Deleted Added
full compact
vm_pager.c (58934) vm_pager.c (59249)
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_pager.c 8.6 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_pager.c 8.6 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_pager.c 58934 2000-04-02 15:24:56Z phk $
64 * $FreeBSD: head/sys/vm/vm_pager.c 59249 2000-04-15 05:54:02Z phk $
65 */
66
67/*
68 * Paging space routine stubs. Emulates a matchmaker-like interface
69 * for builtin pagers.
70 */
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/kernel.h>
75#include <sys/vnode.h>
76#include <sys/buf.h>
77#include <sys/ucred.h>
78#include <sys/malloc.h>
79#include <sys/proc.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88MALLOC_DEFINE(M_VMPGDATA, "VM pgdata", "XXX: VM pager private data");
89
90extern struct pagerops defaultpagerops;
91extern struct pagerops swappagerops;
92extern struct pagerops vnodepagerops;
93extern struct pagerops devicepagerops;
94
95int cluster_pbuf_freecnt = -1; /* unlimited to begin with */
96
97static int dead_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
98static vm_object_t dead_pager_alloc __P((void *, vm_ooffset_t, vm_prot_t,
99 vm_ooffset_t));
100static void dead_pager_putpages __P((vm_object_t, vm_page_t *, int, int, int *));
101static boolean_t dead_pager_haspage __P((vm_object_t, vm_pindex_t, int *, int *));
102static void dead_pager_dealloc __P((vm_object_t));
103
104static int
105dead_pager_getpages(obj, ma, count, req)
106 vm_object_t obj;
107 vm_page_t *ma;
108 int count;
109 int req;
110{
111 return VM_PAGER_FAIL;
112}
113
114static vm_object_t
115dead_pager_alloc(handle, size, prot, off)
116 void *handle;
117 vm_ooffset_t size;
118 vm_prot_t prot;
119 vm_ooffset_t off;
120{
121 return NULL;
122}
123
124static void
125dead_pager_putpages(object, m, count, flags, rtvals)
126 vm_object_t object;
127 vm_page_t *m;
128 int count;
129 int flags;
130 int *rtvals;
131{
132 int i;
133
134 for (i = 0; i < count; i++) {
135 rtvals[i] = VM_PAGER_AGAIN;
136 }
137}
138
139static int
140dead_pager_haspage(object, pindex, prev, next)
141 vm_object_t object;
142 vm_pindex_t pindex;
143 int *prev;
144 int *next;
145{
146 if (prev)
147 *prev = 0;
148 if (next)
149 *next = 0;
150 return FALSE;
151}
152
153static void
154dead_pager_dealloc(object)
155 vm_object_t object;
156{
157 return;
158}
159
160static struct pagerops deadpagerops = {
161 NULL,
162 dead_pager_alloc,
163 dead_pager_dealloc,
164 dead_pager_getpages,
165 dead_pager_putpages,
166 dead_pager_haspage,
167 NULL
168};
169
170struct pagerops *pagertab[] = {
171 &defaultpagerops, /* OBJT_DEFAULT */
172 &swappagerops, /* OBJT_SWAP */
173 &vnodepagerops, /* OBJT_VNODE */
174 &devicepagerops, /* OBJT_DEVICE */
175 &deadpagerops /* OBJT_DEAD */
176};
177
178int npagers = sizeof(pagertab) / sizeof(pagertab[0]);
179
180/*
181 * Kernel address space for mapping pages.
182 * Used by pagers where KVAs are needed for IO.
183 *
184 * XXX needs to be large enough to support the number of pending async
185 * cleaning requests (NPENDINGIO == 64) * the maximum swap cluster size
186 * (MAXPHYS == 64k) if you want to get the most efficiency.
187 */
188#define PAGER_MAP_SIZE (8 * 1024 * 1024)
189
190int pager_map_size = PAGER_MAP_SIZE;
191vm_map_t pager_map;
192static int bswneeded;
193static vm_offset_t swapbkva; /* swap buffers kva */
194
195void
196vm_pager_init()
197{
198 struct pagerops **pgops;
199
200 /*
201 * Initialize known pagers
202 */
203 for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
204 if (pgops && ((*pgops)->pgo_init != NULL))
205 (*(*pgops)->pgo_init) ();
206}
207
208void
209vm_pager_bufferinit()
210{
211 struct buf *bp;
212 int i;
213
214 bp = swbuf;
215 /*
216 * Now set up swap and physical I/O buffer headers.
217 */
218 for (i = 0; i < nswbuf; i++, bp++) {
219 TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
220 BUF_LOCKINIT(bp);
221 LIST_INIT(&bp->b_dep);
222 bp->b_rcred = bp->b_wcred = NOCRED;
223 bp->b_xflags = 0;
224 }
225
226 cluster_pbuf_freecnt = nswbuf / 2;
227
228 swapbkva = kmem_alloc_pageable(pager_map, nswbuf * MAXPHYS);
229 if (!swapbkva)
230 panic("Not enough pager_map VM space for physical buffers");
231}
232
233/*
234 * Allocate an instance of a pager of the given type.
235 * Size, protection and offset parameters are passed in for pagers that
236 * need to perform page-level validation (e.g. the device pager).
237 */
238vm_object_t
239vm_pager_allocate(objtype_t type, void *handle, vm_ooffset_t size, vm_prot_t prot,
240 vm_ooffset_t off)
241{
242 struct pagerops *ops;
243
244 ops = pagertab[type];
245 if (ops)
246 return ((*ops->pgo_alloc) (handle, size, prot, off));
247 return (NULL);
248}
249
250void
251vm_pager_deallocate(object)
252 vm_object_t object;
253{
254 (*pagertab[object->type]->pgo_dealloc) (object);
255}
256
257/*
258 * vm_pager_strategy:
259 *
260 * called with no specific spl
261 * Execute strategy routine directly to pager.
262 */
263
264void
265vm_pager_strategy(vm_object_t object, struct buf *bp)
266{
267 if (pagertab[object->type]->pgo_strategy) {
268 (*pagertab[object->type]->pgo_strategy)(object, bp);
269 } else {
270 bp->b_ioflags |= BIO_ERROR;
271 bp->b_error = ENXIO;
65 */
66
67/*
68 * Paging space routine stubs. Emulates a matchmaker-like interface
69 * for builtin pagers.
70 */
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/kernel.h>
75#include <sys/vnode.h>
76#include <sys/buf.h>
77#include <sys/ucred.h>
78#include <sys/malloc.h>
79#include <sys/proc.h>
80
81#include <vm/vm.h>
82#include <vm/vm_param.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pager.h>
86#include <vm/vm_extern.h>
87
88MALLOC_DEFINE(M_VMPGDATA, "VM pgdata", "XXX: VM pager private data");
89
90extern struct pagerops defaultpagerops;
91extern struct pagerops swappagerops;
92extern struct pagerops vnodepagerops;
93extern struct pagerops devicepagerops;
94
95int cluster_pbuf_freecnt = -1; /* unlimited to begin with */
96
97static int dead_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
98static vm_object_t dead_pager_alloc __P((void *, vm_ooffset_t, vm_prot_t,
99 vm_ooffset_t));
100static void dead_pager_putpages __P((vm_object_t, vm_page_t *, int, int, int *));
101static boolean_t dead_pager_haspage __P((vm_object_t, vm_pindex_t, int *, int *));
102static void dead_pager_dealloc __P((vm_object_t));
103
104static int
105dead_pager_getpages(obj, ma, count, req)
106 vm_object_t obj;
107 vm_page_t *ma;
108 int count;
109 int req;
110{
111 return VM_PAGER_FAIL;
112}
113
114static vm_object_t
115dead_pager_alloc(handle, size, prot, off)
116 void *handle;
117 vm_ooffset_t size;
118 vm_prot_t prot;
119 vm_ooffset_t off;
120{
121 return NULL;
122}
123
124static void
125dead_pager_putpages(object, m, count, flags, rtvals)
126 vm_object_t object;
127 vm_page_t *m;
128 int count;
129 int flags;
130 int *rtvals;
131{
132 int i;
133
134 for (i = 0; i < count; i++) {
135 rtvals[i] = VM_PAGER_AGAIN;
136 }
137}
138
139static int
140dead_pager_haspage(object, pindex, prev, next)
141 vm_object_t object;
142 vm_pindex_t pindex;
143 int *prev;
144 int *next;
145{
146 if (prev)
147 *prev = 0;
148 if (next)
149 *next = 0;
150 return FALSE;
151}
152
153static void
154dead_pager_dealloc(object)
155 vm_object_t object;
156{
157 return;
158}
159
160static struct pagerops deadpagerops = {
161 NULL,
162 dead_pager_alloc,
163 dead_pager_dealloc,
164 dead_pager_getpages,
165 dead_pager_putpages,
166 dead_pager_haspage,
167 NULL
168};
169
170struct pagerops *pagertab[] = {
171 &defaultpagerops, /* OBJT_DEFAULT */
172 &swappagerops, /* OBJT_SWAP */
173 &vnodepagerops, /* OBJT_VNODE */
174 &devicepagerops, /* OBJT_DEVICE */
175 &deadpagerops /* OBJT_DEAD */
176};
177
178int npagers = sizeof(pagertab) / sizeof(pagertab[0]);
179
180/*
181 * Kernel address space for mapping pages.
182 * Used by pagers where KVAs are needed for IO.
183 *
184 * XXX needs to be large enough to support the number of pending async
185 * cleaning requests (NPENDINGIO == 64) * the maximum swap cluster size
186 * (MAXPHYS == 64k) if you want to get the most efficiency.
187 */
188#define PAGER_MAP_SIZE (8 * 1024 * 1024)
189
190int pager_map_size = PAGER_MAP_SIZE;
191vm_map_t pager_map;
192static int bswneeded;
193static vm_offset_t swapbkva; /* swap buffers kva */
194
195void
196vm_pager_init()
197{
198 struct pagerops **pgops;
199
200 /*
201 * Initialize known pagers
202 */
203 for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
204 if (pgops && ((*pgops)->pgo_init != NULL))
205 (*(*pgops)->pgo_init) ();
206}
207
208void
209vm_pager_bufferinit()
210{
211 struct buf *bp;
212 int i;
213
214 bp = swbuf;
215 /*
216 * Now set up swap and physical I/O buffer headers.
217 */
218 for (i = 0; i < nswbuf; i++, bp++) {
219 TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
220 BUF_LOCKINIT(bp);
221 LIST_INIT(&bp->b_dep);
222 bp->b_rcred = bp->b_wcred = NOCRED;
223 bp->b_xflags = 0;
224 }
225
226 cluster_pbuf_freecnt = nswbuf / 2;
227
228 swapbkva = kmem_alloc_pageable(pager_map, nswbuf * MAXPHYS);
229 if (!swapbkva)
230 panic("Not enough pager_map VM space for physical buffers");
231}
232
233/*
234 * Allocate an instance of a pager of the given type.
235 * Size, protection and offset parameters are passed in for pagers that
236 * need to perform page-level validation (e.g. the device pager).
237 */
238vm_object_t
239vm_pager_allocate(objtype_t type, void *handle, vm_ooffset_t size, vm_prot_t prot,
240 vm_ooffset_t off)
241{
242 struct pagerops *ops;
243
244 ops = pagertab[type];
245 if (ops)
246 return ((*ops->pgo_alloc) (handle, size, prot, off));
247 return (NULL);
248}
249
250void
251vm_pager_deallocate(object)
252 vm_object_t object;
253{
254 (*pagertab[object->type]->pgo_dealloc) (object);
255}
256
257/*
258 * vm_pager_strategy:
259 *
260 * called with no specific spl
261 * Execute strategy routine directly to pager.
262 */
263
264void
265vm_pager_strategy(vm_object_t object, struct buf *bp)
266{
267 if (pagertab[object->type]->pgo_strategy) {
268 (*pagertab[object->type]->pgo_strategy)(object, bp);
269 } else {
270 bp->b_ioflags |= BIO_ERROR;
271 bp->b_error = ENXIO;
272 biodone(bp);
272 bufdone(bp);
273 }
274}
275
276/*
277 * vm_pager_get_pages() - inline, see vm/vm_pager.h
278 * vm_pager_put_pages() - inline, see vm/vm_pager.h
279 * vm_pager_has_page() - inline, see vm/vm_pager.h
280 * vm_pager_page_inserted() - inline, see vm/vm_pager.h
281 * vm_pager_page_removed() - inline, see vm/vm_pager.h
282 */
283
284#if 0
285/*
286 * vm_pager_sync:
287 *
288 * Called by pageout daemon before going back to sleep.
289 * Gives pagers a chance to clean up any completed async pageing
290 * operations.
291 */
292void
293vm_pager_sync()
294{
295 struct pagerops **pgops;
296
297 for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
298 if (pgops && ((*pgops)->pgo_sync != NULL))
299 (*(*pgops)->pgo_sync) ();
300}
301
302#endif
303
304vm_offset_t
305vm_pager_map_page(m)
306 vm_page_t m;
307{
308 vm_offset_t kva;
309
310 kva = kmem_alloc_wait(pager_map, PAGE_SIZE);
311 pmap_kenter(kva, VM_PAGE_TO_PHYS(m));
312 return (kva);
313}
314
315void
316vm_pager_unmap_page(kva)
317 vm_offset_t kva;
318{
319 pmap_kremove(kva);
320 kmem_free_wakeup(pager_map, kva, PAGE_SIZE);
321}
322
323vm_object_t
324vm_pager_object_lookup(pg_list, handle)
325 register struct pagerlst *pg_list;
326 void *handle;
327{
328 register vm_object_t object;
329
330 for (object = TAILQ_FIRST(pg_list); object != NULL; object = TAILQ_NEXT(object,pager_object_list))
331 if (object->handle == handle)
332 return (object);
333 return (NULL);
334}
335
336/*
337 * initialize a physical buffer
338 */
339
340static void
341initpbuf(struct buf *bp)
342{
343 bp->b_rcred = NOCRED;
344 bp->b_wcred = NOCRED;
345 bp->b_qindex = QUEUE_NONE;
346 bp->b_data = (caddr_t) (MAXPHYS * (bp - swbuf)) + swapbkva;
347 bp->b_kvabase = bp->b_data;
348 bp->b_kvasize = MAXPHYS;
349 bp->b_xflags = 0;
350 bp->b_flags = 0;
351 bp->b_ioflags = 0;
352 bp->b_iodone = NULL;
353 bp->b_error = 0;
354 BUF_LOCK(bp, LK_EXCLUSIVE);
355}
356
357/*
358 * allocate a physical buffer
359 *
360 * There are a limited number (nswbuf) of physical buffers. We need
361 * to make sure that no single subsystem is able to hog all of them,
362 * so each subsystem implements a counter which is typically initialized
363 * to 1/2 nswbuf. getpbuf() decrements this counter in allocation and
364 * increments it on release, and blocks if the counter hits zero. A
365 * subsystem may initialize the counter to -1 to disable the feature,
366 * but it must still be sure to match up all uses of getpbuf() with
367 * relpbuf() using the same variable.
368 *
369 * NOTE: pfreecnt can be NULL, but this 'feature' will be removed
370 * relatively soon when the rest of the subsystems get smart about it. XXX
371 */
372struct buf *
373getpbuf(pfreecnt)
374 int *pfreecnt;
375{
376 int s;
377 struct buf *bp;
378
379 s = splvm();
380
381 for (;;) {
382 if (pfreecnt) {
383 while (*pfreecnt == 0) {
384 tsleep(pfreecnt, PVM, "wswbuf0", 0);
385 }
386 }
387
388 /* get a bp from the swap buffer header pool */
389 if ((bp = TAILQ_FIRST(&bswlist)) != NULL)
390 break;
391
392 bswneeded = 1;
393 tsleep(&bswneeded, PVM, "wswbuf1", 0);
394 /* loop in case someone else grabbed one */
395 }
396 TAILQ_REMOVE(&bswlist, bp, b_freelist);
397 if (pfreecnt)
398 --*pfreecnt;
399 splx(s);
400
401 initpbuf(bp);
402 return bp;
403}
404
405/*
406 * allocate a physical buffer, if one is available.
407 *
408 * Note that there is no NULL hack here - all subsystems using this
409 * call understand how to use pfreecnt.
410 */
411struct buf *
412trypbuf(pfreecnt)
413 int *pfreecnt;
414{
415 int s;
416 struct buf *bp;
417
418 s = splvm();
419 if (*pfreecnt == 0 || (bp = TAILQ_FIRST(&bswlist)) == NULL) {
420 splx(s);
421 return NULL;
422 }
423 TAILQ_REMOVE(&bswlist, bp, b_freelist);
424
425 --*pfreecnt;
426
427 splx(s);
428
429 initpbuf(bp);
430
431 return bp;
432}
433
434/*
435 * release a physical buffer
436 *
437 * NOTE: pfreecnt can be NULL, but this 'feature' will be removed
438 * relatively soon when the rest of the subsystems get smart about it. XXX
439 */
440void
441relpbuf(bp, pfreecnt)
442 struct buf *bp;
443 int *pfreecnt;
444{
445 int s;
446
447 s = splvm();
448
449 if (bp->b_rcred != NOCRED) {
450 crfree(bp->b_rcred);
451 bp->b_rcred = NOCRED;
452 }
453 if (bp->b_wcred != NOCRED) {
454 crfree(bp->b_wcred);
455 bp->b_wcred = NOCRED;
456 }
457
458 if (bp->b_vp)
459 pbrelvp(bp);
460
461 BUF_UNLOCK(bp);
462
463 TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
464
465 if (bswneeded) {
466 bswneeded = 0;
467 wakeup(&bswneeded);
468 }
469 if (pfreecnt) {
470 if (++*pfreecnt == 1)
471 wakeup(pfreecnt);
472 }
473 splx(s);
474}
475
476/********************************************************
477 * CHAINING FUNCTIONS *
478 ********************************************************
479 *
480 * These functions support recursion of I/O operations
481 * on bp's, typically by chaining one or more 'child' bp's
482 * to the parent. Synchronous, asynchronous, and semi-synchronous
483 * chaining is possible.
484 */
485
486/*
487 * vm_pager_chain_iodone:
488 *
489 * io completion routine for child bp. Currently we fudge a bit
490 * on dealing with b_resid. Since users of these routines may issue
491 * multiple children simultaneously, sequencing of the error can be lost.
492 */
493
494static void
495vm_pager_chain_iodone(struct buf *nbp)
496{
497 struct buf *bp;
498
499 if ((bp = nbp->b_chain.parent) != NULL) {
500 if (nbp->b_ioflags & BIO_ERROR) {
501 bp->b_ioflags |= BIO_ERROR;
502 bp->b_error = nbp->b_error;
503 } else if (nbp->b_resid != 0) {
504 bp->b_ioflags |= BIO_ERROR;
505 bp->b_error = EINVAL;
506 } else {
507 bp->b_resid -= nbp->b_bcount;
508 }
509 nbp->b_chain.parent = NULL;
510 --bp->b_chain.count;
511 if (bp->b_flags & B_WANT) {
512 bp->b_flags &= ~B_WANT;
513 wakeup(bp);
514 }
515 if (!bp->b_chain.count && (bp->b_flags & B_AUTOCHAINDONE)) {
516 bp->b_flags &= ~B_AUTOCHAINDONE;
517 if (bp->b_resid != 0 && !(bp->b_ioflags & BIO_ERROR)) {
518 bp->b_ioflags |= BIO_ERROR;
519 bp->b_error = EINVAL;
520 }
273 }
274}
275
276/*
277 * vm_pager_get_pages() - inline, see vm/vm_pager.h
278 * vm_pager_put_pages() - inline, see vm/vm_pager.h
279 * vm_pager_has_page() - inline, see vm/vm_pager.h
280 * vm_pager_page_inserted() - inline, see vm/vm_pager.h
281 * vm_pager_page_removed() - inline, see vm/vm_pager.h
282 */
283
284#if 0
285/*
286 * vm_pager_sync:
287 *
288 * Called by pageout daemon before going back to sleep.
289 * Gives pagers a chance to clean up any completed async pageing
290 * operations.
291 */
292void
293vm_pager_sync()
294{
295 struct pagerops **pgops;
296
297 for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
298 if (pgops && ((*pgops)->pgo_sync != NULL))
299 (*(*pgops)->pgo_sync) ();
300}
301
302#endif
303
304vm_offset_t
305vm_pager_map_page(m)
306 vm_page_t m;
307{
308 vm_offset_t kva;
309
310 kva = kmem_alloc_wait(pager_map, PAGE_SIZE);
311 pmap_kenter(kva, VM_PAGE_TO_PHYS(m));
312 return (kva);
313}
314
315void
316vm_pager_unmap_page(kva)
317 vm_offset_t kva;
318{
319 pmap_kremove(kva);
320 kmem_free_wakeup(pager_map, kva, PAGE_SIZE);
321}
322
323vm_object_t
324vm_pager_object_lookup(pg_list, handle)
325 register struct pagerlst *pg_list;
326 void *handle;
327{
328 register vm_object_t object;
329
330 for (object = TAILQ_FIRST(pg_list); object != NULL; object = TAILQ_NEXT(object,pager_object_list))
331 if (object->handle == handle)
332 return (object);
333 return (NULL);
334}
335
336/*
337 * initialize a physical buffer
338 */
339
340static void
341initpbuf(struct buf *bp)
342{
343 bp->b_rcred = NOCRED;
344 bp->b_wcred = NOCRED;
345 bp->b_qindex = QUEUE_NONE;
346 bp->b_data = (caddr_t) (MAXPHYS * (bp - swbuf)) + swapbkva;
347 bp->b_kvabase = bp->b_data;
348 bp->b_kvasize = MAXPHYS;
349 bp->b_xflags = 0;
350 bp->b_flags = 0;
351 bp->b_ioflags = 0;
352 bp->b_iodone = NULL;
353 bp->b_error = 0;
354 BUF_LOCK(bp, LK_EXCLUSIVE);
355}
356
357/*
358 * allocate a physical buffer
359 *
360 * There are a limited number (nswbuf) of physical buffers. We need
361 * to make sure that no single subsystem is able to hog all of them,
362 * so each subsystem implements a counter which is typically initialized
363 * to 1/2 nswbuf. getpbuf() decrements this counter in allocation and
364 * increments it on release, and blocks if the counter hits zero. A
365 * subsystem may initialize the counter to -1 to disable the feature,
366 * but it must still be sure to match up all uses of getpbuf() with
367 * relpbuf() using the same variable.
368 *
369 * NOTE: pfreecnt can be NULL, but this 'feature' will be removed
370 * relatively soon when the rest of the subsystems get smart about it. XXX
371 */
372struct buf *
373getpbuf(pfreecnt)
374 int *pfreecnt;
375{
376 int s;
377 struct buf *bp;
378
379 s = splvm();
380
381 for (;;) {
382 if (pfreecnt) {
383 while (*pfreecnt == 0) {
384 tsleep(pfreecnt, PVM, "wswbuf0", 0);
385 }
386 }
387
388 /* get a bp from the swap buffer header pool */
389 if ((bp = TAILQ_FIRST(&bswlist)) != NULL)
390 break;
391
392 bswneeded = 1;
393 tsleep(&bswneeded, PVM, "wswbuf1", 0);
394 /* loop in case someone else grabbed one */
395 }
396 TAILQ_REMOVE(&bswlist, bp, b_freelist);
397 if (pfreecnt)
398 --*pfreecnt;
399 splx(s);
400
401 initpbuf(bp);
402 return bp;
403}
404
405/*
406 * allocate a physical buffer, if one is available.
407 *
408 * Note that there is no NULL hack here - all subsystems using this
409 * call understand how to use pfreecnt.
410 */
411struct buf *
412trypbuf(pfreecnt)
413 int *pfreecnt;
414{
415 int s;
416 struct buf *bp;
417
418 s = splvm();
419 if (*pfreecnt == 0 || (bp = TAILQ_FIRST(&bswlist)) == NULL) {
420 splx(s);
421 return NULL;
422 }
423 TAILQ_REMOVE(&bswlist, bp, b_freelist);
424
425 --*pfreecnt;
426
427 splx(s);
428
429 initpbuf(bp);
430
431 return bp;
432}
433
434/*
435 * release a physical buffer
436 *
437 * NOTE: pfreecnt can be NULL, but this 'feature' will be removed
438 * relatively soon when the rest of the subsystems get smart about it. XXX
439 */
440void
441relpbuf(bp, pfreecnt)
442 struct buf *bp;
443 int *pfreecnt;
444{
445 int s;
446
447 s = splvm();
448
449 if (bp->b_rcred != NOCRED) {
450 crfree(bp->b_rcred);
451 bp->b_rcred = NOCRED;
452 }
453 if (bp->b_wcred != NOCRED) {
454 crfree(bp->b_wcred);
455 bp->b_wcred = NOCRED;
456 }
457
458 if (bp->b_vp)
459 pbrelvp(bp);
460
461 BUF_UNLOCK(bp);
462
463 TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
464
465 if (bswneeded) {
466 bswneeded = 0;
467 wakeup(&bswneeded);
468 }
469 if (pfreecnt) {
470 if (++*pfreecnt == 1)
471 wakeup(pfreecnt);
472 }
473 splx(s);
474}
475
476/********************************************************
477 * CHAINING FUNCTIONS *
478 ********************************************************
479 *
480 * These functions support recursion of I/O operations
481 * on bp's, typically by chaining one or more 'child' bp's
482 * to the parent. Synchronous, asynchronous, and semi-synchronous
483 * chaining is possible.
484 */
485
486/*
487 * vm_pager_chain_iodone:
488 *
489 * io completion routine for child bp. Currently we fudge a bit
490 * on dealing with b_resid. Since users of these routines may issue
491 * multiple children simultaneously, sequencing of the error can be lost.
492 */
493
494static void
495vm_pager_chain_iodone(struct buf *nbp)
496{
497 struct buf *bp;
498
499 if ((bp = nbp->b_chain.parent) != NULL) {
500 if (nbp->b_ioflags & BIO_ERROR) {
501 bp->b_ioflags |= BIO_ERROR;
502 bp->b_error = nbp->b_error;
503 } else if (nbp->b_resid != 0) {
504 bp->b_ioflags |= BIO_ERROR;
505 bp->b_error = EINVAL;
506 } else {
507 bp->b_resid -= nbp->b_bcount;
508 }
509 nbp->b_chain.parent = NULL;
510 --bp->b_chain.count;
511 if (bp->b_flags & B_WANT) {
512 bp->b_flags &= ~B_WANT;
513 wakeup(bp);
514 }
515 if (!bp->b_chain.count && (bp->b_flags & B_AUTOCHAINDONE)) {
516 bp->b_flags &= ~B_AUTOCHAINDONE;
517 if (bp->b_resid != 0 && !(bp->b_ioflags & BIO_ERROR)) {
518 bp->b_ioflags |= BIO_ERROR;
519 bp->b_error = EINVAL;
520 }
521 biodone(bp);
521 bufdone(bp);
522 }
523 }
524 nbp->b_flags |= B_DONE;
525 nbp->b_flags &= ~B_ASYNC;
526 relpbuf(nbp, NULL);
527}
528
529/*
530 * getchainbuf:
531 *
532 * Obtain a physical buffer and chain it to its parent buffer. When
533 * I/O completes, the parent buffer will be B_SIGNAL'd. Errors are
534 * automatically propagated to the parent
535 */
536
537struct buf *
538getchainbuf(struct buf *bp, struct vnode *vp, int flags)
539{
540 struct buf *nbp = getpbuf(NULL);
541
542 nbp->b_chain.parent = bp;
543 ++bp->b_chain.count;
544
545 if (bp->b_chain.count > 4)
546 waitchainbuf(bp, 4, 0);
547
548 nbp->b_ioflags = bp->b_ioflags & BIO_ORDERED;
549 nbp->b_flags = flags;
550 nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
551 nbp->b_iodone = vm_pager_chain_iodone;
552
553 crhold(nbp->b_rcred);
554 crhold(nbp->b_wcred);
555
556 if (vp)
557 pbgetvp(vp, nbp);
558 return(nbp);
559}
560
561void
562flushchainbuf(struct buf *nbp)
563{
564 if (nbp->b_bcount) {
565 nbp->b_bufsize = nbp->b_bcount;
566 if (nbp->b_iocmd == BIO_WRITE)
567 nbp->b_dirtyend = nbp->b_bcount;
568 BUF_KERNPROC(nbp);
569 BUF_STRATEGY(nbp);
570 } else {
522 }
523 }
524 nbp->b_flags |= B_DONE;
525 nbp->b_flags &= ~B_ASYNC;
526 relpbuf(nbp, NULL);
527}
528
529/*
530 * getchainbuf:
531 *
532 * Obtain a physical buffer and chain it to its parent buffer. When
533 * I/O completes, the parent buffer will be B_SIGNAL'd. Errors are
534 * automatically propagated to the parent
535 */
536
537struct buf *
538getchainbuf(struct buf *bp, struct vnode *vp, int flags)
539{
540 struct buf *nbp = getpbuf(NULL);
541
542 nbp->b_chain.parent = bp;
543 ++bp->b_chain.count;
544
545 if (bp->b_chain.count > 4)
546 waitchainbuf(bp, 4, 0);
547
548 nbp->b_ioflags = bp->b_ioflags & BIO_ORDERED;
549 nbp->b_flags = flags;
550 nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
551 nbp->b_iodone = vm_pager_chain_iodone;
552
553 crhold(nbp->b_rcred);
554 crhold(nbp->b_wcred);
555
556 if (vp)
557 pbgetvp(vp, nbp);
558 return(nbp);
559}
560
561void
562flushchainbuf(struct buf *nbp)
563{
564 if (nbp->b_bcount) {
565 nbp->b_bufsize = nbp->b_bcount;
566 if (nbp->b_iocmd == BIO_WRITE)
567 nbp->b_dirtyend = nbp->b_bcount;
568 BUF_KERNPROC(nbp);
569 BUF_STRATEGY(nbp);
570 } else {
571 biodone(nbp);
571 bufdone(nbp);
572 }
573}
574
575void
576waitchainbuf(struct buf *bp, int count, int done)
577{
578 int s;
579
580 s = splbio();
581 while (bp->b_chain.count > count) {
582 bp->b_flags |= B_WANT;
583 tsleep(bp, PRIBIO + 4, "bpchain", 0);
584 }
585 if (done) {
586 if (bp->b_resid != 0 && !(bp->b_ioflags & BIO_ERROR)) {
587 bp->b_ioflags |= BIO_ERROR;
588 bp->b_error = EINVAL;
589 }
572 }
573}
574
575void
576waitchainbuf(struct buf *bp, int count, int done)
577{
578 int s;
579
580 s = splbio();
581 while (bp->b_chain.count > count) {
582 bp->b_flags |= B_WANT;
583 tsleep(bp, PRIBIO + 4, "bpchain", 0);
584 }
585 if (done) {
586 if (bp->b_resid != 0 && !(bp->b_ioflags & BIO_ERROR)) {
587 bp->b_ioflags |= BIO_ERROR;
588 bp->b_error = EINVAL;
589 }
590 biodone(bp);
590 bufdone(bp);
591 }
592 splx(s);
593}
594
595void
596autochaindone(struct buf *bp)
597{
598 int s;
599
600 s = splbio();
601 if (bp->b_chain.count == 0)
591 }
592 splx(s);
593}
594
595void
596autochaindone(struct buf *bp)
597{
598 int s;
599
600 s = splbio();
601 if (bp->b_chain.count == 0)
602 biodone(bp);
602 bufdone(bp);
603 else
604 bp->b_flags |= B_AUTOCHAINDONE;
605 splx(s);
606}
607
603 else
604 bp->b_flags |= B_AUTOCHAINDONE;
605 splx(s);
606}
607