Deleted Added
full compact
rijndael.c (69587) rijndael.c (76259)
1/* $OpenBSD: rijndael.c,v 1.2 2000/10/15 14:14:01 markus Exp $ */
1/* $OpenBSD: rijndael.c,v 1.7 2001/02/04 15:32:24 stevesk Exp $ */
2
3/* This is an independent implementation of the encryption algorithm: */
4/* */
5/* RIJNDAEL by Joan Daemen and Vincent Rijmen */
6/* */
7/* which is a candidate algorithm in the Advanced Encryption Standard */
8/* programme of the US National Institute of Standards and Technology. */
9/* */

--- 37 unchanged lines hidden (view full) ---

47
48/* Circular rotate of 32 bit values */
49
50#define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
51#define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
52
53/* Invert byte order in a 32 bit variable */
54
2
3/* This is an independent implementation of the encryption algorithm: */
4/* */
5/* RIJNDAEL by Joan Daemen and Vincent Rijmen */
6/* */
7/* which is a candidate algorithm in the Advanced Encryption Standard */
8/* programme of the US National Institute of Standards and Technology. */
9/* */

--- 37 unchanged lines hidden (view full) ---

47
48/* Circular rotate of 32 bit values */
49
50#define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
51#define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
52
53/* Invert byte order in a 32 bit variable */
54
55#define bswap(x) (rotl(x, 8) & 0x00ff00ff | rotr(x, 8) & 0xff00ff00)
55#define bswap(x) ((rotl(x, 8) & 0x00ff00ff) | (rotr(x, 8) & 0xff00ff00))
56
56
57/* Extract byte from a 32 bit quantity (little endian notation) */
57/* Extract byte from a 32 bit quantity (little endian notation) */
58
59#define byte(x,n) ((u1byte)((x) >> (8 * n)))
60
61#if BYTE_ORDER != LITTLE_ENDIAN
58
59#define byte(x,n) ((u1byte)((x) >> (8 * n)))
60
61#if BYTE_ORDER != LITTLE_ENDIAN
62#define BLOCK_SWAP
63#endif
64
65/* For inverting byte order in input/output 32 bit words if needed */
66
67#ifdef BLOCK_SWAP
68#define BYTE_SWAP
62#define BYTE_SWAP
69#define WORD_SWAP
70#endif
71
72#ifdef BYTE_SWAP
73#define io_swap(x) bswap(x)
74#else
75#define io_swap(x) (x)
76#endif
77
63#endif
64
65#ifdef BYTE_SWAP
66#define io_swap(x) bswap(x)
67#else
68#define io_swap(x) (x)
69#endif
70
78/* For inverting the byte order of input/output blocks if needed */
79
80#ifdef WORD_SWAP
81
82#define get_block(x) \
83 ((u4byte*)(x))[0] = io_swap(in_blk[3]); \
84 ((u4byte*)(x))[1] = io_swap(in_blk[2]); \
85 ((u4byte*)(x))[2] = io_swap(in_blk[1]); \
86 ((u4byte*)(x))[3] = io_swap(in_blk[0])
87
88#define put_block(x) \
89 out_blk[3] = io_swap(((u4byte*)(x))[0]); \
90 out_blk[2] = io_swap(((u4byte*)(x))[1]); \
91 out_blk[1] = io_swap(((u4byte*)(x))[2]); \
92 out_blk[0] = io_swap(((u4byte*)(x))[3])
93
94#define get_key(x,len) \
95 ((u4byte*)(x))[4] = ((u4byte*)(x))[5] = \
96 ((u4byte*)(x))[6] = ((u4byte*)(x))[7] = 0; \
97 switch((((len) + 63) / 64)) { \
98 case 2: \
99 ((u4byte*)(x))[0] = io_swap(in_key[3]); \
100 ((u4byte*)(x))[1] = io_swap(in_key[2]); \
101 ((u4byte*)(x))[2] = io_swap(in_key[1]); \
102 ((u4byte*)(x))[3] = io_swap(in_key[0]); \
103 break; \
104 case 3: \
105 ((u4byte*)(x))[0] = io_swap(in_key[5]); \
106 ((u4byte*)(x))[1] = io_swap(in_key[4]); \
107 ((u4byte*)(x))[2] = io_swap(in_key[3]); \
108 ((u4byte*)(x))[3] = io_swap(in_key[2]); \
109 ((u4byte*)(x))[4] = io_swap(in_key[1]); \
110 ((u4byte*)(x))[5] = io_swap(in_key[0]); \
111 break; \
112 case 4: \
113 ((u4byte*)(x))[0] = io_swap(in_key[7]); \
114 ((u4byte*)(x))[1] = io_swap(in_key[6]); \
115 ((u4byte*)(x))[2] = io_swap(in_key[5]); \
116 ((u4byte*)(x))[3] = io_swap(in_key[4]); \
117 ((u4byte*)(x))[4] = io_swap(in_key[3]); \
118 ((u4byte*)(x))[5] = io_swap(in_key[2]); \
119 ((u4byte*)(x))[6] = io_swap(in_key[1]); \
120 ((u4byte*)(x))[7] = io_swap(in_key[0]); \
121 }
122
123#else
124
125#define get_block(x) \
126 ((u4byte*)(x))[0] = io_swap(in_blk[0]); \
127 ((u4byte*)(x))[1] = io_swap(in_blk[1]); \
128 ((u4byte*)(x))[2] = io_swap(in_blk[2]); \
129 ((u4byte*)(x))[3] = io_swap(in_blk[3])
130
131#define put_block(x) \
132 out_blk[0] = io_swap(((u4byte*)(x))[0]); \
133 out_blk[1] = io_swap(((u4byte*)(x))[1]); \
134 out_blk[2] = io_swap(((u4byte*)(x))[2]); \
135 out_blk[3] = io_swap(((u4byte*)(x))[3])
136
137#define get_key(x,len) \
138 ((u4byte*)(x))[4] = ((u4byte*)(x))[5] = \
139 ((u4byte*)(x))[6] = ((u4byte*)(x))[7] = 0; \
140 switch((((len) + 63) / 64)) { \
141 case 4: \
142 ((u4byte*)(x))[6] = io_swap(in_key[6]); \
143 ((u4byte*)(x))[7] = io_swap(in_key[7]); \
144 case 3: \
145 ((u4byte*)(x))[4] = io_swap(in_key[4]); \
146 ((u4byte*)(x))[5] = io_swap(in_key[5]); \
147 case 2: \
148 ((u4byte*)(x))[0] = io_swap(in_key[0]); \
149 ((u4byte*)(x))[1] = io_swap(in_key[1]); \
150 ((u4byte*)(x))[2] = io_swap(in_key[2]); \
151 ((u4byte*)(x))[3] = io_swap(in_key[3]); \
152 }
153
154#endif
155
156#define LARGE_TABLES
157
158u1byte pow_tab[256];
159u1byte log_tab[256];
160u1byte sbx_tab[256];
161u1byte isb_tab[256];
162u4byte rco_tab[ 10];
163u4byte ft_tab[4][256];

--- 5 unchanged lines hidden (view full) ---

169#endif
170
171u4byte tab_gen = 0;
172
173#define ff_mult(a,b) (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
174
175#define f_rn(bo, bi, n, k) \
176 bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
71#define LARGE_TABLES
72
73u1byte pow_tab[256];
74u1byte log_tab[256];
75u1byte sbx_tab[256];
76u1byte isb_tab[256];
77u4byte rco_tab[ 10];
78u4byte ft_tab[4][256];

--- 5 unchanged lines hidden (view full) ---

84#endif
85
86u4byte tab_gen = 0;
87
88#define ff_mult(a,b) (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
89
90#define f_rn(bo, bi, n, k) \
91 bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
177 ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
178 ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
179 ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
92 ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
93 ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
94 ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
180
181#define i_rn(bo, bi, n, k) \
182 bo[n] = it_tab[0][byte(bi[n],0)] ^ \
95
96#define i_rn(bo, bi, n, k) \
97 bo[n] = it_tab[0][byte(bi[n],0)] ^ \
183 it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
184 it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
185 it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
98 it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
99 it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
100 it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
186
187#ifdef LARGE_TABLES
188
189#define ls_box(x) \
190 ( fl_tab[0][byte(x, 0)] ^ \
191 fl_tab[1][byte(x, 1)] ^ \
192 fl_tab[2][byte(x, 2)] ^ \
193 fl_tab[3][byte(x, 3)] )
194
195#define f_rl(bo, bi, n, k) \
196 bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
101
102#ifdef LARGE_TABLES
103
104#define ls_box(x) \
105 ( fl_tab[0][byte(x, 0)] ^ \
106 fl_tab[1][byte(x, 1)] ^ \
107 fl_tab[2][byte(x, 2)] ^ \
108 fl_tab[3][byte(x, 3)] )
109
110#define f_rl(bo, bi, n, k) \
111 bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
197 fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
198 fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
199 fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
112 fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
113 fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
114 fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
200
201#define i_rl(bo, bi, n, k) \
202 bo[n] = il_tab[0][byte(bi[n],0)] ^ \
115
116#define i_rl(bo, bi, n, k) \
117 bo[n] = il_tab[0][byte(bi[n],0)] ^ \
203 il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
204 il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
205 il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
118 il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
119 il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
120 il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
206
207#else
208
209#define ls_box(x) \
210 ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \
211 ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \
212 ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \
213 ((u4byte)sbx_tab[byte(x, 3)] << 24)
214
215#define f_rl(bo, bi, n, k) \
216 bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^ \
121
122#else
123
124#define ls_box(x) \
125 ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \
126 ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \
127 ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \
128 ((u4byte)sbx_tab[byte(x, 3)] << 24)
129
130#define f_rl(bo, bi, n, k) \
131 bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^ \
217 rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]), 8) ^ \
218 rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
219 rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n)
132 rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]), 8) ^ \
133 rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
134 rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n)
220
221#define i_rl(bo, bi, n, k) \
222 bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^ \
135
136#define i_rl(bo, bi, n, k) \
137 bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^ \
223 rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]), 8) ^ \
224 rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
225 rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n)
138 rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]), 8) ^ \
139 rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
140 rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n)
226
227#endif
228
229void
230gen_tabs(void)
231{
232 u4byte i, t;
233 u1byte p, q;

--- 6 unchanged lines hidden (view full) ---

240 pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i;
241
242 p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
243 }
244
245 log_tab[1] = 0; p = 1;
246
247 for(i = 0; i < 10; ++i) {
141
142#endif
143
144void
145gen_tabs(void)
146{
147 u4byte i, t;
148 u1byte p, q;

--- 6 unchanged lines hidden (view full) ---

155 pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i;
156
157 p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
158 }
159
160 log_tab[1] = 0; p = 1;
161
162 for(i = 0; i < 10; ++i) {
248 rco_tab[i] = p;
163 rco_tab[i] = p;
249
250 p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
251 }
252
253 /* note that the affine byte transformation matrix in */
254 /* rijndael specification is in big endian format with */
255 /* bit 0 as the most significant bit. In the remainder */
256 /* of the specification the bits are numbered from the */
257 /* least significant end of a byte. */
258
259 for(i = 0; i < 256; ++i) {
164
165 p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
166 }
167
168 /* note that the affine byte transformation matrix in */
169 /* rijndael specification is in big endian format with */
170 /* bit 0 as the most significant bit. In the remainder */
171 /* of the specification the bits are numbered from the */
172 /* least significant end of a byte. */
173
174 for(i = 0; i < 256; ++i) {
260 p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p;
261 q = (q >> 7) | (q << 1); p ^= q;
262 q = (q >> 7) | (q << 1); p ^= q;
263 q = (q >> 7) | (q << 1); p ^= q;
264 q = (q >> 7) | (q << 1); p ^= q ^ 0x63;
175 p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p;
176 q = (q >> 7) | (q << 1); p ^= q;
177 q = (q >> 7) | (q << 1); p ^= q;
178 q = (q >> 7) | (q << 1); p ^= q;
179 q = (q >> 7) | (q << 1); p ^= q ^ 0x63;
265 sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i;
266 }
267
268 for(i = 0; i < 256; ++i) {
180 sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i;
181 }
182
183 for(i = 0; i < 256; ++i) {
269 p = sbx_tab[i];
184 p = sbx_tab[i];
270
185
271#ifdef LARGE_TABLES
272
186#ifdef LARGE_TABLES
187
273 t = p; fl_tab[0][i] = t;
274 fl_tab[1][i] = rotl(t, 8);
275 fl_tab[2][i] = rotl(t, 16);
276 fl_tab[3][i] = rotl(t, 24);
277#endif
278 t = ((u4byte)ff_mult(2, p)) |
279 ((u4byte)p << 8) |
280 ((u4byte)p << 16) |
281 ((u4byte)ff_mult(3, p) << 24);
188 t = p; fl_tab[0][i] = t;
189 fl_tab[1][i] = rotl(t, 8);
190 fl_tab[2][i] = rotl(t, 16);
191 fl_tab[3][i] = rotl(t, 24);
192#endif
193 t = ((u4byte)ff_mult(2, p)) |
194 ((u4byte)p << 8) |
195 ((u4byte)p << 16) |
196 ((u4byte)ff_mult(3, p) << 24);
282
197
283 ft_tab[0][i] = t;
284 ft_tab[1][i] = rotl(t, 8);
285 ft_tab[2][i] = rotl(t, 16);
286 ft_tab[3][i] = rotl(t, 24);
287
198 ft_tab[0][i] = t;
199 ft_tab[1][i] = rotl(t, 8);
200 ft_tab[2][i] = rotl(t, 16);
201 ft_tab[3][i] = rotl(t, 24);
202
288 p = isb_tab[i];
203 p = isb_tab[i];
289
204
290#ifdef LARGE_TABLES
291
292 t = p; il_tab[0][i] = t;
293 il_tab[1][i] = rotl(t, 8);
294 il_tab[2][i] = rotl(t, 16);
205#ifdef LARGE_TABLES
206
207 t = p; il_tab[0][i] = t;
208 il_tab[1][i] = rotl(t, 8);
209 il_tab[2][i] = rotl(t, 16);
295 il_tab[3][i] = rotl(t, 24);
210 il_tab[3][i] = rotl(t, 24);
296#endif
211#endif
297 t = ((u4byte)ff_mult(14, p)) |
298 ((u4byte)ff_mult( 9, p) << 8) |
299 ((u4byte)ff_mult(13, p) << 16) |
300 ((u4byte)ff_mult(11, p) << 24);
212 t = ((u4byte)ff_mult(14, p)) |
213 ((u4byte)ff_mult( 9, p) << 8) |
214 ((u4byte)ff_mult(13, p) << 16) |
215 ((u4byte)ff_mult(11, p) << 24);
301
302 it_tab[0][i] = t;
303 it_tab[1][i] = rotl(t, 8);
304 it_tab[2][i] = rotl(t, 16);
305 it_tab[3][i] = rotl(t, 24);
216
217 it_tab[0][i] = t;
218 it_tab[1][i] = rotl(t, 8);
219 it_tab[2][i] = rotl(t, 16);
220 it_tab[3][i] = rotl(t, 24);
306 }
307
308 tab_gen = 1;
309}
310
311#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
312
313#define imix_col(y,x) \
314 u = star_x(x); \
315 v = star_x(u); \
316 w = star_x(v); \
317 t = w ^ (x); \
318 (y) = u ^ v ^ w; \
319 (y) ^= rotr(u ^ t, 8) ^ \
221 }
222
223 tab_gen = 1;
224}
225
226#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
227
228#define imix_col(y,x) \
229 u = star_x(x); \
230 v = star_x(u); \
231 w = star_x(v); \
232 t = w ^ (x); \
233 (y) = u ^ v ^ w; \
234 (y) ^= rotr(u ^ t, 8) ^ \
320 rotr(v ^ t, 16) ^ \
321 rotr(t,24)
235 rotr(v ^ t, 16) ^ \
236 rotr(t,24)
322
323/* initialise the key schedule from the user supplied key */
324
325#define loop4(i) \
326{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
327 t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \
328 t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \
329 t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \

--- 21 unchanged lines hidden (view full) ---

351 t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t; \
352 t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t; \
353 t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t; \
354}
355
356rijndael_ctx *
357rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
358 int encrypt)
237
238/* initialise the key schedule from the user supplied key */
239
240#define loop4(i) \
241{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
242 t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \
243 t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \
244 t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \

--- 21 unchanged lines hidden (view full) ---

266 t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t; \
267 t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t; \
268 t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t; \
269}
270
271rijndael_ctx *
272rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
273 int encrypt)
359{
274{
360 u4byte i, t, u, v, w;
361 u4byte *e_key = ctx->e_key;
362 u4byte *d_key = ctx->d_key;
363
364 ctx->decrypt = !encrypt;
365
366 if(!tab_gen)
367 gen_tabs();
368
369 ctx->k_len = (key_len + 31) / 32;
370
275 u4byte i, t, u, v, w;
276 u4byte *e_key = ctx->e_key;
277 u4byte *d_key = ctx->d_key;
278
279 ctx->decrypt = !encrypt;
280
281 if(!tab_gen)
282 gen_tabs();
283
284 ctx->k_len = (key_len + 31) / 32;
285
371 e_key[0] = in_key[0]; e_key[1] = in_key[1];
372 e_key[2] = in_key[2]; e_key[3] = in_key[3];
373
286 e_key[0] = io_swap(in_key[0]); e_key[1] = io_swap(in_key[1]);
287 e_key[2] = io_swap(in_key[2]); e_key[3] = io_swap(in_key[3]);
288
374 switch(ctx->k_len) {
289 switch(ctx->k_len) {
375 case 4: t = e_key[3];
376 for(i = 0; i < 10; ++i)
290 case 4: t = e_key[3];
291 for(i = 0; i < 10; ++i)
377 loop4(i);
292 loop4(i);
378 break;
293 break;
379
294
380 case 6: e_key[4] = in_key[4]; t = e_key[5] = in_key[5];
381 for(i = 0; i < 8; ++i)
295 case 6: e_key[4] = io_swap(in_key[4]); t = e_key[5] = io_swap(in_key[5]);
296 for(i = 0; i < 8; ++i)
382 loop6(i);
297 loop6(i);
383 break;
298 break;
384
299
385 case 8: e_key[4] = in_key[4]; e_key[5] = in_key[5];
386 e_key[6] = in_key[6]; t = e_key[7] = in_key[7];
387 for(i = 0; i < 7; ++i)
300 case 8: e_key[4] = io_swap(in_key[4]); e_key[5] = io_swap(in_key[5]);
301 e_key[6] = io_swap(in_key[6]); t = e_key[7] = io_swap(in_key[7]);
302 for(i = 0; i < 7; ++i)
388 loop8(i);
303 loop8(i);
389 break;
304 break;
390 }
391
392 if (!encrypt) {
393 d_key[0] = e_key[0]; d_key[1] = e_key[1];
394 d_key[2] = e_key[2]; d_key[3] = e_key[3];
395
396 for(i = 4; i < 4 * ctx->k_len + 24; ++i) {
397 imix_col(d_key[i], e_key[i]);

--- 15 unchanged lines hidden (view full) ---

413#define f_lround(bo, bi, k) \
414 f_rl(bo, bi, 0, k); \
415 f_rl(bo, bi, 1, k); \
416 f_rl(bo, bi, 2, k); \
417 f_rl(bo, bi, 3, k)
418
419void
420rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
305 }
306
307 if (!encrypt) {
308 d_key[0] = e_key[0]; d_key[1] = e_key[1];
309 d_key[2] = e_key[2]; d_key[3] = e_key[3];
310
311 for(i = 4; i < 4 * ctx->k_len + 24; ++i) {
312 imix_col(d_key[i], e_key[i]);

--- 15 unchanged lines hidden (view full) ---

328#define f_lround(bo, bi, k) \
329 f_rl(bo, bi, 0, k); \
330 f_rl(bo, bi, 1, k); \
331 f_rl(bo, bi, 2, k); \
332 f_rl(bo, bi, 3, k)
333
334void
335rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
421{
336{
422 u4byte k_len = ctx->k_len;
423 u4byte *e_key = ctx->e_key;
424 u4byte b0[4], b1[4], *kp;
425
337 u4byte k_len = ctx->k_len;
338 u4byte *e_key = ctx->e_key;
339 u4byte b0[4], b1[4], *kp;
340
426 b0[0] = in_blk[0] ^ e_key[0]; b0[1] = in_blk[1] ^ e_key[1];
427 b0[2] = in_blk[2] ^ e_key[2]; b0[3] = in_blk[3] ^ e_key[3];
341 b0[0] = io_swap(in_blk[0]) ^ e_key[0];
342 b0[1] = io_swap(in_blk[1]) ^ e_key[1];
343 b0[2] = io_swap(in_blk[2]) ^ e_key[2];
344 b0[3] = io_swap(in_blk[3]) ^ e_key[3];
428
429 kp = e_key + 4;
430
431 if(k_len > 6) {
432 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
433 }
434
435 if(k_len > 4) {
436 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
437 }
438
439 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
440 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
441 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
442 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
443 f_nround(b1, b0, kp); f_lround(b0, b1, kp);
444
345
346 kp = e_key + 4;
347
348 if(k_len > 6) {
349 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
350 }
351
352 if(k_len > 4) {
353 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
354 }
355
356 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
357 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
358 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
359 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
360 f_nround(b1, b0, kp); f_lround(b0, b1, kp);
361
445 out_blk[0] = b0[0]; out_blk[1] = b0[1];
446 out_blk[2] = b0[2]; out_blk[3] = b0[3];
362 out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]);
363 out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]);
447}
448
449/* decrypt a block of text */
450
451#define i_nround(bo, bi, k) \
452 i_rn(bo, bi, 0, k); \
453 i_rn(bo, bi, 1, k); \
454 i_rn(bo, bi, 2, k); \
455 i_rn(bo, bi, 3, k); \
456 k -= 4
457
458#define i_lround(bo, bi, k) \
459 i_rl(bo, bi, 0, k); \
460 i_rl(bo, bi, 1, k); \
461 i_rl(bo, bi, 2, k); \
462 i_rl(bo, bi, 3, k)
463
464void
465rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
364}
365
366/* decrypt a block of text */
367
368#define i_nround(bo, bi, k) \
369 i_rn(bo, bi, 0, k); \
370 i_rn(bo, bi, 1, k); \
371 i_rn(bo, bi, 2, k); \
372 i_rn(bo, bi, 3, k); \
373 k -= 4
374
375#define i_lround(bo, bi, k) \
376 i_rl(bo, bi, 0, k); \
377 i_rl(bo, bi, 1, k); \
378 i_rl(bo, bi, 2, k); \
379 i_rl(bo, bi, 3, k)
380
381void
382rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
466{
383{
467 u4byte b0[4], b1[4], *kp;
468 u4byte k_len = ctx->k_len;
469 u4byte *e_key = ctx->e_key;
470 u4byte *d_key = ctx->d_key;
471
384 u4byte b0[4], b1[4], *kp;
385 u4byte k_len = ctx->k_len;
386 u4byte *e_key = ctx->e_key;
387 u4byte *d_key = ctx->d_key;
388
472 b0[0] = in_blk[0] ^ e_key[4 * k_len + 24]; b0[1] = in_blk[1] ^ e_key[4 * k_len + 25];
473 b0[2] = in_blk[2] ^ e_key[4 * k_len + 26]; b0[3] = in_blk[3] ^ e_key[4 * k_len + 27];
389 b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
390 b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
391 b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
392 b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
474
475 kp = d_key + 4 * (k_len + 5);
476
477 if(k_len > 6) {
478 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
479 }
480
481 if(k_len > 4) {
482 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
483 }
484
485 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
486 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
487 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
488 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
489 i_nround(b1, b0, kp); i_lround(b0, b1, kp);
490
393
394 kp = d_key + 4 * (k_len + 5);
395
396 if(k_len > 6) {
397 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
398 }
399
400 if(k_len > 4) {
401 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
402 }
403
404 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
405 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
406 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
407 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
408 i_nround(b1, b0, kp); i_lround(b0, b1, kp);
409
491 out_blk[0] = b0[0]; out_blk[1] = b0[1];
492 out_blk[2] = b0[2]; out_blk[3] = b0[3];
410 out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]);
411 out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]);
493}
412}