627 }
1628
1629 /* Add ownaddr as loopback rtentry, if necessary(ex. on p2p link). */
1630 if (newhost) {
1631 /* set the rtrequest function to create llinfo */
1632 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1633 in6_ifaddloop(&(ia->ia_ifa));
1634 }
1635
1636 return(error);
1637}
1638
1639/*
1640 * Add an address to the list of IP6 multicast addresses for a
1641 * given interface.
1642 */
1643struct in6_multi *
1644in6_addmulti(maddr6, ifp, errorp)
1645 struct in6_addr *maddr6;
1646 struct ifnet *ifp;
1647 int *errorp;
1648{
1649 struct in6_multi *in6m;
1650 struct sockaddr_in6 sin6;
1651 struct ifmultiaddr *ifma;
1652 int s = splnet();
1653
1654 *errorp = 0;
1655
1656 /*
1657 * Call generic routine to add membership or increment
1658 * refcount. It wants addresses in the form of a sockaddr,
1659 * so we build one here (being careful to zero the unused bytes).
1660 */
1661 bzero(&sin6, sizeof sin6);
1662 sin6.sin6_family = AF_INET6;
1663 sin6.sin6_len = sizeof sin6;
1664 sin6.sin6_addr = *maddr6;
1665 *errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma);
1666 if (*errorp) {
1667 splx(s);
1668 return 0;
1669 }
1670
1671 /*
1672 * If ifma->ifma_protospec is null, then if_addmulti() created
1673 * a new record. Otherwise, we are done.
1674 */
1675 if (ifma->ifma_protospec != 0)
1676 return ifma->ifma_protospec;
1677
1678 /* XXX - if_addmulti uses M_WAITOK. Can this really be called
1679 at interrupt time? If so, need to fix if_addmulti. XXX */
1680 in6m = (struct in6_multi *)malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
1681 if (in6m == NULL) {
1682 splx(s);
1683 return (NULL);
1684 }
1685
1686 bzero(in6m, sizeof *in6m);
1687 in6m->in6m_addr = *maddr6;
1688 in6m->in6m_ifp = ifp;
1689 in6m->in6m_ifma = ifma;
1690 ifma->ifma_protospec = in6m;
1691 LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry);
1692
1693 /*
1694 * Let MLD6 know that we have joined a new IP6 multicast
1695 * group.
1696 */
1697 mld6_start_listening(in6m);
1698 splx(s);
1699 return(in6m);
1700}
1701
1702/*
1703 * Delete a multicast address record.
1704 */
1705void
1706in6_delmulti(in6m)
1707 struct in6_multi *in6m;
1708{
1709 struct ifmultiaddr *ifma = in6m->in6m_ifma;
1710 int s = splnet();
1711
1712 if (ifma->ifma_refcount == 1) {
1713 /*
1714 * No remaining claims to this record; let MLD6 know
1715 * that we are leaving the multicast group.
1716 */
1717 mld6_stop_listening(in6m);
1718 ifma->ifma_protospec = 0;
1719 LIST_REMOVE(in6m, in6m_entry);
1720 free(in6m, M_IPMADDR);
1721 }
1722 /* XXX - should be separate API for when we have an ifma? */
1723 if_delmulti(ifma->ifma_ifp, ifma->ifma_addr);
1724 splx(s);
1725}
1726
1727/*
1728 * Find an IPv6 interface link-local address specific to an interface.
1729 */
1730struct in6_ifaddr *
1731in6ifa_ifpforlinklocal(ifp, ignoreflags)
1732 struct ifnet *ifp;
1733 int ignoreflags;
1734{
1735 struct ifaddr *ifa;
1736
1737 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1738 {
1739 if (ifa->ifa_addr == NULL)
1740 continue; /* just for safety */
1741 if (ifa->ifa_addr->sa_family != AF_INET6)
1742 continue;
1743 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1744 if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1745 ignoreflags) != 0)
1746 continue;
1747 break;
1748 }
1749 }
1750
1751 return((struct in6_ifaddr *)ifa);
1752}
1753
1754
1755/*
1756 * find the internet address corresponding to a given interface and address.
1757 */
1758struct in6_ifaddr *
1759in6ifa_ifpwithaddr(ifp, addr)
1760 struct ifnet *ifp;
1761 struct in6_addr *addr;
1762{
1763 struct ifaddr *ifa;
1764
1765 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1766 {
1767 if (ifa->ifa_addr == NULL)
1768 continue; /* just for safety */
1769 if (ifa->ifa_addr->sa_family != AF_INET6)
1770 continue;
1771 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1772 break;
1773 }
1774
1775 return((struct in6_ifaddr *)ifa);
1776}
1777
1778/*
1779 * Convert IP6 address to printable (loggable) representation.
1780 */
1781static char digits[] = "0123456789abcdef";
1782static int ip6round = 0;
1783char *
1784ip6_sprintf(addr)
1785 const struct in6_addr *addr;
1786{
1787 static char ip6buf[8][48];
1788 int i;
1789 char *cp;
1790 u_short *a = (u_short *)addr;
1791 u_char *d;
1792 int dcolon = 0;
1793
1794 ip6round = (ip6round + 1) & 7;
1795 cp = ip6buf[ip6round];
1796
1797 for (i = 0; i < 8; i++) {
1798 if (dcolon == 1) {
1799 if (*a == 0) {
1800 if (i == 7)
1801 *cp++ = ':';
1802 a++;
1803 continue;
1804 } else
1805 dcolon = 2;
1806 }
1807 if (*a == 0) {
1808 if (dcolon == 0 && *(a + 1) == 0) {
1809 if (i == 0)
1810 *cp++ = ':';
1811 *cp++ = ':';
1812 dcolon = 1;
1813 } else {
1814 *cp++ = '0';
1815 *cp++ = ':';
1816 }
1817 a++;
1818 continue;
1819 }
1820 d = (u_char *)a;
1821 *cp++ = digits[*d >> 4];
1822 *cp++ = digits[*d++ & 0xf];
1823 *cp++ = digits[*d >> 4];
1824 *cp++ = digits[*d & 0xf];
1825 *cp++ = ':';
1826 a++;
1827 }
1828 *--cp = 0;
1829 return(ip6buf[ip6round]);
1830}
1831
1832int
1833in6_localaddr(in6)
1834 struct in6_addr *in6;
1835{
1836 struct in6_ifaddr *ia;
1837
1838 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1839 return 1;
1840
1841 for (ia = in6_ifaddr; ia; ia = ia->ia_next)
1842 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1843 &ia->ia_prefixmask.sin6_addr))
1844 return 1;
1845
1846 return (0);
1847}
1848
1849int
1850in6_is_addr_deprecated(sa6)
1851 struct sockaddr_in6 *sa6;
1852{
1853 struct in6_ifaddr *ia;
1854
1855 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1856 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
1857 &sa6->sin6_addr) &&
1858#ifdef SCOPEDROUTING
1859 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id &&
1860#endif
1861 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
1862 return(1); /* true */
1863
1864 /* XXX: do we still have to go thru the rest of the list? */
1865 }
1866
1867 return(0); /* false */
1868}
1869
1870/*
1871 * return length of part which dst and src are equal
1872 * hard coding...
1873 */
1874int
1875in6_matchlen(src, dst)
1876struct in6_addr *src, *dst;
1877{
1878 int match = 0;
1879 u_char *s = (u_char *)src, *d = (u_char *)dst;
1880 u_char *lim = s + 16, r;
1881
1882 while (s < lim)
1883 if ((r = (*d++ ^ *s++)) != 0) {
1884 while (r < 128) {
1885 match++;
1886 r <<= 1;
1887 }
1888 break;
1889 } else
1890 match += 8;
1891 return match;
1892}
1893
1894/* XXX: to be scope conscious */
1895int
1896in6_are_prefix_equal(p1, p2, len)
1897 struct in6_addr *p1, *p2;
1898 int len;
1899{
1900 int bytelen, bitlen;
1901
1902 /* sanity check */
1903 if (0 > len || len > 128) {
1904 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
1905 len);
1906 return(0);
1907 }
1908
1909 bytelen = len / 8;
1910 bitlen = len % 8;
1911
1912 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
1913 return(0);
1914 if (p1->s6_addr[bytelen] >> (8 - bitlen) !=
1915 p2->s6_addr[bytelen] >> (8 - bitlen))
1916 return(0);
1917
1918 return(1);
1919}
1920
1921void
1922in6_prefixlen2mask(maskp, len)
1923 struct in6_addr *maskp;
1924 int len;
1925{
1926 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
1927 int bytelen, bitlen, i;
1928
1929 /* sanity check */
1930 if (0 > len || len > 128) {
1931 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
1932 len);
1933 return;
1934 }
1935
1936 bzero(maskp, sizeof(*maskp));
1937 bytelen = len / 8;
1938 bitlen = len % 8;
1939 for (i = 0; i < bytelen; i++)
1940 maskp->s6_addr[i] = 0xff;
1941 if (bitlen)
1942 maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
1943}
1944
1945/*
1946 * return the best address out of the same scope
1947 */
1948struct in6_ifaddr *
1949in6_ifawithscope(oifp, dst)
1950 struct ifnet *oifp;
1951 struct in6_addr *dst;
1952{
1953 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0;
1954 int blen = -1;
1955 struct ifaddr *ifa;
1956 struct ifnet *ifp;
1957 struct in6_ifaddr *ifa_best = NULL;
1958
1959 if (oifp == NULL) {
1960#if 0
1961 printf("in6_ifawithscope: output interface is not specified\n");
1962#endif
1963 return(NULL);
1964 }
1965
1966 /*
1967 * We search for all addresses on all interfaces from the beginning.
1968 * Comparing an interface with the outgoing interface will be done
1969 * only at the final stage of tiebreaking.
1970 */
1971 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1972 {
1973 /*
1974 * We can never take an address that breaks the scope zone
1975 * of the destination.
1976 */
1977 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
1978 continue;
1979
1980 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1981 {
1982 int tlen = -1, dscopecmp, bscopecmp, matchcmp;
1983
1984 if (ifa->ifa_addr->sa_family != AF_INET6)
1985 continue;
1986
1987 src_scope = in6_addrscope(IFA_IN6(ifa));
1988
1989 /*
1990 * Don't use an address before completing DAD
1991 * nor a duplicated address.
1992 */
1993 if (((struct in6_ifaddr *)ifa)->ia6_flags &
1994 IN6_IFF_NOTREADY)
1995 continue;
1996
1997 /* XXX: is there any case to allow anycasts? */
1998 if (((struct in6_ifaddr *)ifa)->ia6_flags &
1999 IN6_IFF_ANYCAST)
2000 continue;
2001
2002 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2003 IN6_IFF_DETACHED)
2004 continue;
2005
2006 /*
2007 * If this is the first address we find,
2008 * keep it anyway.
2009 */
2010 if (ifa_best == NULL)
2011 goto replace;
2012
2013 /*
2014 * ifa_best is never NULL beyond this line except
2015 * within the block labeled "replace".
2016 */
2017
2018 /*
2019 * If ifa_best has a smaller scope than dst and
2020 * the current address has a larger one than
2021 * (or equal to) dst, always replace ifa_best.
2022 * Also, if the current address has a smaller scope
2023 * than dst, ignore it unless ifa_best also has a
2024 * smaller scope.
2025 * Consequently, after the two if-clause below,
2026 * the followings must be satisfied:
2027 * (scope(src) < scope(dst) &&
2028 * scope(best) < scope(dst))
2029 * OR
2030 * (scope(best) >= scope(dst) &&
2031 * scope(src) >= scope(dst))
2032 */
2033 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
2034 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
2035 goto replace; /* (A) */
2036 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
2037 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
2038 continue; /* (B) */
2039
2040 /*
2041 * A deprecated address SHOULD NOT be used in new
2042 * communications if an alternate (non-deprecated)
2043 * address is available and has sufficient scope.
2044 * RFC 2462, Section 5.5.4.
2045 */
2046 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2047 IN6_IFF_DEPRECATED) {
2048 /*
2049 * Ignore any deprecated addresses if
2050 * specified by configuration.
2051 */
2052 if (!ip6_use_deprecated)
2053 continue;
2054
2055 /*
2056 * If we have already found a non-deprecated
2057 * candidate, just ignore deprecated addresses.
2058 */
2059 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
2060 == 0)
2061 continue;
2062 }
2063
2064 /*
2065 * A non-deprecated address is always preferred
2066 * to a deprecated one regardless of scopes and
2067 * address matching (Note invariants ensured by the
2068 * conditions (A) and (B) above.)
2069 */
2070 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
2071 (((struct in6_ifaddr *)ifa)->ia6_flags &
2072 IN6_IFF_DEPRECATED) == 0)
2073 goto replace;
2074
2075 /*
2076 * When we use temporary addresses described in
2077 * RFC 3041, we prefer temporary addresses to
2078 * public autoconf addresses. Again, note the
2079 * invariants from (A) and (B). Also note that we
2080 * don't have any preference between static addresses
2081 * and autoconf addresses (despite of whether or not
2082 * the latter is temporary or public.)
2083 */
2084 if (ip6_use_tempaddr) {
2085 struct in6_ifaddr *ifat;
2086
2087 ifat = (struct in6_ifaddr *)ifa;
2088 if ((ifa_best->ia6_flags &
2089 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2090 == IN6_IFF_AUTOCONF &&
2091 (ifat->ia6_flags &
2092 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2093 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) {
2094 goto replace;
2095 }
2096 if ((ifa_best->ia6_flags &
2097 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2098 == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) &&
2099 (ifat->ia6_flags &
2100 (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2101 == IN6_IFF_AUTOCONF) {
2102 continue;
2103 }
2104 }
2105
2106 /*
2107 * At this point, we have two cases:
2108 * 1. we are looking at a non-deprecated address,
2109 * and ifa_best is also non-deprecated.
2110 * 2. we are looking at a deprecated address,
2111 * and ifa_best is also deprecated.
2112 * Also, we do not have to consider a case where
2113 * the scope of if_best is larger(smaller) than dst and
2114 * the scope of the current address is smaller(larger)
2115 * than dst. Such a case has already been covered.
2116 * Tiebreaking is done according to the following
2117 * items:
2118 * - the scope comparison between the address and
2119 * dst (dscopecmp)
2120 * - the scope comparison between the address and
2121 * ifa_best (bscopecmp)
2122 * - if the address match dst longer than ifa_best
2123 * (matchcmp)
2124 * - if the address is on the outgoing I/F (outI/F)
2125 *
2126 * Roughly speaking, the selection policy is
2127 * - the most important item is scope. The same scope
2128 * is best. Then search for a larger scope.
2129 * Smaller scopes are the last resort.
2130 * - A deprecated address is chosen only when we have
2131 * no address that has an enough scope, but is
2132 * prefered to any addresses of smaller scopes
2133 * (this must be already done above.)
2134 * - addresses on the outgoing I/F are preferred to
2135 * ones on other interfaces if none of above
2136 * tiebreaks. In the table below, the column "bI"
2137 * means if the best_ifa is on the outgoing
2138 * interface, and the column "sI" means if the ifa
2139 * is on the outgoing interface.
2140 * - If there is no other reasons to choose one,
2141 * longest address match against dst is considered.
2142 *
2143 * The precise decision table is as follows:
2144 * dscopecmp bscopecmp match bI oI | replace?
2145 * N/A equal N/A Y N | No (1)
2146 * N/A equal N/A N Y | Yes (2)
2147 * N/A equal larger N/A | Yes (3)
2148 * N/A equal !larger N/A | No (4)
2149 * larger larger N/A N/A | No (5)
2150 * larger smaller N/A N/A | Yes (6)
2151 * smaller larger N/A N/A | Yes (7)
2152 * smaller smaller N/A N/A | No (8)
2153 * equal smaller N/A N/A | Yes (9)
2154 * equal larger (already done at A above)
2155 */
2156 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
2157 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
2158
2159 if (bscopecmp == 0) {
2160 struct ifnet *bifp = ifa_best->ia_ifp;
2161
2162 if (bifp == oifp && ifp != oifp) /* (1) */
2163 continue;
2164 if (bifp != oifp && ifp == oifp) /* (2) */
2165 goto replace;
2166
2167 /*
2168 * Both bifp and ifp are on the outgoing
2169 * interface, or both two are on a different
2170 * interface from the outgoing I/F.
2171 * now we need address matching against dst
2172 * for tiebreaking.
2173 */
2174 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2175 matchcmp = tlen - blen;
2176 if (matchcmp > 0) /* (3) */
2177 goto replace;
2178 continue; /* (4) */
2179 }
2180 if (dscopecmp > 0) {
2181 if (bscopecmp > 0) /* (5) */
2182 continue;
2183 goto replace; /* (6) */
2184 }
2185 if (dscopecmp < 0) {
2186 if (bscopecmp > 0) /* (7) */
2187 goto replace;
2188 continue; /* (8) */
2189 }
2190
2191 /* now dscopecmp must be 0 */
2192 if (bscopecmp < 0)
2193 goto replace; /* (9) */
2194
2195 replace:
2196 ifa_best = (struct in6_ifaddr *)ifa;
2197 blen = tlen >= 0 ? tlen :
2198 in6_matchlen(IFA_IN6(ifa), dst);
2199 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
2200 }
2201 }
2202
2203 /* count statistics for future improvements */
2204 if (ifa_best == NULL)
2205 ip6stat.ip6s_sources_none++;
2206 else {
2207 if (oifp == ifa_best->ia_ifp)
2208 ip6stat.ip6s_sources_sameif[best_scope]++;
2209 else
2210 ip6stat.ip6s_sources_otherif[best_scope]++;
2211
2212 if (best_scope == dst_scope)
2213 ip6stat.ip6s_sources_samescope[best_scope]++;
2214 else
2215 ip6stat.ip6s_sources_otherscope[best_scope]++;
2216
2217 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0)
2218 ip6stat.ip6s_sources_deprecated[best_scope]++;
2219 }
2220
2221 return(ifa_best);
2222}
2223
2224/*
2225 * return the best address out of the same scope. if no address was
2226 * found, return the first valid address from designated IF.
2227 */
2228struct in6_ifaddr *
2229in6_ifawithifp(ifp, dst)
2230 struct ifnet *ifp;
2231 struct in6_addr *dst;
2232{
2233 int dst_scope = in6_addrscope(dst), blen = -1, tlen;
2234 struct ifaddr *ifa;
2235 struct in6_ifaddr *besta = 0;
2236 struct in6_ifaddr *dep[2]; /*last-resort: deprecated*/
2237
2238 dep[0] = dep[1] = NULL;
2239
2240 /*
2241 * We first look for addresses in the same scope.
2242 * If there is one, return it.
2243 * If two or more, return one which matches the dst longest.
2244 * If none, return one of global addresses assigned other ifs.
2245 */
2246 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
2247 {
2248 if (ifa->ifa_addr->sa_family != AF_INET6)
2249 continue;
2250 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2251 continue; /* XXX: is there any case to allow anycast? */
2252 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2253 continue; /* don't use this interface */
2254 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2255 continue;
2256 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2257 if (ip6_use_deprecated)
2258 dep[0] = (struct in6_ifaddr *)ifa;
2259 continue;
2260 }
2261
2262 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2263 /*
2264 * call in6_matchlen() as few as possible
2265 */
2266 if (besta) {
2267 if (blen == -1)
2268 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2269 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2270 if (tlen > blen) {
2271 blen = tlen;
2272 besta = (struct in6_ifaddr *)ifa;
2273 }
2274 } else
2275 besta = (struct in6_ifaddr *)ifa;
2276 }
2277 }
2278 if (besta)
2279 return(besta);
2280
2281 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
2282 {
2283 if (ifa->ifa_addr->sa_family != AF_INET6)
2284 continue;
2285 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2286 continue; /* XXX: is there any case to allow anycast? */
2287 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2288 continue; /* don't use this interface */
2289 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2290 continue;
2291 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2292 if (ip6_use_deprecated)
2293 dep[1] = (struct in6_ifaddr *)ifa;
2294 continue;
2295 }
2296
2297 return (struct in6_ifaddr *)ifa;
2298 }
2299
2300 /* use the last-resort values, that are, deprecated addresses */
2301 if (dep[0])
2302 return dep[0];
2303 if (dep[1])
2304 return dep[1];
2305
2306 return NULL;
2307}
2308
2309/*
2310 * perform DAD when interface becomes IFF_UP.
2311 */
2312void
2313in6_if_up(ifp)
2314 struct ifnet *ifp;
2315{
2316 struct ifaddr *ifa;
2317 struct in6_ifaddr *ia;
2318 int dad_delay; /* delay ticks before DAD output */
2319
2320 /*
2321 * special cases, like 6to4, are handled in in6_ifattach
2322 */
2323 in6_ifattach(ifp, NULL);
2324
2325 dad_delay = 0;
2326 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
2327 {
2328 if (ifa->ifa_addr->sa_family != AF_INET6)
2329 continue;
2330 ia = (struct in6_ifaddr *)ifa;
2331 if (ia->ia6_flags & IN6_IFF_TENTATIVE)
2332 nd6_dad_start(ifa, &dad_delay);
2333 }
2334}
2335
2336int
2337in6if_do_dad(ifp)
2338 struct ifnet *ifp;
2339{
2340 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2341 return(0);
2342
2343 switch (ifp->if_type) {
2344#ifdef IFT_DUMMY
2345 case IFT_DUMMY:
2346#endif
2347 case IFT_FAITH:
2348 /*
2349 * These interfaces do not have the IFF_LOOPBACK flag,
2350 * but loop packets back. We do not have to do DAD on such
2351 * interfaces. We should even omit it, because loop-backed
2352 * NS would confuse the DAD procedure.
2353 */
2354 return(0);
2355 default:
2356 /*
2357 * Our DAD routine requires the interface up and running.
2358 * However, some interfaces can be up before the RUNNING
2359 * status. Additionaly, users may try to assign addresses
2360 * before the interface becomes up (or running).
2361 * We simply skip DAD in such a case as a work around.
2362 * XXX: we should rather mark "tentative" on such addresses,
2363 * and do DAD after the interface becomes ready.
2364 */
2365 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2366 (IFF_UP|IFF_RUNNING))
2367 return(0);
2368
2369 return(1);
2370 }
2371}
2372
2373/*
2374 * Calculate max IPv6 MTU through all the interfaces and store it
2375 * to in6_maxmtu.
2376 */
2377void
2378in6_setmaxmtu()
2379{
2380 unsigned long maxmtu = 0;
2381 struct ifnet *ifp;
2382
2383 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2384 {
2385 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2386 nd_ifinfo[ifp->if_index].linkmtu > maxmtu)
2387 maxmtu = nd_ifinfo[ifp->if_index].linkmtu;
2388 }
2389 if (maxmtu) /* update only when maxmtu is positive */
2390 in6_maxmtu = maxmtu;
2391}
2392
2393/*
2394 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be
2395 * v4 mapped addr or v4 compat addr
2396 */
2397void
2398in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2399{
2400 bzero(sin, sizeof(*sin));
2401 sin->sin_len = sizeof(struct sockaddr_in);
2402 sin->sin_family = AF_INET;
2403 sin->sin_port = sin6->sin6_port;
2404 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2405}
2406
2407/* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2408void
2409in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2410{
2411 bzero(sin6, sizeof(*sin6));
2412 sin6->sin6_len = sizeof(struct sockaddr_in6);
2413 sin6->sin6_family = AF_INET6;
2414 sin6->sin6_port = sin->sin_port;
2415 sin6->sin6_addr.s6_addr32[0] = 0;
2416 sin6->sin6_addr.s6_addr32[1] = 0;
2417 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2418 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2419}
2420
2421/* Convert sockaddr_in6 into sockaddr_in. */
2422void
2423in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2424{
2425 struct sockaddr_in *sin_p;
2426 struct sockaddr_in6 sin6;
2427
2428 /*
2429 * Save original sockaddr_in6 addr and convert it
2430 * to sockaddr_in.
2431 */
2432 sin6 = *(struct sockaddr_in6 *)nam;
2433 sin_p = (struct sockaddr_in *)nam;
2434 in6_sin6_2_sin(sin_p, &sin6);
2435}
2436
2437/* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2438void
2439in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2440{
2441 struct sockaddr_in *sin_p;
2442 struct sockaddr_in6 *sin6_p;
2443
2444 MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
2445 M_WAITOK);
2446 sin_p = (struct sockaddr_in *)*nam;
2447 in6_sin_2_v4mapsin6(sin_p, sin6_p);
2448 FREE(*nam, M_SONAME);
2449 *nam = (struct sockaddr *)sin6_p;
2450}