Deleted Added
sdiff udiff text old ( 69587 ) new ( 76259 )
full compact
1/* $OpenBSD: rijndael.c,v 1.7 2001/02/04 15:32:24 stevesk Exp $ */
2
3/* This is an independent implementation of the encryption algorithm: */
4/* */
5/* RIJNDAEL by Joan Daemen and Vincent Rijmen */
6/* */
7/* which is a candidate algorithm in the Advanced Encryption Standard */
8/* programme of the US National Institute of Standards and Technology. */
9/* */

--- 37 unchanged lines hidden (view full) ---

47
48/* Circular rotate of 32 bit values */
49
50#define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
51#define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
52
53/* Invert byte order in a 32 bit variable */
54
55#define bswap(x) ((rotl(x, 8) & 0x00ff00ff) | (rotr(x, 8) & 0xff00ff00))
56
57/* Extract byte from a 32 bit quantity (little endian notation) */
58
59#define byte(x,n) ((u1byte)((x) >> (8 * n)))
60
61#if BYTE_ORDER != LITTLE_ENDIAN
62#define BYTE_SWAP
63#endif
64
65#ifdef BYTE_SWAP
66#define io_swap(x) bswap(x)
67#else
68#define io_swap(x) (x)
69#endif
70
71#define LARGE_TABLES
72
73u1byte pow_tab[256];
74u1byte log_tab[256];
75u1byte sbx_tab[256];
76u1byte isb_tab[256];
77u4byte rco_tab[ 10];
78u4byte ft_tab[4][256];

--- 5 unchanged lines hidden (view full) ---

84#endif
85
86u4byte tab_gen = 0;
87
88#define ff_mult(a,b) (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
89
90#define f_rn(bo, bi, n, k) \
91 bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
92 ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
93 ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
94 ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
95
96#define i_rn(bo, bi, n, k) \
97 bo[n] = it_tab[0][byte(bi[n],0)] ^ \
98 it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
99 it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
100 it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
101
102#ifdef LARGE_TABLES
103
104#define ls_box(x) \
105 ( fl_tab[0][byte(x, 0)] ^ \
106 fl_tab[1][byte(x, 1)] ^ \
107 fl_tab[2][byte(x, 2)] ^ \
108 fl_tab[3][byte(x, 3)] )
109
110#define f_rl(bo, bi, n, k) \
111 bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
112 fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
113 fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
114 fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
115
116#define i_rl(bo, bi, n, k) \
117 bo[n] = il_tab[0][byte(bi[n],0)] ^ \
118 il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
119 il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
120 il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
121
122#else
123
124#define ls_box(x) \
125 ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \
126 ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \
127 ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \
128 ((u4byte)sbx_tab[byte(x, 3)] << 24)
129
130#define f_rl(bo, bi, n, k) \
131 bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^ \
132 rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]), 8) ^ \
133 rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
134 rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n)
135
136#define i_rl(bo, bi, n, k) \
137 bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^ \
138 rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]), 8) ^ \
139 rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
140 rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n)
141
142#endif
143
144void
145gen_tabs(void)
146{
147 u4byte i, t;
148 u1byte p, q;

--- 6 unchanged lines hidden (view full) ---

155 pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i;
156
157 p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
158 }
159
160 log_tab[1] = 0; p = 1;
161
162 for(i = 0; i < 10; ++i) {
163 rco_tab[i] = p;
164
165 p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
166 }
167
168 /* note that the affine byte transformation matrix in */
169 /* rijndael specification is in big endian format with */
170 /* bit 0 as the most significant bit. In the remainder */
171 /* of the specification the bits are numbered from the */
172 /* least significant end of a byte. */
173
174 for(i = 0; i < 256; ++i) {
175 p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p;
176 q = (q >> 7) | (q << 1); p ^= q;
177 q = (q >> 7) | (q << 1); p ^= q;
178 q = (q >> 7) | (q << 1); p ^= q;
179 q = (q >> 7) | (q << 1); p ^= q ^ 0x63;
180 sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i;
181 }
182
183 for(i = 0; i < 256; ++i) {
184 p = sbx_tab[i];
185
186#ifdef LARGE_TABLES
187
188 t = p; fl_tab[0][i] = t;
189 fl_tab[1][i] = rotl(t, 8);
190 fl_tab[2][i] = rotl(t, 16);
191 fl_tab[3][i] = rotl(t, 24);
192#endif
193 t = ((u4byte)ff_mult(2, p)) |
194 ((u4byte)p << 8) |
195 ((u4byte)p << 16) |
196 ((u4byte)ff_mult(3, p) << 24);
197
198 ft_tab[0][i] = t;
199 ft_tab[1][i] = rotl(t, 8);
200 ft_tab[2][i] = rotl(t, 16);
201 ft_tab[3][i] = rotl(t, 24);
202
203 p = isb_tab[i];
204
205#ifdef LARGE_TABLES
206
207 t = p; il_tab[0][i] = t;
208 il_tab[1][i] = rotl(t, 8);
209 il_tab[2][i] = rotl(t, 16);
210 il_tab[3][i] = rotl(t, 24);
211#endif
212 t = ((u4byte)ff_mult(14, p)) |
213 ((u4byte)ff_mult( 9, p) << 8) |
214 ((u4byte)ff_mult(13, p) << 16) |
215 ((u4byte)ff_mult(11, p) << 24);
216
217 it_tab[0][i] = t;
218 it_tab[1][i] = rotl(t, 8);
219 it_tab[2][i] = rotl(t, 16);
220 it_tab[3][i] = rotl(t, 24);
221 }
222
223 tab_gen = 1;
224}
225
226#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
227
228#define imix_col(y,x) \
229 u = star_x(x); \
230 v = star_x(u); \
231 w = star_x(v); \
232 t = w ^ (x); \
233 (y) = u ^ v ^ w; \
234 (y) ^= rotr(u ^ t, 8) ^ \
235 rotr(v ^ t, 16) ^ \
236 rotr(t,24)
237
238/* initialise the key schedule from the user supplied key */
239
240#define loop4(i) \
241{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
242 t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \
243 t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \
244 t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \

--- 21 unchanged lines hidden (view full) ---

266 t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t; \
267 t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t; \
268 t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t; \
269}
270
271rijndael_ctx *
272rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
273 int encrypt)
274{
275 u4byte i, t, u, v, w;
276 u4byte *e_key = ctx->e_key;
277 u4byte *d_key = ctx->d_key;
278
279 ctx->decrypt = !encrypt;
280
281 if(!tab_gen)
282 gen_tabs();
283
284 ctx->k_len = (key_len + 31) / 32;
285
286 e_key[0] = io_swap(in_key[0]); e_key[1] = io_swap(in_key[1]);
287 e_key[2] = io_swap(in_key[2]); e_key[3] = io_swap(in_key[3]);
288
289 switch(ctx->k_len) {
290 case 4: t = e_key[3];
291 for(i = 0; i < 10; ++i)
292 loop4(i);
293 break;
294
295 case 6: e_key[4] = io_swap(in_key[4]); t = e_key[5] = io_swap(in_key[5]);
296 for(i = 0; i < 8; ++i)
297 loop6(i);
298 break;
299
300 case 8: e_key[4] = io_swap(in_key[4]); e_key[5] = io_swap(in_key[5]);
301 e_key[6] = io_swap(in_key[6]); t = e_key[7] = io_swap(in_key[7]);
302 for(i = 0; i < 7; ++i)
303 loop8(i);
304 break;
305 }
306
307 if (!encrypt) {
308 d_key[0] = e_key[0]; d_key[1] = e_key[1];
309 d_key[2] = e_key[2]; d_key[3] = e_key[3];
310
311 for(i = 4; i < 4 * ctx->k_len + 24; ++i) {
312 imix_col(d_key[i], e_key[i]);

--- 15 unchanged lines hidden (view full) ---

328#define f_lround(bo, bi, k) \
329 f_rl(bo, bi, 0, k); \
330 f_rl(bo, bi, 1, k); \
331 f_rl(bo, bi, 2, k); \
332 f_rl(bo, bi, 3, k)
333
334void
335rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
336{
337 u4byte k_len = ctx->k_len;
338 u4byte *e_key = ctx->e_key;
339 u4byte b0[4], b1[4], *kp;
340
341 b0[0] = io_swap(in_blk[0]) ^ e_key[0];
342 b0[1] = io_swap(in_blk[1]) ^ e_key[1];
343 b0[2] = io_swap(in_blk[2]) ^ e_key[2];
344 b0[3] = io_swap(in_blk[3]) ^ e_key[3];
345
346 kp = e_key + 4;
347
348 if(k_len > 6) {
349 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
350 }
351
352 if(k_len > 4) {
353 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
354 }
355
356 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
357 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
358 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
359 f_nround(b1, b0, kp); f_nround(b0, b1, kp);
360 f_nround(b1, b0, kp); f_lround(b0, b1, kp);
361
362 out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]);
363 out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]);
364}
365
366/* decrypt a block of text */
367
368#define i_nround(bo, bi, k) \
369 i_rn(bo, bi, 0, k); \
370 i_rn(bo, bi, 1, k); \
371 i_rn(bo, bi, 2, k); \
372 i_rn(bo, bi, 3, k); \
373 k -= 4
374
375#define i_lround(bo, bi, k) \
376 i_rl(bo, bi, 0, k); \
377 i_rl(bo, bi, 1, k); \
378 i_rl(bo, bi, 2, k); \
379 i_rl(bo, bi, 3, k)
380
381void
382rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
383{
384 u4byte b0[4], b1[4], *kp;
385 u4byte k_len = ctx->k_len;
386 u4byte *e_key = ctx->e_key;
387 u4byte *d_key = ctx->d_key;
388
389 b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
390 b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
391 b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
392 b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
393
394 kp = d_key + 4 * (k_len + 5);
395
396 if(k_len > 6) {
397 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
398 }
399
400 if(k_len > 4) {
401 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
402 }
403
404 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
405 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
406 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
407 i_nround(b1, b0, kp); i_nround(b0, b1, kp);
408 i_nround(b1, b0, kp); i_lround(b0, b1, kp);
409
410 out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]);
411 out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]);
412}