Deleted Added
full compact
machine.c (170774) machine.c (172207)
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS: For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
19 * Steven Wallace <swallace@freebsd.org>
20 * Wolfram Schneider <wosch@FreeBSD.org>
21 * Thomas Moestl <tmoestl@gmx.net>
22 *
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS: For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 * FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
19 * Steven Wallace <swallace@freebsd.org>
20 * Wolfram Schneider <wosch@FreeBSD.org>
21 * Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD: head/usr.bin/top/machine.c 170774 2007-06-15 12:03:07Z bde $
23 * $FreeBSD: head/usr.bin/top/machine.c 172207 2007-09-17 05:31:39Z jeff $
24 */
25
26#include <sys/param.h>
27#include <sys/errno.h>
28#include <sys/file.h>
29#include <sys/proc.h>
30#include <sys/resource.h>
31#include <sys/rtprio.h>
32#include <sys/signal.h>
33#include <sys/sysctl.h>
34#include <sys/time.h>
35#include <sys/user.h>
36#include <sys/vmmeter.h>
37
38#include <kvm.h>
39#include <math.h>
40#include <nlist.h>
41#include <paths.h>
42#include <pwd.h>
43#include <stdio.h>
44#include <stdlib.h>
45#include <string.h>
46#include <strings.h>
47#include <unistd.h>
48#include <vis.h>
49
50#include "top.h"
51#include "machine.h"
52#include "screen.h"
53#include "utils.h"
54
55#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
56#define SMPUNAMELEN 13
57#define UPUNAMELEN 15
58
59extern struct process_select ps;
60extern char* printable(char *);
61static int smpmode;
62enum displaymodes displaymode;
63static int namelength = 8;
64static int cmdlengthdelta;
65
66/* Prototypes for top internals */
67void quit(int);
68
69/* get_process_info passes back a handle. This is what it looks like: */
70
71struct handle {
72 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
73 int remaining; /* number of pointers remaining */
74};
75
76/* declarations for load_avg */
77#include "loadavg.h"
78
79/* define what weighted cpu is. */
80#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
81 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
82
83/* what we consider to be process size: */
84#define PROCSIZE(pp) ((pp)->ki_size / 1024)
85
86#define RU(pp) (&(pp)->ki_rusage)
87#define RUTOT(pp) \
88 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
89
90
91/* definitions for indices in the nlist array */
92
93/*
94 * These definitions control the format of the per-process area
95 */
96
97static char io_header[] =
98 " PID%s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND";
99
100#define io_Proc_format \
101 "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
102
103static char smp_header_thr[] =
104 " PID%s %-*.*s THR PRI NICE SIZE RES STATE C TIME %6s COMMAND";
105static char smp_header[] =
106 " PID%s %-*.*s " "PRI NICE SIZE RES STATE C TIME %6s COMMAND";
107
108#define smp_Proc_format \
109 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %1x%7s %5.2f%% %.*s"
110
111static char up_header_thr[] =
112 " PID%s %-*.*s THR PRI NICE SIZE RES STATE TIME %6s COMMAND";
113static char up_header[] =
114 " PID%s %-*.*s " "PRI NICE SIZE RES STATE TIME %6s COMMAND";
115
116#define up_Proc_format \
117 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s"
118
119
120/* process state names for the "STATE" column of the display */
121/* the extra nulls in the string "run" are for adding a slash and
122 the processor number when needed */
123
124char *state_abbrev[] = {
125 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
126};
127
128
129static kvm_t *kd;
130
131/* values that we stash away in _init and use in later routines */
132
133static double logcpu;
134
135/* these are retrieved from the kernel in _init */
136
137static load_avg ccpu;
138
139/* these are used in the get_ functions */
140
141static int lastpid;
142
143/* these are for calculating cpu state percentages */
144
145static long cp_time[CPUSTATES];
146static long cp_old[CPUSTATES];
147static long cp_diff[CPUSTATES];
148
149/* these are for detailing the process states */
150
151int process_states[8];
152char *procstatenames[] = {
153 "", " starting, ", " running, ", " sleeping, ", " stopped, ",
154 " zombie, ", " waiting, ", " lock, ",
155 NULL
156};
157
158/* these are for detailing the cpu states */
159
160int cpu_states[CPUSTATES];
161char *cpustatenames[] = {
162 "user", "nice", "system", "interrupt", "idle", NULL
163};
164
165/* these are for detailing the memory statistics */
166
167int memory_stats[7];
168char *memorynames[] = {
169 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
170 "K Free", NULL
171};
172
173int swap_stats[7];
174char *swapnames[] = {
175 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
176 NULL
177};
178
179
180/* these are for keeping track of the proc array */
181
182static int nproc;
183static int onproc = -1;
184static int pref_len;
185static struct kinfo_proc *pbase;
186static struct kinfo_proc **pref;
187static struct kinfo_proc *previous_procs;
188static struct kinfo_proc **previous_pref;
189static int previous_proc_count = 0;
190static int previous_proc_count_max = 0;
191
192/* total number of io operations */
193static long total_inblock;
194static long total_oublock;
195static long total_majflt;
196
197/* these are for getting the memory statistics */
198
199static int pageshift; /* log base 2 of the pagesize */
200
201/* define pagetok in terms of pageshift */
202
203#define pagetok(size) ((size) << pageshift)
204
205/* useful externals */
206long percentages();
207
208#ifdef ORDER
209/*
210 * Sorting orders. The first element is the default.
211 */
212char *ordernames[] = {
213 "cpu", "size", "res", "time", "pri", "threads",
214 "total", "read", "write", "fault", "vcsw", "ivcsw",
215 "jid", NULL
216};
217#endif
218
219static int compare_jid(const void *a, const void *b);
220static int compare_pid(const void *a, const void *b);
221static const char *format_nice(const struct kinfo_proc *pp);
222static void getsysctl(const char *name, void *ptr, size_t len);
223static int swapmode(int *retavail, int *retfree);
224
225int
226machine_init(struct statics *statics)
227{
228 int pagesize;
229 size_t modelen;
230 struct passwd *pw;
231
232 modelen = sizeof(smpmode);
233 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen,
234 NULL, 0) != 0 &&
235 sysctlbyname("kern.smp.active", &smpmode, &modelen,
236 NULL, 0) != 0) ||
237 modelen != sizeof(smpmode))
238 smpmode = 0;
239
240 while ((pw = getpwent()) != NULL) {
241 if (strlen(pw->pw_name) > namelength)
242 namelength = strlen(pw->pw_name);
243 }
244 if (smpmode && namelength > SMPUNAMELEN)
245 namelength = SMPUNAMELEN;
246 else if (namelength > UPUNAMELEN)
247 namelength = UPUNAMELEN;
248
249 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
250 if (kd == NULL)
251 return (-1);
252
253 GETSYSCTL("kern.ccpu", ccpu);
254
255 /* this is used in calculating WCPU -- calculate it ahead of time */
256 logcpu = log(loaddouble(ccpu));
257
258 pbase = NULL;
259 pref = NULL;
260 nproc = 0;
261 onproc = -1;
262
263 /* get the page size and calculate pageshift from it */
264 pagesize = getpagesize();
265 pageshift = 0;
266 while (pagesize > 1) {
267 pageshift++;
268 pagesize >>= 1;
269 }
270
271 /* we only need the amount of log(2)1024 for our conversion */
272 pageshift -= LOG1024;
273
274 /* fill in the statics information */
275 statics->procstate_names = procstatenames;
276 statics->cpustate_names = cpustatenames;
277 statics->memory_names = memorynames;
278 statics->swap_names = swapnames;
279#ifdef ORDER
280 statics->order_names = ordernames;
281#endif
282
283 /* all done! */
284 return (0);
285}
286
287char *
288format_header(char *uname_field)
289{
290 static char Header[128];
291 const char *prehead;
292
293 switch (displaymode) {
294 case DISP_CPU:
295 /*
296 * The logic of picking the right header format seems reverse
297 * here because we only want to display a THR column when
298 * "thread mode" is off (and threads are not listed as
299 * separate lines).
300 */
301 prehead = smpmode ?
302 (ps.thread ? smp_header : smp_header_thr) :
303 (ps.thread ? up_header : up_header_thr);
304 snprintf(Header, sizeof(Header), prehead,
305 ps.jail ? " JID" : "",
306 namelength, namelength, uname_field,
307 ps.wcpu ? "WCPU" : "CPU");
308 break;
309 case DISP_IO:
310 prehead = io_header;
311 snprintf(Header, sizeof(Header), prehead,
312 ps.jail ? " JID" : "",
313 namelength, namelength, uname_field);
314 break;
315 }
316 cmdlengthdelta = strlen(Header) - 7;
317 return (Header);
318}
319
320static int swappgsin = -1;
321static int swappgsout = -1;
322extern struct timeval timeout;
323
324void
325get_system_info(struct system_info *si)
326{
327 long total;
328 struct loadavg sysload;
329 int mib[2];
330 struct timeval boottime;
331 size_t bt_size;
332 int i;
333
334 /* get the cp_time array */
335 GETSYSCTL("kern.cp_time", cp_time);
336 GETSYSCTL("vm.loadavg", sysload);
337 GETSYSCTL("kern.lastpid", lastpid);
338
339 /* convert load averages to doubles */
340 for (i = 0; i < 3; i++)
341 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
342
343 /* convert cp_time counts to percentages */
344 total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
345
346 /* sum memory & swap statistics */
347 {
348 static unsigned int swap_delay = 0;
349 static int swapavail = 0;
350 static int swapfree = 0;
351 static int bufspace = 0;
352 static int nspgsin, nspgsout;
353
354 GETSYSCTL("vfs.bufspace", bufspace);
355 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
356 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
357 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
358 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
359 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
360 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
361 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
362 /* convert memory stats to Kbytes */
363 memory_stats[0] = pagetok(memory_stats[0]);
364 memory_stats[1] = pagetok(memory_stats[1]);
365 memory_stats[2] = pagetok(memory_stats[2]);
366 memory_stats[3] = pagetok(memory_stats[3]);
367 memory_stats[4] = bufspace / 1024;
368 memory_stats[5] = pagetok(memory_stats[5]);
369 memory_stats[6] = -1;
370
371 /* first interval */
372 if (swappgsin < 0) {
373 swap_stats[4] = 0;
374 swap_stats[5] = 0;
375 }
376
377 /* compute differences between old and new swap statistic */
378 else {
379 swap_stats[4] = pagetok(((nspgsin - swappgsin)));
380 swap_stats[5] = pagetok(((nspgsout - swappgsout)));
381 }
382
383 swappgsin = nspgsin;
384 swappgsout = nspgsout;
385
386 /* call CPU heavy swapmode() only for changes */
387 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
388 swap_stats[3] = swapmode(&swapavail, &swapfree);
389 swap_stats[0] = swapavail;
390 swap_stats[1] = swapavail - swapfree;
391 swap_stats[2] = swapfree;
392 }
393 swap_delay = 1;
394 swap_stats[6] = -1;
395 }
396
397 /* set arrays and strings */
398 si->cpustates = cpu_states;
399 si->memory = memory_stats;
400 si->swap = swap_stats;
401
402
403 if (lastpid > 0) {
404 si->last_pid = lastpid;
405 } else {
406 si->last_pid = -1;
407 }
408
409 /*
410 * Print how long system has been up.
411 * (Found by looking getting "boottime" from the kernel)
412 */
413 mib[0] = CTL_KERN;
414 mib[1] = KERN_BOOTTIME;
415 bt_size = sizeof(boottime);
416 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
417 boottime.tv_sec != 0) {
418 si->boottime = boottime;
419 } else {
420 si->boottime.tv_sec = -1;
421 }
422}
423
424#define NOPROC ((void *)-1)
425
426/*
427 * We need to compare data from the old process entry with the new
428 * process entry.
429 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
430 * structure to cache the mapping. We also use a negative cache pointer
431 * of NOPROC to avoid duplicate lookups.
432 * XXX: this could be done when the actual processes are fetched, we do
433 * it here out of laziness.
434 */
435const struct kinfo_proc *
436get_old_proc(struct kinfo_proc *pp)
437{
438 struct kinfo_proc **oldpp, *oldp;
439
440 /*
441 * If this is the first fetch of the kinfo_procs then we don't have
442 * any previous entries.
443 */
444 if (previous_proc_count == 0)
445 return (NULL);
446 /* negative cache? */
447 if (pp->ki_udata == NOPROC)
448 return (NULL);
449 /* cached? */
450 if (pp->ki_udata != NULL)
451 return (pp->ki_udata);
452 /*
453 * Not cached,
454 * 1) look up based on pid.
455 * 2) compare process start.
456 * If we fail here, then setup a negative cache entry, otherwise
457 * cache it.
458 */
459 oldpp = bsearch(&pp, previous_pref, previous_proc_count,
460 sizeof(*previous_pref), compare_pid);
461 if (oldpp == NULL) {
462 pp->ki_udata = NOPROC;
463 return (NULL);
464 }
465 oldp = *oldpp;
466 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
467 pp->ki_udata = NOPROC;
468 return (NULL);
469 }
470 pp->ki_udata = oldp;
471 return (oldp);
472}
473
474/*
475 * Return the total amount of IO done in blocks in/out and faults.
476 * store the values individually in the pointers passed in.
477 */
478long
479get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
480 long *vcsw, long *ivcsw)
481{
482 const struct kinfo_proc *oldp;
483 static struct kinfo_proc dummy;
484 long ret;
485
486 oldp = get_old_proc(pp);
487 if (oldp == NULL) {
488 bzero(&dummy, sizeof(dummy));
489 oldp = &dummy;
490 }
491 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
492 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
493 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
494 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
495 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
496 ret =
497 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
498 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
499 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
500 return (ret);
501}
502
503/*
504 * Return the total number of block in/out and faults by a process.
505 */
506long
507get_io_total(struct kinfo_proc *pp)
508{
509 long dummy;
510
511 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
512}
513
514static struct handle handle;
515
516caddr_t
517get_process_info(struct system_info *si, struct process_select *sel,
518 int (*compare)(const void *, const void *))
519{
520 int i;
521 int total_procs;
522 long p_io;
523 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
524 int active_procs;
525 struct kinfo_proc **prefp;
526 struct kinfo_proc *pp;
527 struct kinfo_proc *prev_pp = NULL;
528
529 /* these are copied out of sel for speed */
530 int show_idle;
531 int show_self;
532 int show_system;
533 int show_uid;
534 int show_command;
535
536 /*
537 * Save the previous process info.
538 */
539 if (previous_proc_count_max < nproc) {
540 free(previous_procs);
541 previous_procs = malloc(nproc * sizeof(*previous_procs));
542 free(previous_pref);
543 previous_pref = malloc(nproc * sizeof(*previous_pref));
544 if (previous_procs == NULL || previous_pref == NULL) {
545 (void) fprintf(stderr, "top: Out of memory.\n");
546 quit(23);
547 }
548 previous_proc_count_max = nproc;
549 }
550 if (nproc) {
551 for (i = 0; i < nproc; i++)
552 previous_pref[i] = &previous_procs[i];
553 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
554 qsort(previous_pref, nproc, sizeof(*previous_pref),
555 compare_pid);
556 }
557 previous_proc_count = nproc;
558
559 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
560 if (nproc > onproc)
561 pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
562 if (pref == NULL || pbase == NULL) {
563 (void) fprintf(stderr, "top: Out of memory.\n");
564 quit(23);
565 }
566 /* get a pointer to the states summary array */
567 si->procstates = process_states;
568
569 /* set up flags which define what we are going to select */
570 show_idle = sel->idle;
571 show_self = sel->self == -1;
572 show_system = sel->system;
573 show_uid = sel->uid != -1;
574 show_command = sel->command != NULL;
575
576 /* count up process states and get pointers to interesting procs */
577 total_procs = 0;
578 active_procs = 0;
579 total_inblock = 0;
580 total_oublock = 0;
581 total_majflt = 0;
582 memset((char *)process_states, 0, sizeof(process_states));
583 prefp = pref;
584 for (pp = pbase, i = 0; i < nproc; pp++, i++) {
585
586 if (pp->ki_stat == 0)
587 /* not in use */
588 continue;
589
590 if (!show_self && pp->ki_pid == sel->self)
591 /* skip self */
592 continue;
593
594 if (!show_system && (pp->ki_flag & P_SYSTEM))
595 /* skip system process */
596 continue;
597
598 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
599 &p_vcsw, &p_ivcsw);
600 total_inblock += p_inblock;
601 total_oublock += p_oublock;
602 total_majflt += p_majflt;
603 total_procs++;
604 process_states[pp->ki_stat]++;
605
606 if (pp->ki_stat == SZOMB)
607 /* skip zombies */
608 continue;
609
610 if (displaymode == DISP_CPU && !show_idle &&
611 (pp->ki_pctcpu == 0 ||
612 pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
613 /* skip idle or non-running processes */
614 continue;
615
616 if (displaymode == DISP_IO && !show_idle && p_io == 0)
617 /* skip processes that aren't doing I/O */
618 continue;
619
620 if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
621 /* skip proc. that don't belong to the selected UID */
622 continue;
623
624 /*
625 * When not showing threads, take the first thread
626 * for output and add the fields that we can from
627 * the rest of the process's threads rather than
628 * using the system's mostly-broken KERN_PROC_PROC.
629 */
630 if (sel->thread || prev_pp == NULL ||
631 prev_pp->ki_pid != pp->ki_pid) {
632 *prefp++ = pp;
633 active_procs++;
634 prev_pp = pp;
635 } else {
636 prev_pp->ki_pctcpu += pp->ki_pctcpu;
637 }
638 }
639
640 /* if requested, sort the "interesting" processes */
641 if (compare != NULL)
642 qsort(pref, active_procs, sizeof(*pref), compare);
643
644 /* remember active and total counts */
645 si->p_total = total_procs;
646 si->p_active = pref_len = active_procs;
647
648 /* pass back a handle */
649 handle.next_proc = pref;
650 handle.remaining = active_procs;
651 return ((caddr_t)&handle);
652}
653
654static char fmt[128]; /* static area where result is built */
655
656char *
657format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
658{
659 struct kinfo_proc *pp;
660 const struct kinfo_proc *oldp;
661 long cputime;
662 double pct;
663 struct handle *hp;
664 char status[16];
665 int state;
666 struct rusage ru, *rup;
667 long p_tot, s_tot;
668 char *proc_fmt, thr_buf[6], jid_buf[6];
669 char *cmdbuf = NULL;
670 char **args;
671
672 /* find and remember the next proc structure */
673 hp = (struct handle *)handle;
674 pp = *(hp->next_proc++);
675 hp->remaining--;
676
677 /* get the process's command name */
24 */
25
26#include <sys/param.h>
27#include <sys/errno.h>
28#include <sys/file.h>
29#include <sys/proc.h>
30#include <sys/resource.h>
31#include <sys/rtprio.h>
32#include <sys/signal.h>
33#include <sys/sysctl.h>
34#include <sys/time.h>
35#include <sys/user.h>
36#include <sys/vmmeter.h>
37
38#include <kvm.h>
39#include <math.h>
40#include <nlist.h>
41#include <paths.h>
42#include <pwd.h>
43#include <stdio.h>
44#include <stdlib.h>
45#include <string.h>
46#include <strings.h>
47#include <unistd.h>
48#include <vis.h>
49
50#include "top.h"
51#include "machine.h"
52#include "screen.h"
53#include "utils.h"
54
55#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
56#define SMPUNAMELEN 13
57#define UPUNAMELEN 15
58
59extern struct process_select ps;
60extern char* printable(char *);
61static int smpmode;
62enum displaymodes displaymode;
63static int namelength = 8;
64static int cmdlengthdelta;
65
66/* Prototypes for top internals */
67void quit(int);
68
69/* get_process_info passes back a handle. This is what it looks like: */
70
71struct handle {
72 struct kinfo_proc **next_proc; /* points to next valid proc pointer */
73 int remaining; /* number of pointers remaining */
74};
75
76/* declarations for load_avg */
77#include "loadavg.h"
78
79/* define what weighted cpu is. */
80#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
81 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
82
83/* what we consider to be process size: */
84#define PROCSIZE(pp) ((pp)->ki_size / 1024)
85
86#define RU(pp) (&(pp)->ki_rusage)
87#define RUTOT(pp) \
88 (RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
89
90
91/* definitions for indices in the nlist array */
92
93/*
94 * These definitions control the format of the per-process area
95 */
96
97static char io_header[] =
98 " PID%s %-*.*s VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND";
99
100#define io_Proc_format \
101 "%5d%s %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
102
103static char smp_header_thr[] =
104 " PID%s %-*.*s THR PRI NICE SIZE RES STATE C TIME %6s COMMAND";
105static char smp_header[] =
106 " PID%s %-*.*s " "PRI NICE SIZE RES STATE C TIME %6s COMMAND";
107
108#define smp_Proc_format \
109 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s %1x%7s %5.2f%% %.*s"
110
111static char up_header_thr[] =
112 " PID%s %-*.*s THR PRI NICE SIZE RES STATE TIME %6s COMMAND";
113static char up_header[] =
114 " PID%s %-*.*s " "PRI NICE SIZE RES STATE TIME %6s COMMAND";
115
116#define up_Proc_format \
117 "%5d%s %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s"
118
119
120/* process state names for the "STATE" column of the display */
121/* the extra nulls in the string "run" are for adding a slash and
122 the processor number when needed */
123
124char *state_abbrev[] = {
125 "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
126};
127
128
129static kvm_t *kd;
130
131/* values that we stash away in _init and use in later routines */
132
133static double logcpu;
134
135/* these are retrieved from the kernel in _init */
136
137static load_avg ccpu;
138
139/* these are used in the get_ functions */
140
141static int lastpid;
142
143/* these are for calculating cpu state percentages */
144
145static long cp_time[CPUSTATES];
146static long cp_old[CPUSTATES];
147static long cp_diff[CPUSTATES];
148
149/* these are for detailing the process states */
150
151int process_states[8];
152char *procstatenames[] = {
153 "", " starting, ", " running, ", " sleeping, ", " stopped, ",
154 " zombie, ", " waiting, ", " lock, ",
155 NULL
156};
157
158/* these are for detailing the cpu states */
159
160int cpu_states[CPUSTATES];
161char *cpustatenames[] = {
162 "user", "nice", "system", "interrupt", "idle", NULL
163};
164
165/* these are for detailing the memory statistics */
166
167int memory_stats[7];
168char *memorynames[] = {
169 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
170 "K Free", NULL
171};
172
173int swap_stats[7];
174char *swapnames[] = {
175 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
176 NULL
177};
178
179
180/* these are for keeping track of the proc array */
181
182static int nproc;
183static int onproc = -1;
184static int pref_len;
185static struct kinfo_proc *pbase;
186static struct kinfo_proc **pref;
187static struct kinfo_proc *previous_procs;
188static struct kinfo_proc **previous_pref;
189static int previous_proc_count = 0;
190static int previous_proc_count_max = 0;
191
192/* total number of io operations */
193static long total_inblock;
194static long total_oublock;
195static long total_majflt;
196
197/* these are for getting the memory statistics */
198
199static int pageshift; /* log base 2 of the pagesize */
200
201/* define pagetok in terms of pageshift */
202
203#define pagetok(size) ((size) << pageshift)
204
205/* useful externals */
206long percentages();
207
208#ifdef ORDER
209/*
210 * Sorting orders. The first element is the default.
211 */
212char *ordernames[] = {
213 "cpu", "size", "res", "time", "pri", "threads",
214 "total", "read", "write", "fault", "vcsw", "ivcsw",
215 "jid", NULL
216};
217#endif
218
219static int compare_jid(const void *a, const void *b);
220static int compare_pid(const void *a, const void *b);
221static const char *format_nice(const struct kinfo_proc *pp);
222static void getsysctl(const char *name, void *ptr, size_t len);
223static int swapmode(int *retavail, int *retfree);
224
225int
226machine_init(struct statics *statics)
227{
228 int pagesize;
229 size_t modelen;
230 struct passwd *pw;
231
232 modelen = sizeof(smpmode);
233 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen,
234 NULL, 0) != 0 &&
235 sysctlbyname("kern.smp.active", &smpmode, &modelen,
236 NULL, 0) != 0) ||
237 modelen != sizeof(smpmode))
238 smpmode = 0;
239
240 while ((pw = getpwent()) != NULL) {
241 if (strlen(pw->pw_name) > namelength)
242 namelength = strlen(pw->pw_name);
243 }
244 if (smpmode && namelength > SMPUNAMELEN)
245 namelength = SMPUNAMELEN;
246 else if (namelength > UPUNAMELEN)
247 namelength = UPUNAMELEN;
248
249 kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
250 if (kd == NULL)
251 return (-1);
252
253 GETSYSCTL("kern.ccpu", ccpu);
254
255 /* this is used in calculating WCPU -- calculate it ahead of time */
256 logcpu = log(loaddouble(ccpu));
257
258 pbase = NULL;
259 pref = NULL;
260 nproc = 0;
261 onproc = -1;
262
263 /* get the page size and calculate pageshift from it */
264 pagesize = getpagesize();
265 pageshift = 0;
266 while (pagesize > 1) {
267 pageshift++;
268 pagesize >>= 1;
269 }
270
271 /* we only need the amount of log(2)1024 for our conversion */
272 pageshift -= LOG1024;
273
274 /* fill in the statics information */
275 statics->procstate_names = procstatenames;
276 statics->cpustate_names = cpustatenames;
277 statics->memory_names = memorynames;
278 statics->swap_names = swapnames;
279#ifdef ORDER
280 statics->order_names = ordernames;
281#endif
282
283 /* all done! */
284 return (0);
285}
286
287char *
288format_header(char *uname_field)
289{
290 static char Header[128];
291 const char *prehead;
292
293 switch (displaymode) {
294 case DISP_CPU:
295 /*
296 * The logic of picking the right header format seems reverse
297 * here because we only want to display a THR column when
298 * "thread mode" is off (and threads are not listed as
299 * separate lines).
300 */
301 prehead = smpmode ?
302 (ps.thread ? smp_header : smp_header_thr) :
303 (ps.thread ? up_header : up_header_thr);
304 snprintf(Header, sizeof(Header), prehead,
305 ps.jail ? " JID" : "",
306 namelength, namelength, uname_field,
307 ps.wcpu ? "WCPU" : "CPU");
308 break;
309 case DISP_IO:
310 prehead = io_header;
311 snprintf(Header, sizeof(Header), prehead,
312 ps.jail ? " JID" : "",
313 namelength, namelength, uname_field);
314 break;
315 }
316 cmdlengthdelta = strlen(Header) - 7;
317 return (Header);
318}
319
320static int swappgsin = -1;
321static int swappgsout = -1;
322extern struct timeval timeout;
323
324void
325get_system_info(struct system_info *si)
326{
327 long total;
328 struct loadavg sysload;
329 int mib[2];
330 struct timeval boottime;
331 size_t bt_size;
332 int i;
333
334 /* get the cp_time array */
335 GETSYSCTL("kern.cp_time", cp_time);
336 GETSYSCTL("vm.loadavg", sysload);
337 GETSYSCTL("kern.lastpid", lastpid);
338
339 /* convert load averages to doubles */
340 for (i = 0; i < 3; i++)
341 si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
342
343 /* convert cp_time counts to percentages */
344 total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
345
346 /* sum memory & swap statistics */
347 {
348 static unsigned int swap_delay = 0;
349 static int swapavail = 0;
350 static int swapfree = 0;
351 static int bufspace = 0;
352 static int nspgsin, nspgsout;
353
354 GETSYSCTL("vfs.bufspace", bufspace);
355 GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
356 GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
357 GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
358 GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
359 GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
360 GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
361 GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
362 /* convert memory stats to Kbytes */
363 memory_stats[0] = pagetok(memory_stats[0]);
364 memory_stats[1] = pagetok(memory_stats[1]);
365 memory_stats[2] = pagetok(memory_stats[2]);
366 memory_stats[3] = pagetok(memory_stats[3]);
367 memory_stats[4] = bufspace / 1024;
368 memory_stats[5] = pagetok(memory_stats[5]);
369 memory_stats[6] = -1;
370
371 /* first interval */
372 if (swappgsin < 0) {
373 swap_stats[4] = 0;
374 swap_stats[5] = 0;
375 }
376
377 /* compute differences between old and new swap statistic */
378 else {
379 swap_stats[4] = pagetok(((nspgsin - swappgsin)));
380 swap_stats[5] = pagetok(((nspgsout - swappgsout)));
381 }
382
383 swappgsin = nspgsin;
384 swappgsout = nspgsout;
385
386 /* call CPU heavy swapmode() only for changes */
387 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
388 swap_stats[3] = swapmode(&swapavail, &swapfree);
389 swap_stats[0] = swapavail;
390 swap_stats[1] = swapavail - swapfree;
391 swap_stats[2] = swapfree;
392 }
393 swap_delay = 1;
394 swap_stats[6] = -1;
395 }
396
397 /* set arrays and strings */
398 si->cpustates = cpu_states;
399 si->memory = memory_stats;
400 si->swap = swap_stats;
401
402
403 if (lastpid > 0) {
404 si->last_pid = lastpid;
405 } else {
406 si->last_pid = -1;
407 }
408
409 /*
410 * Print how long system has been up.
411 * (Found by looking getting "boottime" from the kernel)
412 */
413 mib[0] = CTL_KERN;
414 mib[1] = KERN_BOOTTIME;
415 bt_size = sizeof(boottime);
416 if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
417 boottime.tv_sec != 0) {
418 si->boottime = boottime;
419 } else {
420 si->boottime.tv_sec = -1;
421 }
422}
423
424#define NOPROC ((void *)-1)
425
426/*
427 * We need to compare data from the old process entry with the new
428 * process entry.
429 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
430 * structure to cache the mapping. We also use a negative cache pointer
431 * of NOPROC to avoid duplicate lookups.
432 * XXX: this could be done when the actual processes are fetched, we do
433 * it here out of laziness.
434 */
435const struct kinfo_proc *
436get_old_proc(struct kinfo_proc *pp)
437{
438 struct kinfo_proc **oldpp, *oldp;
439
440 /*
441 * If this is the first fetch of the kinfo_procs then we don't have
442 * any previous entries.
443 */
444 if (previous_proc_count == 0)
445 return (NULL);
446 /* negative cache? */
447 if (pp->ki_udata == NOPROC)
448 return (NULL);
449 /* cached? */
450 if (pp->ki_udata != NULL)
451 return (pp->ki_udata);
452 /*
453 * Not cached,
454 * 1) look up based on pid.
455 * 2) compare process start.
456 * If we fail here, then setup a negative cache entry, otherwise
457 * cache it.
458 */
459 oldpp = bsearch(&pp, previous_pref, previous_proc_count,
460 sizeof(*previous_pref), compare_pid);
461 if (oldpp == NULL) {
462 pp->ki_udata = NOPROC;
463 return (NULL);
464 }
465 oldp = *oldpp;
466 if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
467 pp->ki_udata = NOPROC;
468 return (NULL);
469 }
470 pp->ki_udata = oldp;
471 return (oldp);
472}
473
474/*
475 * Return the total amount of IO done in blocks in/out and faults.
476 * store the values individually in the pointers passed in.
477 */
478long
479get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
480 long *vcsw, long *ivcsw)
481{
482 const struct kinfo_proc *oldp;
483 static struct kinfo_proc dummy;
484 long ret;
485
486 oldp = get_old_proc(pp);
487 if (oldp == NULL) {
488 bzero(&dummy, sizeof(dummy));
489 oldp = &dummy;
490 }
491 *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
492 *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
493 *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
494 *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
495 *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
496 ret =
497 (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
498 (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
499 (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
500 return (ret);
501}
502
503/*
504 * Return the total number of block in/out and faults by a process.
505 */
506long
507get_io_total(struct kinfo_proc *pp)
508{
509 long dummy;
510
511 return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
512}
513
514static struct handle handle;
515
516caddr_t
517get_process_info(struct system_info *si, struct process_select *sel,
518 int (*compare)(const void *, const void *))
519{
520 int i;
521 int total_procs;
522 long p_io;
523 long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
524 int active_procs;
525 struct kinfo_proc **prefp;
526 struct kinfo_proc *pp;
527 struct kinfo_proc *prev_pp = NULL;
528
529 /* these are copied out of sel for speed */
530 int show_idle;
531 int show_self;
532 int show_system;
533 int show_uid;
534 int show_command;
535
536 /*
537 * Save the previous process info.
538 */
539 if (previous_proc_count_max < nproc) {
540 free(previous_procs);
541 previous_procs = malloc(nproc * sizeof(*previous_procs));
542 free(previous_pref);
543 previous_pref = malloc(nproc * sizeof(*previous_pref));
544 if (previous_procs == NULL || previous_pref == NULL) {
545 (void) fprintf(stderr, "top: Out of memory.\n");
546 quit(23);
547 }
548 previous_proc_count_max = nproc;
549 }
550 if (nproc) {
551 for (i = 0; i < nproc; i++)
552 previous_pref[i] = &previous_procs[i];
553 bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
554 qsort(previous_pref, nproc, sizeof(*previous_pref),
555 compare_pid);
556 }
557 previous_proc_count = nproc;
558
559 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
560 if (nproc > onproc)
561 pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
562 if (pref == NULL || pbase == NULL) {
563 (void) fprintf(stderr, "top: Out of memory.\n");
564 quit(23);
565 }
566 /* get a pointer to the states summary array */
567 si->procstates = process_states;
568
569 /* set up flags which define what we are going to select */
570 show_idle = sel->idle;
571 show_self = sel->self == -1;
572 show_system = sel->system;
573 show_uid = sel->uid != -1;
574 show_command = sel->command != NULL;
575
576 /* count up process states and get pointers to interesting procs */
577 total_procs = 0;
578 active_procs = 0;
579 total_inblock = 0;
580 total_oublock = 0;
581 total_majflt = 0;
582 memset((char *)process_states, 0, sizeof(process_states));
583 prefp = pref;
584 for (pp = pbase, i = 0; i < nproc; pp++, i++) {
585
586 if (pp->ki_stat == 0)
587 /* not in use */
588 continue;
589
590 if (!show_self && pp->ki_pid == sel->self)
591 /* skip self */
592 continue;
593
594 if (!show_system && (pp->ki_flag & P_SYSTEM))
595 /* skip system process */
596 continue;
597
598 p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
599 &p_vcsw, &p_ivcsw);
600 total_inblock += p_inblock;
601 total_oublock += p_oublock;
602 total_majflt += p_majflt;
603 total_procs++;
604 process_states[pp->ki_stat]++;
605
606 if (pp->ki_stat == SZOMB)
607 /* skip zombies */
608 continue;
609
610 if (displaymode == DISP_CPU && !show_idle &&
611 (pp->ki_pctcpu == 0 ||
612 pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
613 /* skip idle or non-running processes */
614 continue;
615
616 if (displaymode == DISP_IO && !show_idle && p_io == 0)
617 /* skip processes that aren't doing I/O */
618 continue;
619
620 if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
621 /* skip proc. that don't belong to the selected UID */
622 continue;
623
624 /*
625 * When not showing threads, take the first thread
626 * for output and add the fields that we can from
627 * the rest of the process's threads rather than
628 * using the system's mostly-broken KERN_PROC_PROC.
629 */
630 if (sel->thread || prev_pp == NULL ||
631 prev_pp->ki_pid != pp->ki_pid) {
632 *prefp++ = pp;
633 active_procs++;
634 prev_pp = pp;
635 } else {
636 prev_pp->ki_pctcpu += pp->ki_pctcpu;
637 }
638 }
639
640 /* if requested, sort the "interesting" processes */
641 if (compare != NULL)
642 qsort(pref, active_procs, sizeof(*pref), compare);
643
644 /* remember active and total counts */
645 si->p_total = total_procs;
646 si->p_active = pref_len = active_procs;
647
648 /* pass back a handle */
649 handle.next_proc = pref;
650 handle.remaining = active_procs;
651 return ((caddr_t)&handle);
652}
653
654static char fmt[128]; /* static area where result is built */
655
656char *
657format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
658{
659 struct kinfo_proc *pp;
660 const struct kinfo_proc *oldp;
661 long cputime;
662 double pct;
663 struct handle *hp;
664 char status[16];
665 int state;
666 struct rusage ru, *rup;
667 long p_tot, s_tot;
668 char *proc_fmt, thr_buf[6], jid_buf[6];
669 char *cmdbuf = NULL;
670 char **args;
671
672 /* find and remember the next proc structure */
673 hp = (struct handle *)handle;
674 pp = *(hp->next_proc++);
675 hp->remaining--;
676
677 /* get the process's command name */
678 if ((pp->ki_sflag & PS_INMEM) == 0) {
678 if ((pp->ki_flag & P_INMEM) == 0) {
679 /*
680 * Print swapped processes as <pname>
681 */
682 size_t len;
683
684 len = strlen(pp->ki_comm);
685 if (len > sizeof(pp->ki_comm) - 3)
686 len = sizeof(pp->ki_comm) - 3;
687 memmove(pp->ki_comm + 1, pp->ki_comm, len);
688 pp->ki_comm[0] = '<';
689 pp->ki_comm[len + 1] = '>';
690 pp->ki_comm[len + 2] = '\0';
691 }
692
693 /*
694 * Convert the process's runtime from microseconds to seconds. This
695 * time includes the interrupt time although that is not wanted here.
696 * ps(1) is similarly sloppy.
697 */
698 cputime = (pp->ki_runtime + 500000) / 1000000;
699
700 /* calculate the base for cpu percentages */
701 pct = pctdouble(pp->ki_pctcpu);
702
703 /* generate "STATE" field */
704 switch (state = pp->ki_stat) {
705 case SRUN:
706 if (smpmode && pp->ki_oncpu != 0xff)
707 sprintf(status, "CPU%d", pp->ki_oncpu);
708 else
709 strcpy(status, "RUN");
710 break;
711 case SLOCK:
712 if (pp->ki_kiflag & KI_LOCKBLOCK) {
713 sprintf(status, "*%.6s", pp->ki_lockname);
714 break;
715 }
716 /* fall through */
717 case SSLEEP:
718 if (pp->ki_wmesg != NULL) {
719 sprintf(status, "%.6s", pp->ki_wmesg);
720 break;
721 }
722 /* FALLTHROUGH */
723 default:
724
725 if (state >= 0 &&
726 state < sizeof(state_abbrev) / sizeof(*state_abbrev))
727 sprintf(status, "%.6s", state_abbrev[state]);
728 else
729 sprintf(status, "?%5d", state);
730 break;
731 }
732
733 cmdbuf = (char *)malloc(cmdlengthdelta + 1);
734 if (cmdbuf == NULL) {
735 warn("malloc(%d)", cmdlengthdelta + 1);
736 return NULL;
737 }
738
739 if (!(flags & FMT_SHOWARGS)) {
740 snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm);
741 }
742 else if (pp->ki_args == NULL ||
743 (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL || !(*args))
744 snprintf(cmdbuf, cmdlengthdelta, "[%s]", pp->ki_comm);
745 else {
746 char *src, *dst, *argbuf;
747 char *cmd;
748 size_t argbuflen;
749 size_t len;
750
751 argbuflen = cmdlengthdelta * 4;
752 argbuf = (char *)malloc(argbuflen + 1);
753 if (argbuf == NULL) {
754 warn("malloc(%d)", argbuflen + 1);
755 free(cmdbuf);
756 return NULL;
757 }
758
759 dst = argbuf;
760
761 /* Extract cmd name from argv */
762 cmd = strrchr(*args, '/');
763 if (cmd == NULL)
764 cmd = *args;
765 else
766 cmd++;
767
768 for (; (src = *args++) != NULL; ) {
769 if (*src == '\0')
770 continue;
771 len = (argbuflen - (dst - argbuf) - 1) / 4;
772 strvisx(dst, src, strlen(src) < len ? strlen(src) : len,
773 VIS_NL | VIS_CSTYLE);
774 while (*dst != '\0')
775 dst++;
776 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
777 *dst++ = ' '; /* add delimiting space */
778 }
779 if (dst != argbuf && dst[-1] == ' ')
780 dst--;
781 *dst = '\0';
782
783 if (strcmp(cmd, pp->ki_comm) != 0 )
784 snprintf(cmdbuf, cmdlengthdelta, "%s (%s)",argbuf, \
785 pp->ki_comm);
786 else
787 strlcpy(cmdbuf, argbuf, cmdlengthdelta);
788
789 free(argbuf);
790 }
791
792 if (ps.jail == 0)
793 jid_buf[0] = '\0';
794 else
795 snprintf(jid_buf, sizeof(jid_buf), " %*d",
796 sizeof(jid_buf) - 3, pp->ki_jid);
797
798 if (displaymode == DISP_IO) {
799 oldp = get_old_proc(pp);
800 if (oldp != NULL) {
801 ru.ru_inblock = RU(pp)->ru_inblock -
802 RU(oldp)->ru_inblock;
803 ru.ru_oublock = RU(pp)->ru_oublock -
804 RU(oldp)->ru_oublock;
805 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
806 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
807 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
808 rup = &ru;
809 } else {
810 rup = RU(pp);
811 }
812 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
813 s_tot = total_inblock + total_oublock + total_majflt;
814
815 sprintf(fmt, io_Proc_format,
816 pp->ki_pid,
817 jid_buf,
818 namelength, namelength, (*get_userid)(pp->ki_ruid),
819 rup->ru_nvcsw,
820 rup->ru_nivcsw,
821 rup->ru_inblock,
822 rup->ru_oublock,
823 rup->ru_majflt,
824 p_tot,
825 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
826 screen_width > cmdlengthdelta ?
827 screen_width - cmdlengthdelta : 0,
828 printable(cmdbuf));
829
830 free(cmdbuf);
831
832 return (fmt);
833 }
834
835 /* format this entry */
836 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
837 if (ps.thread != 0)
838 thr_buf[0] = '\0';
839 else
840 snprintf(thr_buf, sizeof(thr_buf), "%*d ",
841 sizeof(thr_buf) - 2, pp->ki_numthreads);
842
843 sprintf(fmt, proc_fmt,
844 pp->ki_pid,
845 jid_buf,
846 namelength, namelength, (*get_userid)(pp->ki_ruid),
847 thr_buf,
848 pp->ki_pri.pri_level - PZERO,
849 format_nice(pp),
850 format_k2(PROCSIZE(pp)),
851 format_k2(pagetok(pp->ki_rssize)),
852 status,
853 smpmode ? pp->ki_lastcpu : 0,
854 format_time(cputime),
855 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
856 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
857 printable(cmdbuf));
858
859 free(cmdbuf);
860
861 /* return the result */
862 return (fmt);
863}
864
865static void
866getsysctl(const char *name, void *ptr, size_t len)
867{
868 size_t nlen = len;
869
870 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
871 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
872 strerror(errno));
873 quit(23);
874 }
875 if (nlen != len) {
876 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
877 name, (unsigned long)len, (unsigned long)nlen);
878 quit(23);
879 }
880}
881
882static const char *
883format_nice(const struct kinfo_proc *pp)
884{
885 const char *fifo, *kthread;
886 int rtpri;
887 static char nicebuf[4 + 1];
888
889 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
890 kthread = (pp->ki_flag & P_KTHREAD) ? "k" : "";
891 switch (PRI_BASE(pp->ki_pri.pri_class)) {
892 case PRI_ITHD:
893 return ("-");
894 case PRI_REALTIME:
895 /*
896 * XXX: the kernel doesn't tell us the original rtprio and
897 * doesn't really know what it was, so to recover it we
898 * must be more chummy with the implementation than the
899 * implementation is with itself. pri_user gives a
900 * constant "base" priority, but is only initialized
901 * properly for user threads. pri_native gives what the
902 * kernel calls the "base" priority, but it isn't constant
903 * since it is changed by priority propagation. pri_native
904 * also isn't properly initialized for all threads, but it
905 * is properly initialized for kernel realtime and idletime
906 * threads. Thus we use pri_user for the base priority of
907 * user threads (it is always correct) and pri_native for
908 * the base priority of kernel realtime and idletime threads
909 * (there is nothing better, and it is usually correct).
910 *
911 * The field width and thus the buffer are too small for
912 * values like "kr31F", but such values shouldn't occur,
913 * and if they do then the tailing "F" is not displayed.
914 */
915 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
916 pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
917 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
918 kthread, rtpri, fifo);
919 break;
920 case PRI_TIMESHARE:
921 if (pp->ki_flag & P_KTHREAD)
922 return ("-");
923 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
924 break;
925 case PRI_IDLE:
926 /* XXX: as above. */
927 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
928 pp->ki_pri.pri_user) - PRI_MIN_IDLE;
929 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
930 kthread, rtpri, fifo);
931 break;
932 default:
933 return ("?");
934 }
935 return (nicebuf);
936}
937
938/* comparison routines for qsort */
939
940static int
941compare_pid(const void *p1, const void *p2)
942{
943 const struct kinfo_proc * const *pp1 = p1;
944 const struct kinfo_proc * const *pp2 = p2;
945
946 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
947 abort();
948
949 return ((*pp1)->ki_pid - (*pp2)->ki_pid);
950}
951
952/*
953 * proc_compare - comparison function for "qsort"
954 * Compares the resource consumption of two processes using five
955 * distinct keys. The keys (in descending order of importance) are:
956 * percent cpu, cpu ticks, state, resident set size, total virtual
957 * memory usage. The process states are ordered as follows (from least
958 * to most important): WAIT, zombie, sleep, stop, start, run. The
959 * array declaration below maps a process state index into a number
960 * that reflects this ordering.
961 */
962
963static int sorted_state[] = {
964 0, /* not used */
965 3, /* sleep */
966 1, /* ABANDONED (WAIT) */
967 6, /* run */
968 5, /* start */
969 2, /* zombie */
970 4 /* stop */
971};
972
973
974#define ORDERKEY_PCTCPU(a, b) do { \
975 long diff; \
976 if (ps.wcpu) \
977 diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \
978 (b))) - \
979 floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \
980 (a))); \
981 else \
982 diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
983 if (diff != 0) \
984 return (diff > 0 ? 1 : -1); \
985} while (0)
986
987#define ORDERKEY_CPTICKS(a, b) do { \
988 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
989 if (diff != 0) \
990 return (diff > 0 ? 1 : -1); \
991} while (0)
992
993#define ORDERKEY_STATE(a, b) do { \
994 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
995 if (diff != 0) \
996 return (diff > 0 ? 1 : -1); \
997} while (0)
998
999#define ORDERKEY_PRIO(a, b) do { \
1000 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1001 if (diff != 0) \
1002 return (diff > 0 ? 1 : -1); \
1003} while (0)
1004
1005#define ORDERKEY_THREADS(a, b) do { \
1006 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1007 if (diff != 0) \
1008 return (diff > 0 ? 1 : -1); \
1009} while (0)
1010
1011#define ORDERKEY_RSSIZE(a, b) do { \
1012 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1013 if (diff != 0) \
1014 return (diff > 0 ? 1 : -1); \
1015} while (0)
1016
1017#define ORDERKEY_MEM(a, b) do { \
1018 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1019 if (diff != 0) \
1020 return (diff > 0 ? 1 : -1); \
1021} while (0)
1022
1023#define ORDERKEY_JID(a, b) do { \
1024 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1025 if (diff != 0) \
1026 return (diff > 0 ? 1 : -1); \
1027} while (0)
1028
1029/* compare_cpu - the comparison function for sorting by cpu percentage */
1030
1031int
1032#ifdef ORDER
1033compare_cpu(void *arg1, void *arg2)
1034#else
1035proc_compare(void *arg1, void *arg2)
1036#endif
1037{
1038 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1039 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1040
1041 ORDERKEY_PCTCPU(p1, p2);
1042 ORDERKEY_CPTICKS(p1, p2);
1043 ORDERKEY_STATE(p1, p2);
1044 ORDERKEY_PRIO(p1, p2);
1045 ORDERKEY_RSSIZE(p1, p2);
1046 ORDERKEY_MEM(p1, p2);
1047
1048 return (0);
1049}
1050
1051#ifdef ORDER
1052/* "cpu" compare routines */
1053int compare_size(), compare_res(), compare_time(), compare_prio(),
1054 compare_threads();
1055
1056/*
1057 * "io" compare routines. Context switches aren't i/o, but are displayed
1058 * on the "io" display.
1059 */
1060int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
1061 compare_vcsw(), compare_ivcsw();
1062
1063int (*compares[])() = {
1064 compare_cpu,
1065 compare_size,
1066 compare_res,
1067 compare_time,
1068 compare_prio,
1069 compare_threads,
1070 compare_iototal,
1071 compare_ioread,
1072 compare_iowrite,
1073 compare_iofault,
1074 compare_vcsw,
1075 compare_ivcsw,
1076 compare_jid,
1077 NULL
1078};
1079
1080/* compare_size - the comparison function for sorting by total memory usage */
1081
1082int
1083compare_size(void *arg1, void *arg2)
1084{
1085 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1086 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1087
1088 ORDERKEY_MEM(p1, p2);
1089 ORDERKEY_RSSIZE(p1, p2);
1090 ORDERKEY_PCTCPU(p1, p2);
1091 ORDERKEY_CPTICKS(p1, p2);
1092 ORDERKEY_STATE(p1, p2);
1093 ORDERKEY_PRIO(p1, p2);
1094
1095 return (0);
1096}
1097
1098/* compare_res - the comparison function for sorting by resident set size */
1099
1100int
1101compare_res(void *arg1, void *arg2)
1102{
1103 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1104 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1105
1106 ORDERKEY_RSSIZE(p1, p2);
1107 ORDERKEY_MEM(p1, p2);
1108 ORDERKEY_PCTCPU(p1, p2);
1109 ORDERKEY_CPTICKS(p1, p2);
1110 ORDERKEY_STATE(p1, p2);
1111 ORDERKEY_PRIO(p1, p2);
1112
1113 return (0);
1114}
1115
1116/* compare_time - the comparison function for sorting by total cpu time */
1117
1118int
1119compare_time(void *arg1, void *arg2)
1120{
1121 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1122 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1123
1124 ORDERKEY_CPTICKS(p1, p2);
1125 ORDERKEY_PCTCPU(p1, p2);
1126 ORDERKEY_STATE(p1, p2);
1127 ORDERKEY_PRIO(p1, p2);
1128 ORDERKEY_RSSIZE(p1, p2);
1129 ORDERKEY_MEM(p1, p2);
1130
1131 return (0);
1132}
1133
1134/* compare_prio - the comparison function for sorting by priority */
1135
1136int
1137compare_prio(void *arg1, void *arg2)
1138{
1139 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1140 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1141
1142 ORDERKEY_PRIO(p1, p2);
1143 ORDERKEY_CPTICKS(p1, p2);
1144 ORDERKEY_PCTCPU(p1, p2);
1145 ORDERKEY_STATE(p1, p2);
1146 ORDERKEY_RSSIZE(p1, p2);
1147 ORDERKEY_MEM(p1, p2);
1148
1149 return (0);
1150}
1151
1152/* compare_threads - the comparison function for sorting by threads */
1153int
1154compare_threads(void *arg1, void *arg2)
1155{
1156 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1157 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1158
1159 ORDERKEY_THREADS(p1, p2);
1160 ORDERKEY_PCTCPU(p1, p2);
1161 ORDERKEY_CPTICKS(p1, p2);
1162 ORDERKEY_STATE(p1, p2);
1163 ORDERKEY_PRIO(p1, p2);
1164 ORDERKEY_RSSIZE(p1, p2);
1165 ORDERKEY_MEM(p1, p2);
1166
1167 return (0);
1168}
1169
1170/* compare_jid - the comparison function for sorting by jid */
1171static int
1172compare_jid(const void *arg1, const void *arg2)
1173{
1174 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1175 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1176
1177 ORDERKEY_JID(p1, p2);
1178 ORDERKEY_PCTCPU(p1, p2);
1179 ORDERKEY_CPTICKS(p1, p2);
1180 ORDERKEY_STATE(p1, p2);
1181 ORDERKEY_PRIO(p1, p2);
1182 ORDERKEY_RSSIZE(p1, p2);
1183 ORDERKEY_MEM(p1, p2);
1184
1185 return (0);
1186}
1187#endif /* ORDER */
1188
1189/* assorted comparison functions for sorting by i/o */
1190
1191int
1192#ifdef ORDER
1193compare_iototal(void *arg1, void *arg2)
1194#else
1195io_compare(void *arg1, void *arg2)
1196#endif
1197{
1198 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1199 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1200
1201 return (get_io_total(p2) - get_io_total(p1));
1202}
1203
1204#ifdef ORDER
1205int
1206compare_ioread(void *arg1, void *arg2)
1207{
1208 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1209 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1210 long dummy, inp1, inp2;
1211
1212 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1213 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1214
1215 return (inp2 - inp1);
1216}
1217
1218int
1219compare_iowrite(void *arg1, void *arg2)
1220{
1221 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1222 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1223 long dummy, oup1, oup2;
1224
1225 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1226 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1227
1228 return (oup2 - oup1);
1229}
1230
1231int
1232compare_iofault(void *arg1, void *arg2)
1233{
1234 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1235 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1236 long dummy, flp1, flp2;
1237
1238 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1239 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1240
1241 return (flp2 - flp1);
1242}
1243
1244int
1245compare_vcsw(void *arg1, void *arg2)
1246{
1247 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1248 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1249 long dummy, flp1, flp2;
1250
1251 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1252 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1253
1254 return (flp2 - flp1);
1255}
1256
1257int
1258compare_ivcsw(void *arg1, void *arg2)
1259{
1260 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1261 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1262 long dummy, flp1, flp2;
1263
1264 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1265 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1266
1267 return (flp2 - flp1);
1268}
1269#endif /* ORDER */
1270
1271/*
1272 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1273 * the process does not exist.
1274 * It is EXTREMLY IMPORTANT that this function work correctly.
1275 * If top runs setuid root (as in SVR4), then this function
1276 * is the only thing that stands in the way of a serious
1277 * security problem. It validates requests for the "kill"
1278 * and "renice" commands.
1279 */
1280
1281int
1282proc_owner(int pid)
1283{
1284 int cnt;
1285 struct kinfo_proc **prefp;
1286 struct kinfo_proc *pp;
1287
1288 prefp = pref;
1289 cnt = pref_len;
1290 while (--cnt >= 0) {
1291 pp = *prefp++;
1292 if (pp->ki_pid == (pid_t)pid)
1293 return ((int)pp->ki_ruid);
1294 }
1295 return (-1);
1296}
1297
1298static int
1299swapmode(int *retavail, int *retfree)
1300{
1301 int n;
1302 int pagesize = getpagesize();
1303 struct kvm_swap swapary[1];
1304
1305 *retavail = 0;
1306 *retfree = 0;
1307
1308#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
1309
1310 n = kvm_getswapinfo(kd, swapary, 1, 0);
1311 if (n < 0 || swapary[0].ksw_total == 0)
1312 return (0);
1313
1314 *retavail = CONVERT(swapary[0].ksw_total);
1315 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1316
1317 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1318 return (n);
1319}
679 /*
680 * Print swapped processes as <pname>
681 */
682 size_t len;
683
684 len = strlen(pp->ki_comm);
685 if (len > sizeof(pp->ki_comm) - 3)
686 len = sizeof(pp->ki_comm) - 3;
687 memmove(pp->ki_comm + 1, pp->ki_comm, len);
688 pp->ki_comm[0] = '<';
689 pp->ki_comm[len + 1] = '>';
690 pp->ki_comm[len + 2] = '\0';
691 }
692
693 /*
694 * Convert the process's runtime from microseconds to seconds. This
695 * time includes the interrupt time although that is not wanted here.
696 * ps(1) is similarly sloppy.
697 */
698 cputime = (pp->ki_runtime + 500000) / 1000000;
699
700 /* calculate the base for cpu percentages */
701 pct = pctdouble(pp->ki_pctcpu);
702
703 /* generate "STATE" field */
704 switch (state = pp->ki_stat) {
705 case SRUN:
706 if (smpmode && pp->ki_oncpu != 0xff)
707 sprintf(status, "CPU%d", pp->ki_oncpu);
708 else
709 strcpy(status, "RUN");
710 break;
711 case SLOCK:
712 if (pp->ki_kiflag & KI_LOCKBLOCK) {
713 sprintf(status, "*%.6s", pp->ki_lockname);
714 break;
715 }
716 /* fall through */
717 case SSLEEP:
718 if (pp->ki_wmesg != NULL) {
719 sprintf(status, "%.6s", pp->ki_wmesg);
720 break;
721 }
722 /* FALLTHROUGH */
723 default:
724
725 if (state >= 0 &&
726 state < sizeof(state_abbrev) / sizeof(*state_abbrev))
727 sprintf(status, "%.6s", state_abbrev[state]);
728 else
729 sprintf(status, "?%5d", state);
730 break;
731 }
732
733 cmdbuf = (char *)malloc(cmdlengthdelta + 1);
734 if (cmdbuf == NULL) {
735 warn("malloc(%d)", cmdlengthdelta + 1);
736 return NULL;
737 }
738
739 if (!(flags & FMT_SHOWARGS)) {
740 snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm);
741 }
742 else if (pp->ki_args == NULL ||
743 (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL || !(*args))
744 snprintf(cmdbuf, cmdlengthdelta, "[%s]", pp->ki_comm);
745 else {
746 char *src, *dst, *argbuf;
747 char *cmd;
748 size_t argbuflen;
749 size_t len;
750
751 argbuflen = cmdlengthdelta * 4;
752 argbuf = (char *)malloc(argbuflen + 1);
753 if (argbuf == NULL) {
754 warn("malloc(%d)", argbuflen + 1);
755 free(cmdbuf);
756 return NULL;
757 }
758
759 dst = argbuf;
760
761 /* Extract cmd name from argv */
762 cmd = strrchr(*args, '/');
763 if (cmd == NULL)
764 cmd = *args;
765 else
766 cmd++;
767
768 for (; (src = *args++) != NULL; ) {
769 if (*src == '\0')
770 continue;
771 len = (argbuflen - (dst - argbuf) - 1) / 4;
772 strvisx(dst, src, strlen(src) < len ? strlen(src) : len,
773 VIS_NL | VIS_CSTYLE);
774 while (*dst != '\0')
775 dst++;
776 if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
777 *dst++ = ' '; /* add delimiting space */
778 }
779 if (dst != argbuf && dst[-1] == ' ')
780 dst--;
781 *dst = '\0';
782
783 if (strcmp(cmd, pp->ki_comm) != 0 )
784 snprintf(cmdbuf, cmdlengthdelta, "%s (%s)",argbuf, \
785 pp->ki_comm);
786 else
787 strlcpy(cmdbuf, argbuf, cmdlengthdelta);
788
789 free(argbuf);
790 }
791
792 if (ps.jail == 0)
793 jid_buf[0] = '\0';
794 else
795 snprintf(jid_buf, sizeof(jid_buf), " %*d",
796 sizeof(jid_buf) - 3, pp->ki_jid);
797
798 if (displaymode == DISP_IO) {
799 oldp = get_old_proc(pp);
800 if (oldp != NULL) {
801 ru.ru_inblock = RU(pp)->ru_inblock -
802 RU(oldp)->ru_inblock;
803 ru.ru_oublock = RU(pp)->ru_oublock -
804 RU(oldp)->ru_oublock;
805 ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
806 ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
807 ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
808 rup = &ru;
809 } else {
810 rup = RU(pp);
811 }
812 p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
813 s_tot = total_inblock + total_oublock + total_majflt;
814
815 sprintf(fmt, io_Proc_format,
816 pp->ki_pid,
817 jid_buf,
818 namelength, namelength, (*get_userid)(pp->ki_ruid),
819 rup->ru_nvcsw,
820 rup->ru_nivcsw,
821 rup->ru_inblock,
822 rup->ru_oublock,
823 rup->ru_majflt,
824 p_tot,
825 s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
826 screen_width > cmdlengthdelta ?
827 screen_width - cmdlengthdelta : 0,
828 printable(cmdbuf));
829
830 free(cmdbuf);
831
832 return (fmt);
833 }
834
835 /* format this entry */
836 proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
837 if (ps.thread != 0)
838 thr_buf[0] = '\0';
839 else
840 snprintf(thr_buf, sizeof(thr_buf), "%*d ",
841 sizeof(thr_buf) - 2, pp->ki_numthreads);
842
843 sprintf(fmt, proc_fmt,
844 pp->ki_pid,
845 jid_buf,
846 namelength, namelength, (*get_userid)(pp->ki_ruid),
847 thr_buf,
848 pp->ki_pri.pri_level - PZERO,
849 format_nice(pp),
850 format_k2(PROCSIZE(pp)),
851 format_k2(pagetok(pp->ki_rssize)),
852 status,
853 smpmode ? pp->ki_lastcpu : 0,
854 format_time(cputime),
855 ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
856 screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
857 printable(cmdbuf));
858
859 free(cmdbuf);
860
861 /* return the result */
862 return (fmt);
863}
864
865static void
866getsysctl(const char *name, void *ptr, size_t len)
867{
868 size_t nlen = len;
869
870 if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
871 fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
872 strerror(errno));
873 quit(23);
874 }
875 if (nlen != len) {
876 fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
877 name, (unsigned long)len, (unsigned long)nlen);
878 quit(23);
879 }
880}
881
882static const char *
883format_nice(const struct kinfo_proc *pp)
884{
885 const char *fifo, *kthread;
886 int rtpri;
887 static char nicebuf[4 + 1];
888
889 fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
890 kthread = (pp->ki_flag & P_KTHREAD) ? "k" : "";
891 switch (PRI_BASE(pp->ki_pri.pri_class)) {
892 case PRI_ITHD:
893 return ("-");
894 case PRI_REALTIME:
895 /*
896 * XXX: the kernel doesn't tell us the original rtprio and
897 * doesn't really know what it was, so to recover it we
898 * must be more chummy with the implementation than the
899 * implementation is with itself. pri_user gives a
900 * constant "base" priority, but is only initialized
901 * properly for user threads. pri_native gives what the
902 * kernel calls the "base" priority, but it isn't constant
903 * since it is changed by priority propagation. pri_native
904 * also isn't properly initialized for all threads, but it
905 * is properly initialized for kernel realtime and idletime
906 * threads. Thus we use pri_user for the base priority of
907 * user threads (it is always correct) and pri_native for
908 * the base priority of kernel realtime and idletime threads
909 * (there is nothing better, and it is usually correct).
910 *
911 * The field width and thus the buffer are too small for
912 * values like "kr31F", but such values shouldn't occur,
913 * and if they do then the tailing "F" is not displayed.
914 */
915 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
916 pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
917 snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
918 kthread, rtpri, fifo);
919 break;
920 case PRI_TIMESHARE:
921 if (pp->ki_flag & P_KTHREAD)
922 return ("-");
923 snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
924 break;
925 case PRI_IDLE:
926 /* XXX: as above. */
927 rtpri = ((pp->ki_flag & P_KTHREAD) ? pp->ki_pri.pri_native :
928 pp->ki_pri.pri_user) - PRI_MIN_IDLE;
929 snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
930 kthread, rtpri, fifo);
931 break;
932 default:
933 return ("?");
934 }
935 return (nicebuf);
936}
937
938/* comparison routines for qsort */
939
940static int
941compare_pid(const void *p1, const void *p2)
942{
943 const struct kinfo_proc * const *pp1 = p1;
944 const struct kinfo_proc * const *pp2 = p2;
945
946 if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
947 abort();
948
949 return ((*pp1)->ki_pid - (*pp2)->ki_pid);
950}
951
952/*
953 * proc_compare - comparison function for "qsort"
954 * Compares the resource consumption of two processes using five
955 * distinct keys. The keys (in descending order of importance) are:
956 * percent cpu, cpu ticks, state, resident set size, total virtual
957 * memory usage. The process states are ordered as follows (from least
958 * to most important): WAIT, zombie, sleep, stop, start, run. The
959 * array declaration below maps a process state index into a number
960 * that reflects this ordering.
961 */
962
963static int sorted_state[] = {
964 0, /* not used */
965 3, /* sleep */
966 1, /* ABANDONED (WAIT) */
967 6, /* run */
968 5, /* start */
969 2, /* zombie */
970 4 /* stop */
971};
972
973
974#define ORDERKEY_PCTCPU(a, b) do { \
975 long diff; \
976 if (ps.wcpu) \
977 diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \
978 (b))) - \
979 floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \
980 (a))); \
981 else \
982 diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
983 if (diff != 0) \
984 return (diff > 0 ? 1 : -1); \
985} while (0)
986
987#define ORDERKEY_CPTICKS(a, b) do { \
988 int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
989 if (diff != 0) \
990 return (diff > 0 ? 1 : -1); \
991} while (0)
992
993#define ORDERKEY_STATE(a, b) do { \
994 int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
995 if (diff != 0) \
996 return (diff > 0 ? 1 : -1); \
997} while (0)
998
999#define ORDERKEY_PRIO(a, b) do { \
1000 int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
1001 if (diff != 0) \
1002 return (diff > 0 ? 1 : -1); \
1003} while (0)
1004
1005#define ORDERKEY_THREADS(a, b) do { \
1006 int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
1007 if (diff != 0) \
1008 return (diff > 0 ? 1 : -1); \
1009} while (0)
1010
1011#define ORDERKEY_RSSIZE(a, b) do { \
1012 long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
1013 if (diff != 0) \
1014 return (diff > 0 ? 1 : -1); \
1015} while (0)
1016
1017#define ORDERKEY_MEM(a, b) do { \
1018 long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
1019 if (diff != 0) \
1020 return (diff > 0 ? 1 : -1); \
1021} while (0)
1022
1023#define ORDERKEY_JID(a, b) do { \
1024 int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
1025 if (diff != 0) \
1026 return (diff > 0 ? 1 : -1); \
1027} while (0)
1028
1029/* compare_cpu - the comparison function for sorting by cpu percentage */
1030
1031int
1032#ifdef ORDER
1033compare_cpu(void *arg1, void *arg2)
1034#else
1035proc_compare(void *arg1, void *arg2)
1036#endif
1037{
1038 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1039 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1040
1041 ORDERKEY_PCTCPU(p1, p2);
1042 ORDERKEY_CPTICKS(p1, p2);
1043 ORDERKEY_STATE(p1, p2);
1044 ORDERKEY_PRIO(p1, p2);
1045 ORDERKEY_RSSIZE(p1, p2);
1046 ORDERKEY_MEM(p1, p2);
1047
1048 return (0);
1049}
1050
1051#ifdef ORDER
1052/* "cpu" compare routines */
1053int compare_size(), compare_res(), compare_time(), compare_prio(),
1054 compare_threads();
1055
1056/*
1057 * "io" compare routines. Context switches aren't i/o, but are displayed
1058 * on the "io" display.
1059 */
1060int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
1061 compare_vcsw(), compare_ivcsw();
1062
1063int (*compares[])() = {
1064 compare_cpu,
1065 compare_size,
1066 compare_res,
1067 compare_time,
1068 compare_prio,
1069 compare_threads,
1070 compare_iototal,
1071 compare_ioread,
1072 compare_iowrite,
1073 compare_iofault,
1074 compare_vcsw,
1075 compare_ivcsw,
1076 compare_jid,
1077 NULL
1078};
1079
1080/* compare_size - the comparison function for sorting by total memory usage */
1081
1082int
1083compare_size(void *arg1, void *arg2)
1084{
1085 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1086 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1087
1088 ORDERKEY_MEM(p1, p2);
1089 ORDERKEY_RSSIZE(p1, p2);
1090 ORDERKEY_PCTCPU(p1, p2);
1091 ORDERKEY_CPTICKS(p1, p2);
1092 ORDERKEY_STATE(p1, p2);
1093 ORDERKEY_PRIO(p1, p2);
1094
1095 return (0);
1096}
1097
1098/* compare_res - the comparison function for sorting by resident set size */
1099
1100int
1101compare_res(void *arg1, void *arg2)
1102{
1103 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1104 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1105
1106 ORDERKEY_RSSIZE(p1, p2);
1107 ORDERKEY_MEM(p1, p2);
1108 ORDERKEY_PCTCPU(p1, p2);
1109 ORDERKEY_CPTICKS(p1, p2);
1110 ORDERKEY_STATE(p1, p2);
1111 ORDERKEY_PRIO(p1, p2);
1112
1113 return (0);
1114}
1115
1116/* compare_time - the comparison function for sorting by total cpu time */
1117
1118int
1119compare_time(void *arg1, void *arg2)
1120{
1121 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1122 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1123
1124 ORDERKEY_CPTICKS(p1, p2);
1125 ORDERKEY_PCTCPU(p1, p2);
1126 ORDERKEY_STATE(p1, p2);
1127 ORDERKEY_PRIO(p1, p2);
1128 ORDERKEY_RSSIZE(p1, p2);
1129 ORDERKEY_MEM(p1, p2);
1130
1131 return (0);
1132}
1133
1134/* compare_prio - the comparison function for sorting by priority */
1135
1136int
1137compare_prio(void *arg1, void *arg2)
1138{
1139 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1140 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1141
1142 ORDERKEY_PRIO(p1, p2);
1143 ORDERKEY_CPTICKS(p1, p2);
1144 ORDERKEY_PCTCPU(p1, p2);
1145 ORDERKEY_STATE(p1, p2);
1146 ORDERKEY_RSSIZE(p1, p2);
1147 ORDERKEY_MEM(p1, p2);
1148
1149 return (0);
1150}
1151
1152/* compare_threads - the comparison function for sorting by threads */
1153int
1154compare_threads(void *arg1, void *arg2)
1155{
1156 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1157 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1158
1159 ORDERKEY_THREADS(p1, p2);
1160 ORDERKEY_PCTCPU(p1, p2);
1161 ORDERKEY_CPTICKS(p1, p2);
1162 ORDERKEY_STATE(p1, p2);
1163 ORDERKEY_PRIO(p1, p2);
1164 ORDERKEY_RSSIZE(p1, p2);
1165 ORDERKEY_MEM(p1, p2);
1166
1167 return (0);
1168}
1169
1170/* compare_jid - the comparison function for sorting by jid */
1171static int
1172compare_jid(const void *arg1, const void *arg2)
1173{
1174 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1175 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1176
1177 ORDERKEY_JID(p1, p2);
1178 ORDERKEY_PCTCPU(p1, p2);
1179 ORDERKEY_CPTICKS(p1, p2);
1180 ORDERKEY_STATE(p1, p2);
1181 ORDERKEY_PRIO(p1, p2);
1182 ORDERKEY_RSSIZE(p1, p2);
1183 ORDERKEY_MEM(p1, p2);
1184
1185 return (0);
1186}
1187#endif /* ORDER */
1188
1189/* assorted comparison functions for sorting by i/o */
1190
1191int
1192#ifdef ORDER
1193compare_iototal(void *arg1, void *arg2)
1194#else
1195io_compare(void *arg1, void *arg2)
1196#endif
1197{
1198 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1199 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1200
1201 return (get_io_total(p2) - get_io_total(p1));
1202}
1203
1204#ifdef ORDER
1205int
1206compare_ioread(void *arg1, void *arg2)
1207{
1208 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1209 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1210 long dummy, inp1, inp2;
1211
1212 (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1213 (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1214
1215 return (inp2 - inp1);
1216}
1217
1218int
1219compare_iowrite(void *arg1, void *arg2)
1220{
1221 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1222 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1223 long dummy, oup1, oup2;
1224
1225 (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1226 (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1227
1228 return (oup2 - oup1);
1229}
1230
1231int
1232compare_iofault(void *arg1, void *arg2)
1233{
1234 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1235 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1236 long dummy, flp1, flp2;
1237
1238 (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1239 (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1240
1241 return (flp2 - flp1);
1242}
1243
1244int
1245compare_vcsw(void *arg1, void *arg2)
1246{
1247 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1248 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1249 long dummy, flp1, flp2;
1250
1251 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1252 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1253
1254 return (flp2 - flp1);
1255}
1256
1257int
1258compare_ivcsw(void *arg1, void *arg2)
1259{
1260 struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1261 struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1262 long dummy, flp1, flp2;
1263
1264 (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1265 (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1266
1267 return (flp2 - flp1);
1268}
1269#endif /* ORDER */
1270
1271/*
1272 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1273 * the process does not exist.
1274 * It is EXTREMLY IMPORTANT that this function work correctly.
1275 * If top runs setuid root (as in SVR4), then this function
1276 * is the only thing that stands in the way of a serious
1277 * security problem. It validates requests for the "kill"
1278 * and "renice" commands.
1279 */
1280
1281int
1282proc_owner(int pid)
1283{
1284 int cnt;
1285 struct kinfo_proc **prefp;
1286 struct kinfo_proc *pp;
1287
1288 prefp = pref;
1289 cnt = pref_len;
1290 while (--cnt >= 0) {
1291 pp = *prefp++;
1292 if (pp->ki_pid == (pid_t)pid)
1293 return ((int)pp->ki_ruid);
1294 }
1295 return (-1);
1296}
1297
1298static int
1299swapmode(int *retavail, int *retfree)
1300{
1301 int n;
1302 int pagesize = getpagesize();
1303 struct kvm_swap swapary[1];
1304
1305 *retavail = 0;
1306 *retfree = 0;
1307
1308#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
1309
1310 n = kvm_getswapinfo(kd, swapary, 1, 0);
1311 if (n < 0 || swapary[0].ksw_total == 0)
1312 return (0);
1313
1314 *retavail = CONVERT(swapary[0].ksw_total);
1315 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1316
1317 n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1318 return (n);
1319}