Deleted Added
full compact
reloc.c (208256) reloc.c (209885)
1/* $NetBSD: ppc_reloc.c,v 1.10 2001/09/10 06:09:41 mycroft Exp $ */
2
3/*-
4 * Copyright (C) 1998 Tsubai Masanari
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions

--- 12 unchanged lines hidden (view full) ---

21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
1/* $NetBSD: ppc_reloc.c,v 1.10 2001/09/10 06:09:41 mycroft Exp $ */
2
3/*-
4 * Copyright (C) 1998 Tsubai Masanari
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions

--- 12 unchanged lines hidden (view full) ---

21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * $FreeBSD: head/libexec/rtld-elf/powerpc/reloc.c 208256 2010-05-18 08:55:23Z rdivacky $
29 * $FreeBSD: head/libexec/rtld-elf/powerpc64/reloc.c 209885 2010-07-10 17:43:24Z nwhitehorn $
30 */
31
32#include <sys/param.h>
33#include <sys/mman.h>
34
35#include <errno.h>
36#include <stdio.h>
37#include <stdlib.h>
38#include <string.h>
39#include <unistd.h>
40#include <machine/cpu.h>
41#include <machine/md_var.h>
42
43#include "debug.h"
44#include "rtld.h"
45
30 */
31
32#include <sys/param.h>
33#include <sys/mman.h>
34
35#include <errno.h>
36#include <stdio.h>
37#include <stdlib.h>
38#include <string.h>
39#include <unistd.h>
40#include <machine/cpu.h>
41#include <machine/md_var.h>
42
43#include "debug.h"
44#include "rtld.h"
45
46#define _ppc_ha(x) ((((u_int32_t)(x) & 0x8000) ? \
47 ((u_int32_t)(x) + 0x10000) : (u_int32_t)(x)) >> 16)
48#define _ppc_la(x) ((u_int32_t)(x) & 0xffff)
46struct funcdesc {
47 Elf_Addr addr;
48 Elf_Addr toc;
49 Elf_Addr env;
50};
49
51
50#define min(a,b) (((a) < (b)) ? (a) : (b))
51#define max(a,b) (((a) > (b)) ? (a) : (b))
52
53#define PLT_EXTENDED_BEGIN (1 << 13)
54#define JMPTAB_BASE(N) (18 + N*2 + ((N > PLT_EXTENDED_BEGIN) ? \
55 (N - PLT_EXTENDED_BEGIN)*2 : 0))
56
57/*
58 * Process the R_PPC_COPY relocations
59 */
60int
61do_copy_relocations(Obj_Entry *dstobj)
62{
63 const Elf_Rela *relalim;
64 const Elf_Rela *rela;

--- 39 unchanged lines hidden (view full) ---

104 _rtld_error("Undefined symbol \"%s\" "
105 " referenced from COPY"
106 " relocation in %s", name, dstobj->path);
107 return (-1);
108 }
109
110 srcaddr = (const void *) (srcobj->relocbase+srcsym->st_value);
111 memcpy(dstaddr, srcaddr, size);
52/*
53 * Process the R_PPC_COPY relocations
54 */
55int
56do_copy_relocations(Obj_Entry *dstobj)
57{
58 const Elf_Rela *relalim;
59 const Elf_Rela *rela;

--- 39 unchanged lines hidden (view full) ---

99 _rtld_error("Undefined symbol \"%s\" "
100 " referenced from COPY"
101 " relocation in %s", name, dstobj->path);
102 return (-1);
103 }
104
105 srcaddr = (const void *) (srcobj->relocbase+srcsym->st_value);
106 memcpy(dstaddr, srcaddr, size);
112 dbg("copy_reloc: src=%p,dst=%p,size=%d\n",srcaddr,dstaddr,size);
107 dbg("copy_reloc: src=%p,dst=%p,size=%zd\n",srcaddr,dstaddr,size);
113 }
114
115 return (0);
116}
117
118
119/*
120 * Perform early relocation of the run-time linker image

--- 42 unchanged lines hidden (view full) ---

163 const Obj_Entry *defobj;
164 Elf_Addr tmp;
165
166 switch (ELF_R_TYPE(rela->r_info)) {
167
168 case R_PPC_NONE:
169 break;
170
108 }
109
110 return (0);
111}
112
113
114/*
115 * Perform early relocation of the run-time linker image

--- 42 unchanged lines hidden (view full) ---

158 const Obj_Entry *defobj;
159 Elf_Addr tmp;
160
161 switch (ELF_R_TYPE(rela->r_info)) {
162
163 case R_PPC_NONE:
164 break;
165
171 case R_PPC_ADDR32: /* word32 S + A */
172 case R_PPC_GLOB_DAT: /* word32 S + A */
166 case R_PPC64_ADDR64: /* doubleword64 S + A */
167 case R_PPC_GLOB_DAT:
173 def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
174 false, cache);
175 if (def == NULL) {
176 return (-1);
177 }
178
179 tmp = (Elf_Addr)(defobj->relocbase + def->st_value +
180 rela->r_addend);
181
182 /* Don't issue write if unnecessary; avoid COW page fault */
183 if (*where != tmp) {
184 *where = tmp;
185 }
186 break;
187
168 def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
169 false, cache);
170 if (def == NULL) {
171 return (-1);
172 }
173
174 tmp = (Elf_Addr)(defobj->relocbase + def->st_value +
175 rela->r_addend);
176
177 /* Don't issue write if unnecessary; avoid COW page fault */
178 if (*where != tmp) {
179 *where = tmp;
180 }
181 break;
182
188 case R_PPC_RELATIVE: /* word32 B + A */
183 case R_PPC_RELATIVE: /* doubleword64 B + A */
189 tmp = (Elf_Addr)(obj->relocbase + rela->r_addend);
190
191 /* As above, don't issue write unnecessarily */
192 if (*where != tmp) {
193 *where = tmp;
194 }
195 break;
196

--- 14 unchanged lines hidden (view full) ---

211 break;
212
213 case R_PPC_JMP_SLOT:
214 /*
215 * These will be handled by the plt/jmpslot routines
216 */
217 break;
218
184 tmp = (Elf_Addr)(obj->relocbase + rela->r_addend);
185
186 /* As above, don't issue write unnecessarily */
187 if (*where != tmp) {
188 *where = tmp;
189 }
190 break;
191

--- 14 unchanged lines hidden (view full) ---

206 break;
207
208 case R_PPC_JMP_SLOT:
209 /*
210 * These will be handled by the plt/jmpslot routines
211 */
212 break;
213
219 case R_PPC_DTPMOD32:
214 case R_PPC64_DTPMOD64:
220 def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
221 false, cache);
222
223 if (def == NULL)
224 return (-1);
225
226 *where = (Elf_Addr) defobj->tlsindex;
227
228 break;
229
215 def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
216 false, cache);
217
218 if (def == NULL)
219 return (-1);
220
221 *where = (Elf_Addr) defobj->tlsindex;
222
223 break;
224
230 case R_PPC_TPREL32:
225 case R_PPC64_TPREL64:
231 def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
232 false, cache);
233
234 if (def == NULL)
235 return (-1);
236
237 /*
238 * We lazily allocate offsets for static TLS as we

--- 12 unchanged lines hidden (view full) ---

251 }
252
253 *(Elf_Addr **)where = *where * sizeof(Elf_Addr)
254 + (Elf_Addr *)(def->st_value + rela->r_addend
255 + defobj->tlsoffset - TLS_TP_OFFSET);
256
257 break;
258
226 def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
227 false, cache);
228
229 if (def == NULL)
230 return (-1);
231
232 /*
233 * We lazily allocate offsets for static TLS as we

--- 12 unchanged lines hidden (view full) ---

246 }
247
248 *(Elf_Addr **)where = *where * sizeof(Elf_Addr)
249 + (Elf_Addr *)(def->st_value + rela->r_addend
250 + defobj->tlsoffset - TLS_TP_OFFSET);
251
252 break;
253
259 case R_PPC_DTPREL32:
254 case R_PPC64_DTPREL64:
260 def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
261 false, cache);
262
263 if (def == NULL)
264 return (-1);
265
266 *where += (Elf_Addr)(def->st_value + rela->r_addend
267 - TLS_DTV_OFFSET);
268
269 break;
270
271 default:
255 def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
256 false, cache);
257
258 if (def == NULL)
259 return (-1);
260
261 *where += (Elf_Addr)(def->st_value + rela->r_addend
262 - TLS_DTV_OFFSET);
263
264 break;
265
266 default:
272 _rtld_error("%s: Unsupported relocation type %d"
267 _rtld_error("%s: Unsupported relocation type %ld"
273 " in non-PLT relocations\n", obj->path,
274 ELF_R_TYPE(rela->r_info));
275 return (-1);
276 }
277 return (0);
278}
279
280
281/*
282 * Process non-PLT relocations
283 */
284int
285reloc_non_plt(Obj_Entry *obj, Obj_Entry *obj_rtld)
286{
287 const Elf_Rela *relalim;
288 const Elf_Rela *rela;
289 SymCache *cache;
268 " in non-PLT relocations\n", obj->path,
269 ELF_R_TYPE(rela->r_info));
270 return (-1);
271 }
272 return (0);
273}
274
275
276/*
277 * Process non-PLT relocations
278 */
279int
280reloc_non_plt(Obj_Entry *obj, Obj_Entry *obj_rtld)
281{
282 const Elf_Rela *relalim;
283 const Elf_Rela *rela;
284 SymCache *cache;
285 int bytes = obj->nchains * sizeof(SymCache);
290 int r = -1;
291
292 /*
293 * The dynamic loader may be called from a thread, we have
294 * limited amounts of stack available so we cannot use alloca().
295 */
296 if (obj != obj_rtld) {
286 int r = -1;
287
288 /*
289 * The dynamic loader may be called from a thread, we have
290 * limited amounts of stack available so we cannot use alloca().
291 */
292 if (obj != obj_rtld) {
297 cache = calloc(obj->nchains, sizeof(SymCache));
298 /* No need to check for NULL here */
293 cache = mmap(NULL, bytes, PROT_READ|PROT_WRITE, MAP_ANON,
294 -1, 0);
295 if (cache == MAP_FAILED)
296 cache = NULL;
299 } else
300 cache = NULL;
301
302 /*
303 * From the SVR4 PPC ABI:
304 * "The PowerPC family uses only the Elf32_Rela relocation
305 * entries with explicit addends."
306 */
307 relalim = (const Elf_Rela *)((caddr_t)obj->rela + obj->relasize);
308 for (rela = obj->rela; rela < relalim; rela++) {
309 if (reloc_nonplt_object(obj_rtld, obj, rela, cache) < 0)
310 goto done;
311 }
312 r = 0;
313done:
297 } else
298 cache = NULL;
299
300 /*
301 * From the SVR4 PPC ABI:
302 * "The PowerPC family uses only the Elf32_Rela relocation
303 * entries with explicit addends."
304 */
305 relalim = (const Elf_Rela *)((caddr_t)obj->rela + obj->relasize);
306 for (rela = obj->rela; rela < relalim; rela++) {
307 if (reloc_nonplt_object(obj_rtld, obj, rela, cache) < 0)
308 goto done;
309 }
310 r = 0;
311done:
314 if (cache != NULL)
315 free(cache);
312 if (cache) {
313 munmap(cache, bytes);
314 }
316 return (r);
317}
318
315 return (r);
316}
317
318
319/*
320 * Initialise a PLT slot to the resolving trampoline
321 */
322static int
323reloc_plt_object(Obj_Entry *obj, const Elf_Rela *rela)
324{
319/*
320 * Initialise a PLT slot to the resolving trampoline
321 */
322static int
323reloc_plt_object(Obj_Entry *obj, const Elf_Rela *rela)
324{
325 Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
326 Elf_Addr *pltresolve, *pltlongresolve, *jmptab;
327 Elf_Addr distance;
328 int N = obj->pltrelasize / sizeof(Elf_Rela);
329 int reloff;
325 Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
326 Elf_Addr *glink;
327 long reloff;
330
331 reloff = rela - obj->pltrela;
332
328
329 reloff = rela - obj->pltrela;
330
333 if (reloff < 0)
334 return (-1);
331 if (obj->priv == NULL)
332 obj->priv = malloc(obj->pltrelasize);
333 glink = obj->priv + reloff*sizeof(Elf_Addr)*2;
335
334
336 pltlongresolve = obj->pltgot + 5;
337 pltresolve = pltlongresolve + 5;
338
339 distance = (Elf_Addr)pltresolve - (Elf_Addr)(where + 1);
340
341 dbg(" reloc_plt_object: where=%p,pltres=%p,reloff=%x,distance=%x",
342 (void *)where, (void *)pltresolve, reloff, distance);
343
344 if (reloff < PLT_EXTENDED_BEGIN) {
345 /* li r11,reloff */
346 /* b pltresolve */
347 where[0] = 0x39600000 | reloff;
348 where[1] = 0x48000000 | (distance & 0x03fffffc);
349 } else {
350 jmptab = obj->pltgot + JMPTAB_BASE(N);
351 jmptab[reloff] = (u_int)pltlongresolve;
352
353 /* lis r11,jmptab[reloff]@ha */
354 /* lwzu r12,jmptab[reloff]@l(r11) */
355 /* mtctr r12 */
356 /* bctr */
357 where[0] = 0x3d600000 | _ppc_ha(&jmptab[reloff]);
358 where[1] = 0x858b0000 | _ppc_la(&jmptab[reloff]);
359 where[2] = 0x7d8903a6;
360 where[3] = 0x4e800420;
335 if ((reloff < 0) || (reloff >= 0x8000)) {
336 return (-1);
361 }
337 }
362
363
338
364 /*
365 * The icache will be sync'd in init_pltgot, which is called
366 * after all the slots have been updated
367 */
339 dbg(" reloc_plt_object: where=%p,reloff=%lx,glink=%p", (void *)where, reloff, glink);
368
340
341 memcpy(where, _rtld_bind_start, sizeof(struct funcdesc));
342 ((struct funcdesc *)(where))->env = (Elf_Addr)glink;
343 *(glink++) = (Elf_Addr)obj;
344 *(glink++) = reloff*sizeof(Elf_Rela);
345
369 return (0);
370}
371
372
373/*
374 * Process the PLT relocations.
375 */
376int
377reloc_plt(Obj_Entry *obj)
378{
379 const Elf_Rela *relalim;
380 const Elf_Rela *rela;
381
382 if (obj->pltrelasize != 0) {
346 return (0);
347}
348
349
350/*
351 * Process the PLT relocations.
352 */
353int
354reloc_plt(Obj_Entry *obj)
355{
356 const Elf_Rela *relalim;
357 const Elf_Rela *rela;
358
359 if (obj->pltrelasize != 0) {
383
384 relalim = (const Elf_Rela *)((char *)obj->pltrela +
385 obj->pltrelasize);
386 for (rela = obj->pltrela; rela < relalim; rela++) {
387 assert(ELF_R_TYPE(rela->r_info) == R_PPC_JMP_SLOT);
388
389 if (reloc_plt_object(obj, rela) < 0) {
390 return (-1);
391 }

--- 43 unchanged lines hidden (view full) ---

435
436 obj->jmpslots_done = true;
437
438 return (0);
439}
440
441
442/*
360 relalim = (const Elf_Rela *)((char *)obj->pltrela +
361 obj->pltrelasize);
362 for (rela = obj->pltrela; rela < relalim; rela++) {
363 assert(ELF_R_TYPE(rela->r_info) == R_PPC_JMP_SLOT);
364
365 if (reloc_plt_object(obj, rela) < 0) {
366 return (-1);
367 }

--- 43 unchanged lines hidden (view full) ---

411
412 obj->jmpslots_done = true;
413
414 return (0);
415}
416
417
418/*
443 * Update the value of a PLT jump slot. Branch directly to the target if
444 * it is within +/- 32Mb, otherwise go indirectly via the pltcall
445 * trampoline call and jump table.
419 * Update the value of a PLT jump slot.
446 */
447Elf_Addr
448reloc_jmpslot(Elf_Addr *wherep, Elf_Addr target, const Obj_Entry *defobj,
449 const Obj_Entry *obj, const Elf_Rel *rel)
450{
420 */
421Elf_Addr
422reloc_jmpslot(Elf_Addr *wherep, Elf_Addr target, const Obj_Entry *defobj,
423 const Obj_Entry *obj, const Elf_Rel *rel)
424{
451 Elf_Addr offset;
452 const Elf_Rela *rela = (const Elf_Rela *) rel;
425 dbg(" reloc_jmpslot: where=%p, target=%p (%#lx + %#lx)",
426 (void *)wherep, (void *)target, *(Elf_Addr *)target,
427 (Elf_Addr)defobj->relocbase);
453
428
454 dbg(" reloc_jmpslot: where=%p, target=%p",
455 (void *)wherep, (void *)target);
456
457 /*
458 * At the PLT entry pointed at by `wherep', construct
459 * a direct transfer to the now fully resolved function
460 * address.
461 */
429 /*
430 * At the PLT entry pointed at by `wherep', construct
431 * a direct transfer to the now fully resolved function
432 * address.
433 */
462 offset = target - (Elf_Addr)wherep;
463
434
464 if (abs(offset) < 32*1024*1024) { /* inside 32MB? */
465 /* b value # branch directly */
466 *wherep = 0x48000000 | (offset & 0x03fffffc);
467 __syncicache(wherep, 4);
468 } else {
469 Elf_Addr *pltcall, *jmptab;
470 int distance;
471 int N = obj->pltrelasize / sizeof(Elf_Rela);
472 int reloff = rela - obj->pltrela;
435 memcpy(wherep, (void *)target, sizeof(struct funcdesc));
436 if (((struct funcdesc *)(wherep))->addr < (Elf_Addr)defobj->relocbase) {
437 /*
438 * XXX: It is possible (e.g. LD_BIND_NOW) that the function
439 * descriptor we are copying has not yet been relocated.
440 * If this happens, fix it.
441 */
473
442
474 if (reloff < 0)
475 return (-1);
476
477 pltcall = obj->pltgot;
478
479 dbg(" reloc_jmpslot: indir, reloff=%x, N=%x\n",
480 reloff, N);
481
482 jmptab = obj->pltgot + JMPTAB_BASE(N);
483 jmptab[reloff] = target;
484
485 if (reloff < PLT_EXTENDED_BEGIN) {
486 /* for extended PLT entries, we keep the old code */
487
488 distance = (Elf_Addr)pltcall - (Elf_Addr)(wherep + 1);
489
490 /* li r11,reloff */
491 /* b pltcall # use indirect pltcall routine */
492 wherep[0] = 0x39600000 | reloff;
493 wherep[1] = 0x48000000 | (distance & 0x03fffffc);
494 __syncicache(wherep, 8);
495 }
443 ((struct funcdesc *)(wherep))->addr +=
444 (Elf_Addr)defobj->relocbase;
445 ((struct funcdesc *)(wherep))->toc +=
446 (Elf_Addr)defobj->relocbase;
496 }
497
447 }
448
449 __asm __volatile("dcbst 0,%0; sync" :: "r"(wherep) : "memory");
450
498 return (target);
499}
500
451 return (target);
452}
453
501
502/*
503 * Setup the plt glue routines.
504 */
505#define PLTCALL_SIZE 20
506#define PLTLONGRESOLVE_SIZE 20
507#define PLTRESOLVE_SIZE 24
508
509void
510init_pltgot(Obj_Entry *obj)
511{
454void
455init_pltgot(Obj_Entry *obj)
456{
512 Elf_Word *pltcall, *pltresolve, *pltlongresolve;
513 Elf_Word *jmptab;
514 int N = obj->pltrelasize / sizeof(Elf_Rela);
515
516 pltcall = obj->pltgot;
517
518 if (pltcall == NULL) {
519 return;
520 }
521
522 /*
523 * From the SVR4 PPC ABI:
524 *
525 * 'The first 18 words (72 bytes) of the PLT are reserved for
526 * use by the dynamic linker.
527 * ...
528 * 'If the executable or shared object requires N procedure
529 * linkage table entries, the link editor shall reserve 3*N
530 * words (12*N bytes) following the 18 reserved words. The
531 * first 2*N of these words are the procedure linkage table
532 * entries themselves. The static linker directs calls to bytes
533 * (72 + (i-1)*8), for i between 1 and N inclusive. The remaining
534 * N words (4*N bytes) are reserved for use by the dynamic linker.'
535 */
536
537 /*
538 * Copy the absolute-call assembler stub into the first part of
539 * the reserved PLT area.
540 */
541 memcpy(pltcall, _rtld_powerpc_pltcall, PLTCALL_SIZE);
542
543 /*
544 * Determine the address of the jumptable, which is the dyn-linker
545 * reserved area after the call cells. Write the absolute address
546 * of the jumptable into the absolute-call assembler code so it
547 * can determine this address.
548 */
549 jmptab = obj->pltgot + JMPTAB_BASE(N);
550 pltcall[1] |= _ppc_ha(jmptab); /* addis 11,11,jmptab@ha */
551 pltcall[2] |= _ppc_la(jmptab); /* lwz 11,jmptab@l(11) */
552
553 /*
554 * Skip down 20 bytes into the initial reserved area and copy
555 * in the standard resolving assembler call. Into this assembler,
556 * insert the absolute address of the _rtld_bind_start routine
557 * and the address of the relocation object.
558 *
559 * We place pltlongresolve first, so it can fix up its arguments
560 * and then fall through to the regular PLT resolver.
561 */
562 pltlongresolve = obj->pltgot + 5;
563
564 memcpy(pltlongresolve, _rtld_powerpc_pltlongresolve,
565 PLTLONGRESOLVE_SIZE);
566 pltlongresolve[0] |= _ppc_ha(jmptab); /* lis 12,jmptab@ha */
567 pltlongresolve[1] |= _ppc_la(jmptab); /* addi 12,12,jmptab@l */
568
569 pltresolve = pltlongresolve + PLTLONGRESOLVE_SIZE/sizeof(uint32_t);
570 memcpy(pltresolve, _rtld_powerpc_pltresolve, PLTRESOLVE_SIZE);
571 pltresolve[0] |= _ppc_ha(_rtld_bind_start);
572 pltresolve[1] |= _ppc_la(_rtld_bind_start);
573 pltresolve[3] |= _ppc_ha(obj);
574 pltresolve[4] |= _ppc_la(obj);
575
576 /*
577 * Sync the icache for the byte range represented by the
578 * trampoline routines and call slots.
579 */
580 __syncicache(pltcall, 72 + N * 8);
581}
582
583void
584allocate_initial_tls(Obj_Entry *list)
585{
457}
458
459void
460allocate_initial_tls(Obj_Entry *list)
461{
586 register Elf_Addr **tp __asm__("r2");
462 register Elf_Addr **tp __asm__("r13");
587 Elf_Addr **_tp;
588
589 /*
590 * Fix the size of the static TLS block by using the maximum
591 * offset allocated so far and adding a bit for dynamic modules to
592 * use.
593 */
594
595 tls_static_space = tls_last_offset + tls_last_size + RTLD_STATIC_TLS_EXTRA;
596
463 Elf_Addr **_tp;
464
465 /*
466 * Fix the size of the static TLS block by using the maximum
467 * offset allocated so far and adding a bit for dynamic modules to
468 * use.
469 */
470
471 tls_static_space = tls_last_offset + tls_last_size + RTLD_STATIC_TLS_EXTRA;
472
597 _tp = (Elf_Addr **) ((char *) allocate_tls(list, NULL, TLS_TCB_SIZE, 8)
473 _tp = (Elf_Addr **) ((char *)allocate_tls(list, NULL, TLS_TCB_SIZE, 16)
598 + TLS_TP_OFFSET + TLS_TCB_SIZE);
599
600 /*
601 * XXX gcc seems to ignore 'tp = _tp;'
602 */
603
604 __asm __volatile("mr %0,%1" : "=r"(tp) : "r"(_tp));
605}
606
607void*
608__tls_get_addr(tls_index* ti)
609{
474 + TLS_TP_OFFSET + TLS_TCB_SIZE);
475
476 /*
477 * XXX gcc seems to ignore 'tp = _tp;'
478 */
479
480 __asm __volatile("mr %0,%1" : "=r"(tp) : "r"(_tp));
481}
482
483void*
484__tls_get_addr(tls_index* ti)
485{
610 register Elf_Addr **tp __asm__("r2");
486 register Elf_Addr **tp __asm__("r13");
611 char *p;
612
613 p = tls_get_addr_common((Elf_Addr**)((Elf_Addr)tp - TLS_TP_OFFSET
614 - TLS_TCB_SIZE), ti->ti_module, ti->ti_offset);
615
616 return (p + TLS_DTV_OFFSET);
617}
487 char *p;
488
489 p = tls_get_addr_common((Elf_Addr**)((Elf_Addr)tp - TLS_TP_OFFSET
490 - TLS_TCB_SIZE), ti->ti_module, ti->ti_offset);
491
492 return (p + TLS_DTV_OFFSET);
493}