Deleted Added
full compact
vm_map.c (95686) vm_map.c (95758)
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_map.c 95686 2002-04-28 23:12:52Z alc $
64 * $FreeBSD: head/sys/vm/vm_map.c 95758 2002-04-29 23:45:41Z jeff $
65 */
66
67/*
68 * Virtual memory mapping module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/ktr.h>
74#include <sys/lock.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/vnode.h>
80#include <sys/resourcevar.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_page.h>
87#include <vm/vm_object.h>
88#include <vm/vm_pager.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_extern.h>
91#include <vm/swap_pager.h>
92#include <vm/uma.h>
93
94/*
95 * Virtual memory maps provide for the mapping, protection,
96 * and sharing of virtual memory objects. In addition,
97 * this module provides for an efficient virtual copy of
98 * memory from one map to another.
99 *
100 * Synchronization is required prior to most operations.
101 *
102 * Maps consist of an ordered doubly-linked list of simple
103 * entries; a single hint is used to speed up lookups.
104 *
105 * Since portions of maps are specified by start/end addresses,
106 * which may not align with existing map entries, all
107 * routines merely "clip" entries to these start/end values.
108 * [That is, an entry is split into two, bordering at a
109 * start or end value.] Note that these clippings may not
110 * always be necessary (as the two resulting entries are then
111 * not changed); however, the clipping is done for convenience.
112 *
113 * As mentioned above, virtual copy operations are performed
114 * by copying VM object references from one map to
115 * another, and then marking both regions as copy-on-write.
116 */
117
118/*
119 * vm_map_startup:
120 *
121 * Initialize the vm_map module. Must be called before
122 * any other vm_map routines.
123 *
124 * Map and entry structures are allocated from the general
125 * purpose memory pool with some exceptions:
126 *
127 * - The kernel map and kmem submap are allocated statically.
128 * - Kernel map entries are allocated out of a static pool.
129 *
130 * These restrictions are necessary since malloc() uses the
131 * maps and requires map entries.
132 */
133
134static uma_zone_t mapentzone;
135static uma_zone_t kmapentzone;
136static uma_zone_t mapzone;
137static uma_zone_t vmspace_zone;
138static struct vm_object kmapentobj;
139static void vmspace_zinit(void *mem, int size);
140static void vmspace_zfini(void *mem, int size);
141static void vm_map_zinit(void *mem, int size);
142static void vm_map_zfini(void *mem, int size);
143static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
144
145#ifdef INVARIANTS
146static void vm_map_zdtor(void *mem, int size, void *arg);
147static void vmspace_zdtor(void *mem, int size, void *arg);
148#endif
149
150void
151vm_map_startup(void)
152{
153 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
154#ifdef INVARIANTS
155 vm_map_zdtor,
156#else
157 NULL,
158#endif
159 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
160 uma_prealloc(mapzone, MAX_KMAP);
161 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
65 */
66
67/*
68 * Virtual memory mapping module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/ktr.h>
74#include <sys/lock.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/vnode.h>
80#include <sys/resourcevar.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_page.h>
87#include <vm/vm_object.h>
88#include <vm/vm_pager.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_extern.h>
91#include <vm/swap_pager.h>
92#include <vm/uma.h>
93
94/*
95 * Virtual memory maps provide for the mapping, protection,
96 * and sharing of virtual memory objects. In addition,
97 * this module provides for an efficient virtual copy of
98 * memory from one map to another.
99 *
100 * Synchronization is required prior to most operations.
101 *
102 * Maps consist of an ordered doubly-linked list of simple
103 * entries; a single hint is used to speed up lookups.
104 *
105 * Since portions of maps are specified by start/end addresses,
106 * which may not align with existing map entries, all
107 * routines merely "clip" entries to these start/end values.
108 * [That is, an entry is split into two, bordering at a
109 * start or end value.] Note that these clippings may not
110 * always be necessary (as the two resulting entries are then
111 * not changed); however, the clipping is done for convenience.
112 *
113 * As mentioned above, virtual copy operations are performed
114 * by copying VM object references from one map to
115 * another, and then marking both regions as copy-on-write.
116 */
117
118/*
119 * vm_map_startup:
120 *
121 * Initialize the vm_map module. Must be called before
122 * any other vm_map routines.
123 *
124 * Map and entry structures are allocated from the general
125 * purpose memory pool with some exceptions:
126 *
127 * - The kernel map and kmem submap are allocated statically.
128 * - Kernel map entries are allocated out of a static pool.
129 *
130 * These restrictions are necessary since malloc() uses the
131 * maps and requires map entries.
132 */
133
134static uma_zone_t mapentzone;
135static uma_zone_t kmapentzone;
136static uma_zone_t mapzone;
137static uma_zone_t vmspace_zone;
138static struct vm_object kmapentobj;
139static void vmspace_zinit(void *mem, int size);
140static void vmspace_zfini(void *mem, int size);
141static void vm_map_zinit(void *mem, int size);
142static void vm_map_zfini(void *mem, int size);
143static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
144
145#ifdef INVARIANTS
146static void vm_map_zdtor(void *mem, int size, void *arg);
147static void vmspace_zdtor(void *mem, int size, void *arg);
148#endif
149
150void
151vm_map_startup(void)
152{
153 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
154#ifdef INVARIANTS
155 vm_map_zdtor,
156#else
157 NULL,
158#endif
159 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
160 uma_prealloc(mapzone, MAX_KMAP);
161 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
162 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
162 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_MTXCLASS);
163 uma_prealloc(kmapentzone, MAX_KMAPENT);
164 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
165 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
166 uma_prealloc(mapentzone, MAX_MAPENT);
167}
168
169static void
170vmspace_zfini(void *mem, int size)
171{
172 struct vmspace *vm;
173
174 vm = (struct vmspace *)mem;
175
176 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
177}
178
179static void
180vmspace_zinit(void *mem, int size)
181{
182 struct vmspace *vm;
183
184 vm = (struct vmspace *)mem;
185
186 vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map));
187}
188
189static void
190vm_map_zfini(void *mem, int size)
191{
192 vm_map_t map;
193
194 GIANT_REQUIRED;
195 map = (vm_map_t)mem;
196
197 lockdestroy(&map->lock);
198}
199
200static void
201vm_map_zinit(void *mem, int size)
202{
203 vm_map_t map;
204
205 GIANT_REQUIRED;
206
207 map = (vm_map_t)mem;
208 map->nentries = 0;
209 map->size = 0;
210 map->infork = 0;
211 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
212}
213
214#ifdef INVARIANTS
215static void
216vmspace_zdtor(void *mem, int size, void *arg)
217{
218 struct vmspace *vm;
219
220 vm = (struct vmspace *)mem;
221
222 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
223}
224static void
225vm_map_zdtor(void *mem, int size, void *arg)
226{
227 vm_map_t map;
228
229 map = (vm_map_t)mem;
230 KASSERT(map->nentries == 0,
231 ("map %p nentries == %d on free.",
232 map, map->nentries));
233 KASSERT(map->size == 0,
234 ("map %p size == %lu on free.",
235 map, (unsigned long)map->size));
236 KASSERT(map->infork == 0,
237 ("map %p infork == %d on free.",
238 map, map->infork));
239}
240#endif /* INVARIANTS */
241
242/*
243 * Allocate a vmspace structure, including a vm_map and pmap,
244 * and initialize those structures. The refcnt is set to 1.
245 * The remaining fields must be initialized by the caller.
246 */
247struct vmspace *
248vmspace_alloc(min, max)
249 vm_offset_t min, max;
250{
251 struct vmspace *vm;
252
253 GIANT_REQUIRED;
254 vm = uma_zalloc(vmspace_zone, M_WAITOK);
255 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
256 _vm_map_init(&vm->vm_map, min, max);
257 pmap_pinit(vmspace_pmap(vm));
258 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
259 vm->vm_refcnt = 1;
260 vm->vm_shm = NULL;
261 vm->vm_freer = NULL;
262 return (vm);
263}
264
265void
266vm_init2(void)
267{
268 uma_zone_set_obj(kmapentzone, &kmapentobj, cnt.v_page_count / 4);
269 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
270#ifdef INVARIANTS
271 vmspace_zdtor,
272#else
273 NULL,
274#endif
275 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
276 pmap_init2();
277 vm_object_init2();
278}
279
280static __inline void
281vmspace_dofree(struct vmspace *vm)
282{
283 CTR1(KTR_VM, "vmspace_free: %p", vm);
284 /*
285 * Lock the map, to wait out all other references to it.
286 * Delete all of the mappings and pages they hold, then call
287 * the pmap module to reclaim anything left.
288 */
289 vm_map_lock(&vm->vm_map);
290 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
291 vm->vm_map.max_offset);
292 vm_map_unlock(&vm->vm_map);
293
294 pmap_release(vmspace_pmap(vm));
295 uma_zfree(vmspace_zone, vm);
296}
297
298void
299vmspace_free(struct vmspace *vm)
300{
301 GIANT_REQUIRED;
302
303 if (vm->vm_refcnt == 0)
304 panic("vmspace_free: attempt to free already freed vmspace");
305
306 if (--vm->vm_refcnt == 0)
307 vmspace_dofree(vm);
308}
309
310void
311vmspace_exitfree(struct proc *p)
312{
313 struct vmspace *vm;
314
315 GIANT_REQUIRED;
316 if (p == p->p_vmspace->vm_freer) {
317 vm = p->p_vmspace;
318 p->p_vmspace = NULL;
319 vmspace_dofree(vm);
320 }
321}
322
323/*
324 * vmspace_swap_count() - count the approximate swap useage in pages for a
325 * vmspace.
326 *
327 * Swap useage is determined by taking the proportional swap used by
328 * VM objects backing the VM map. To make up for fractional losses,
329 * if the VM object has any swap use at all the associated map entries
330 * count for at least 1 swap page.
331 */
332int
333vmspace_swap_count(struct vmspace *vmspace)
334{
335 vm_map_t map = &vmspace->vm_map;
336 vm_map_entry_t cur;
337 int count = 0;
338
339 vm_map_lock_read(map);
340 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
341 vm_object_t object;
342
343 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
344 (object = cur->object.vm_object) != NULL &&
345 object->type == OBJT_SWAP
346 ) {
347 int n = (cur->end - cur->start) / PAGE_SIZE;
348
349 if (object->un_pager.swp.swp_bcount) {
350 count += object->un_pager.swp.swp_bcount *
351 SWAP_META_PAGES * n / object->size + 1;
352 }
353 }
354 }
355 vm_map_unlock_read(map);
356 return (count);
357}
358
359u_char
360vm_map_entry_behavior(struct vm_map_entry *entry)
361{
362 return entry->eflags & MAP_ENTRY_BEHAV_MASK;
363}
364
365void
366vm_map_entry_set_behavior(struct vm_map_entry *entry, u_char behavior)
367{
368 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
369 (behavior & MAP_ENTRY_BEHAV_MASK);
370}
371
372void
373_vm_map_lock(vm_map_t map, const char *file, int line)
374{
375 vm_map_printf("locking map LK_EXCLUSIVE: %p\n", map);
376 if (lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread) != 0)
377 panic("vm_map_lock: failed to get lock");
378 map->timestamp++;
379}
380
381void
382_vm_map_unlock(vm_map_t map, const char *file, int line)
383{
384 vm_map_printf("locking map LK_RELEASE: %p\n", map);
385 lockmgr(&(map)->lock, LK_RELEASE, NULL, curthread);
386}
387
388void
389_vm_map_lock_read(vm_map_t map, const char *file, int line)
390{
391 vm_map_printf("locking map LK_SHARED: %p\n", map);
392 lockmgr(&(map)->lock, LK_SHARED, NULL, curthread);
393}
394
395void
396_vm_map_unlock_read(vm_map_t map, const char *file, int line)
397{
398 vm_map_printf("locking map LK_RELEASE: %p\n", map);
399 lockmgr(&(map)->lock, LK_RELEASE, NULL, curthread);
400}
401
402int
403_vm_map_trylock(vm_map_t map, const char *file, int line)
404{
405
406 return (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL,
407 curthread) == 0);
408}
409
410static __inline__ int
411__vm_map_lock_upgrade(vm_map_t map, struct thread *td) {
412 int error;
413
414 vm_map_printf("locking map LK_EXCLUPGRADE: %p\n", map);
415 error = lockmgr(&map->lock, LK_EXCLUPGRADE, NULL, td);
416 if (error == 0)
417 map->timestamp++;
418 return error;
419}
420
421int
422_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
423{
424 return (__vm_map_lock_upgrade(map, curthread));
425}
426
427void
428_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
429{
430 vm_map_printf("locking map LK_DOWNGRADE: %p\n", map);
431 lockmgr(&map->lock, LK_DOWNGRADE, NULL, curthread);
432}
433
434void
435_vm_map_set_recursive(vm_map_t map, const char *file, int line)
436{
437 mtx_lock((map)->lock.lk_interlock);
438 map->lock.lk_flags |= LK_CANRECURSE;
439 mtx_unlock((map)->lock.lk_interlock);
440}
441
442void
443_vm_map_clear_recursive(vm_map_t map, const char *file, int line)
444{
445 mtx_lock((map)->lock.lk_interlock);
446 map->lock.lk_flags &= ~LK_CANRECURSE;
447 mtx_unlock((map)->lock.lk_interlock);
448}
449
450struct pmap *
451vmspace_pmap(struct vmspace *vmspace)
452{
453 return &vmspace->vm_pmap;
454}
455
456long
457vmspace_resident_count(struct vmspace *vmspace)
458{
459 return pmap_resident_count(vmspace_pmap(vmspace));
460}
461
462/*
463 * vm_map_create:
464 *
465 * Creates and returns a new empty VM map with
466 * the given physical map structure, and having
467 * the given lower and upper address bounds.
468 */
469vm_map_t
470vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
471{
472 vm_map_t result;
473
474 GIANT_REQUIRED;
475
476 result = uma_zalloc(mapzone, M_WAITOK);
477 CTR1(KTR_VM, "vm_map_create: %p", result);
478 _vm_map_init(result, min, max);
479 result->pmap = pmap;
480 return (result);
481}
482
483/*
484 * Initialize an existing vm_map structure
485 * such as that in the vmspace structure.
486 * The pmap is set elsewhere.
487 */
488static void
489_vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
490{
491
492 map->header.next = map->header.prev = &map->header;
493 map->system_map = 0;
494 map->min_offset = min;
495 map->max_offset = max;
496 map->first_free = &map->header;
497 map->hint = &map->header;
498 map->timestamp = 0;
499}
500
501void
502vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
503{
504 _vm_map_init(map, min, max);
505 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
506}
507
508/*
509 * vm_map_entry_dispose: [ internal use only ]
510 *
511 * Inverse of vm_map_entry_create.
512 */
513static void
514vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
515{
516 uma_zfree((map->system_map || !mapentzone)
517 ? kmapentzone : mapentzone, entry);
518}
519
520/*
521 * vm_map_entry_create: [ internal use only ]
522 *
523 * Allocates a VM map entry for insertion.
524 * No entry fields are filled in.
525 */
526static vm_map_entry_t
527vm_map_entry_create(vm_map_t map)
528{
529 vm_map_entry_t new_entry;
530
531 new_entry = uma_zalloc((map->system_map || !mapentzone) ?
532 kmapentzone : mapentzone, M_WAITOK);
533 if (new_entry == NULL)
534 panic("vm_map_entry_create: kernel resources exhausted");
535 return (new_entry);
536}
537
538/*
539 * vm_map_entry_{un,}link:
540 *
541 * Insert/remove entries from maps.
542 */
543static __inline void
544vm_map_entry_link(vm_map_t map,
545 vm_map_entry_t after_where,
546 vm_map_entry_t entry)
547{
548
549 CTR4(KTR_VM,
550 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
551 map->nentries, entry, after_where);
552 map->nentries++;
553 entry->prev = after_where;
554 entry->next = after_where->next;
555 entry->next->prev = entry;
556 after_where->next = entry;
557}
558
559static __inline void
560vm_map_entry_unlink(vm_map_t map,
561 vm_map_entry_t entry)
562{
563 vm_map_entry_t prev = entry->prev;
564 vm_map_entry_t next = entry->next;
565
566 next->prev = prev;
567 prev->next = next;
568 map->nentries--;
569 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
570 map->nentries, entry);
571}
572
573/*
574 * SAVE_HINT:
575 *
576 * Saves the specified entry as the hint for
577 * future lookups.
578 */
579#define SAVE_HINT(map,value) \
580 (map)->hint = (value);
581
582/*
583 * vm_map_lookup_entry: [ internal use only ]
584 *
585 * Finds the map entry containing (or
586 * immediately preceding) the specified address
587 * in the given map; the entry is returned
588 * in the "entry" parameter. The boolean
589 * result indicates whether the address is
590 * actually contained in the map.
591 */
592boolean_t
593vm_map_lookup_entry(
594 vm_map_t map,
595 vm_offset_t address,
596 vm_map_entry_t *entry) /* OUT */
597{
598 vm_map_entry_t cur;
599 vm_map_entry_t last;
600
601 GIANT_REQUIRED;
602 /*
603 * Start looking either from the head of the list, or from the hint.
604 */
605 cur = map->hint;
606
607 if (cur == &map->header)
608 cur = cur->next;
609
610 if (address >= cur->start) {
611 /*
612 * Go from hint to end of list.
613 *
614 * But first, make a quick check to see if we are already looking
615 * at the entry we want (which is usually the case). Note also
616 * that we don't need to save the hint here... it is the same
617 * hint (unless we are at the header, in which case the hint
618 * didn't buy us anything anyway).
619 */
620 last = &map->header;
621 if ((cur != last) && (cur->end > address)) {
622 *entry = cur;
623 return (TRUE);
624 }
625 } else {
626 /*
627 * Go from start to hint, *inclusively*
628 */
629 last = cur->next;
630 cur = map->header.next;
631 }
632
633 /*
634 * Search linearly
635 */
636 while (cur != last) {
637 if (cur->end > address) {
638 if (address >= cur->start) {
639 /*
640 * Save this lookup for future hints, and
641 * return
642 */
643 *entry = cur;
644 SAVE_HINT(map, cur);
645 return (TRUE);
646 }
647 break;
648 }
649 cur = cur->next;
650 }
651 *entry = cur->prev;
652 SAVE_HINT(map, *entry);
653 return (FALSE);
654}
655
656/*
657 * vm_map_insert:
658 *
659 * Inserts the given whole VM object into the target
660 * map at the specified address range. The object's
661 * size should match that of the address range.
662 *
663 * Requires that the map be locked, and leaves it so.
664 *
665 * If object is non-NULL, ref count must be bumped by caller
666 * prior to making call to account for the new entry.
667 */
668int
669vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
670 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
671 int cow)
672{
673 vm_map_entry_t new_entry;
674 vm_map_entry_t prev_entry;
675 vm_map_entry_t temp_entry;
676 vm_eflags_t protoeflags;
677
678 GIANT_REQUIRED;
679
680 /*
681 * Check that the start and end points are not bogus.
682 */
683 if ((start < map->min_offset) || (end > map->max_offset) ||
684 (start >= end))
685 return (KERN_INVALID_ADDRESS);
686
687 /*
688 * Find the entry prior to the proposed starting address; if it's part
689 * of an existing entry, this range is bogus.
690 */
691 if (vm_map_lookup_entry(map, start, &temp_entry))
692 return (KERN_NO_SPACE);
693
694 prev_entry = temp_entry;
695
696 /*
697 * Assert that the next entry doesn't overlap the end point.
698 */
699 if ((prev_entry->next != &map->header) &&
700 (prev_entry->next->start < end))
701 return (KERN_NO_SPACE);
702
703 protoeflags = 0;
704
705 if (cow & MAP_COPY_ON_WRITE)
706 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
707
708 if (cow & MAP_NOFAULT) {
709 protoeflags |= MAP_ENTRY_NOFAULT;
710
711 KASSERT(object == NULL,
712 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
713 }
714 if (cow & MAP_DISABLE_SYNCER)
715 protoeflags |= MAP_ENTRY_NOSYNC;
716 if (cow & MAP_DISABLE_COREDUMP)
717 protoeflags |= MAP_ENTRY_NOCOREDUMP;
718
719 if (object) {
720 /*
721 * When object is non-NULL, it could be shared with another
722 * process. We have to set or clear OBJ_ONEMAPPING
723 * appropriately.
724 */
725 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
726 vm_object_clear_flag(object, OBJ_ONEMAPPING);
727 }
728 }
729 else if ((prev_entry != &map->header) &&
730 (prev_entry->eflags == protoeflags) &&
731 (prev_entry->end == start) &&
732 (prev_entry->wired_count == 0) &&
733 ((prev_entry->object.vm_object == NULL) ||
734 vm_object_coalesce(prev_entry->object.vm_object,
735 OFF_TO_IDX(prev_entry->offset),
736 (vm_size_t)(prev_entry->end - prev_entry->start),
737 (vm_size_t)(end - prev_entry->end)))) {
738 /*
739 * We were able to extend the object. Determine if we
740 * can extend the previous map entry to include the
741 * new range as well.
742 */
743 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
744 (prev_entry->protection == prot) &&
745 (prev_entry->max_protection == max)) {
746 map->size += (end - prev_entry->end);
747 prev_entry->end = end;
748 vm_map_simplify_entry(map, prev_entry);
749 return (KERN_SUCCESS);
750 }
751
752 /*
753 * If we can extend the object but cannot extend the
754 * map entry, we have to create a new map entry. We
755 * must bump the ref count on the extended object to
756 * account for it. object may be NULL.
757 */
758 object = prev_entry->object.vm_object;
759 offset = prev_entry->offset +
760 (prev_entry->end - prev_entry->start);
761 vm_object_reference(object);
762 }
763
764 /*
765 * NOTE: if conditionals fail, object can be NULL here. This occurs
766 * in things like the buffer map where we manage kva but do not manage
767 * backing objects.
768 */
769
770 /*
771 * Create a new entry
772 */
773 new_entry = vm_map_entry_create(map);
774 new_entry->start = start;
775 new_entry->end = end;
776
777 new_entry->eflags = protoeflags;
778 new_entry->object.vm_object = object;
779 new_entry->offset = offset;
780 new_entry->avail_ssize = 0;
781
782 new_entry->inheritance = VM_INHERIT_DEFAULT;
783 new_entry->protection = prot;
784 new_entry->max_protection = max;
785 new_entry->wired_count = 0;
786
787 /*
788 * Insert the new entry into the list
789 */
790 vm_map_entry_link(map, prev_entry, new_entry);
791 map->size += new_entry->end - new_entry->start;
792
793 /*
794 * Update the free space hint
795 */
796 if ((map->first_free == prev_entry) &&
797 (prev_entry->end >= new_entry->start)) {
798 map->first_free = new_entry;
799 }
800
801#if 0
802 /*
803 * Temporarily removed to avoid MAP_STACK panic, due to
804 * MAP_STACK being a huge hack. Will be added back in
805 * when MAP_STACK (and the user stack mapping) is fixed.
806 */
807 /*
808 * It may be possible to simplify the entry
809 */
810 vm_map_simplify_entry(map, new_entry);
811#endif
812
813 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
814 pmap_object_init_pt(map->pmap, start,
815 object, OFF_TO_IDX(offset), end - start,
816 cow & MAP_PREFAULT_PARTIAL);
817 }
818
819 return (KERN_SUCCESS);
820}
821
822/*
823 * Find sufficient space for `length' bytes in the given map, starting at
824 * `start'. The map must be locked. Returns 0 on success, 1 on no space.
825 */
826int
827vm_map_findspace(
828 vm_map_t map,
829 vm_offset_t start,
830 vm_size_t length,
831 vm_offset_t *addr)
832{
833 vm_map_entry_t entry, next;
834 vm_offset_t end;
835
836 GIANT_REQUIRED;
837 if (start < map->min_offset)
838 start = map->min_offset;
839 if (start > map->max_offset)
840 return (1);
841
842 /*
843 * Look for the first possible address; if there's already something
844 * at this address, we have to start after it.
845 */
846 if (start == map->min_offset) {
847 if ((entry = map->first_free) != &map->header)
848 start = entry->end;
849 } else {
850 vm_map_entry_t tmp;
851
852 if (vm_map_lookup_entry(map, start, &tmp))
853 start = tmp->end;
854 entry = tmp;
855 }
856
857 /*
858 * Look through the rest of the map, trying to fit a new region in the
859 * gap between existing regions, or after the very last region.
860 */
861 for (;; start = (entry = next)->end) {
862 /*
863 * Find the end of the proposed new region. Be sure we didn't
864 * go beyond the end of the map, or wrap around the address;
865 * if so, we lose. Otherwise, if this is the last entry, or
866 * if the proposed new region fits before the next entry, we
867 * win.
868 */
869 end = start + length;
870 if (end > map->max_offset || end < start)
871 return (1);
872 next = entry->next;
873 if (next == &map->header || next->start >= end)
874 break;
875 }
876 SAVE_HINT(map, entry);
877 *addr = start;
878 if (map == kernel_map) {
879 vm_offset_t ksize;
880 if ((ksize = round_page(start + length)) > kernel_vm_end) {
881 pmap_growkernel(ksize);
882 }
883 }
884 return (0);
885}
886
887/*
888 * vm_map_find finds an unallocated region in the target address
889 * map with the given length. The search is defined to be
890 * first-fit from the specified address; the region found is
891 * returned in the same parameter.
892 *
893 * If object is non-NULL, ref count must be bumped by caller
894 * prior to making call to account for the new entry.
895 */
896int
897vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
898 vm_offset_t *addr, /* IN/OUT */
899 vm_size_t length, boolean_t find_space, vm_prot_t prot,
900 vm_prot_t max, int cow)
901{
902 vm_offset_t start;
903 int result, s = 0;
904
905 GIANT_REQUIRED;
906
907 start = *addr;
908
909 if (map == kmem_map)
910 s = splvm();
911
912 vm_map_lock(map);
913 if (find_space) {
914 if (vm_map_findspace(map, start, length, addr)) {
915 vm_map_unlock(map);
916 if (map == kmem_map)
917 splx(s);
918 return (KERN_NO_SPACE);
919 }
920 start = *addr;
921 }
922 result = vm_map_insert(map, object, offset,
923 start, start + length, prot, max, cow);
924 vm_map_unlock(map);
925
926 if (map == kmem_map)
927 splx(s);
928
929 return (result);
930}
931
932/*
933 * vm_map_simplify_entry:
934 *
935 * Simplify the given map entry by merging with either neighbor. This
936 * routine also has the ability to merge with both neighbors.
937 *
938 * The map must be locked.
939 *
940 * This routine guarentees that the passed entry remains valid (though
941 * possibly extended). When merging, this routine may delete one or
942 * both neighbors.
943 */
944void
945vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
946{
947 vm_map_entry_t next, prev;
948 vm_size_t prevsize, esize;
949
950 GIANT_REQUIRED;
951
952 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
953 return;
954
955 prev = entry->prev;
956 if (prev != &map->header) {
957 prevsize = prev->end - prev->start;
958 if ( (prev->end == entry->start) &&
959 (prev->object.vm_object == entry->object.vm_object) &&
960 (!prev->object.vm_object ||
961 (prev->offset + prevsize == entry->offset)) &&
962 (prev->eflags == entry->eflags) &&
963 (prev->protection == entry->protection) &&
964 (prev->max_protection == entry->max_protection) &&
965 (prev->inheritance == entry->inheritance) &&
966 (prev->wired_count == entry->wired_count)) {
967 if (map->first_free == prev)
968 map->first_free = entry;
969 if (map->hint == prev)
970 map->hint = entry;
971 vm_map_entry_unlink(map, prev);
972 entry->start = prev->start;
973 entry->offset = prev->offset;
974 if (prev->object.vm_object)
975 vm_object_deallocate(prev->object.vm_object);
976 vm_map_entry_dispose(map, prev);
977 }
978 }
979
980 next = entry->next;
981 if (next != &map->header) {
982 esize = entry->end - entry->start;
983 if ((entry->end == next->start) &&
984 (next->object.vm_object == entry->object.vm_object) &&
985 (!entry->object.vm_object ||
986 (entry->offset + esize == next->offset)) &&
987 (next->eflags == entry->eflags) &&
988 (next->protection == entry->protection) &&
989 (next->max_protection == entry->max_protection) &&
990 (next->inheritance == entry->inheritance) &&
991 (next->wired_count == entry->wired_count)) {
992 if (map->first_free == next)
993 map->first_free = entry;
994 if (map->hint == next)
995 map->hint = entry;
996 vm_map_entry_unlink(map, next);
997 entry->end = next->end;
998 if (next->object.vm_object)
999 vm_object_deallocate(next->object.vm_object);
1000 vm_map_entry_dispose(map, next);
1001 }
1002 }
1003}
1004/*
1005 * vm_map_clip_start: [ internal use only ]
1006 *
1007 * Asserts that the given entry begins at or after
1008 * the specified address; if necessary,
1009 * it splits the entry into two.
1010 */
1011#define vm_map_clip_start(map, entry, startaddr) \
1012{ \
1013 if (startaddr > entry->start) \
1014 _vm_map_clip_start(map, entry, startaddr); \
1015}
1016
1017/*
1018 * This routine is called only when it is known that
1019 * the entry must be split.
1020 */
1021static void
1022_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1023{
1024 vm_map_entry_t new_entry;
1025
1026 /*
1027 * Split off the front portion -- note that we must insert the new
1028 * entry BEFORE this one, so that this entry has the specified
1029 * starting address.
1030 */
1031 vm_map_simplify_entry(map, entry);
1032
1033 /*
1034 * If there is no object backing this entry, we might as well create
1035 * one now. If we defer it, an object can get created after the map
1036 * is clipped, and individual objects will be created for the split-up
1037 * map. This is a bit of a hack, but is also about the best place to
1038 * put this improvement.
1039 */
1040 if (entry->object.vm_object == NULL && !map->system_map) {
1041 vm_object_t object;
1042 object = vm_object_allocate(OBJT_DEFAULT,
1043 atop(entry->end - entry->start));
1044 entry->object.vm_object = object;
1045 entry->offset = 0;
1046 }
1047
1048 new_entry = vm_map_entry_create(map);
1049 *new_entry = *entry;
1050
1051 new_entry->end = start;
1052 entry->offset += (start - entry->start);
1053 entry->start = start;
1054
1055 vm_map_entry_link(map, entry->prev, new_entry);
1056
1057 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1058 vm_object_reference(new_entry->object.vm_object);
1059 }
1060}
1061
1062/*
1063 * vm_map_clip_end: [ internal use only ]
1064 *
1065 * Asserts that the given entry ends at or before
1066 * the specified address; if necessary,
1067 * it splits the entry into two.
1068 */
1069#define vm_map_clip_end(map, entry, endaddr) \
1070{ \
1071 if (endaddr < entry->end) \
1072 _vm_map_clip_end(map, entry, endaddr); \
1073}
1074
1075/*
1076 * This routine is called only when it is known that
1077 * the entry must be split.
1078 */
1079static void
1080_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1081{
1082 vm_map_entry_t new_entry;
1083
1084 /*
1085 * If there is no object backing this entry, we might as well create
1086 * one now. If we defer it, an object can get created after the map
1087 * is clipped, and individual objects will be created for the split-up
1088 * map. This is a bit of a hack, but is also about the best place to
1089 * put this improvement.
1090 */
1091 if (entry->object.vm_object == NULL && !map->system_map) {
1092 vm_object_t object;
1093 object = vm_object_allocate(OBJT_DEFAULT,
1094 atop(entry->end - entry->start));
1095 entry->object.vm_object = object;
1096 entry->offset = 0;
1097 }
1098
1099 /*
1100 * Create a new entry and insert it AFTER the specified entry
1101 */
1102 new_entry = vm_map_entry_create(map);
1103 *new_entry = *entry;
1104
1105 new_entry->start = entry->end = end;
1106 new_entry->offset += (end - entry->start);
1107
1108 vm_map_entry_link(map, entry, new_entry);
1109
1110 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1111 vm_object_reference(new_entry->object.vm_object);
1112 }
1113}
1114
1115/*
1116 * VM_MAP_RANGE_CHECK: [ internal use only ]
1117 *
1118 * Asserts that the starting and ending region
1119 * addresses fall within the valid range of the map.
1120 */
1121#define VM_MAP_RANGE_CHECK(map, start, end) \
1122 { \
1123 if (start < vm_map_min(map)) \
1124 start = vm_map_min(map); \
1125 if (end > vm_map_max(map)) \
1126 end = vm_map_max(map); \
1127 if (start > end) \
1128 start = end; \
1129 }
1130
1131/*
1132 * vm_map_submap: [ kernel use only ]
1133 *
1134 * Mark the given range as handled by a subordinate map.
1135 *
1136 * This range must have been created with vm_map_find,
1137 * and no other operations may have been performed on this
1138 * range prior to calling vm_map_submap.
1139 *
1140 * Only a limited number of operations can be performed
1141 * within this rage after calling vm_map_submap:
1142 * vm_fault
1143 * [Don't try vm_map_copy!]
1144 *
1145 * To remove a submapping, one must first remove the
1146 * range from the superior map, and then destroy the
1147 * submap (if desired). [Better yet, don't try it.]
1148 */
1149int
1150vm_map_submap(
1151 vm_map_t map,
1152 vm_offset_t start,
1153 vm_offset_t end,
1154 vm_map_t submap)
1155{
1156 vm_map_entry_t entry;
1157 int result = KERN_INVALID_ARGUMENT;
1158
1159 GIANT_REQUIRED;
1160
1161 vm_map_lock(map);
1162
1163 VM_MAP_RANGE_CHECK(map, start, end);
1164
1165 if (vm_map_lookup_entry(map, start, &entry)) {
1166 vm_map_clip_start(map, entry, start);
1167 } else
1168 entry = entry->next;
1169
1170 vm_map_clip_end(map, entry, end);
1171
1172 if ((entry->start == start) && (entry->end == end) &&
1173 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1174 (entry->object.vm_object == NULL)) {
1175 entry->object.sub_map = submap;
1176 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1177 result = KERN_SUCCESS;
1178 }
1179 vm_map_unlock(map);
1180
1181 return (result);
1182}
1183
1184/*
1185 * vm_map_protect:
1186 *
1187 * Sets the protection of the specified address
1188 * region in the target map. If "set_max" is
1189 * specified, the maximum protection is to be set;
1190 * otherwise, only the current protection is affected.
1191 */
1192int
1193vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1194 vm_prot_t new_prot, boolean_t set_max)
1195{
1196 vm_map_entry_t current;
1197 vm_map_entry_t entry;
1198
1199 GIANT_REQUIRED;
1200 vm_map_lock(map);
1201
1202 VM_MAP_RANGE_CHECK(map, start, end);
1203
1204 if (vm_map_lookup_entry(map, start, &entry)) {
1205 vm_map_clip_start(map, entry, start);
1206 } else {
1207 entry = entry->next;
1208 }
1209
1210 /*
1211 * Make a first pass to check for protection violations.
1212 */
1213 current = entry;
1214 while ((current != &map->header) && (current->start < end)) {
1215 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1216 vm_map_unlock(map);
1217 return (KERN_INVALID_ARGUMENT);
1218 }
1219 if ((new_prot & current->max_protection) != new_prot) {
1220 vm_map_unlock(map);
1221 return (KERN_PROTECTION_FAILURE);
1222 }
1223 current = current->next;
1224 }
1225
1226 /*
1227 * Go back and fix up protections. [Note that clipping is not
1228 * necessary the second time.]
1229 */
1230 current = entry;
1231 while ((current != &map->header) && (current->start < end)) {
1232 vm_prot_t old_prot;
1233
1234 vm_map_clip_end(map, current, end);
1235
1236 old_prot = current->protection;
1237 if (set_max)
1238 current->protection =
1239 (current->max_protection = new_prot) &
1240 old_prot;
1241 else
1242 current->protection = new_prot;
1243
1244 /*
1245 * Update physical map if necessary. Worry about copy-on-write
1246 * here -- CHECK THIS XXX
1247 */
1248 if (current->protection != old_prot) {
1249#define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1250 VM_PROT_ALL)
1251 pmap_protect(map->pmap, current->start,
1252 current->end,
1253 current->protection & MASK(current));
1254#undef MASK
1255 }
1256 vm_map_simplify_entry(map, current);
1257 current = current->next;
1258 }
1259 vm_map_unlock(map);
1260 return (KERN_SUCCESS);
1261}
1262
1263/*
1264 * vm_map_madvise:
1265 *
1266 * This routine traverses a processes map handling the madvise
1267 * system call. Advisories are classified as either those effecting
1268 * the vm_map_entry structure, or those effecting the underlying
1269 * objects.
1270 */
1271int
1272vm_map_madvise(
1273 vm_map_t map,
1274 vm_offset_t start,
1275 vm_offset_t end,
1276 int behav)
1277{
1278 vm_map_entry_t current, entry;
1279 int modify_map = 0;
1280
1281 GIANT_REQUIRED;
1282
1283 /*
1284 * Some madvise calls directly modify the vm_map_entry, in which case
1285 * we need to use an exclusive lock on the map and we need to perform
1286 * various clipping operations. Otherwise we only need a read-lock
1287 * on the map.
1288 */
1289 switch(behav) {
1290 case MADV_NORMAL:
1291 case MADV_SEQUENTIAL:
1292 case MADV_RANDOM:
1293 case MADV_NOSYNC:
1294 case MADV_AUTOSYNC:
1295 case MADV_NOCORE:
1296 case MADV_CORE:
1297 modify_map = 1;
1298 vm_map_lock(map);
1299 break;
1300 case MADV_WILLNEED:
1301 case MADV_DONTNEED:
1302 case MADV_FREE:
1303 vm_map_lock_read(map);
1304 break;
1305 default:
1306 return (KERN_INVALID_ARGUMENT);
1307 }
1308
1309 /*
1310 * Locate starting entry and clip if necessary.
1311 */
1312 VM_MAP_RANGE_CHECK(map, start, end);
1313
1314 if (vm_map_lookup_entry(map, start, &entry)) {
1315 if (modify_map)
1316 vm_map_clip_start(map, entry, start);
1317 } else {
1318 entry = entry->next;
1319 }
1320
1321 if (modify_map) {
1322 /*
1323 * madvise behaviors that are implemented in the vm_map_entry.
1324 *
1325 * We clip the vm_map_entry so that behavioral changes are
1326 * limited to the specified address range.
1327 */
1328 for (current = entry;
1329 (current != &map->header) && (current->start < end);
1330 current = current->next
1331 ) {
1332 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1333 continue;
1334
1335 vm_map_clip_end(map, current, end);
1336
1337 switch (behav) {
1338 case MADV_NORMAL:
1339 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1340 break;
1341 case MADV_SEQUENTIAL:
1342 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1343 break;
1344 case MADV_RANDOM:
1345 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1346 break;
1347 case MADV_NOSYNC:
1348 current->eflags |= MAP_ENTRY_NOSYNC;
1349 break;
1350 case MADV_AUTOSYNC:
1351 current->eflags &= ~MAP_ENTRY_NOSYNC;
1352 break;
1353 case MADV_NOCORE:
1354 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1355 break;
1356 case MADV_CORE:
1357 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1358 break;
1359 default:
1360 break;
1361 }
1362 vm_map_simplify_entry(map, current);
1363 }
1364 vm_map_unlock(map);
1365 } else {
1366 vm_pindex_t pindex;
1367 int count;
1368
1369 /*
1370 * madvise behaviors that are implemented in the underlying
1371 * vm_object.
1372 *
1373 * Since we don't clip the vm_map_entry, we have to clip
1374 * the vm_object pindex and count.
1375 */
1376 for (current = entry;
1377 (current != &map->header) && (current->start < end);
1378 current = current->next
1379 ) {
1380 vm_offset_t useStart;
1381
1382 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1383 continue;
1384
1385 pindex = OFF_TO_IDX(current->offset);
1386 count = atop(current->end - current->start);
1387 useStart = current->start;
1388
1389 if (current->start < start) {
1390 pindex += atop(start - current->start);
1391 count -= atop(start - current->start);
1392 useStart = start;
1393 }
1394 if (current->end > end)
1395 count -= atop(current->end - end);
1396
1397 if (count <= 0)
1398 continue;
1399
1400 vm_object_madvise(current->object.vm_object,
1401 pindex, count, behav);
1402 if (behav == MADV_WILLNEED) {
1403 pmap_object_init_pt(
1404 map->pmap,
1405 useStart,
1406 current->object.vm_object,
1407 pindex,
1408 (count << PAGE_SHIFT),
1409 MAP_PREFAULT_MADVISE
1410 );
1411 }
1412 }
1413 vm_map_unlock_read(map);
1414 }
1415 return (0);
1416}
1417
1418
1419/*
1420 * vm_map_inherit:
1421 *
1422 * Sets the inheritance of the specified address
1423 * range in the target map. Inheritance
1424 * affects how the map will be shared with
1425 * child maps at the time of vm_map_fork.
1426 */
1427int
1428vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1429 vm_inherit_t new_inheritance)
1430{
1431 vm_map_entry_t entry;
1432 vm_map_entry_t temp_entry;
1433
1434 GIANT_REQUIRED;
1435
1436 switch (new_inheritance) {
1437 case VM_INHERIT_NONE:
1438 case VM_INHERIT_COPY:
1439 case VM_INHERIT_SHARE:
1440 break;
1441 default:
1442 return (KERN_INVALID_ARGUMENT);
1443 }
1444
1445 vm_map_lock(map);
1446
1447 VM_MAP_RANGE_CHECK(map, start, end);
1448
1449 if (vm_map_lookup_entry(map, start, &temp_entry)) {
1450 entry = temp_entry;
1451 vm_map_clip_start(map, entry, start);
1452 } else
1453 entry = temp_entry->next;
1454
1455 while ((entry != &map->header) && (entry->start < end)) {
1456 vm_map_clip_end(map, entry, end);
1457
1458 entry->inheritance = new_inheritance;
1459
1460 vm_map_simplify_entry(map, entry);
1461
1462 entry = entry->next;
1463 }
1464
1465 vm_map_unlock(map);
1466 return (KERN_SUCCESS);
1467}
1468
1469/*
1470 * Implement the semantics of mlock
1471 */
1472int
1473vm_map_user_pageable(
1474 vm_map_t map,
1475 vm_offset_t start,
1476 vm_offset_t end,
1477 boolean_t new_pageable)
1478{
1479 vm_map_entry_t entry;
1480 vm_map_entry_t start_entry;
1481 vm_offset_t estart;
1482 vm_offset_t eend;
1483 int rv;
1484
1485 vm_map_lock(map);
1486 VM_MAP_RANGE_CHECK(map, start, end);
1487
1488 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1489 vm_map_unlock(map);
1490 return (KERN_INVALID_ADDRESS);
1491 }
1492
1493 if (new_pageable) {
1494
1495 entry = start_entry;
1496 vm_map_clip_start(map, entry, start);
1497
1498 /*
1499 * Now decrement the wiring count for each region. If a region
1500 * becomes completely unwired, unwire its physical pages and
1501 * mappings.
1502 */
1503 while ((entry != &map->header) && (entry->start < end)) {
1504 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1505 vm_map_clip_end(map, entry, end);
1506 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1507 entry->wired_count--;
1508 if (entry->wired_count == 0)
1509 vm_fault_unwire(map, entry->start, entry->end);
1510 }
1511 vm_map_simplify_entry(map,entry);
1512 entry = entry->next;
1513 }
1514 } else {
1515
1516 entry = start_entry;
1517
1518 while ((entry != &map->header) && (entry->start < end)) {
1519
1520 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1521 entry = entry->next;
1522 continue;
1523 }
1524
1525 if (entry->wired_count != 0) {
1526 entry->wired_count++;
1527 entry->eflags |= MAP_ENTRY_USER_WIRED;
1528 entry = entry->next;
1529 continue;
1530 }
1531
1532 /* Here on entry being newly wired */
1533
1534 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1535 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1536 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1537
1538 vm_object_shadow(&entry->object.vm_object,
1539 &entry->offset,
1540 atop(entry->end - entry->start));
1541 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1542
1543 } else if (entry->object.vm_object == NULL &&
1544 !map->system_map) {
1545
1546 entry->object.vm_object =
1547 vm_object_allocate(OBJT_DEFAULT,
1548 atop(entry->end - entry->start));
1549 entry->offset = (vm_offset_t) 0;
1550
1551 }
1552 }
1553
1554 vm_map_clip_start(map, entry, start);
1555 vm_map_clip_end(map, entry, end);
1556
1557 entry->wired_count++;
1558 entry->eflags |= MAP_ENTRY_USER_WIRED;
1559 estart = entry->start;
1560 eend = entry->end;
1561
1562 /* First we need to allow map modifications */
1563 vm_map_set_recursive(map);
1564 vm_map_lock_downgrade(map);
1565 map->timestamp++;
1566
1567 rv = vm_fault_user_wire(map, entry->start, entry->end);
1568 if (rv) {
1569
1570 entry->wired_count--;
1571 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1572
1573 vm_map_clear_recursive(map);
1574 vm_map_unlock(map);
1575
1576 /*
1577 * At this point, the map is unlocked, and
1578 * entry might no longer be valid. Use copy
1579 * of entry start value obtained while entry
1580 * was valid.
1581 */
1582 (void) vm_map_user_pageable(map, start, estart,
1583 TRUE);
1584 return rv;
1585 }
1586
1587 vm_map_clear_recursive(map);
1588 if (vm_map_lock_upgrade(map)) {
1589 vm_map_lock(map);
1590 if (vm_map_lookup_entry(map, estart, &entry)
1591 == FALSE) {
1592 vm_map_unlock(map);
1593 /*
1594 * vm_fault_user_wire succeded, thus
1595 * the area between start and eend
1596 * is wired and has to be unwired
1597 * here as part of the cleanup.
1598 */
1599 (void) vm_map_user_pageable(map,
1600 start,
1601 eend,
1602 TRUE);
1603 return (KERN_INVALID_ADDRESS);
1604 }
1605 }
1606 vm_map_simplify_entry(map,entry);
1607 }
1608 }
1609 map->timestamp++;
1610 vm_map_unlock(map);
1611 return KERN_SUCCESS;
1612}
1613
1614/*
1615 * vm_map_pageable:
1616 *
1617 * Sets the pageability of the specified address
1618 * range in the target map. Regions specified
1619 * as not pageable require locked-down physical
1620 * memory and physical page maps.
1621 *
1622 * The map must not be locked, but a reference
1623 * must remain to the map throughout the call.
1624 */
1625int
1626vm_map_pageable(
1627 vm_map_t map,
1628 vm_offset_t start,
1629 vm_offset_t end,
1630 boolean_t new_pageable)
1631{
1632 vm_map_entry_t entry;
1633 vm_map_entry_t start_entry;
1634 vm_offset_t failed = 0;
1635 int rv;
1636
1637 GIANT_REQUIRED;
1638
1639 vm_map_lock(map);
1640
1641 VM_MAP_RANGE_CHECK(map, start, end);
1642
1643 /*
1644 * Only one pageability change may take place at one time, since
1645 * vm_fault assumes it will be called only once for each
1646 * wiring/unwiring. Therefore, we have to make sure we're actually
1647 * changing the pageability for the entire region. We do so before
1648 * making any changes.
1649 */
1650 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1651 vm_map_unlock(map);
1652 return (KERN_INVALID_ADDRESS);
1653 }
1654 entry = start_entry;
1655
1656 /*
1657 * Actions are rather different for wiring and unwiring, so we have
1658 * two separate cases.
1659 */
1660 if (new_pageable) {
1661 vm_map_clip_start(map, entry, start);
1662
1663 /*
1664 * Unwiring. First ensure that the range to be unwired is
1665 * really wired down and that there are no holes.
1666 */
1667 while ((entry != &map->header) && (entry->start < end)) {
1668 if (entry->wired_count == 0 ||
1669 (entry->end < end &&
1670 (entry->next == &map->header ||
1671 entry->next->start > entry->end))) {
1672 vm_map_unlock(map);
1673 return (KERN_INVALID_ARGUMENT);
1674 }
1675 entry = entry->next;
1676 }
1677
1678 /*
1679 * Now decrement the wiring count for each region. If a region
1680 * becomes completely unwired, unwire its physical pages and
1681 * mappings.
1682 */
1683 entry = start_entry;
1684 while ((entry != &map->header) && (entry->start < end)) {
1685 vm_map_clip_end(map, entry, end);
1686
1687 entry->wired_count--;
1688 if (entry->wired_count == 0)
1689 vm_fault_unwire(map, entry->start, entry->end);
1690
1691 vm_map_simplify_entry(map, entry);
1692
1693 entry = entry->next;
1694 }
1695 } else {
1696 /*
1697 * Wiring. We must do this in two passes:
1698 *
1699 * 1. Holding the write lock, we create any shadow or zero-fill
1700 * objects that need to be created. Then we clip each map
1701 * entry to the region to be wired and increment its wiring
1702 * count. We create objects before clipping the map entries
1703 * to avoid object proliferation.
1704 *
1705 * 2. We downgrade to a read lock, and call vm_fault_wire to
1706 * fault in the pages for any newly wired area (wired_count is
1707 * 1).
1708 *
1709 * Downgrading to a read lock for vm_fault_wire avoids a possible
1710 * deadlock with another process that may have faulted on one
1711 * of the pages to be wired (it would mark the page busy,
1712 * blocking us, then in turn block on the map lock that we
1713 * hold). Because of problems in the recursive lock package,
1714 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
1715 * any actions that require the write lock must be done
1716 * beforehand. Because we keep the read lock on the map, the
1717 * copy-on-write status of the entries we modify here cannot
1718 * change.
1719 */
1720
1721 /*
1722 * Pass 1.
1723 */
1724 while ((entry != &map->header) && (entry->start < end)) {
1725 if (entry->wired_count == 0) {
1726
1727 /*
1728 * Perform actions of vm_map_lookup that need
1729 * the write lock on the map: create a shadow
1730 * object for a copy-on-write region, or an
1731 * object for a zero-fill region.
1732 *
1733 * We don't have to do this for entries that
1734 * point to sub maps, because we won't
1735 * hold the lock on the sub map.
1736 */
1737 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1738 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1739 if (copyflag &&
1740 ((entry->protection & VM_PROT_WRITE) != 0)) {
1741
1742 vm_object_shadow(&entry->object.vm_object,
1743 &entry->offset,
1744 atop(entry->end - entry->start));
1745 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1746 } else if (entry->object.vm_object == NULL &&
1747 !map->system_map) {
1748 entry->object.vm_object =
1749 vm_object_allocate(OBJT_DEFAULT,
1750 atop(entry->end - entry->start));
1751 entry->offset = (vm_offset_t) 0;
1752 }
1753 }
1754 }
1755 vm_map_clip_start(map, entry, start);
1756 vm_map_clip_end(map, entry, end);
1757 entry->wired_count++;
1758
1759 /*
1760 * Check for holes
1761 */
1762 if (entry->end < end &&
1763 (entry->next == &map->header ||
1764 entry->next->start > entry->end)) {
1765 /*
1766 * Found one. Object creation actions do not
1767 * need to be undone, but the wired counts
1768 * need to be restored.
1769 */
1770 while (entry != &map->header && entry->end > start) {
1771 entry->wired_count--;
1772 entry = entry->prev;
1773 }
1774 vm_map_unlock(map);
1775 return (KERN_INVALID_ARGUMENT);
1776 }
1777 entry = entry->next;
1778 }
1779
1780 /*
1781 * Pass 2.
1782 */
1783
1784 /*
1785 * HACK HACK HACK HACK
1786 *
1787 * If we are wiring in the kernel map or a submap of it,
1788 * unlock the map to avoid deadlocks. We trust that the
1789 * kernel is well-behaved, and therefore will not do
1790 * anything destructive to this region of the map while
1791 * we have it unlocked. We cannot trust user processes
1792 * to do the same.
1793 *
1794 * HACK HACK HACK HACK
1795 */
1796 if (vm_map_pmap(map) == kernel_pmap) {
1797 vm_map_unlock(map); /* trust me ... */
1798 } else {
1799 vm_map_lock_downgrade(map);
1800 }
1801
1802 rv = 0;
1803 entry = start_entry;
1804 while (entry != &map->header && entry->start < end) {
1805 /*
1806 * If vm_fault_wire fails for any page we need to undo
1807 * what has been done. We decrement the wiring count
1808 * for those pages which have not yet been wired (now)
1809 * and unwire those that have (later).
1810 *
1811 * XXX this violates the locking protocol on the map,
1812 * needs to be fixed.
1813 */
1814 if (rv)
1815 entry->wired_count--;
1816 else if (entry->wired_count == 1) {
1817 rv = vm_fault_wire(map, entry->start, entry->end);
1818 if (rv) {
1819 failed = entry->start;
1820 entry->wired_count--;
1821 }
1822 }
1823 entry = entry->next;
1824 }
1825
1826 if (vm_map_pmap(map) == kernel_pmap) {
1827 vm_map_lock(map);
1828 }
1829 if (rv) {
1830 vm_map_unlock(map);
1831 (void) vm_map_pageable(map, start, failed, TRUE);
1832 return (rv);
1833 }
1834 /*
1835 * An exclusive lock on the map is needed in order to call
1836 * vm_map_simplify_entry(). If the current lock on the map
1837 * is only a shared lock, an upgrade is needed.
1838 */
1839 if (vm_map_pmap(map) != kernel_pmap &&
1840 vm_map_lock_upgrade(map)) {
1841 vm_map_lock(map);
1842 if (vm_map_lookup_entry(map, start, &start_entry) ==
1843 FALSE) {
1844 vm_map_unlock(map);
1845 return KERN_SUCCESS;
1846 }
1847 }
1848 vm_map_simplify_entry(map, start_entry);
1849 }
1850
1851 vm_map_unlock(map);
1852
1853 return (KERN_SUCCESS);
1854}
1855
1856/*
1857 * vm_map_clean
1858 *
1859 * Push any dirty cached pages in the address range to their pager.
1860 * If syncio is TRUE, dirty pages are written synchronously.
1861 * If invalidate is TRUE, any cached pages are freed as well.
1862 *
1863 * Returns an error if any part of the specified range is not mapped.
1864 */
1865int
1866vm_map_clean(
1867 vm_map_t map,
1868 vm_offset_t start,
1869 vm_offset_t end,
1870 boolean_t syncio,
1871 boolean_t invalidate)
1872{
1873 vm_map_entry_t current;
1874 vm_map_entry_t entry;
1875 vm_size_t size;
1876 vm_object_t object;
1877 vm_ooffset_t offset;
1878
1879 GIANT_REQUIRED;
1880
1881 vm_map_lock_read(map);
1882 VM_MAP_RANGE_CHECK(map, start, end);
1883 if (!vm_map_lookup_entry(map, start, &entry)) {
1884 vm_map_unlock_read(map);
1885 return (KERN_INVALID_ADDRESS);
1886 }
1887 /*
1888 * Make a first pass to check for holes.
1889 */
1890 for (current = entry; current->start < end; current = current->next) {
1891 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1892 vm_map_unlock_read(map);
1893 return (KERN_INVALID_ARGUMENT);
1894 }
1895 if (end > current->end &&
1896 (current->next == &map->header ||
1897 current->end != current->next->start)) {
1898 vm_map_unlock_read(map);
1899 return (KERN_INVALID_ADDRESS);
1900 }
1901 }
1902
1903 if (invalidate)
1904 pmap_remove(vm_map_pmap(map), start, end);
1905 /*
1906 * Make a second pass, cleaning/uncaching pages from the indicated
1907 * objects as we go.
1908 */
1909 for (current = entry; current->start < end; current = current->next) {
1910 offset = current->offset + (start - current->start);
1911 size = (end <= current->end ? end : current->end) - start;
1912 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1913 vm_map_t smap;
1914 vm_map_entry_t tentry;
1915 vm_size_t tsize;
1916
1917 smap = current->object.sub_map;
1918 vm_map_lock_read(smap);
1919 (void) vm_map_lookup_entry(smap, offset, &tentry);
1920 tsize = tentry->end - offset;
1921 if (tsize < size)
1922 size = tsize;
1923 object = tentry->object.vm_object;
1924 offset = tentry->offset + (offset - tentry->start);
1925 vm_map_unlock_read(smap);
1926 } else {
1927 object = current->object.vm_object;
1928 }
1929 /*
1930 * Note that there is absolutely no sense in writing out
1931 * anonymous objects, so we track down the vnode object
1932 * to write out.
1933 * We invalidate (remove) all pages from the address space
1934 * anyway, for semantic correctness.
1935 *
1936 * note: certain anonymous maps, such as MAP_NOSYNC maps,
1937 * may start out with a NULL object.
1938 */
1939 while (object && object->backing_object) {
1940 object = object->backing_object;
1941 offset += object->backing_object_offset;
1942 if (object->size < OFF_TO_IDX(offset + size))
1943 size = IDX_TO_OFF(object->size) - offset;
1944 }
1945 if (object && (object->type == OBJT_VNODE) &&
1946 (current->protection & VM_PROT_WRITE)) {
1947 /*
1948 * Flush pages if writing is allowed, invalidate them
1949 * if invalidation requested. Pages undergoing I/O
1950 * will be ignored by vm_object_page_remove().
1951 *
1952 * We cannot lock the vnode and then wait for paging
1953 * to complete without deadlocking against vm_fault.
1954 * Instead we simply call vm_object_page_remove() and
1955 * allow it to block internally on a page-by-page
1956 * basis when it encounters pages undergoing async
1957 * I/O.
1958 */
1959 int flags;
1960
1961 vm_object_reference(object);
1962 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
1963 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1964 flags |= invalidate ? OBJPC_INVAL : 0;
1965 vm_object_page_clean(object,
1966 OFF_TO_IDX(offset),
1967 OFF_TO_IDX(offset + size + PAGE_MASK),
1968 flags);
1969 if (invalidate) {
1970 /*vm_object_pip_wait(object, "objmcl");*/
1971 vm_object_page_remove(object,
1972 OFF_TO_IDX(offset),
1973 OFF_TO_IDX(offset + size + PAGE_MASK),
1974 FALSE);
1975 }
1976 VOP_UNLOCK(object->handle, 0, curthread);
1977 vm_object_deallocate(object);
1978 }
1979 start += size;
1980 }
1981
1982 vm_map_unlock_read(map);
1983 return (KERN_SUCCESS);
1984}
1985
1986/*
1987 * vm_map_entry_unwire: [ internal use only ]
1988 *
1989 * Make the region specified by this entry pageable.
1990 *
1991 * The map in question should be locked.
1992 * [This is the reason for this routine's existence.]
1993 */
1994static void
1995vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
1996{
1997 vm_fault_unwire(map, entry->start, entry->end);
1998 entry->wired_count = 0;
1999}
2000
2001/*
2002 * vm_map_entry_delete: [ internal use only ]
2003 *
2004 * Deallocate the given entry from the target map.
2005 */
2006static void
2007vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2008{
2009 vm_map_entry_unlink(map, entry);
2010 map->size -= entry->end - entry->start;
2011
2012 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2013 vm_object_deallocate(entry->object.vm_object);
2014 }
2015
2016 vm_map_entry_dispose(map, entry);
2017}
2018
2019/*
2020 * vm_map_delete: [ internal use only ]
2021 *
2022 * Deallocates the given address range from the target
2023 * map.
2024 */
2025int
2026vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2027{
2028 vm_object_t object;
2029 vm_map_entry_t entry;
2030 vm_map_entry_t first_entry;
2031
2032 GIANT_REQUIRED;
2033
2034 /*
2035 * Find the start of the region, and clip it
2036 */
2037 if (!vm_map_lookup_entry(map, start, &first_entry))
2038 entry = first_entry->next;
2039 else {
2040 entry = first_entry;
2041 vm_map_clip_start(map, entry, start);
2042 /*
2043 * Fix the lookup hint now, rather than each time though the
2044 * loop.
2045 */
2046 SAVE_HINT(map, entry->prev);
2047 }
2048
2049 /*
2050 * Save the free space hint
2051 */
2052 if (entry == &map->header) {
2053 map->first_free = &map->header;
2054 } else if (map->first_free->start >= start) {
2055 map->first_free = entry->prev;
2056 }
2057
2058 /*
2059 * Step through all entries in this region
2060 */
2061 while ((entry != &map->header) && (entry->start < end)) {
2062 vm_map_entry_t next;
2063 vm_offset_t s, e;
2064 vm_pindex_t offidxstart, offidxend, count;
2065
2066 vm_map_clip_end(map, entry, end);
2067
2068 s = entry->start;
2069 e = entry->end;
2070 next = entry->next;
2071
2072 offidxstart = OFF_TO_IDX(entry->offset);
2073 count = OFF_TO_IDX(e - s);
2074 object = entry->object.vm_object;
2075
2076 /*
2077 * Unwire before removing addresses from the pmap; otherwise,
2078 * unwiring will put the entries back in the pmap.
2079 */
2080 if (entry->wired_count != 0) {
2081 vm_map_entry_unwire(map, entry);
2082 }
2083
2084 offidxend = offidxstart + count;
2085
2086 if ((object == kernel_object) || (object == kmem_object)) {
2087 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2088 } else {
2089 pmap_remove(map->pmap, s, e);
2090 if (object != NULL &&
2091 object->ref_count != 1 &&
2092 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2093 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2094 vm_object_collapse(object);
2095 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2096 if (object->type == OBJT_SWAP) {
2097 swap_pager_freespace(object, offidxstart, count);
2098 }
2099 if (offidxend >= object->size &&
2100 offidxstart < object->size) {
2101 object->size = offidxstart;
2102 }
2103 }
2104 }
2105
2106 /*
2107 * Delete the entry (which may delete the object) only after
2108 * removing all pmap entries pointing to its pages.
2109 * (Otherwise, its page frames may be reallocated, and any
2110 * modify bits will be set in the wrong object!)
2111 */
2112 vm_map_entry_delete(map, entry);
2113 entry = next;
2114 }
2115 return (KERN_SUCCESS);
2116}
2117
2118/*
2119 * vm_map_remove:
2120 *
2121 * Remove the given address range from the target map.
2122 * This is the exported form of vm_map_delete.
2123 */
2124int
2125vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2126{
2127 int result, s = 0;
2128
2129 GIANT_REQUIRED;
2130
2131 if (map == kmem_map)
2132 s = splvm();
2133
2134 vm_map_lock(map);
2135 VM_MAP_RANGE_CHECK(map, start, end);
2136 result = vm_map_delete(map, start, end);
2137 vm_map_unlock(map);
2138
2139 if (map == kmem_map)
2140 splx(s);
2141
2142 return (result);
2143}
2144
2145/*
2146 * vm_map_check_protection:
2147 *
2148 * Assert that the target map allows the specified
2149 * privilege on the entire address region given.
2150 * The entire region must be allocated.
2151 */
2152boolean_t
2153vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2154 vm_prot_t protection)
2155{
2156 vm_map_entry_t entry;
2157 vm_map_entry_t tmp_entry;
2158
2159 GIANT_REQUIRED;
2160
2161 vm_map_lock_read(map);
2162 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2163 vm_map_unlock_read(map);
2164 return (FALSE);
2165 }
2166 entry = tmp_entry;
2167
2168 while (start < end) {
2169 if (entry == &map->header) {
2170 vm_map_unlock_read(map);
2171 return (FALSE);
2172 }
2173 /*
2174 * No holes allowed!
2175 */
2176 if (start < entry->start) {
2177 vm_map_unlock_read(map);
2178 return (FALSE);
2179 }
2180 /*
2181 * Check protection associated with entry.
2182 */
2183 if ((entry->protection & protection) != protection) {
2184 vm_map_unlock_read(map);
2185 return (FALSE);
2186 }
2187 /* go to next entry */
2188 start = entry->end;
2189 entry = entry->next;
2190 }
2191 vm_map_unlock_read(map);
2192 return (TRUE);
2193}
2194
2195/*
2196 * Split the pages in a map entry into a new object. This affords
2197 * easier removal of unused pages, and keeps object inheritance from
2198 * being a negative impact on memory usage.
2199 */
2200static void
2201vm_map_split(vm_map_entry_t entry)
2202{
2203 vm_page_t m;
2204 vm_object_t orig_object, new_object, source;
2205 vm_offset_t s, e;
2206 vm_pindex_t offidxstart, offidxend, idx;
2207 vm_size_t size;
2208 vm_ooffset_t offset;
2209
2210 GIANT_REQUIRED;
2211
2212 orig_object = entry->object.vm_object;
2213 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2214 return;
2215 if (orig_object->ref_count <= 1)
2216 return;
2217
2218 offset = entry->offset;
2219 s = entry->start;
2220 e = entry->end;
2221
2222 offidxstart = OFF_TO_IDX(offset);
2223 offidxend = offidxstart + OFF_TO_IDX(e - s);
2224 size = offidxend - offidxstart;
2225
2226 new_object = vm_pager_allocate(orig_object->type,
2227 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2228 if (new_object == NULL)
2229 return;
2230
2231 source = orig_object->backing_object;
2232 if (source != NULL) {
2233 vm_object_reference(source); /* Referenced by new_object */
2234 TAILQ_INSERT_TAIL(&source->shadow_head,
2235 new_object, shadow_list);
2236 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2237 new_object->backing_object_offset =
2238 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2239 new_object->backing_object = source;
2240 source->shadow_count++;
2241 source->generation++;
2242 }
2243
2244 for (idx = 0; idx < size; idx++) {
2245 vm_page_t m;
2246
2247 retry:
2248 m = vm_page_lookup(orig_object, offidxstart + idx);
2249 if (m == NULL)
2250 continue;
2251
2252 /*
2253 * We must wait for pending I/O to complete before we can
2254 * rename the page.
2255 *
2256 * We do not have to VM_PROT_NONE the page as mappings should
2257 * not be changed by this operation.
2258 */
2259 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2260 goto retry;
2261
2262 vm_page_busy(m);
2263 vm_page_rename(m, new_object, idx);
2264 /* page automatically made dirty by rename and cache handled */
2265 vm_page_busy(m);
2266 }
2267
2268 if (orig_object->type == OBJT_SWAP) {
2269 vm_object_pip_add(orig_object, 1);
2270 /*
2271 * copy orig_object pages into new_object
2272 * and destroy unneeded pages in
2273 * shadow object.
2274 */
2275 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2276 vm_object_pip_wakeup(orig_object);
2277 }
2278
2279 for (idx = 0; idx < size; idx++) {
2280 m = vm_page_lookup(new_object, idx);
2281 if (m) {
2282 vm_page_wakeup(m);
2283 }
2284 }
2285
2286 entry->object.vm_object = new_object;
2287 entry->offset = 0LL;
2288 vm_object_deallocate(orig_object);
2289}
2290
2291/*
2292 * vm_map_copy_entry:
2293 *
2294 * Copies the contents of the source entry to the destination
2295 * entry. The entries *must* be aligned properly.
2296 */
2297static void
2298vm_map_copy_entry(
2299 vm_map_t src_map,
2300 vm_map_t dst_map,
2301 vm_map_entry_t src_entry,
2302 vm_map_entry_t dst_entry)
2303{
2304 vm_object_t src_object;
2305
2306 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2307 return;
2308
2309 if (src_entry->wired_count == 0) {
2310
2311 /*
2312 * If the source entry is marked needs_copy, it is already
2313 * write-protected.
2314 */
2315 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2316 pmap_protect(src_map->pmap,
2317 src_entry->start,
2318 src_entry->end,
2319 src_entry->protection & ~VM_PROT_WRITE);
2320 }
2321
2322 /*
2323 * Make a copy of the object.
2324 */
2325 if ((src_object = src_entry->object.vm_object) != NULL) {
2326
2327 if ((src_object->handle == NULL) &&
2328 (src_object->type == OBJT_DEFAULT ||
2329 src_object->type == OBJT_SWAP)) {
2330 vm_object_collapse(src_object);
2331 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2332 vm_map_split(src_entry);
2333 src_object = src_entry->object.vm_object;
2334 }
2335 }
2336
2337 vm_object_reference(src_object);
2338 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2339 dst_entry->object.vm_object = src_object;
2340 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2341 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2342 dst_entry->offset = src_entry->offset;
2343 } else {
2344 dst_entry->object.vm_object = NULL;
2345 dst_entry->offset = 0;
2346 }
2347
2348 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2349 dst_entry->end - dst_entry->start, src_entry->start);
2350 } else {
2351 /*
2352 * Of course, wired down pages can't be set copy-on-write.
2353 * Cause wired pages to be copied into the new map by
2354 * simulating faults (the new pages are pageable)
2355 */
2356 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2357 }
2358}
2359
2360/*
2361 * vmspace_fork:
2362 * Create a new process vmspace structure and vm_map
2363 * based on those of an existing process. The new map
2364 * is based on the old map, according to the inheritance
2365 * values on the regions in that map.
2366 *
2367 * The source map must not be locked.
2368 */
2369struct vmspace *
2370vmspace_fork(struct vmspace *vm1)
2371{
2372 struct vmspace *vm2;
2373 vm_map_t old_map = &vm1->vm_map;
2374 vm_map_t new_map;
2375 vm_map_entry_t old_entry;
2376 vm_map_entry_t new_entry;
2377 vm_object_t object;
2378
2379 GIANT_REQUIRED;
2380
2381 vm_map_lock(old_map);
2382 old_map->infork = 1;
2383
2384 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2385 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2386 (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy);
2387 new_map = &vm2->vm_map; /* XXX */
2388 new_map->timestamp = 1;
2389
2390 old_entry = old_map->header.next;
2391
2392 while (old_entry != &old_map->header) {
2393 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2394 panic("vm_map_fork: encountered a submap");
2395
2396 switch (old_entry->inheritance) {
2397 case VM_INHERIT_NONE:
2398 break;
2399
2400 case VM_INHERIT_SHARE:
2401 /*
2402 * Clone the entry, creating the shared object if necessary.
2403 */
2404 object = old_entry->object.vm_object;
2405 if (object == NULL) {
2406 object = vm_object_allocate(OBJT_DEFAULT,
2407 atop(old_entry->end - old_entry->start));
2408 old_entry->object.vm_object = object;
2409 old_entry->offset = (vm_offset_t) 0;
2410 }
2411
2412 /*
2413 * Add the reference before calling vm_object_shadow
2414 * to insure that a shadow object is created.
2415 */
2416 vm_object_reference(object);
2417 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2418 vm_object_shadow(&old_entry->object.vm_object,
2419 &old_entry->offset,
2420 atop(old_entry->end - old_entry->start));
2421 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2422 /* Transfer the second reference too. */
2423 vm_object_reference(
2424 old_entry->object.vm_object);
2425 vm_object_deallocate(object);
2426 object = old_entry->object.vm_object;
2427 }
2428 vm_object_clear_flag(object, OBJ_ONEMAPPING);
2429
2430 /*
2431 * Clone the entry, referencing the shared object.
2432 */
2433 new_entry = vm_map_entry_create(new_map);
2434 *new_entry = *old_entry;
2435 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2436 new_entry->wired_count = 0;
2437
2438 /*
2439 * Insert the entry into the new map -- we know we're
2440 * inserting at the end of the new map.
2441 */
2442 vm_map_entry_link(new_map, new_map->header.prev,
2443 new_entry);
2444
2445 /*
2446 * Update the physical map
2447 */
2448 pmap_copy(new_map->pmap, old_map->pmap,
2449 new_entry->start,
2450 (old_entry->end - old_entry->start),
2451 old_entry->start);
2452 break;
2453
2454 case VM_INHERIT_COPY:
2455 /*
2456 * Clone the entry and link into the map.
2457 */
2458 new_entry = vm_map_entry_create(new_map);
2459 *new_entry = *old_entry;
2460 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2461 new_entry->wired_count = 0;
2462 new_entry->object.vm_object = NULL;
2463 vm_map_entry_link(new_map, new_map->header.prev,
2464 new_entry);
2465 vm_map_copy_entry(old_map, new_map, old_entry,
2466 new_entry);
2467 break;
2468 }
2469 old_entry = old_entry->next;
2470 }
2471
2472 new_map->size = old_map->size;
2473 old_map->infork = 0;
2474 vm_map_unlock(old_map);
2475
2476 return (vm2);
2477}
2478
2479int
2480vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2481 vm_prot_t prot, vm_prot_t max, int cow)
2482{
2483 vm_map_entry_t prev_entry;
2484 vm_map_entry_t new_stack_entry;
2485 vm_size_t init_ssize;
2486 int rv;
2487
2488 GIANT_REQUIRED;
2489
2490 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2491 return (KERN_NO_SPACE);
2492
2493 if (max_ssize < sgrowsiz)
2494 init_ssize = max_ssize;
2495 else
2496 init_ssize = sgrowsiz;
2497
2498 vm_map_lock(map);
2499
2500 /* If addr is already mapped, no go */
2501 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2502 vm_map_unlock(map);
2503 return (KERN_NO_SPACE);
2504 }
2505
2506 /* If we can't accomodate max_ssize in the current mapping,
2507 * no go. However, we need to be aware that subsequent user
2508 * mappings might map into the space we have reserved for
2509 * stack, and currently this space is not protected.
2510 *
2511 * Hopefully we will at least detect this condition
2512 * when we try to grow the stack.
2513 */
2514 if ((prev_entry->next != &map->header) &&
2515 (prev_entry->next->start < addrbos + max_ssize)) {
2516 vm_map_unlock(map);
2517 return (KERN_NO_SPACE);
2518 }
2519
2520 /* We initially map a stack of only init_ssize. We will
2521 * grow as needed later. Since this is to be a grow
2522 * down stack, we map at the top of the range.
2523 *
2524 * Note: we would normally expect prot and max to be
2525 * VM_PROT_ALL, and cow to be 0. Possibly we should
2526 * eliminate these as input parameters, and just
2527 * pass these values here in the insert call.
2528 */
2529 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2530 addrbos + max_ssize, prot, max, cow);
2531
2532 /* Now set the avail_ssize amount */
2533 if (rv == KERN_SUCCESS){
2534 if (prev_entry != &map->header)
2535 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2536 new_stack_entry = prev_entry->next;
2537 if (new_stack_entry->end != addrbos + max_ssize ||
2538 new_stack_entry->start != addrbos + max_ssize - init_ssize)
2539 panic ("Bad entry start/end for new stack entry");
2540 else
2541 new_stack_entry->avail_ssize = max_ssize - init_ssize;
2542 }
2543
2544 vm_map_unlock(map);
2545 return (rv);
2546}
2547
2548/* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
2549 * desired address is already mapped, or if we successfully grow
2550 * the stack. Also returns KERN_SUCCESS if addr is outside the
2551 * stack range (this is strange, but preserves compatibility with
2552 * the grow function in vm_machdep.c).
2553 */
2554int
2555vm_map_growstack (struct proc *p, vm_offset_t addr)
2556{
2557 vm_map_entry_t prev_entry;
2558 vm_map_entry_t stack_entry;
2559 vm_map_entry_t new_stack_entry;
2560 struct vmspace *vm = p->p_vmspace;
2561 vm_map_t map = &vm->vm_map;
2562 vm_offset_t end;
2563 int grow_amount;
2564 int rv;
2565 int is_procstack;
2566
2567 GIANT_REQUIRED;
2568
2569Retry:
2570 vm_map_lock_read(map);
2571
2572 /* If addr is already in the entry range, no need to grow.*/
2573 if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2574 vm_map_unlock_read(map);
2575 return (KERN_SUCCESS);
2576 }
2577
2578 if ((stack_entry = prev_entry->next) == &map->header) {
2579 vm_map_unlock_read(map);
2580 return (KERN_SUCCESS);
2581 }
2582 if (prev_entry == &map->header)
2583 end = stack_entry->start - stack_entry->avail_ssize;
2584 else
2585 end = prev_entry->end;
2586
2587 /* This next test mimics the old grow function in vm_machdep.c.
2588 * It really doesn't quite make sense, but we do it anyway
2589 * for compatibility.
2590 *
2591 * If not growable stack, return success. This signals the
2592 * caller to proceed as he would normally with normal vm.
2593 */
2594 if (stack_entry->avail_ssize < 1 ||
2595 addr >= stack_entry->start ||
2596 addr < stack_entry->start - stack_entry->avail_ssize) {
2597 vm_map_unlock_read(map);
2598 return (KERN_SUCCESS);
2599 }
2600
2601 /* Find the minimum grow amount */
2602 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2603 if (grow_amount > stack_entry->avail_ssize) {
2604 vm_map_unlock_read(map);
2605 return (KERN_NO_SPACE);
2606 }
2607
2608 /* If there is no longer enough space between the entries
2609 * nogo, and adjust the available space. Note: this
2610 * should only happen if the user has mapped into the
2611 * stack area after the stack was created, and is
2612 * probably an error.
2613 *
2614 * This also effectively destroys any guard page the user
2615 * might have intended by limiting the stack size.
2616 */
2617 if (grow_amount > stack_entry->start - end) {
2618 if (vm_map_lock_upgrade(map))
2619 goto Retry;
2620
2621 stack_entry->avail_ssize = stack_entry->start - end;
2622
2623 vm_map_unlock(map);
2624 return (KERN_NO_SPACE);
2625 }
2626
2627 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2628
2629 /* If this is the main process stack, see if we're over the
2630 * stack limit.
2631 */
2632 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2633 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2634 vm_map_unlock_read(map);
2635 return (KERN_NO_SPACE);
2636 }
2637
2638 /* Round up the grow amount modulo SGROWSIZ */
2639 grow_amount = roundup (grow_amount, sgrowsiz);
2640 if (grow_amount > stack_entry->avail_ssize) {
2641 grow_amount = stack_entry->avail_ssize;
2642 }
2643 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2644 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2645 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2646 ctob(vm->vm_ssize);
2647 }
2648
2649 if (vm_map_lock_upgrade(map))
2650 goto Retry;
2651
2652 /* Get the preliminary new entry start value */
2653 addr = stack_entry->start - grow_amount;
2654
2655 /* If this puts us into the previous entry, cut back our growth
2656 * to the available space. Also, see the note above.
2657 */
2658 if (addr < end) {
2659 stack_entry->avail_ssize = stack_entry->start - end;
2660 addr = end;
2661 }
2662
2663 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2664 VM_PROT_ALL,
2665 VM_PROT_ALL,
2666 0);
2667
2668 /* Adjust the available stack space by the amount we grew. */
2669 if (rv == KERN_SUCCESS) {
2670 if (prev_entry != &map->header)
2671 vm_map_clip_end(map, prev_entry, addr);
2672 new_stack_entry = prev_entry->next;
2673 if (new_stack_entry->end != stack_entry->start ||
2674 new_stack_entry->start != addr)
2675 panic ("Bad stack grow start/end in new stack entry");
2676 else {
2677 new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2678 (new_stack_entry->end -
2679 new_stack_entry->start);
2680 if (is_procstack)
2681 vm->vm_ssize += btoc(new_stack_entry->end -
2682 new_stack_entry->start);
2683 }
2684 }
2685
2686 vm_map_unlock(map);
2687 return (rv);
2688}
2689
2690/*
2691 * Unshare the specified VM space for exec. If other processes are
2692 * mapped to it, then create a new one. The new vmspace is null.
2693 */
2694void
2695vmspace_exec(struct proc *p)
2696{
2697 struct vmspace *oldvmspace = p->p_vmspace;
2698 struct vmspace *newvmspace;
2699 vm_map_t map = &p->p_vmspace->vm_map;
2700
2701 GIANT_REQUIRED;
2702 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2703 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2704 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2705 /*
2706 * This code is written like this for prototype purposes. The
2707 * goal is to avoid running down the vmspace here, but let the
2708 * other process's that are still using the vmspace to finally
2709 * run it down. Even though there is little or no chance of blocking
2710 * here, it is a good idea to keep this form for future mods.
2711 */
2712 p->p_vmspace = newvmspace;
2713 pmap_pinit2(vmspace_pmap(newvmspace));
2714 vmspace_free(oldvmspace);
2715 if (p == curthread->td_proc) /* XXXKSE ? */
2716 pmap_activate(curthread);
2717}
2718
2719/*
2720 * Unshare the specified VM space for forcing COW. This
2721 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2722 */
2723void
2724vmspace_unshare(struct proc *p)
2725{
2726 struct vmspace *oldvmspace = p->p_vmspace;
2727 struct vmspace *newvmspace;
2728
2729 GIANT_REQUIRED;
2730 if (oldvmspace->vm_refcnt == 1)
2731 return;
2732 newvmspace = vmspace_fork(oldvmspace);
2733 p->p_vmspace = newvmspace;
2734 pmap_pinit2(vmspace_pmap(newvmspace));
2735 vmspace_free(oldvmspace);
2736 if (p == curthread->td_proc) /* XXXKSE ? */
2737 pmap_activate(curthread);
2738}
2739
2740/*
2741 * vm_map_lookup:
2742 *
2743 * Finds the VM object, offset, and
2744 * protection for a given virtual address in the
2745 * specified map, assuming a page fault of the
2746 * type specified.
2747 *
2748 * Leaves the map in question locked for read; return
2749 * values are guaranteed until a vm_map_lookup_done
2750 * call is performed. Note that the map argument
2751 * is in/out; the returned map must be used in
2752 * the call to vm_map_lookup_done.
2753 *
2754 * A handle (out_entry) is returned for use in
2755 * vm_map_lookup_done, to make that fast.
2756 *
2757 * If a lookup is requested with "write protection"
2758 * specified, the map may be changed to perform virtual
2759 * copying operations, although the data referenced will
2760 * remain the same.
2761 */
2762int
2763vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
2764 vm_offset_t vaddr,
2765 vm_prot_t fault_typea,
2766 vm_map_entry_t *out_entry, /* OUT */
2767 vm_object_t *object, /* OUT */
2768 vm_pindex_t *pindex, /* OUT */
2769 vm_prot_t *out_prot, /* OUT */
2770 boolean_t *wired) /* OUT */
2771{
2772 vm_map_entry_t entry;
2773 vm_map_t map = *var_map;
2774 vm_prot_t prot;
2775 vm_prot_t fault_type = fault_typea;
2776
2777 GIANT_REQUIRED;
2778RetryLookup:;
2779 /*
2780 * Lookup the faulting address.
2781 */
2782
2783 vm_map_lock_read(map);
2784#define RETURN(why) \
2785 { \
2786 vm_map_unlock_read(map); \
2787 return (why); \
2788 }
2789
2790 /*
2791 * If the map has an interesting hint, try it before calling full
2792 * blown lookup routine.
2793 */
2794 entry = map->hint;
2795 *out_entry = entry;
2796 if ((entry == &map->header) ||
2797 (vaddr < entry->start) || (vaddr >= entry->end)) {
2798 vm_map_entry_t tmp_entry;
2799
2800 /*
2801 * Entry was either not a valid hint, or the vaddr was not
2802 * contained in the entry, so do a full lookup.
2803 */
2804 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry))
2805 RETURN(KERN_INVALID_ADDRESS);
2806
2807 entry = tmp_entry;
2808 *out_entry = entry;
2809 }
2810
2811 /*
2812 * Handle submaps.
2813 */
2814 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2815 vm_map_t old_map = map;
2816
2817 *var_map = map = entry->object.sub_map;
2818 vm_map_unlock_read(old_map);
2819 goto RetryLookup;
2820 }
2821
2822 /*
2823 * Check whether this task is allowed to have this page.
2824 * Note the special case for MAP_ENTRY_COW
2825 * pages with an override. This is to implement a forced
2826 * COW for debuggers.
2827 */
2828 if (fault_type & VM_PROT_OVERRIDE_WRITE)
2829 prot = entry->max_protection;
2830 else
2831 prot = entry->protection;
2832 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2833 if ((fault_type & prot) != fault_type) {
2834 RETURN(KERN_PROTECTION_FAILURE);
2835 }
2836 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2837 (entry->eflags & MAP_ENTRY_COW) &&
2838 (fault_type & VM_PROT_WRITE) &&
2839 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2840 RETURN(KERN_PROTECTION_FAILURE);
2841 }
2842
2843 /*
2844 * If this page is not pageable, we have to get it for all possible
2845 * accesses.
2846 */
2847 *wired = (entry->wired_count != 0);
2848 if (*wired)
2849 prot = fault_type = entry->protection;
2850
2851 /*
2852 * If the entry was copy-on-write, we either ...
2853 */
2854 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2855 /*
2856 * If we want to write the page, we may as well handle that
2857 * now since we've got the map locked.
2858 *
2859 * If we don't need to write the page, we just demote the
2860 * permissions allowed.
2861 */
2862 if (fault_type & VM_PROT_WRITE) {
2863 /*
2864 * Make a new object, and place it in the object
2865 * chain. Note that no new references have appeared
2866 * -- one just moved from the map to the new
2867 * object.
2868 */
2869 if (vm_map_lock_upgrade(map))
2870 goto RetryLookup;
2871 vm_object_shadow(
2872 &entry->object.vm_object,
2873 &entry->offset,
2874 atop(entry->end - entry->start));
2875 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2876 vm_map_lock_downgrade(map);
2877 } else {
2878 /*
2879 * We're attempting to read a copy-on-write page --
2880 * don't allow writes.
2881 */
2882 prot &= ~VM_PROT_WRITE;
2883 }
2884 }
2885
2886 /*
2887 * Create an object if necessary.
2888 */
2889 if (entry->object.vm_object == NULL &&
2890 !map->system_map) {
2891 if (vm_map_lock_upgrade(map))
2892 goto RetryLookup;
2893 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2894 atop(entry->end - entry->start));
2895 entry->offset = 0;
2896 vm_map_lock_downgrade(map);
2897 }
2898
2899 /*
2900 * Return the object/offset from this entry. If the entry was
2901 * copy-on-write or empty, it has been fixed up.
2902 */
2903 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2904 *object = entry->object.vm_object;
2905
2906 /*
2907 * Return whether this is the only map sharing this data.
2908 */
2909 *out_prot = prot;
2910 return (KERN_SUCCESS);
2911
2912#undef RETURN
2913}
2914
2915/*
2916 * vm_map_lookup_done:
2917 *
2918 * Releases locks acquired by a vm_map_lookup
2919 * (according to the handle returned by that lookup).
2920 */
2921void
2922vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
2923{
2924 /*
2925 * Unlock the main-level map
2926 */
2927 GIANT_REQUIRED;
2928 vm_map_unlock_read(map);
2929}
2930
2931/*
2932 * Implement uiomove with VM operations. This handles (and collateral changes)
2933 * support every combination of source object modification, and COW type
2934 * operations.
2935 */
2936int
2937vm_uiomove(
2938 vm_map_t mapa,
2939 vm_object_t srcobject,
2940 off_t cp,
2941 int cnta,
2942 vm_offset_t uaddra,
2943 int *npages)
2944{
2945 vm_map_t map;
2946 vm_object_t first_object, oldobject, object;
2947 vm_map_entry_t entry;
2948 vm_prot_t prot;
2949 boolean_t wired;
2950 int tcnt, rv;
2951 vm_offset_t uaddr, start, end, tend;
2952 vm_pindex_t first_pindex, osize, oindex;
2953 off_t ooffset;
2954 int cnt;
2955
2956 GIANT_REQUIRED;
2957
2958 if (npages)
2959 *npages = 0;
2960
2961 cnt = cnta;
2962 uaddr = uaddra;
2963
2964 while (cnt > 0) {
2965 map = mapa;
2966
2967 if ((vm_map_lookup(&map, uaddr,
2968 VM_PROT_READ, &entry, &first_object,
2969 &first_pindex, &prot, &wired)) != KERN_SUCCESS) {
2970 return EFAULT;
2971 }
2972
2973 vm_map_clip_start(map, entry, uaddr);
2974
2975 tcnt = cnt;
2976 tend = uaddr + tcnt;
2977 if (tend > entry->end) {
2978 tcnt = entry->end - uaddr;
2979 tend = entry->end;
2980 }
2981
2982 vm_map_clip_end(map, entry, tend);
2983
2984 start = entry->start;
2985 end = entry->end;
2986
2987 osize = atop(tcnt);
2988
2989 oindex = OFF_TO_IDX(cp);
2990 if (npages) {
2991 vm_pindex_t idx;
2992 for (idx = 0; idx < osize; idx++) {
2993 vm_page_t m;
2994 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2995 vm_map_lookup_done(map, entry);
2996 return 0;
2997 }
2998 /*
2999 * disallow busy or invalid pages, but allow
3000 * m->busy pages if they are entirely valid.
3001 */
3002 if ((m->flags & PG_BUSY) ||
3003 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3004 vm_map_lookup_done(map, entry);
3005 return 0;
3006 }
3007 }
3008 }
3009
3010/*
3011 * If we are changing an existing map entry, just redirect
3012 * the object, and change mappings.
3013 */
3014 if ((first_object->type == OBJT_VNODE) &&
3015 ((oldobject = entry->object.vm_object) == first_object)) {
3016
3017 if ((entry->offset != cp) || (oldobject != srcobject)) {
3018 /*
3019 * Remove old window into the file
3020 */
3021 pmap_remove (map->pmap, uaddr, tend);
3022
3023 /*
3024 * Force copy on write for mmaped regions
3025 */
3026 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3027
3028 /*
3029 * Point the object appropriately
3030 */
3031 if (oldobject != srcobject) {
3032
3033 /*
3034 * Set the object optimization hint flag
3035 */
3036 vm_object_set_flag(srcobject, OBJ_OPT);
3037 vm_object_reference(srcobject);
3038 entry->object.vm_object = srcobject;
3039
3040 if (oldobject) {
3041 vm_object_deallocate(oldobject);
3042 }
3043 }
3044
3045 entry->offset = cp;
3046 map->timestamp++;
3047 } else {
3048 pmap_remove (map->pmap, uaddr, tend);
3049 }
3050
3051 } else if ((first_object->ref_count == 1) &&
3052 (first_object->size == osize) &&
3053 ((first_object->type == OBJT_DEFAULT) ||
3054 (first_object->type == OBJT_SWAP)) ) {
3055
3056 oldobject = first_object->backing_object;
3057
3058 if ((first_object->backing_object_offset != cp) ||
3059 (oldobject != srcobject)) {
3060 /*
3061 * Remove old window into the file
3062 */
3063 pmap_remove (map->pmap, uaddr, tend);
3064
3065 /*
3066 * Remove unneeded old pages
3067 */
3068 vm_object_page_remove(first_object, 0, 0, 0);
3069
3070 /*
3071 * Invalidate swap space
3072 */
3073 if (first_object->type == OBJT_SWAP) {
3074 swap_pager_freespace(first_object,
3075 0,
3076 first_object->size);
3077 }
3078
3079 /*
3080 * Force copy on write for mmaped regions
3081 */
3082 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3083
3084 /*
3085 * Point the object appropriately
3086 */
3087 if (oldobject != srcobject) {
3088 /*
3089 * Set the object optimization hint flag
3090 */
3091 vm_object_set_flag(srcobject, OBJ_OPT);
3092 vm_object_reference(srcobject);
3093
3094 if (oldobject) {
3095 TAILQ_REMOVE(&oldobject->shadow_head,
3096 first_object, shadow_list);
3097 oldobject->shadow_count--;
3098 /* XXX bump generation? */
3099 vm_object_deallocate(oldobject);
3100 }
3101
3102 TAILQ_INSERT_TAIL(&srcobject->shadow_head,
3103 first_object, shadow_list);
3104 srcobject->shadow_count++;
3105 /* XXX bump generation? */
3106
3107 first_object->backing_object = srcobject;
3108 }
3109 first_object->backing_object_offset = cp;
3110 map->timestamp++;
3111 } else {
3112 pmap_remove (map->pmap, uaddr, tend);
3113 }
3114/*
3115 * Otherwise, we have to do a logical mmap.
3116 */
3117 } else {
3118
3119 vm_object_set_flag(srcobject, OBJ_OPT);
3120 vm_object_reference(srcobject);
3121
3122 pmap_remove (map->pmap, uaddr, tend);
3123
3124 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3125 vm_map_lock_upgrade(map);
3126
3127 if (entry == &map->header) {
3128 map->first_free = &map->header;
3129 } else if (map->first_free->start >= start) {
3130 map->first_free = entry->prev;
3131 }
3132
3133 SAVE_HINT(map, entry->prev);
3134 vm_map_entry_delete(map, entry);
3135
3136 object = srcobject;
3137 ooffset = cp;
3138
3139 rv = vm_map_insert(map, object, ooffset, start, tend,
3140 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3141
3142 if (rv != KERN_SUCCESS)
3143 panic("vm_uiomove: could not insert new entry: %d", rv);
3144 }
3145
3146/*
3147 * Map the window directly, if it is already in memory
3148 */
3149 pmap_object_init_pt(map->pmap, uaddr,
3150 srcobject, oindex, tcnt, 0);
3151
3152 map->timestamp++;
3153 vm_map_unlock(map);
3154
3155 cnt -= tcnt;
3156 uaddr += tcnt;
3157 cp += tcnt;
3158 if (npages)
3159 *npages += osize;
3160 }
3161 return 0;
3162}
3163
3164/*
3165 * Performs the copy_on_write operations necessary to allow the virtual copies
3166 * into user space to work. This has to be called for write(2) system calls
3167 * from other processes, file unlinking, and file size shrinkage.
3168 */
3169void
3170vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
3171{
3172 int rv;
3173 vm_object_t robject;
3174 vm_pindex_t idx;
3175
3176 GIANT_REQUIRED;
3177 if ((object == NULL) ||
3178 ((object->flags & OBJ_OPT) == 0))
3179 return;
3180
3181 if (object->shadow_count > object->ref_count)
3182 panic("vm_freeze_copyopts: sc > rc");
3183
3184 while ((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
3185 vm_pindex_t bo_pindex;
3186 vm_page_t m_in, m_out;
3187
3188 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3189
3190 vm_object_reference(robject);
3191
3192 vm_object_pip_wait(robject, "objfrz");
3193
3194 if (robject->ref_count == 1) {
3195 vm_object_deallocate(robject);
3196 continue;
3197 }
3198
3199 vm_object_pip_add(robject, 1);
3200
3201 for (idx = 0; idx < robject->size; idx++) {
3202
3203 m_out = vm_page_grab(robject, idx,
3204 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3205
3206 if (m_out->valid == 0) {
3207 m_in = vm_page_grab(object, bo_pindex + idx,
3208 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3209 if (m_in->valid == 0) {
3210 rv = vm_pager_get_pages(object, &m_in, 1, 0);
3211 if (rv != VM_PAGER_OK) {
3212 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3213 continue;
3214 }
3215 vm_page_deactivate(m_in);
3216 }
3217
3218 vm_page_protect(m_in, VM_PROT_NONE);
3219 pmap_copy_page(m_in, m_out);
3220 m_out->valid = m_in->valid;
3221 vm_page_dirty(m_out);
3222 vm_page_activate(m_out);
3223 vm_page_wakeup(m_in);
3224 }
3225 vm_page_wakeup(m_out);
3226 }
3227
3228 object->shadow_count--;
3229 object->ref_count--;
3230 TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
3231 robject->backing_object = NULL;
3232 robject->backing_object_offset = 0;
3233
3234 vm_object_pip_wakeup(robject);
3235 vm_object_deallocate(robject);
3236 }
3237
3238 vm_object_clear_flag(object, OBJ_OPT);
3239}
3240
3241#include "opt_ddb.h"
3242#ifdef DDB
3243#include <sys/kernel.h>
3244
3245#include <ddb/ddb.h>
3246
3247/*
3248 * vm_map_print: [ debug ]
3249 */
3250DB_SHOW_COMMAND(map, vm_map_print)
3251{
3252 static int nlines;
3253 /* XXX convert args. */
3254 vm_map_t map = (vm_map_t)addr;
3255 boolean_t full = have_addr;
3256
3257 vm_map_entry_t entry;
3258
3259 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3260 (void *)map,
3261 (void *)map->pmap, map->nentries, map->timestamp);
3262 nlines++;
3263
3264 if (!full && db_indent)
3265 return;
3266
3267 db_indent += 2;
3268 for (entry = map->header.next; entry != &map->header;
3269 entry = entry->next) {
3270 db_iprintf("map entry %p: start=%p, end=%p\n",
3271 (void *)entry, (void *)entry->start, (void *)entry->end);
3272 nlines++;
3273 {
3274 static char *inheritance_name[4] =
3275 {"share", "copy", "none", "donate_copy"};
3276
3277 db_iprintf(" prot=%x/%x/%s",
3278 entry->protection,
3279 entry->max_protection,
3280 inheritance_name[(int)(unsigned char)entry->inheritance]);
3281 if (entry->wired_count != 0)
3282 db_printf(", wired");
3283 }
3284 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3285 /* XXX no %qd in kernel. Truncate entry->offset. */
3286 db_printf(", share=%p, offset=0x%lx\n",
3287 (void *)entry->object.sub_map,
3288 (long)entry->offset);
3289 nlines++;
3290 if ((entry->prev == &map->header) ||
3291 (entry->prev->object.sub_map !=
3292 entry->object.sub_map)) {
3293 db_indent += 2;
3294 vm_map_print((db_expr_t)(intptr_t)
3295 entry->object.sub_map,
3296 full, 0, (char *)0);
3297 db_indent -= 2;
3298 }
3299 } else {
3300 /* XXX no %qd in kernel. Truncate entry->offset. */
3301 db_printf(", object=%p, offset=0x%lx",
3302 (void *)entry->object.vm_object,
3303 (long)entry->offset);
3304 if (entry->eflags & MAP_ENTRY_COW)
3305 db_printf(", copy (%s)",
3306 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3307 db_printf("\n");
3308 nlines++;
3309
3310 if ((entry->prev == &map->header) ||
3311 (entry->prev->object.vm_object !=
3312 entry->object.vm_object)) {
3313 db_indent += 2;
3314 vm_object_print((db_expr_t)(intptr_t)
3315 entry->object.vm_object,
3316 full, 0, (char *)0);
3317 nlines += 4;
3318 db_indent -= 2;
3319 }
3320 }
3321 }
3322 db_indent -= 2;
3323 if (db_indent == 0)
3324 nlines = 0;
3325}
3326
3327
3328DB_SHOW_COMMAND(procvm, procvm)
3329{
3330 struct proc *p;
3331
3332 if (have_addr) {
3333 p = (struct proc *) addr;
3334 } else {
3335 p = curproc;
3336 }
3337
3338 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3339 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3340 (void *)vmspace_pmap(p->p_vmspace));
3341
3342 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3343}
3344
3345#endif /* DDB */
163 uma_prealloc(kmapentzone, MAX_KMAPENT);
164 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
165 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
166 uma_prealloc(mapentzone, MAX_MAPENT);
167}
168
169static void
170vmspace_zfini(void *mem, int size)
171{
172 struct vmspace *vm;
173
174 vm = (struct vmspace *)mem;
175
176 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
177}
178
179static void
180vmspace_zinit(void *mem, int size)
181{
182 struct vmspace *vm;
183
184 vm = (struct vmspace *)mem;
185
186 vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map));
187}
188
189static void
190vm_map_zfini(void *mem, int size)
191{
192 vm_map_t map;
193
194 GIANT_REQUIRED;
195 map = (vm_map_t)mem;
196
197 lockdestroy(&map->lock);
198}
199
200static void
201vm_map_zinit(void *mem, int size)
202{
203 vm_map_t map;
204
205 GIANT_REQUIRED;
206
207 map = (vm_map_t)mem;
208 map->nentries = 0;
209 map->size = 0;
210 map->infork = 0;
211 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
212}
213
214#ifdef INVARIANTS
215static void
216vmspace_zdtor(void *mem, int size, void *arg)
217{
218 struct vmspace *vm;
219
220 vm = (struct vmspace *)mem;
221
222 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
223}
224static void
225vm_map_zdtor(void *mem, int size, void *arg)
226{
227 vm_map_t map;
228
229 map = (vm_map_t)mem;
230 KASSERT(map->nentries == 0,
231 ("map %p nentries == %d on free.",
232 map, map->nentries));
233 KASSERT(map->size == 0,
234 ("map %p size == %lu on free.",
235 map, (unsigned long)map->size));
236 KASSERT(map->infork == 0,
237 ("map %p infork == %d on free.",
238 map, map->infork));
239}
240#endif /* INVARIANTS */
241
242/*
243 * Allocate a vmspace structure, including a vm_map and pmap,
244 * and initialize those structures. The refcnt is set to 1.
245 * The remaining fields must be initialized by the caller.
246 */
247struct vmspace *
248vmspace_alloc(min, max)
249 vm_offset_t min, max;
250{
251 struct vmspace *vm;
252
253 GIANT_REQUIRED;
254 vm = uma_zalloc(vmspace_zone, M_WAITOK);
255 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
256 _vm_map_init(&vm->vm_map, min, max);
257 pmap_pinit(vmspace_pmap(vm));
258 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
259 vm->vm_refcnt = 1;
260 vm->vm_shm = NULL;
261 vm->vm_freer = NULL;
262 return (vm);
263}
264
265void
266vm_init2(void)
267{
268 uma_zone_set_obj(kmapentzone, &kmapentobj, cnt.v_page_count / 4);
269 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
270#ifdef INVARIANTS
271 vmspace_zdtor,
272#else
273 NULL,
274#endif
275 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
276 pmap_init2();
277 vm_object_init2();
278}
279
280static __inline void
281vmspace_dofree(struct vmspace *vm)
282{
283 CTR1(KTR_VM, "vmspace_free: %p", vm);
284 /*
285 * Lock the map, to wait out all other references to it.
286 * Delete all of the mappings and pages they hold, then call
287 * the pmap module to reclaim anything left.
288 */
289 vm_map_lock(&vm->vm_map);
290 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
291 vm->vm_map.max_offset);
292 vm_map_unlock(&vm->vm_map);
293
294 pmap_release(vmspace_pmap(vm));
295 uma_zfree(vmspace_zone, vm);
296}
297
298void
299vmspace_free(struct vmspace *vm)
300{
301 GIANT_REQUIRED;
302
303 if (vm->vm_refcnt == 0)
304 panic("vmspace_free: attempt to free already freed vmspace");
305
306 if (--vm->vm_refcnt == 0)
307 vmspace_dofree(vm);
308}
309
310void
311vmspace_exitfree(struct proc *p)
312{
313 struct vmspace *vm;
314
315 GIANT_REQUIRED;
316 if (p == p->p_vmspace->vm_freer) {
317 vm = p->p_vmspace;
318 p->p_vmspace = NULL;
319 vmspace_dofree(vm);
320 }
321}
322
323/*
324 * vmspace_swap_count() - count the approximate swap useage in pages for a
325 * vmspace.
326 *
327 * Swap useage is determined by taking the proportional swap used by
328 * VM objects backing the VM map. To make up for fractional losses,
329 * if the VM object has any swap use at all the associated map entries
330 * count for at least 1 swap page.
331 */
332int
333vmspace_swap_count(struct vmspace *vmspace)
334{
335 vm_map_t map = &vmspace->vm_map;
336 vm_map_entry_t cur;
337 int count = 0;
338
339 vm_map_lock_read(map);
340 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
341 vm_object_t object;
342
343 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
344 (object = cur->object.vm_object) != NULL &&
345 object->type == OBJT_SWAP
346 ) {
347 int n = (cur->end - cur->start) / PAGE_SIZE;
348
349 if (object->un_pager.swp.swp_bcount) {
350 count += object->un_pager.swp.swp_bcount *
351 SWAP_META_PAGES * n / object->size + 1;
352 }
353 }
354 }
355 vm_map_unlock_read(map);
356 return (count);
357}
358
359u_char
360vm_map_entry_behavior(struct vm_map_entry *entry)
361{
362 return entry->eflags & MAP_ENTRY_BEHAV_MASK;
363}
364
365void
366vm_map_entry_set_behavior(struct vm_map_entry *entry, u_char behavior)
367{
368 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
369 (behavior & MAP_ENTRY_BEHAV_MASK);
370}
371
372void
373_vm_map_lock(vm_map_t map, const char *file, int line)
374{
375 vm_map_printf("locking map LK_EXCLUSIVE: %p\n", map);
376 if (lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread) != 0)
377 panic("vm_map_lock: failed to get lock");
378 map->timestamp++;
379}
380
381void
382_vm_map_unlock(vm_map_t map, const char *file, int line)
383{
384 vm_map_printf("locking map LK_RELEASE: %p\n", map);
385 lockmgr(&(map)->lock, LK_RELEASE, NULL, curthread);
386}
387
388void
389_vm_map_lock_read(vm_map_t map, const char *file, int line)
390{
391 vm_map_printf("locking map LK_SHARED: %p\n", map);
392 lockmgr(&(map)->lock, LK_SHARED, NULL, curthread);
393}
394
395void
396_vm_map_unlock_read(vm_map_t map, const char *file, int line)
397{
398 vm_map_printf("locking map LK_RELEASE: %p\n", map);
399 lockmgr(&(map)->lock, LK_RELEASE, NULL, curthread);
400}
401
402int
403_vm_map_trylock(vm_map_t map, const char *file, int line)
404{
405
406 return (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL,
407 curthread) == 0);
408}
409
410static __inline__ int
411__vm_map_lock_upgrade(vm_map_t map, struct thread *td) {
412 int error;
413
414 vm_map_printf("locking map LK_EXCLUPGRADE: %p\n", map);
415 error = lockmgr(&map->lock, LK_EXCLUPGRADE, NULL, td);
416 if (error == 0)
417 map->timestamp++;
418 return error;
419}
420
421int
422_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
423{
424 return (__vm_map_lock_upgrade(map, curthread));
425}
426
427void
428_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
429{
430 vm_map_printf("locking map LK_DOWNGRADE: %p\n", map);
431 lockmgr(&map->lock, LK_DOWNGRADE, NULL, curthread);
432}
433
434void
435_vm_map_set_recursive(vm_map_t map, const char *file, int line)
436{
437 mtx_lock((map)->lock.lk_interlock);
438 map->lock.lk_flags |= LK_CANRECURSE;
439 mtx_unlock((map)->lock.lk_interlock);
440}
441
442void
443_vm_map_clear_recursive(vm_map_t map, const char *file, int line)
444{
445 mtx_lock((map)->lock.lk_interlock);
446 map->lock.lk_flags &= ~LK_CANRECURSE;
447 mtx_unlock((map)->lock.lk_interlock);
448}
449
450struct pmap *
451vmspace_pmap(struct vmspace *vmspace)
452{
453 return &vmspace->vm_pmap;
454}
455
456long
457vmspace_resident_count(struct vmspace *vmspace)
458{
459 return pmap_resident_count(vmspace_pmap(vmspace));
460}
461
462/*
463 * vm_map_create:
464 *
465 * Creates and returns a new empty VM map with
466 * the given physical map structure, and having
467 * the given lower and upper address bounds.
468 */
469vm_map_t
470vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
471{
472 vm_map_t result;
473
474 GIANT_REQUIRED;
475
476 result = uma_zalloc(mapzone, M_WAITOK);
477 CTR1(KTR_VM, "vm_map_create: %p", result);
478 _vm_map_init(result, min, max);
479 result->pmap = pmap;
480 return (result);
481}
482
483/*
484 * Initialize an existing vm_map structure
485 * such as that in the vmspace structure.
486 * The pmap is set elsewhere.
487 */
488static void
489_vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
490{
491
492 map->header.next = map->header.prev = &map->header;
493 map->system_map = 0;
494 map->min_offset = min;
495 map->max_offset = max;
496 map->first_free = &map->header;
497 map->hint = &map->header;
498 map->timestamp = 0;
499}
500
501void
502vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
503{
504 _vm_map_init(map, min, max);
505 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
506}
507
508/*
509 * vm_map_entry_dispose: [ internal use only ]
510 *
511 * Inverse of vm_map_entry_create.
512 */
513static void
514vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
515{
516 uma_zfree((map->system_map || !mapentzone)
517 ? kmapentzone : mapentzone, entry);
518}
519
520/*
521 * vm_map_entry_create: [ internal use only ]
522 *
523 * Allocates a VM map entry for insertion.
524 * No entry fields are filled in.
525 */
526static vm_map_entry_t
527vm_map_entry_create(vm_map_t map)
528{
529 vm_map_entry_t new_entry;
530
531 new_entry = uma_zalloc((map->system_map || !mapentzone) ?
532 kmapentzone : mapentzone, M_WAITOK);
533 if (new_entry == NULL)
534 panic("vm_map_entry_create: kernel resources exhausted");
535 return (new_entry);
536}
537
538/*
539 * vm_map_entry_{un,}link:
540 *
541 * Insert/remove entries from maps.
542 */
543static __inline void
544vm_map_entry_link(vm_map_t map,
545 vm_map_entry_t after_where,
546 vm_map_entry_t entry)
547{
548
549 CTR4(KTR_VM,
550 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
551 map->nentries, entry, after_where);
552 map->nentries++;
553 entry->prev = after_where;
554 entry->next = after_where->next;
555 entry->next->prev = entry;
556 after_where->next = entry;
557}
558
559static __inline void
560vm_map_entry_unlink(vm_map_t map,
561 vm_map_entry_t entry)
562{
563 vm_map_entry_t prev = entry->prev;
564 vm_map_entry_t next = entry->next;
565
566 next->prev = prev;
567 prev->next = next;
568 map->nentries--;
569 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
570 map->nentries, entry);
571}
572
573/*
574 * SAVE_HINT:
575 *
576 * Saves the specified entry as the hint for
577 * future lookups.
578 */
579#define SAVE_HINT(map,value) \
580 (map)->hint = (value);
581
582/*
583 * vm_map_lookup_entry: [ internal use only ]
584 *
585 * Finds the map entry containing (or
586 * immediately preceding) the specified address
587 * in the given map; the entry is returned
588 * in the "entry" parameter. The boolean
589 * result indicates whether the address is
590 * actually contained in the map.
591 */
592boolean_t
593vm_map_lookup_entry(
594 vm_map_t map,
595 vm_offset_t address,
596 vm_map_entry_t *entry) /* OUT */
597{
598 vm_map_entry_t cur;
599 vm_map_entry_t last;
600
601 GIANT_REQUIRED;
602 /*
603 * Start looking either from the head of the list, or from the hint.
604 */
605 cur = map->hint;
606
607 if (cur == &map->header)
608 cur = cur->next;
609
610 if (address >= cur->start) {
611 /*
612 * Go from hint to end of list.
613 *
614 * But first, make a quick check to see if we are already looking
615 * at the entry we want (which is usually the case). Note also
616 * that we don't need to save the hint here... it is the same
617 * hint (unless we are at the header, in which case the hint
618 * didn't buy us anything anyway).
619 */
620 last = &map->header;
621 if ((cur != last) && (cur->end > address)) {
622 *entry = cur;
623 return (TRUE);
624 }
625 } else {
626 /*
627 * Go from start to hint, *inclusively*
628 */
629 last = cur->next;
630 cur = map->header.next;
631 }
632
633 /*
634 * Search linearly
635 */
636 while (cur != last) {
637 if (cur->end > address) {
638 if (address >= cur->start) {
639 /*
640 * Save this lookup for future hints, and
641 * return
642 */
643 *entry = cur;
644 SAVE_HINT(map, cur);
645 return (TRUE);
646 }
647 break;
648 }
649 cur = cur->next;
650 }
651 *entry = cur->prev;
652 SAVE_HINT(map, *entry);
653 return (FALSE);
654}
655
656/*
657 * vm_map_insert:
658 *
659 * Inserts the given whole VM object into the target
660 * map at the specified address range. The object's
661 * size should match that of the address range.
662 *
663 * Requires that the map be locked, and leaves it so.
664 *
665 * If object is non-NULL, ref count must be bumped by caller
666 * prior to making call to account for the new entry.
667 */
668int
669vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
670 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
671 int cow)
672{
673 vm_map_entry_t new_entry;
674 vm_map_entry_t prev_entry;
675 vm_map_entry_t temp_entry;
676 vm_eflags_t protoeflags;
677
678 GIANT_REQUIRED;
679
680 /*
681 * Check that the start and end points are not bogus.
682 */
683 if ((start < map->min_offset) || (end > map->max_offset) ||
684 (start >= end))
685 return (KERN_INVALID_ADDRESS);
686
687 /*
688 * Find the entry prior to the proposed starting address; if it's part
689 * of an existing entry, this range is bogus.
690 */
691 if (vm_map_lookup_entry(map, start, &temp_entry))
692 return (KERN_NO_SPACE);
693
694 prev_entry = temp_entry;
695
696 /*
697 * Assert that the next entry doesn't overlap the end point.
698 */
699 if ((prev_entry->next != &map->header) &&
700 (prev_entry->next->start < end))
701 return (KERN_NO_SPACE);
702
703 protoeflags = 0;
704
705 if (cow & MAP_COPY_ON_WRITE)
706 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
707
708 if (cow & MAP_NOFAULT) {
709 protoeflags |= MAP_ENTRY_NOFAULT;
710
711 KASSERT(object == NULL,
712 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
713 }
714 if (cow & MAP_DISABLE_SYNCER)
715 protoeflags |= MAP_ENTRY_NOSYNC;
716 if (cow & MAP_DISABLE_COREDUMP)
717 protoeflags |= MAP_ENTRY_NOCOREDUMP;
718
719 if (object) {
720 /*
721 * When object is non-NULL, it could be shared with another
722 * process. We have to set or clear OBJ_ONEMAPPING
723 * appropriately.
724 */
725 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
726 vm_object_clear_flag(object, OBJ_ONEMAPPING);
727 }
728 }
729 else if ((prev_entry != &map->header) &&
730 (prev_entry->eflags == protoeflags) &&
731 (prev_entry->end == start) &&
732 (prev_entry->wired_count == 0) &&
733 ((prev_entry->object.vm_object == NULL) ||
734 vm_object_coalesce(prev_entry->object.vm_object,
735 OFF_TO_IDX(prev_entry->offset),
736 (vm_size_t)(prev_entry->end - prev_entry->start),
737 (vm_size_t)(end - prev_entry->end)))) {
738 /*
739 * We were able to extend the object. Determine if we
740 * can extend the previous map entry to include the
741 * new range as well.
742 */
743 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
744 (prev_entry->protection == prot) &&
745 (prev_entry->max_protection == max)) {
746 map->size += (end - prev_entry->end);
747 prev_entry->end = end;
748 vm_map_simplify_entry(map, prev_entry);
749 return (KERN_SUCCESS);
750 }
751
752 /*
753 * If we can extend the object but cannot extend the
754 * map entry, we have to create a new map entry. We
755 * must bump the ref count on the extended object to
756 * account for it. object may be NULL.
757 */
758 object = prev_entry->object.vm_object;
759 offset = prev_entry->offset +
760 (prev_entry->end - prev_entry->start);
761 vm_object_reference(object);
762 }
763
764 /*
765 * NOTE: if conditionals fail, object can be NULL here. This occurs
766 * in things like the buffer map where we manage kva but do not manage
767 * backing objects.
768 */
769
770 /*
771 * Create a new entry
772 */
773 new_entry = vm_map_entry_create(map);
774 new_entry->start = start;
775 new_entry->end = end;
776
777 new_entry->eflags = protoeflags;
778 new_entry->object.vm_object = object;
779 new_entry->offset = offset;
780 new_entry->avail_ssize = 0;
781
782 new_entry->inheritance = VM_INHERIT_DEFAULT;
783 new_entry->protection = prot;
784 new_entry->max_protection = max;
785 new_entry->wired_count = 0;
786
787 /*
788 * Insert the new entry into the list
789 */
790 vm_map_entry_link(map, prev_entry, new_entry);
791 map->size += new_entry->end - new_entry->start;
792
793 /*
794 * Update the free space hint
795 */
796 if ((map->first_free == prev_entry) &&
797 (prev_entry->end >= new_entry->start)) {
798 map->first_free = new_entry;
799 }
800
801#if 0
802 /*
803 * Temporarily removed to avoid MAP_STACK panic, due to
804 * MAP_STACK being a huge hack. Will be added back in
805 * when MAP_STACK (and the user stack mapping) is fixed.
806 */
807 /*
808 * It may be possible to simplify the entry
809 */
810 vm_map_simplify_entry(map, new_entry);
811#endif
812
813 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
814 pmap_object_init_pt(map->pmap, start,
815 object, OFF_TO_IDX(offset), end - start,
816 cow & MAP_PREFAULT_PARTIAL);
817 }
818
819 return (KERN_SUCCESS);
820}
821
822/*
823 * Find sufficient space for `length' bytes in the given map, starting at
824 * `start'. The map must be locked. Returns 0 on success, 1 on no space.
825 */
826int
827vm_map_findspace(
828 vm_map_t map,
829 vm_offset_t start,
830 vm_size_t length,
831 vm_offset_t *addr)
832{
833 vm_map_entry_t entry, next;
834 vm_offset_t end;
835
836 GIANT_REQUIRED;
837 if (start < map->min_offset)
838 start = map->min_offset;
839 if (start > map->max_offset)
840 return (1);
841
842 /*
843 * Look for the first possible address; if there's already something
844 * at this address, we have to start after it.
845 */
846 if (start == map->min_offset) {
847 if ((entry = map->first_free) != &map->header)
848 start = entry->end;
849 } else {
850 vm_map_entry_t tmp;
851
852 if (vm_map_lookup_entry(map, start, &tmp))
853 start = tmp->end;
854 entry = tmp;
855 }
856
857 /*
858 * Look through the rest of the map, trying to fit a new region in the
859 * gap between existing regions, or after the very last region.
860 */
861 for (;; start = (entry = next)->end) {
862 /*
863 * Find the end of the proposed new region. Be sure we didn't
864 * go beyond the end of the map, or wrap around the address;
865 * if so, we lose. Otherwise, if this is the last entry, or
866 * if the proposed new region fits before the next entry, we
867 * win.
868 */
869 end = start + length;
870 if (end > map->max_offset || end < start)
871 return (1);
872 next = entry->next;
873 if (next == &map->header || next->start >= end)
874 break;
875 }
876 SAVE_HINT(map, entry);
877 *addr = start;
878 if (map == kernel_map) {
879 vm_offset_t ksize;
880 if ((ksize = round_page(start + length)) > kernel_vm_end) {
881 pmap_growkernel(ksize);
882 }
883 }
884 return (0);
885}
886
887/*
888 * vm_map_find finds an unallocated region in the target address
889 * map with the given length. The search is defined to be
890 * first-fit from the specified address; the region found is
891 * returned in the same parameter.
892 *
893 * If object is non-NULL, ref count must be bumped by caller
894 * prior to making call to account for the new entry.
895 */
896int
897vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
898 vm_offset_t *addr, /* IN/OUT */
899 vm_size_t length, boolean_t find_space, vm_prot_t prot,
900 vm_prot_t max, int cow)
901{
902 vm_offset_t start;
903 int result, s = 0;
904
905 GIANT_REQUIRED;
906
907 start = *addr;
908
909 if (map == kmem_map)
910 s = splvm();
911
912 vm_map_lock(map);
913 if (find_space) {
914 if (vm_map_findspace(map, start, length, addr)) {
915 vm_map_unlock(map);
916 if (map == kmem_map)
917 splx(s);
918 return (KERN_NO_SPACE);
919 }
920 start = *addr;
921 }
922 result = vm_map_insert(map, object, offset,
923 start, start + length, prot, max, cow);
924 vm_map_unlock(map);
925
926 if (map == kmem_map)
927 splx(s);
928
929 return (result);
930}
931
932/*
933 * vm_map_simplify_entry:
934 *
935 * Simplify the given map entry by merging with either neighbor. This
936 * routine also has the ability to merge with both neighbors.
937 *
938 * The map must be locked.
939 *
940 * This routine guarentees that the passed entry remains valid (though
941 * possibly extended). When merging, this routine may delete one or
942 * both neighbors.
943 */
944void
945vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
946{
947 vm_map_entry_t next, prev;
948 vm_size_t prevsize, esize;
949
950 GIANT_REQUIRED;
951
952 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
953 return;
954
955 prev = entry->prev;
956 if (prev != &map->header) {
957 prevsize = prev->end - prev->start;
958 if ( (prev->end == entry->start) &&
959 (prev->object.vm_object == entry->object.vm_object) &&
960 (!prev->object.vm_object ||
961 (prev->offset + prevsize == entry->offset)) &&
962 (prev->eflags == entry->eflags) &&
963 (prev->protection == entry->protection) &&
964 (prev->max_protection == entry->max_protection) &&
965 (prev->inheritance == entry->inheritance) &&
966 (prev->wired_count == entry->wired_count)) {
967 if (map->first_free == prev)
968 map->first_free = entry;
969 if (map->hint == prev)
970 map->hint = entry;
971 vm_map_entry_unlink(map, prev);
972 entry->start = prev->start;
973 entry->offset = prev->offset;
974 if (prev->object.vm_object)
975 vm_object_deallocate(prev->object.vm_object);
976 vm_map_entry_dispose(map, prev);
977 }
978 }
979
980 next = entry->next;
981 if (next != &map->header) {
982 esize = entry->end - entry->start;
983 if ((entry->end == next->start) &&
984 (next->object.vm_object == entry->object.vm_object) &&
985 (!entry->object.vm_object ||
986 (entry->offset + esize == next->offset)) &&
987 (next->eflags == entry->eflags) &&
988 (next->protection == entry->protection) &&
989 (next->max_protection == entry->max_protection) &&
990 (next->inheritance == entry->inheritance) &&
991 (next->wired_count == entry->wired_count)) {
992 if (map->first_free == next)
993 map->first_free = entry;
994 if (map->hint == next)
995 map->hint = entry;
996 vm_map_entry_unlink(map, next);
997 entry->end = next->end;
998 if (next->object.vm_object)
999 vm_object_deallocate(next->object.vm_object);
1000 vm_map_entry_dispose(map, next);
1001 }
1002 }
1003}
1004/*
1005 * vm_map_clip_start: [ internal use only ]
1006 *
1007 * Asserts that the given entry begins at or after
1008 * the specified address; if necessary,
1009 * it splits the entry into two.
1010 */
1011#define vm_map_clip_start(map, entry, startaddr) \
1012{ \
1013 if (startaddr > entry->start) \
1014 _vm_map_clip_start(map, entry, startaddr); \
1015}
1016
1017/*
1018 * This routine is called only when it is known that
1019 * the entry must be split.
1020 */
1021static void
1022_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1023{
1024 vm_map_entry_t new_entry;
1025
1026 /*
1027 * Split off the front portion -- note that we must insert the new
1028 * entry BEFORE this one, so that this entry has the specified
1029 * starting address.
1030 */
1031 vm_map_simplify_entry(map, entry);
1032
1033 /*
1034 * If there is no object backing this entry, we might as well create
1035 * one now. If we defer it, an object can get created after the map
1036 * is clipped, and individual objects will be created for the split-up
1037 * map. This is a bit of a hack, but is also about the best place to
1038 * put this improvement.
1039 */
1040 if (entry->object.vm_object == NULL && !map->system_map) {
1041 vm_object_t object;
1042 object = vm_object_allocate(OBJT_DEFAULT,
1043 atop(entry->end - entry->start));
1044 entry->object.vm_object = object;
1045 entry->offset = 0;
1046 }
1047
1048 new_entry = vm_map_entry_create(map);
1049 *new_entry = *entry;
1050
1051 new_entry->end = start;
1052 entry->offset += (start - entry->start);
1053 entry->start = start;
1054
1055 vm_map_entry_link(map, entry->prev, new_entry);
1056
1057 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1058 vm_object_reference(new_entry->object.vm_object);
1059 }
1060}
1061
1062/*
1063 * vm_map_clip_end: [ internal use only ]
1064 *
1065 * Asserts that the given entry ends at or before
1066 * the specified address; if necessary,
1067 * it splits the entry into two.
1068 */
1069#define vm_map_clip_end(map, entry, endaddr) \
1070{ \
1071 if (endaddr < entry->end) \
1072 _vm_map_clip_end(map, entry, endaddr); \
1073}
1074
1075/*
1076 * This routine is called only when it is known that
1077 * the entry must be split.
1078 */
1079static void
1080_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1081{
1082 vm_map_entry_t new_entry;
1083
1084 /*
1085 * If there is no object backing this entry, we might as well create
1086 * one now. If we defer it, an object can get created after the map
1087 * is clipped, and individual objects will be created for the split-up
1088 * map. This is a bit of a hack, but is also about the best place to
1089 * put this improvement.
1090 */
1091 if (entry->object.vm_object == NULL && !map->system_map) {
1092 vm_object_t object;
1093 object = vm_object_allocate(OBJT_DEFAULT,
1094 atop(entry->end - entry->start));
1095 entry->object.vm_object = object;
1096 entry->offset = 0;
1097 }
1098
1099 /*
1100 * Create a new entry and insert it AFTER the specified entry
1101 */
1102 new_entry = vm_map_entry_create(map);
1103 *new_entry = *entry;
1104
1105 new_entry->start = entry->end = end;
1106 new_entry->offset += (end - entry->start);
1107
1108 vm_map_entry_link(map, entry, new_entry);
1109
1110 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1111 vm_object_reference(new_entry->object.vm_object);
1112 }
1113}
1114
1115/*
1116 * VM_MAP_RANGE_CHECK: [ internal use only ]
1117 *
1118 * Asserts that the starting and ending region
1119 * addresses fall within the valid range of the map.
1120 */
1121#define VM_MAP_RANGE_CHECK(map, start, end) \
1122 { \
1123 if (start < vm_map_min(map)) \
1124 start = vm_map_min(map); \
1125 if (end > vm_map_max(map)) \
1126 end = vm_map_max(map); \
1127 if (start > end) \
1128 start = end; \
1129 }
1130
1131/*
1132 * vm_map_submap: [ kernel use only ]
1133 *
1134 * Mark the given range as handled by a subordinate map.
1135 *
1136 * This range must have been created with vm_map_find,
1137 * and no other operations may have been performed on this
1138 * range prior to calling vm_map_submap.
1139 *
1140 * Only a limited number of operations can be performed
1141 * within this rage after calling vm_map_submap:
1142 * vm_fault
1143 * [Don't try vm_map_copy!]
1144 *
1145 * To remove a submapping, one must first remove the
1146 * range from the superior map, and then destroy the
1147 * submap (if desired). [Better yet, don't try it.]
1148 */
1149int
1150vm_map_submap(
1151 vm_map_t map,
1152 vm_offset_t start,
1153 vm_offset_t end,
1154 vm_map_t submap)
1155{
1156 vm_map_entry_t entry;
1157 int result = KERN_INVALID_ARGUMENT;
1158
1159 GIANT_REQUIRED;
1160
1161 vm_map_lock(map);
1162
1163 VM_MAP_RANGE_CHECK(map, start, end);
1164
1165 if (vm_map_lookup_entry(map, start, &entry)) {
1166 vm_map_clip_start(map, entry, start);
1167 } else
1168 entry = entry->next;
1169
1170 vm_map_clip_end(map, entry, end);
1171
1172 if ((entry->start == start) && (entry->end == end) &&
1173 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1174 (entry->object.vm_object == NULL)) {
1175 entry->object.sub_map = submap;
1176 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1177 result = KERN_SUCCESS;
1178 }
1179 vm_map_unlock(map);
1180
1181 return (result);
1182}
1183
1184/*
1185 * vm_map_protect:
1186 *
1187 * Sets the protection of the specified address
1188 * region in the target map. If "set_max" is
1189 * specified, the maximum protection is to be set;
1190 * otherwise, only the current protection is affected.
1191 */
1192int
1193vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1194 vm_prot_t new_prot, boolean_t set_max)
1195{
1196 vm_map_entry_t current;
1197 vm_map_entry_t entry;
1198
1199 GIANT_REQUIRED;
1200 vm_map_lock(map);
1201
1202 VM_MAP_RANGE_CHECK(map, start, end);
1203
1204 if (vm_map_lookup_entry(map, start, &entry)) {
1205 vm_map_clip_start(map, entry, start);
1206 } else {
1207 entry = entry->next;
1208 }
1209
1210 /*
1211 * Make a first pass to check for protection violations.
1212 */
1213 current = entry;
1214 while ((current != &map->header) && (current->start < end)) {
1215 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1216 vm_map_unlock(map);
1217 return (KERN_INVALID_ARGUMENT);
1218 }
1219 if ((new_prot & current->max_protection) != new_prot) {
1220 vm_map_unlock(map);
1221 return (KERN_PROTECTION_FAILURE);
1222 }
1223 current = current->next;
1224 }
1225
1226 /*
1227 * Go back and fix up protections. [Note that clipping is not
1228 * necessary the second time.]
1229 */
1230 current = entry;
1231 while ((current != &map->header) && (current->start < end)) {
1232 vm_prot_t old_prot;
1233
1234 vm_map_clip_end(map, current, end);
1235
1236 old_prot = current->protection;
1237 if (set_max)
1238 current->protection =
1239 (current->max_protection = new_prot) &
1240 old_prot;
1241 else
1242 current->protection = new_prot;
1243
1244 /*
1245 * Update physical map if necessary. Worry about copy-on-write
1246 * here -- CHECK THIS XXX
1247 */
1248 if (current->protection != old_prot) {
1249#define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1250 VM_PROT_ALL)
1251 pmap_protect(map->pmap, current->start,
1252 current->end,
1253 current->protection & MASK(current));
1254#undef MASK
1255 }
1256 vm_map_simplify_entry(map, current);
1257 current = current->next;
1258 }
1259 vm_map_unlock(map);
1260 return (KERN_SUCCESS);
1261}
1262
1263/*
1264 * vm_map_madvise:
1265 *
1266 * This routine traverses a processes map handling the madvise
1267 * system call. Advisories are classified as either those effecting
1268 * the vm_map_entry structure, or those effecting the underlying
1269 * objects.
1270 */
1271int
1272vm_map_madvise(
1273 vm_map_t map,
1274 vm_offset_t start,
1275 vm_offset_t end,
1276 int behav)
1277{
1278 vm_map_entry_t current, entry;
1279 int modify_map = 0;
1280
1281 GIANT_REQUIRED;
1282
1283 /*
1284 * Some madvise calls directly modify the vm_map_entry, in which case
1285 * we need to use an exclusive lock on the map and we need to perform
1286 * various clipping operations. Otherwise we only need a read-lock
1287 * on the map.
1288 */
1289 switch(behav) {
1290 case MADV_NORMAL:
1291 case MADV_SEQUENTIAL:
1292 case MADV_RANDOM:
1293 case MADV_NOSYNC:
1294 case MADV_AUTOSYNC:
1295 case MADV_NOCORE:
1296 case MADV_CORE:
1297 modify_map = 1;
1298 vm_map_lock(map);
1299 break;
1300 case MADV_WILLNEED:
1301 case MADV_DONTNEED:
1302 case MADV_FREE:
1303 vm_map_lock_read(map);
1304 break;
1305 default:
1306 return (KERN_INVALID_ARGUMENT);
1307 }
1308
1309 /*
1310 * Locate starting entry and clip if necessary.
1311 */
1312 VM_MAP_RANGE_CHECK(map, start, end);
1313
1314 if (vm_map_lookup_entry(map, start, &entry)) {
1315 if (modify_map)
1316 vm_map_clip_start(map, entry, start);
1317 } else {
1318 entry = entry->next;
1319 }
1320
1321 if (modify_map) {
1322 /*
1323 * madvise behaviors that are implemented in the vm_map_entry.
1324 *
1325 * We clip the vm_map_entry so that behavioral changes are
1326 * limited to the specified address range.
1327 */
1328 for (current = entry;
1329 (current != &map->header) && (current->start < end);
1330 current = current->next
1331 ) {
1332 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1333 continue;
1334
1335 vm_map_clip_end(map, current, end);
1336
1337 switch (behav) {
1338 case MADV_NORMAL:
1339 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1340 break;
1341 case MADV_SEQUENTIAL:
1342 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1343 break;
1344 case MADV_RANDOM:
1345 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1346 break;
1347 case MADV_NOSYNC:
1348 current->eflags |= MAP_ENTRY_NOSYNC;
1349 break;
1350 case MADV_AUTOSYNC:
1351 current->eflags &= ~MAP_ENTRY_NOSYNC;
1352 break;
1353 case MADV_NOCORE:
1354 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1355 break;
1356 case MADV_CORE:
1357 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1358 break;
1359 default:
1360 break;
1361 }
1362 vm_map_simplify_entry(map, current);
1363 }
1364 vm_map_unlock(map);
1365 } else {
1366 vm_pindex_t pindex;
1367 int count;
1368
1369 /*
1370 * madvise behaviors that are implemented in the underlying
1371 * vm_object.
1372 *
1373 * Since we don't clip the vm_map_entry, we have to clip
1374 * the vm_object pindex and count.
1375 */
1376 for (current = entry;
1377 (current != &map->header) && (current->start < end);
1378 current = current->next
1379 ) {
1380 vm_offset_t useStart;
1381
1382 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1383 continue;
1384
1385 pindex = OFF_TO_IDX(current->offset);
1386 count = atop(current->end - current->start);
1387 useStart = current->start;
1388
1389 if (current->start < start) {
1390 pindex += atop(start - current->start);
1391 count -= atop(start - current->start);
1392 useStart = start;
1393 }
1394 if (current->end > end)
1395 count -= atop(current->end - end);
1396
1397 if (count <= 0)
1398 continue;
1399
1400 vm_object_madvise(current->object.vm_object,
1401 pindex, count, behav);
1402 if (behav == MADV_WILLNEED) {
1403 pmap_object_init_pt(
1404 map->pmap,
1405 useStart,
1406 current->object.vm_object,
1407 pindex,
1408 (count << PAGE_SHIFT),
1409 MAP_PREFAULT_MADVISE
1410 );
1411 }
1412 }
1413 vm_map_unlock_read(map);
1414 }
1415 return (0);
1416}
1417
1418
1419/*
1420 * vm_map_inherit:
1421 *
1422 * Sets the inheritance of the specified address
1423 * range in the target map. Inheritance
1424 * affects how the map will be shared with
1425 * child maps at the time of vm_map_fork.
1426 */
1427int
1428vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1429 vm_inherit_t new_inheritance)
1430{
1431 vm_map_entry_t entry;
1432 vm_map_entry_t temp_entry;
1433
1434 GIANT_REQUIRED;
1435
1436 switch (new_inheritance) {
1437 case VM_INHERIT_NONE:
1438 case VM_INHERIT_COPY:
1439 case VM_INHERIT_SHARE:
1440 break;
1441 default:
1442 return (KERN_INVALID_ARGUMENT);
1443 }
1444
1445 vm_map_lock(map);
1446
1447 VM_MAP_RANGE_CHECK(map, start, end);
1448
1449 if (vm_map_lookup_entry(map, start, &temp_entry)) {
1450 entry = temp_entry;
1451 vm_map_clip_start(map, entry, start);
1452 } else
1453 entry = temp_entry->next;
1454
1455 while ((entry != &map->header) && (entry->start < end)) {
1456 vm_map_clip_end(map, entry, end);
1457
1458 entry->inheritance = new_inheritance;
1459
1460 vm_map_simplify_entry(map, entry);
1461
1462 entry = entry->next;
1463 }
1464
1465 vm_map_unlock(map);
1466 return (KERN_SUCCESS);
1467}
1468
1469/*
1470 * Implement the semantics of mlock
1471 */
1472int
1473vm_map_user_pageable(
1474 vm_map_t map,
1475 vm_offset_t start,
1476 vm_offset_t end,
1477 boolean_t new_pageable)
1478{
1479 vm_map_entry_t entry;
1480 vm_map_entry_t start_entry;
1481 vm_offset_t estart;
1482 vm_offset_t eend;
1483 int rv;
1484
1485 vm_map_lock(map);
1486 VM_MAP_RANGE_CHECK(map, start, end);
1487
1488 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1489 vm_map_unlock(map);
1490 return (KERN_INVALID_ADDRESS);
1491 }
1492
1493 if (new_pageable) {
1494
1495 entry = start_entry;
1496 vm_map_clip_start(map, entry, start);
1497
1498 /*
1499 * Now decrement the wiring count for each region. If a region
1500 * becomes completely unwired, unwire its physical pages and
1501 * mappings.
1502 */
1503 while ((entry != &map->header) && (entry->start < end)) {
1504 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1505 vm_map_clip_end(map, entry, end);
1506 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1507 entry->wired_count--;
1508 if (entry->wired_count == 0)
1509 vm_fault_unwire(map, entry->start, entry->end);
1510 }
1511 vm_map_simplify_entry(map,entry);
1512 entry = entry->next;
1513 }
1514 } else {
1515
1516 entry = start_entry;
1517
1518 while ((entry != &map->header) && (entry->start < end)) {
1519
1520 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1521 entry = entry->next;
1522 continue;
1523 }
1524
1525 if (entry->wired_count != 0) {
1526 entry->wired_count++;
1527 entry->eflags |= MAP_ENTRY_USER_WIRED;
1528 entry = entry->next;
1529 continue;
1530 }
1531
1532 /* Here on entry being newly wired */
1533
1534 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1535 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1536 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1537
1538 vm_object_shadow(&entry->object.vm_object,
1539 &entry->offset,
1540 atop(entry->end - entry->start));
1541 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1542
1543 } else if (entry->object.vm_object == NULL &&
1544 !map->system_map) {
1545
1546 entry->object.vm_object =
1547 vm_object_allocate(OBJT_DEFAULT,
1548 atop(entry->end - entry->start));
1549 entry->offset = (vm_offset_t) 0;
1550
1551 }
1552 }
1553
1554 vm_map_clip_start(map, entry, start);
1555 vm_map_clip_end(map, entry, end);
1556
1557 entry->wired_count++;
1558 entry->eflags |= MAP_ENTRY_USER_WIRED;
1559 estart = entry->start;
1560 eend = entry->end;
1561
1562 /* First we need to allow map modifications */
1563 vm_map_set_recursive(map);
1564 vm_map_lock_downgrade(map);
1565 map->timestamp++;
1566
1567 rv = vm_fault_user_wire(map, entry->start, entry->end);
1568 if (rv) {
1569
1570 entry->wired_count--;
1571 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1572
1573 vm_map_clear_recursive(map);
1574 vm_map_unlock(map);
1575
1576 /*
1577 * At this point, the map is unlocked, and
1578 * entry might no longer be valid. Use copy
1579 * of entry start value obtained while entry
1580 * was valid.
1581 */
1582 (void) vm_map_user_pageable(map, start, estart,
1583 TRUE);
1584 return rv;
1585 }
1586
1587 vm_map_clear_recursive(map);
1588 if (vm_map_lock_upgrade(map)) {
1589 vm_map_lock(map);
1590 if (vm_map_lookup_entry(map, estart, &entry)
1591 == FALSE) {
1592 vm_map_unlock(map);
1593 /*
1594 * vm_fault_user_wire succeded, thus
1595 * the area between start and eend
1596 * is wired and has to be unwired
1597 * here as part of the cleanup.
1598 */
1599 (void) vm_map_user_pageable(map,
1600 start,
1601 eend,
1602 TRUE);
1603 return (KERN_INVALID_ADDRESS);
1604 }
1605 }
1606 vm_map_simplify_entry(map,entry);
1607 }
1608 }
1609 map->timestamp++;
1610 vm_map_unlock(map);
1611 return KERN_SUCCESS;
1612}
1613
1614/*
1615 * vm_map_pageable:
1616 *
1617 * Sets the pageability of the specified address
1618 * range in the target map. Regions specified
1619 * as not pageable require locked-down physical
1620 * memory and physical page maps.
1621 *
1622 * The map must not be locked, but a reference
1623 * must remain to the map throughout the call.
1624 */
1625int
1626vm_map_pageable(
1627 vm_map_t map,
1628 vm_offset_t start,
1629 vm_offset_t end,
1630 boolean_t new_pageable)
1631{
1632 vm_map_entry_t entry;
1633 vm_map_entry_t start_entry;
1634 vm_offset_t failed = 0;
1635 int rv;
1636
1637 GIANT_REQUIRED;
1638
1639 vm_map_lock(map);
1640
1641 VM_MAP_RANGE_CHECK(map, start, end);
1642
1643 /*
1644 * Only one pageability change may take place at one time, since
1645 * vm_fault assumes it will be called only once for each
1646 * wiring/unwiring. Therefore, we have to make sure we're actually
1647 * changing the pageability for the entire region. We do so before
1648 * making any changes.
1649 */
1650 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1651 vm_map_unlock(map);
1652 return (KERN_INVALID_ADDRESS);
1653 }
1654 entry = start_entry;
1655
1656 /*
1657 * Actions are rather different for wiring and unwiring, so we have
1658 * two separate cases.
1659 */
1660 if (new_pageable) {
1661 vm_map_clip_start(map, entry, start);
1662
1663 /*
1664 * Unwiring. First ensure that the range to be unwired is
1665 * really wired down and that there are no holes.
1666 */
1667 while ((entry != &map->header) && (entry->start < end)) {
1668 if (entry->wired_count == 0 ||
1669 (entry->end < end &&
1670 (entry->next == &map->header ||
1671 entry->next->start > entry->end))) {
1672 vm_map_unlock(map);
1673 return (KERN_INVALID_ARGUMENT);
1674 }
1675 entry = entry->next;
1676 }
1677
1678 /*
1679 * Now decrement the wiring count for each region. If a region
1680 * becomes completely unwired, unwire its physical pages and
1681 * mappings.
1682 */
1683 entry = start_entry;
1684 while ((entry != &map->header) && (entry->start < end)) {
1685 vm_map_clip_end(map, entry, end);
1686
1687 entry->wired_count--;
1688 if (entry->wired_count == 0)
1689 vm_fault_unwire(map, entry->start, entry->end);
1690
1691 vm_map_simplify_entry(map, entry);
1692
1693 entry = entry->next;
1694 }
1695 } else {
1696 /*
1697 * Wiring. We must do this in two passes:
1698 *
1699 * 1. Holding the write lock, we create any shadow or zero-fill
1700 * objects that need to be created. Then we clip each map
1701 * entry to the region to be wired and increment its wiring
1702 * count. We create objects before clipping the map entries
1703 * to avoid object proliferation.
1704 *
1705 * 2. We downgrade to a read lock, and call vm_fault_wire to
1706 * fault in the pages for any newly wired area (wired_count is
1707 * 1).
1708 *
1709 * Downgrading to a read lock for vm_fault_wire avoids a possible
1710 * deadlock with another process that may have faulted on one
1711 * of the pages to be wired (it would mark the page busy,
1712 * blocking us, then in turn block on the map lock that we
1713 * hold). Because of problems in the recursive lock package,
1714 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
1715 * any actions that require the write lock must be done
1716 * beforehand. Because we keep the read lock on the map, the
1717 * copy-on-write status of the entries we modify here cannot
1718 * change.
1719 */
1720
1721 /*
1722 * Pass 1.
1723 */
1724 while ((entry != &map->header) && (entry->start < end)) {
1725 if (entry->wired_count == 0) {
1726
1727 /*
1728 * Perform actions of vm_map_lookup that need
1729 * the write lock on the map: create a shadow
1730 * object for a copy-on-write region, or an
1731 * object for a zero-fill region.
1732 *
1733 * We don't have to do this for entries that
1734 * point to sub maps, because we won't
1735 * hold the lock on the sub map.
1736 */
1737 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1738 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1739 if (copyflag &&
1740 ((entry->protection & VM_PROT_WRITE) != 0)) {
1741
1742 vm_object_shadow(&entry->object.vm_object,
1743 &entry->offset,
1744 atop(entry->end - entry->start));
1745 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1746 } else if (entry->object.vm_object == NULL &&
1747 !map->system_map) {
1748 entry->object.vm_object =
1749 vm_object_allocate(OBJT_DEFAULT,
1750 atop(entry->end - entry->start));
1751 entry->offset = (vm_offset_t) 0;
1752 }
1753 }
1754 }
1755 vm_map_clip_start(map, entry, start);
1756 vm_map_clip_end(map, entry, end);
1757 entry->wired_count++;
1758
1759 /*
1760 * Check for holes
1761 */
1762 if (entry->end < end &&
1763 (entry->next == &map->header ||
1764 entry->next->start > entry->end)) {
1765 /*
1766 * Found one. Object creation actions do not
1767 * need to be undone, but the wired counts
1768 * need to be restored.
1769 */
1770 while (entry != &map->header && entry->end > start) {
1771 entry->wired_count--;
1772 entry = entry->prev;
1773 }
1774 vm_map_unlock(map);
1775 return (KERN_INVALID_ARGUMENT);
1776 }
1777 entry = entry->next;
1778 }
1779
1780 /*
1781 * Pass 2.
1782 */
1783
1784 /*
1785 * HACK HACK HACK HACK
1786 *
1787 * If we are wiring in the kernel map or a submap of it,
1788 * unlock the map to avoid deadlocks. We trust that the
1789 * kernel is well-behaved, and therefore will not do
1790 * anything destructive to this region of the map while
1791 * we have it unlocked. We cannot trust user processes
1792 * to do the same.
1793 *
1794 * HACK HACK HACK HACK
1795 */
1796 if (vm_map_pmap(map) == kernel_pmap) {
1797 vm_map_unlock(map); /* trust me ... */
1798 } else {
1799 vm_map_lock_downgrade(map);
1800 }
1801
1802 rv = 0;
1803 entry = start_entry;
1804 while (entry != &map->header && entry->start < end) {
1805 /*
1806 * If vm_fault_wire fails for any page we need to undo
1807 * what has been done. We decrement the wiring count
1808 * for those pages which have not yet been wired (now)
1809 * and unwire those that have (later).
1810 *
1811 * XXX this violates the locking protocol on the map,
1812 * needs to be fixed.
1813 */
1814 if (rv)
1815 entry->wired_count--;
1816 else if (entry->wired_count == 1) {
1817 rv = vm_fault_wire(map, entry->start, entry->end);
1818 if (rv) {
1819 failed = entry->start;
1820 entry->wired_count--;
1821 }
1822 }
1823 entry = entry->next;
1824 }
1825
1826 if (vm_map_pmap(map) == kernel_pmap) {
1827 vm_map_lock(map);
1828 }
1829 if (rv) {
1830 vm_map_unlock(map);
1831 (void) vm_map_pageable(map, start, failed, TRUE);
1832 return (rv);
1833 }
1834 /*
1835 * An exclusive lock on the map is needed in order to call
1836 * vm_map_simplify_entry(). If the current lock on the map
1837 * is only a shared lock, an upgrade is needed.
1838 */
1839 if (vm_map_pmap(map) != kernel_pmap &&
1840 vm_map_lock_upgrade(map)) {
1841 vm_map_lock(map);
1842 if (vm_map_lookup_entry(map, start, &start_entry) ==
1843 FALSE) {
1844 vm_map_unlock(map);
1845 return KERN_SUCCESS;
1846 }
1847 }
1848 vm_map_simplify_entry(map, start_entry);
1849 }
1850
1851 vm_map_unlock(map);
1852
1853 return (KERN_SUCCESS);
1854}
1855
1856/*
1857 * vm_map_clean
1858 *
1859 * Push any dirty cached pages in the address range to their pager.
1860 * If syncio is TRUE, dirty pages are written synchronously.
1861 * If invalidate is TRUE, any cached pages are freed as well.
1862 *
1863 * Returns an error if any part of the specified range is not mapped.
1864 */
1865int
1866vm_map_clean(
1867 vm_map_t map,
1868 vm_offset_t start,
1869 vm_offset_t end,
1870 boolean_t syncio,
1871 boolean_t invalidate)
1872{
1873 vm_map_entry_t current;
1874 vm_map_entry_t entry;
1875 vm_size_t size;
1876 vm_object_t object;
1877 vm_ooffset_t offset;
1878
1879 GIANT_REQUIRED;
1880
1881 vm_map_lock_read(map);
1882 VM_MAP_RANGE_CHECK(map, start, end);
1883 if (!vm_map_lookup_entry(map, start, &entry)) {
1884 vm_map_unlock_read(map);
1885 return (KERN_INVALID_ADDRESS);
1886 }
1887 /*
1888 * Make a first pass to check for holes.
1889 */
1890 for (current = entry; current->start < end; current = current->next) {
1891 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1892 vm_map_unlock_read(map);
1893 return (KERN_INVALID_ARGUMENT);
1894 }
1895 if (end > current->end &&
1896 (current->next == &map->header ||
1897 current->end != current->next->start)) {
1898 vm_map_unlock_read(map);
1899 return (KERN_INVALID_ADDRESS);
1900 }
1901 }
1902
1903 if (invalidate)
1904 pmap_remove(vm_map_pmap(map), start, end);
1905 /*
1906 * Make a second pass, cleaning/uncaching pages from the indicated
1907 * objects as we go.
1908 */
1909 for (current = entry; current->start < end; current = current->next) {
1910 offset = current->offset + (start - current->start);
1911 size = (end <= current->end ? end : current->end) - start;
1912 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1913 vm_map_t smap;
1914 vm_map_entry_t tentry;
1915 vm_size_t tsize;
1916
1917 smap = current->object.sub_map;
1918 vm_map_lock_read(smap);
1919 (void) vm_map_lookup_entry(smap, offset, &tentry);
1920 tsize = tentry->end - offset;
1921 if (tsize < size)
1922 size = tsize;
1923 object = tentry->object.vm_object;
1924 offset = tentry->offset + (offset - tentry->start);
1925 vm_map_unlock_read(smap);
1926 } else {
1927 object = current->object.vm_object;
1928 }
1929 /*
1930 * Note that there is absolutely no sense in writing out
1931 * anonymous objects, so we track down the vnode object
1932 * to write out.
1933 * We invalidate (remove) all pages from the address space
1934 * anyway, for semantic correctness.
1935 *
1936 * note: certain anonymous maps, such as MAP_NOSYNC maps,
1937 * may start out with a NULL object.
1938 */
1939 while (object && object->backing_object) {
1940 object = object->backing_object;
1941 offset += object->backing_object_offset;
1942 if (object->size < OFF_TO_IDX(offset + size))
1943 size = IDX_TO_OFF(object->size) - offset;
1944 }
1945 if (object && (object->type == OBJT_VNODE) &&
1946 (current->protection & VM_PROT_WRITE)) {
1947 /*
1948 * Flush pages if writing is allowed, invalidate them
1949 * if invalidation requested. Pages undergoing I/O
1950 * will be ignored by vm_object_page_remove().
1951 *
1952 * We cannot lock the vnode and then wait for paging
1953 * to complete without deadlocking against vm_fault.
1954 * Instead we simply call vm_object_page_remove() and
1955 * allow it to block internally on a page-by-page
1956 * basis when it encounters pages undergoing async
1957 * I/O.
1958 */
1959 int flags;
1960
1961 vm_object_reference(object);
1962 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
1963 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1964 flags |= invalidate ? OBJPC_INVAL : 0;
1965 vm_object_page_clean(object,
1966 OFF_TO_IDX(offset),
1967 OFF_TO_IDX(offset + size + PAGE_MASK),
1968 flags);
1969 if (invalidate) {
1970 /*vm_object_pip_wait(object, "objmcl");*/
1971 vm_object_page_remove(object,
1972 OFF_TO_IDX(offset),
1973 OFF_TO_IDX(offset + size + PAGE_MASK),
1974 FALSE);
1975 }
1976 VOP_UNLOCK(object->handle, 0, curthread);
1977 vm_object_deallocate(object);
1978 }
1979 start += size;
1980 }
1981
1982 vm_map_unlock_read(map);
1983 return (KERN_SUCCESS);
1984}
1985
1986/*
1987 * vm_map_entry_unwire: [ internal use only ]
1988 *
1989 * Make the region specified by this entry pageable.
1990 *
1991 * The map in question should be locked.
1992 * [This is the reason for this routine's existence.]
1993 */
1994static void
1995vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
1996{
1997 vm_fault_unwire(map, entry->start, entry->end);
1998 entry->wired_count = 0;
1999}
2000
2001/*
2002 * vm_map_entry_delete: [ internal use only ]
2003 *
2004 * Deallocate the given entry from the target map.
2005 */
2006static void
2007vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2008{
2009 vm_map_entry_unlink(map, entry);
2010 map->size -= entry->end - entry->start;
2011
2012 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2013 vm_object_deallocate(entry->object.vm_object);
2014 }
2015
2016 vm_map_entry_dispose(map, entry);
2017}
2018
2019/*
2020 * vm_map_delete: [ internal use only ]
2021 *
2022 * Deallocates the given address range from the target
2023 * map.
2024 */
2025int
2026vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2027{
2028 vm_object_t object;
2029 vm_map_entry_t entry;
2030 vm_map_entry_t first_entry;
2031
2032 GIANT_REQUIRED;
2033
2034 /*
2035 * Find the start of the region, and clip it
2036 */
2037 if (!vm_map_lookup_entry(map, start, &first_entry))
2038 entry = first_entry->next;
2039 else {
2040 entry = first_entry;
2041 vm_map_clip_start(map, entry, start);
2042 /*
2043 * Fix the lookup hint now, rather than each time though the
2044 * loop.
2045 */
2046 SAVE_HINT(map, entry->prev);
2047 }
2048
2049 /*
2050 * Save the free space hint
2051 */
2052 if (entry == &map->header) {
2053 map->first_free = &map->header;
2054 } else if (map->first_free->start >= start) {
2055 map->first_free = entry->prev;
2056 }
2057
2058 /*
2059 * Step through all entries in this region
2060 */
2061 while ((entry != &map->header) && (entry->start < end)) {
2062 vm_map_entry_t next;
2063 vm_offset_t s, e;
2064 vm_pindex_t offidxstart, offidxend, count;
2065
2066 vm_map_clip_end(map, entry, end);
2067
2068 s = entry->start;
2069 e = entry->end;
2070 next = entry->next;
2071
2072 offidxstart = OFF_TO_IDX(entry->offset);
2073 count = OFF_TO_IDX(e - s);
2074 object = entry->object.vm_object;
2075
2076 /*
2077 * Unwire before removing addresses from the pmap; otherwise,
2078 * unwiring will put the entries back in the pmap.
2079 */
2080 if (entry->wired_count != 0) {
2081 vm_map_entry_unwire(map, entry);
2082 }
2083
2084 offidxend = offidxstart + count;
2085
2086 if ((object == kernel_object) || (object == kmem_object)) {
2087 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2088 } else {
2089 pmap_remove(map->pmap, s, e);
2090 if (object != NULL &&
2091 object->ref_count != 1 &&
2092 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2093 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2094 vm_object_collapse(object);
2095 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2096 if (object->type == OBJT_SWAP) {
2097 swap_pager_freespace(object, offidxstart, count);
2098 }
2099 if (offidxend >= object->size &&
2100 offidxstart < object->size) {
2101 object->size = offidxstart;
2102 }
2103 }
2104 }
2105
2106 /*
2107 * Delete the entry (which may delete the object) only after
2108 * removing all pmap entries pointing to its pages.
2109 * (Otherwise, its page frames may be reallocated, and any
2110 * modify bits will be set in the wrong object!)
2111 */
2112 vm_map_entry_delete(map, entry);
2113 entry = next;
2114 }
2115 return (KERN_SUCCESS);
2116}
2117
2118/*
2119 * vm_map_remove:
2120 *
2121 * Remove the given address range from the target map.
2122 * This is the exported form of vm_map_delete.
2123 */
2124int
2125vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2126{
2127 int result, s = 0;
2128
2129 GIANT_REQUIRED;
2130
2131 if (map == kmem_map)
2132 s = splvm();
2133
2134 vm_map_lock(map);
2135 VM_MAP_RANGE_CHECK(map, start, end);
2136 result = vm_map_delete(map, start, end);
2137 vm_map_unlock(map);
2138
2139 if (map == kmem_map)
2140 splx(s);
2141
2142 return (result);
2143}
2144
2145/*
2146 * vm_map_check_protection:
2147 *
2148 * Assert that the target map allows the specified
2149 * privilege on the entire address region given.
2150 * The entire region must be allocated.
2151 */
2152boolean_t
2153vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2154 vm_prot_t protection)
2155{
2156 vm_map_entry_t entry;
2157 vm_map_entry_t tmp_entry;
2158
2159 GIANT_REQUIRED;
2160
2161 vm_map_lock_read(map);
2162 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2163 vm_map_unlock_read(map);
2164 return (FALSE);
2165 }
2166 entry = tmp_entry;
2167
2168 while (start < end) {
2169 if (entry == &map->header) {
2170 vm_map_unlock_read(map);
2171 return (FALSE);
2172 }
2173 /*
2174 * No holes allowed!
2175 */
2176 if (start < entry->start) {
2177 vm_map_unlock_read(map);
2178 return (FALSE);
2179 }
2180 /*
2181 * Check protection associated with entry.
2182 */
2183 if ((entry->protection & protection) != protection) {
2184 vm_map_unlock_read(map);
2185 return (FALSE);
2186 }
2187 /* go to next entry */
2188 start = entry->end;
2189 entry = entry->next;
2190 }
2191 vm_map_unlock_read(map);
2192 return (TRUE);
2193}
2194
2195/*
2196 * Split the pages in a map entry into a new object. This affords
2197 * easier removal of unused pages, and keeps object inheritance from
2198 * being a negative impact on memory usage.
2199 */
2200static void
2201vm_map_split(vm_map_entry_t entry)
2202{
2203 vm_page_t m;
2204 vm_object_t orig_object, new_object, source;
2205 vm_offset_t s, e;
2206 vm_pindex_t offidxstart, offidxend, idx;
2207 vm_size_t size;
2208 vm_ooffset_t offset;
2209
2210 GIANT_REQUIRED;
2211
2212 orig_object = entry->object.vm_object;
2213 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2214 return;
2215 if (orig_object->ref_count <= 1)
2216 return;
2217
2218 offset = entry->offset;
2219 s = entry->start;
2220 e = entry->end;
2221
2222 offidxstart = OFF_TO_IDX(offset);
2223 offidxend = offidxstart + OFF_TO_IDX(e - s);
2224 size = offidxend - offidxstart;
2225
2226 new_object = vm_pager_allocate(orig_object->type,
2227 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2228 if (new_object == NULL)
2229 return;
2230
2231 source = orig_object->backing_object;
2232 if (source != NULL) {
2233 vm_object_reference(source); /* Referenced by new_object */
2234 TAILQ_INSERT_TAIL(&source->shadow_head,
2235 new_object, shadow_list);
2236 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2237 new_object->backing_object_offset =
2238 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2239 new_object->backing_object = source;
2240 source->shadow_count++;
2241 source->generation++;
2242 }
2243
2244 for (idx = 0; idx < size; idx++) {
2245 vm_page_t m;
2246
2247 retry:
2248 m = vm_page_lookup(orig_object, offidxstart + idx);
2249 if (m == NULL)
2250 continue;
2251
2252 /*
2253 * We must wait for pending I/O to complete before we can
2254 * rename the page.
2255 *
2256 * We do not have to VM_PROT_NONE the page as mappings should
2257 * not be changed by this operation.
2258 */
2259 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2260 goto retry;
2261
2262 vm_page_busy(m);
2263 vm_page_rename(m, new_object, idx);
2264 /* page automatically made dirty by rename and cache handled */
2265 vm_page_busy(m);
2266 }
2267
2268 if (orig_object->type == OBJT_SWAP) {
2269 vm_object_pip_add(orig_object, 1);
2270 /*
2271 * copy orig_object pages into new_object
2272 * and destroy unneeded pages in
2273 * shadow object.
2274 */
2275 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2276 vm_object_pip_wakeup(orig_object);
2277 }
2278
2279 for (idx = 0; idx < size; idx++) {
2280 m = vm_page_lookup(new_object, idx);
2281 if (m) {
2282 vm_page_wakeup(m);
2283 }
2284 }
2285
2286 entry->object.vm_object = new_object;
2287 entry->offset = 0LL;
2288 vm_object_deallocate(orig_object);
2289}
2290
2291/*
2292 * vm_map_copy_entry:
2293 *
2294 * Copies the contents of the source entry to the destination
2295 * entry. The entries *must* be aligned properly.
2296 */
2297static void
2298vm_map_copy_entry(
2299 vm_map_t src_map,
2300 vm_map_t dst_map,
2301 vm_map_entry_t src_entry,
2302 vm_map_entry_t dst_entry)
2303{
2304 vm_object_t src_object;
2305
2306 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2307 return;
2308
2309 if (src_entry->wired_count == 0) {
2310
2311 /*
2312 * If the source entry is marked needs_copy, it is already
2313 * write-protected.
2314 */
2315 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2316 pmap_protect(src_map->pmap,
2317 src_entry->start,
2318 src_entry->end,
2319 src_entry->protection & ~VM_PROT_WRITE);
2320 }
2321
2322 /*
2323 * Make a copy of the object.
2324 */
2325 if ((src_object = src_entry->object.vm_object) != NULL) {
2326
2327 if ((src_object->handle == NULL) &&
2328 (src_object->type == OBJT_DEFAULT ||
2329 src_object->type == OBJT_SWAP)) {
2330 vm_object_collapse(src_object);
2331 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2332 vm_map_split(src_entry);
2333 src_object = src_entry->object.vm_object;
2334 }
2335 }
2336
2337 vm_object_reference(src_object);
2338 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2339 dst_entry->object.vm_object = src_object;
2340 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2341 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2342 dst_entry->offset = src_entry->offset;
2343 } else {
2344 dst_entry->object.vm_object = NULL;
2345 dst_entry->offset = 0;
2346 }
2347
2348 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2349 dst_entry->end - dst_entry->start, src_entry->start);
2350 } else {
2351 /*
2352 * Of course, wired down pages can't be set copy-on-write.
2353 * Cause wired pages to be copied into the new map by
2354 * simulating faults (the new pages are pageable)
2355 */
2356 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2357 }
2358}
2359
2360/*
2361 * vmspace_fork:
2362 * Create a new process vmspace structure and vm_map
2363 * based on those of an existing process. The new map
2364 * is based on the old map, according to the inheritance
2365 * values on the regions in that map.
2366 *
2367 * The source map must not be locked.
2368 */
2369struct vmspace *
2370vmspace_fork(struct vmspace *vm1)
2371{
2372 struct vmspace *vm2;
2373 vm_map_t old_map = &vm1->vm_map;
2374 vm_map_t new_map;
2375 vm_map_entry_t old_entry;
2376 vm_map_entry_t new_entry;
2377 vm_object_t object;
2378
2379 GIANT_REQUIRED;
2380
2381 vm_map_lock(old_map);
2382 old_map->infork = 1;
2383
2384 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2385 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2386 (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy);
2387 new_map = &vm2->vm_map; /* XXX */
2388 new_map->timestamp = 1;
2389
2390 old_entry = old_map->header.next;
2391
2392 while (old_entry != &old_map->header) {
2393 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2394 panic("vm_map_fork: encountered a submap");
2395
2396 switch (old_entry->inheritance) {
2397 case VM_INHERIT_NONE:
2398 break;
2399
2400 case VM_INHERIT_SHARE:
2401 /*
2402 * Clone the entry, creating the shared object if necessary.
2403 */
2404 object = old_entry->object.vm_object;
2405 if (object == NULL) {
2406 object = vm_object_allocate(OBJT_DEFAULT,
2407 atop(old_entry->end - old_entry->start));
2408 old_entry->object.vm_object = object;
2409 old_entry->offset = (vm_offset_t) 0;
2410 }
2411
2412 /*
2413 * Add the reference before calling vm_object_shadow
2414 * to insure that a shadow object is created.
2415 */
2416 vm_object_reference(object);
2417 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2418 vm_object_shadow(&old_entry->object.vm_object,
2419 &old_entry->offset,
2420 atop(old_entry->end - old_entry->start));
2421 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2422 /* Transfer the second reference too. */
2423 vm_object_reference(
2424 old_entry->object.vm_object);
2425 vm_object_deallocate(object);
2426 object = old_entry->object.vm_object;
2427 }
2428 vm_object_clear_flag(object, OBJ_ONEMAPPING);
2429
2430 /*
2431 * Clone the entry, referencing the shared object.
2432 */
2433 new_entry = vm_map_entry_create(new_map);
2434 *new_entry = *old_entry;
2435 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2436 new_entry->wired_count = 0;
2437
2438 /*
2439 * Insert the entry into the new map -- we know we're
2440 * inserting at the end of the new map.
2441 */
2442 vm_map_entry_link(new_map, new_map->header.prev,
2443 new_entry);
2444
2445 /*
2446 * Update the physical map
2447 */
2448 pmap_copy(new_map->pmap, old_map->pmap,
2449 new_entry->start,
2450 (old_entry->end - old_entry->start),
2451 old_entry->start);
2452 break;
2453
2454 case VM_INHERIT_COPY:
2455 /*
2456 * Clone the entry and link into the map.
2457 */
2458 new_entry = vm_map_entry_create(new_map);
2459 *new_entry = *old_entry;
2460 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2461 new_entry->wired_count = 0;
2462 new_entry->object.vm_object = NULL;
2463 vm_map_entry_link(new_map, new_map->header.prev,
2464 new_entry);
2465 vm_map_copy_entry(old_map, new_map, old_entry,
2466 new_entry);
2467 break;
2468 }
2469 old_entry = old_entry->next;
2470 }
2471
2472 new_map->size = old_map->size;
2473 old_map->infork = 0;
2474 vm_map_unlock(old_map);
2475
2476 return (vm2);
2477}
2478
2479int
2480vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2481 vm_prot_t prot, vm_prot_t max, int cow)
2482{
2483 vm_map_entry_t prev_entry;
2484 vm_map_entry_t new_stack_entry;
2485 vm_size_t init_ssize;
2486 int rv;
2487
2488 GIANT_REQUIRED;
2489
2490 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2491 return (KERN_NO_SPACE);
2492
2493 if (max_ssize < sgrowsiz)
2494 init_ssize = max_ssize;
2495 else
2496 init_ssize = sgrowsiz;
2497
2498 vm_map_lock(map);
2499
2500 /* If addr is already mapped, no go */
2501 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2502 vm_map_unlock(map);
2503 return (KERN_NO_SPACE);
2504 }
2505
2506 /* If we can't accomodate max_ssize in the current mapping,
2507 * no go. However, we need to be aware that subsequent user
2508 * mappings might map into the space we have reserved for
2509 * stack, and currently this space is not protected.
2510 *
2511 * Hopefully we will at least detect this condition
2512 * when we try to grow the stack.
2513 */
2514 if ((prev_entry->next != &map->header) &&
2515 (prev_entry->next->start < addrbos + max_ssize)) {
2516 vm_map_unlock(map);
2517 return (KERN_NO_SPACE);
2518 }
2519
2520 /* We initially map a stack of only init_ssize. We will
2521 * grow as needed later. Since this is to be a grow
2522 * down stack, we map at the top of the range.
2523 *
2524 * Note: we would normally expect prot and max to be
2525 * VM_PROT_ALL, and cow to be 0. Possibly we should
2526 * eliminate these as input parameters, and just
2527 * pass these values here in the insert call.
2528 */
2529 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2530 addrbos + max_ssize, prot, max, cow);
2531
2532 /* Now set the avail_ssize amount */
2533 if (rv == KERN_SUCCESS){
2534 if (prev_entry != &map->header)
2535 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2536 new_stack_entry = prev_entry->next;
2537 if (new_stack_entry->end != addrbos + max_ssize ||
2538 new_stack_entry->start != addrbos + max_ssize - init_ssize)
2539 panic ("Bad entry start/end for new stack entry");
2540 else
2541 new_stack_entry->avail_ssize = max_ssize - init_ssize;
2542 }
2543
2544 vm_map_unlock(map);
2545 return (rv);
2546}
2547
2548/* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
2549 * desired address is already mapped, or if we successfully grow
2550 * the stack. Also returns KERN_SUCCESS if addr is outside the
2551 * stack range (this is strange, but preserves compatibility with
2552 * the grow function in vm_machdep.c).
2553 */
2554int
2555vm_map_growstack (struct proc *p, vm_offset_t addr)
2556{
2557 vm_map_entry_t prev_entry;
2558 vm_map_entry_t stack_entry;
2559 vm_map_entry_t new_stack_entry;
2560 struct vmspace *vm = p->p_vmspace;
2561 vm_map_t map = &vm->vm_map;
2562 vm_offset_t end;
2563 int grow_amount;
2564 int rv;
2565 int is_procstack;
2566
2567 GIANT_REQUIRED;
2568
2569Retry:
2570 vm_map_lock_read(map);
2571
2572 /* If addr is already in the entry range, no need to grow.*/
2573 if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2574 vm_map_unlock_read(map);
2575 return (KERN_SUCCESS);
2576 }
2577
2578 if ((stack_entry = prev_entry->next) == &map->header) {
2579 vm_map_unlock_read(map);
2580 return (KERN_SUCCESS);
2581 }
2582 if (prev_entry == &map->header)
2583 end = stack_entry->start - stack_entry->avail_ssize;
2584 else
2585 end = prev_entry->end;
2586
2587 /* This next test mimics the old grow function in vm_machdep.c.
2588 * It really doesn't quite make sense, but we do it anyway
2589 * for compatibility.
2590 *
2591 * If not growable stack, return success. This signals the
2592 * caller to proceed as he would normally with normal vm.
2593 */
2594 if (stack_entry->avail_ssize < 1 ||
2595 addr >= stack_entry->start ||
2596 addr < stack_entry->start - stack_entry->avail_ssize) {
2597 vm_map_unlock_read(map);
2598 return (KERN_SUCCESS);
2599 }
2600
2601 /* Find the minimum grow amount */
2602 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2603 if (grow_amount > stack_entry->avail_ssize) {
2604 vm_map_unlock_read(map);
2605 return (KERN_NO_SPACE);
2606 }
2607
2608 /* If there is no longer enough space between the entries
2609 * nogo, and adjust the available space. Note: this
2610 * should only happen if the user has mapped into the
2611 * stack area after the stack was created, and is
2612 * probably an error.
2613 *
2614 * This also effectively destroys any guard page the user
2615 * might have intended by limiting the stack size.
2616 */
2617 if (grow_amount > stack_entry->start - end) {
2618 if (vm_map_lock_upgrade(map))
2619 goto Retry;
2620
2621 stack_entry->avail_ssize = stack_entry->start - end;
2622
2623 vm_map_unlock(map);
2624 return (KERN_NO_SPACE);
2625 }
2626
2627 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2628
2629 /* If this is the main process stack, see if we're over the
2630 * stack limit.
2631 */
2632 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2633 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2634 vm_map_unlock_read(map);
2635 return (KERN_NO_SPACE);
2636 }
2637
2638 /* Round up the grow amount modulo SGROWSIZ */
2639 grow_amount = roundup (grow_amount, sgrowsiz);
2640 if (grow_amount > stack_entry->avail_ssize) {
2641 grow_amount = stack_entry->avail_ssize;
2642 }
2643 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2644 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2645 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2646 ctob(vm->vm_ssize);
2647 }
2648
2649 if (vm_map_lock_upgrade(map))
2650 goto Retry;
2651
2652 /* Get the preliminary new entry start value */
2653 addr = stack_entry->start - grow_amount;
2654
2655 /* If this puts us into the previous entry, cut back our growth
2656 * to the available space. Also, see the note above.
2657 */
2658 if (addr < end) {
2659 stack_entry->avail_ssize = stack_entry->start - end;
2660 addr = end;
2661 }
2662
2663 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2664 VM_PROT_ALL,
2665 VM_PROT_ALL,
2666 0);
2667
2668 /* Adjust the available stack space by the amount we grew. */
2669 if (rv == KERN_SUCCESS) {
2670 if (prev_entry != &map->header)
2671 vm_map_clip_end(map, prev_entry, addr);
2672 new_stack_entry = prev_entry->next;
2673 if (new_stack_entry->end != stack_entry->start ||
2674 new_stack_entry->start != addr)
2675 panic ("Bad stack grow start/end in new stack entry");
2676 else {
2677 new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2678 (new_stack_entry->end -
2679 new_stack_entry->start);
2680 if (is_procstack)
2681 vm->vm_ssize += btoc(new_stack_entry->end -
2682 new_stack_entry->start);
2683 }
2684 }
2685
2686 vm_map_unlock(map);
2687 return (rv);
2688}
2689
2690/*
2691 * Unshare the specified VM space for exec. If other processes are
2692 * mapped to it, then create a new one. The new vmspace is null.
2693 */
2694void
2695vmspace_exec(struct proc *p)
2696{
2697 struct vmspace *oldvmspace = p->p_vmspace;
2698 struct vmspace *newvmspace;
2699 vm_map_t map = &p->p_vmspace->vm_map;
2700
2701 GIANT_REQUIRED;
2702 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2703 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2704 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2705 /*
2706 * This code is written like this for prototype purposes. The
2707 * goal is to avoid running down the vmspace here, but let the
2708 * other process's that are still using the vmspace to finally
2709 * run it down. Even though there is little or no chance of blocking
2710 * here, it is a good idea to keep this form for future mods.
2711 */
2712 p->p_vmspace = newvmspace;
2713 pmap_pinit2(vmspace_pmap(newvmspace));
2714 vmspace_free(oldvmspace);
2715 if (p == curthread->td_proc) /* XXXKSE ? */
2716 pmap_activate(curthread);
2717}
2718
2719/*
2720 * Unshare the specified VM space for forcing COW. This
2721 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2722 */
2723void
2724vmspace_unshare(struct proc *p)
2725{
2726 struct vmspace *oldvmspace = p->p_vmspace;
2727 struct vmspace *newvmspace;
2728
2729 GIANT_REQUIRED;
2730 if (oldvmspace->vm_refcnt == 1)
2731 return;
2732 newvmspace = vmspace_fork(oldvmspace);
2733 p->p_vmspace = newvmspace;
2734 pmap_pinit2(vmspace_pmap(newvmspace));
2735 vmspace_free(oldvmspace);
2736 if (p == curthread->td_proc) /* XXXKSE ? */
2737 pmap_activate(curthread);
2738}
2739
2740/*
2741 * vm_map_lookup:
2742 *
2743 * Finds the VM object, offset, and
2744 * protection for a given virtual address in the
2745 * specified map, assuming a page fault of the
2746 * type specified.
2747 *
2748 * Leaves the map in question locked for read; return
2749 * values are guaranteed until a vm_map_lookup_done
2750 * call is performed. Note that the map argument
2751 * is in/out; the returned map must be used in
2752 * the call to vm_map_lookup_done.
2753 *
2754 * A handle (out_entry) is returned for use in
2755 * vm_map_lookup_done, to make that fast.
2756 *
2757 * If a lookup is requested with "write protection"
2758 * specified, the map may be changed to perform virtual
2759 * copying operations, although the data referenced will
2760 * remain the same.
2761 */
2762int
2763vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
2764 vm_offset_t vaddr,
2765 vm_prot_t fault_typea,
2766 vm_map_entry_t *out_entry, /* OUT */
2767 vm_object_t *object, /* OUT */
2768 vm_pindex_t *pindex, /* OUT */
2769 vm_prot_t *out_prot, /* OUT */
2770 boolean_t *wired) /* OUT */
2771{
2772 vm_map_entry_t entry;
2773 vm_map_t map = *var_map;
2774 vm_prot_t prot;
2775 vm_prot_t fault_type = fault_typea;
2776
2777 GIANT_REQUIRED;
2778RetryLookup:;
2779 /*
2780 * Lookup the faulting address.
2781 */
2782
2783 vm_map_lock_read(map);
2784#define RETURN(why) \
2785 { \
2786 vm_map_unlock_read(map); \
2787 return (why); \
2788 }
2789
2790 /*
2791 * If the map has an interesting hint, try it before calling full
2792 * blown lookup routine.
2793 */
2794 entry = map->hint;
2795 *out_entry = entry;
2796 if ((entry == &map->header) ||
2797 (vaddr < entry->start) || (vaddr >= entry->end)) {
2798 vm_map_entry_t tmp_entry;
2799
2800 /*
2801 * Entry was either not a valid hint, or the vaddr was not
2802 * contained in the entry, so do a full lookup.
2803 */
2804 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry))
2805 RETURN(KERN_INVALID_ADDRESS);
2806
2807 entry = tmp_entry;
2808 *out_entry = entry;
2809 }
2810
2811 /*
2812 * Handle submaps.
2813 */
2814 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2815 vm_map_t old_map = map;
2816
2817 *var_map = map = entry->object.sub_map;
2818 vm_map_unlock_read(old_map);
2819 goto RetryLookup;
2820 }
2821
2822 /*
2823 * Check whether this task is allowed to have this page.
2824 * Note the special case for MAP_ENTRY_COW
2825 * pages with an override. This is to implement a forced
2826 * COW for debuggers.
2827 */
2828 if (fault_type & VM_PROT_OVERRIDE_WRITE)
2829 prot = entry->max_protection;
2830 else
2831 prot = entry->protection;
2832 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2833 if ((fault_type & prot) != fault_type) {
2834 RETURN(KERN_PROTECTION_FAILURE);
2835 }
2836 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2837 (entry->eflags & MAP_ENTRY_COW) &&
2838 (fault_type & VM_PROT_WRITE) &&
2839 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2840 RETURN(KERN_PROTECTION_FAILURE);
2841 }
2842
2843 /*
2844 * If this page is not pageable, we have to get it for all possible
2845 * accesses.
2846 */
2847 *wired = (entry->wired_count != 0);
2848 if (*wired)
2849 prot = fault_type = entry->protection;
2850
2851 /*
2852 * If the entry was copy-on-write, we either ...
2853 */
2854 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2855 /*
2856 * If we want to write the page, we may as well handle that
2857 * now since we've got the map locked.
2858 *
2859 * If we don't need to write the page, we just demote the
2860 * permissions allowed.
2861 */
2862 if (fault_type & VM_PROT_WRITE) {
2863 /*
2864 * Make a new object, and place it in the object
2865 * chain. Note that no new references have appeared
2866 * -- one just moved from the map to the new
2867 * object.
2868 */
2869 if (vm_map_lock_upgrade(map))
2870 goto RetryLookup;
2871 vm_object_shadow(
2872 &entry->object.vm_object,
2873 &entry->offset,
2874 atop(entry->end - entry->start));
2875 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2876 vm_map_lock_downgrade(map);
2877 } else {
2878 /*
2879 * We're attempting to read a copy-on-write page --
2880 * don't allow writes.
2881 */
2882 prot &= ~VM_PROT_WRITE;
2883 }
2884 }
2885
2886 /*
2887 * Create an object if necessary.
2888 */
2889 if (entry->object.vm_object == NULL &&
2890 !map->system_map) {
2891 if (vm_map_lock_upgrade(map))
2892 goto RetryLookup;
2893 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2894 atop(entry->end - entry->start));
2895 entry->offset = 0;
2896 vm_map_lock_downgrade(map);
2897 }
2898
2899 /*
2900 * Return the object/offset from this entry. If the entry was
2901 * copy-on-write or empty, it has been fixed up.
2902 */
2903 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2904 *object = entry->object.vm_object;
2905
2906 /*
2907 * Return whether this is the only map sharing this data.
2908 */
2909 *out_prot = prot;
2910 return (KERN_SUCCESS);
2911
2912#undef RETURN
2913}
2914
2915/*
2916 * vm_map_lookup_done:
2917 *
2918 * Releases locks acquired by a vm_map_lookup
2919 * (according to the handle returned by that lookup).
2920 */
2921void
2922vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
2923{
2924 /*
2925 * Unlock the main-level map
2926 */
2927 GIANT_REQUIRED;
2928 vm_map_unlock_read(map);
2929}
2930
2931/*
2932 * Implement uiomove with VM operations. This handles (and collateral changes)
2933 * support every combination of source object modification, and COW type
2934 * operations.
2935 */
2936int
2937vm_uiomove(
2938 vm_map_t mapa,
2939 vm_object_t srcobject,
2940 off_t cp,
2941 int cnta,
2942 vm_offset_t uaddra,
2943 int *npages)
2944{
2945 vm_map_t map;
2946 vm_object_t first_object, oldobject, object;
2947 vm_map_entry_t entry;
2948 vm_prot_t prot;
2949 boolean_t wired;
2950 int tcnt, rv;
2951 vm_offset_t uaddr, start, end, tend;
2952 vm_pindex_t first_pindex, osize, oindex;
2953 off_t ooffset;
2954 int cnt;
2955
2956 GIANT_REQUIRED;
2957
2958 if (npages)
2959 *npages = 0;
2960
2961 cnt = cnta;
2962 uaddr = uaddra;
2963
2964 while (cnt > 0) {
2965 map = mapa;
2966
2967 if ((vm_map_lookup(&map, uaddr,
2968 VM_PROT_READ, &entry, &first_object,
2969 &first_pindex, &prot, &wired)) != KERN_SUCCESS) {
2970 return EFAULT;
2971 }
2972
2973 vm_map_clip_start(map, entry, uaddr);
2974
2975 tcnt = cnt;
2976 tend = uaddr + tcnt;
2977 if (tend > entry->end) {
2978 tcnt = entry->end - uaddr;
2979 tend = entry->end;
2980 }
2981
2982 vm_map_clip_end(map, entry, tend);
2983
2984 start = entry->start;
2985 end = entry->end;
2986
2987 osize = atop(tcnt);
2988
2989 oindex = OFF_TO_IDX(cp);
2990 if (npages) {
2991 vm_pindex_t idx;
2992 for (idx = 0; idx < osize; idx++) {
2993 vm_page_t m;
2994 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2995 vm_map_lookup_done(map, entry);
2996 return 0;
2997 }
2998 /*
2999 * disallow busy or invalid pages, but allow
3000 * m->busy pages if they are entirely valid.
3001 */
3002 if ((m->flags & PG_BUSY) ||
3003 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3004 vm_map_lookup_done(map, entry);
3005 return 0;
3006 }
3007 }
3008 }
3009
3010/*
3011 * If we are changing an existing map entry, just redirect
3012 * the object, and change mappings.
3013 */
3014 if ((first_object->type == OBJT_VNODE) &&
3015 ((oldobject = entry->object.vm_object) == first_object)) {
3016
3017 if ((entry->offset != cp) || (oldobject != srcobject)) {
3018 /*
3019 * Remove old window into the file
3020 */
3021 pmap_remove (map->pmap, uaddr, tend);
3022
3023 /*
3024 * Force copy on write for mmaped regions
3025 */
3026 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3027
3028 /*
3029 * Point the object appropriately
3030 */
3031 if (oldobject != srcobject) {
3032
3033 /*
3034 * Set the object optimization hint flag
3035 */
3036 vm_object_set_flag(srcobject, OBJ_OPT);
3037 vm_object_reference(srcobject);
3038 entry->object.vm_object = srcobject;
3039
3040 if (oldobject) {
3041 vm_object_deallocate(oldobject);
3042 }
3043 }
3044
3045 entry->offset = cp;
3046 map->timestamp++;
3047 } else {
3048 pmap_remove (map->pmap, uaddr, tend);
3049 }
3050
3051 } else if ((first_object->ref_count == 1) &&
3052 (first_object->size == osize) &&
3053 ((first_object->type == OBJT_DEFAULT) ||
3054 (first_object->type == OBJT_SWAP)) ) {
3055
3056 oldobject = first_object->backing_object;
3057
3058 if ((first_object->backing_object_offset != cp) ||
3059 (oldobject != srcobject)) {
3060 /*
3061 * Remove old window into the file
3062 */
3063 pmap_remove (map->pmap, uaddr, tend);
3064
3065 /*
3066 * Remove unneeded old pages
3067 */
3068 vm_object_page_remove(first_object, 0, 0, 0);
3069
3070 /*
3071 * Invalidate swap space
3072 */
3073 if (first_object->type == OBJT_SWAP) {
3074 swap_pager_freespace(first_object,
3075 0,
3076 first_object->size);
3077 }
3078
3079 /*
3080 * Force copy on write for mmaped regions
3081 */
3082 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3083
3084 /*
3085 * Point the object appropriately
3086 */
3087 if (oldobject != srcobject) {
3088 /*
3089 * Set the object optimization hint flag
3090 */
3091 vm_object_set_flag(srcobject, OBJ_OPT);
3092 vm_object_reference(srcobject);
3093
3094 if (oldobject) {
3095 TAILQ_REMOVE(&oldobject->shadow_head,
3096 first_object, shadow_list);
3097 oldobject->shadow_count--;
3098 /* XXX bump generation? */
3099 vm_object_deallocate(oldobject);
3100 }
3101
3102 TAILQ_INSERT_TAIL(&srcobject->shadow_head,
3103 first_object, shadow_list);
3104 srcobject->shadow_count++;
3105 /* XXX bump generation? */
3106
3107 first_object->backing_object = srcobject;
3108 }
3109 first_object->backing_object_offset = cp;
3110 map->timestamp++;
3111 } else {
3112 pmap_remove (map->pmap, uaddr, tend);
3113 }
3114/*
3115 * Otherwise, we have to do a logical mmap.
3116 */
3117 } else {
3118
3119 vm_object_set_flag(srcobject, OBJ_OPT);
3120 vm_object_reference(srcobject);
3121
3122 pmap_remove (map->pmap, uaddr, tend);
3123
3124 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3125 vm_map_lock_upgrade(map);
3126
3127 if (entry == &map->header) {
3128 map->first_free = &map->header;
3129 } else if (map->first_free->start >= start) {
3130 map->first_free = entry->prev;
3131 }
3132
3133 SAVE_HINT(map, entry->prev);
3134 vm_map_entry_delete(map, entry);
3135
3136 object = srcobject;
3137 ooffset = cp;
3138
3139 rv = vm_map_insert(map, object, ooffset, start, tend,
3140 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3141
3142 if (rv != KERN_SUCCESS)
3143 panic("vm_uiomove: could not insert new entry: %d", rv);
3144 }
3145
3146/*
3147 * Map the window directly, if it is already in memory
3148 */
3149 pmap_object_init_pt(map->pmap, uaddr,
3150 srcobject, oindex, tcnt, 0);
3151
3152 map->timestamp++;
3153 vm_map_unlock(map);
3154
3155 cnt -= tcnt;
3156 uaddr += tcnt;
3157 cp += tcnt;
3158 if (npages)
3159 *npages += osize;
3160 }
3161 return 0;
3162}
3163
3164/*
3165 * Performs the copy_on_write operations necessary to allow the virtual copies
3166 * into user space to work. This has to be called for write(2) system calls
3167 * from other processes, file unlinking, and file size shrinkage.
3168 */
3169void
3170vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
3171{
3172 int rv;
3173 vm_object_t robject;
3174 vm_pindex_t idx;
3175
3176 GIANT_REQUIRED;
3177 if ((object == NULL) ||
3178 ((object->flags & OBJ_OPT) == 0))
3179 return;
3180
3181 if (object->shadow_count > object->ref_count)
3182 panic("vm_freeze_copyopts: sc > rc");
3183
3184 while ((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
3185 vm_pindex_t bo_pindex;
3186 vm_page_t m_in, m_out;
3187
3188 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3189
3190 vm_object_reference(robject);
3191
3192 vm_object_pip_wait(robject, "objfrz");
3193
3194 if (robject->ref_count == 1) {
3195 vm_object_deallocate(robject);
3196 continue;
3197 }
3198
3199 vm_object_pip_add(robject, 1);
3200
3201 for (idx = 0; idx < robject->size; idx++) {
3202
3203 m_out = vm_page_grab(robject, idx,
3204 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3205
3206 if (m_out->valid == 0) {
3207 m_in = vm_page_grab(object, bo_pindex + idx,
3208 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3209 if (m_in->valid == 0) {
3210 rv = vm_pager_get_pages(object, &m_in, 1, 0);
3211 if (rv != VM_PAGER_OK) {
3212 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3213 continue;
3214 }
3215 vm_page_deactivate(m_in);
3216 }
3217
3218 vm_page_protect(m_in, VM_PROT_NONE);
3219 pmap_copy_page(m_in, m_out);
3220 m_out->valid = m_in->valid;
3221 vm_page_dirty(m_out);
3222 vm_page_activate(m_out);
3223 vm_page_wakeup(m_in);
3224 }
3225 vm_page_wakeup(m_out);
3226 }
3227
3228 object->shadow_count--;
3229 object->ref_count--;
3230 TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
3231 robject->backing_object = NULL;
3232 robject->backing_object_offset = 0;
3233
3234 vm_object_pip_wakeup(robject);
3235 vm_object_deallocate(robject);
3236 }
3237
3238 vm_object_clear_flag(object, OBJ_OPT);
3239}
3240
3241#include "opt_ddb.h"
3242#ifdef DDB
3243#include <sys/kernel.h>
3244
3245#include <ddb/ddb.h>
3246
3247/*
3248 * vm_map_print: [ debug ]
3249 */
3250DB_SHOW_COMMAND(map, vm_map_print)
3251{
3252 static int nlines;
3253 /* XXX convert args. */
3254 vm_map_t map = (vm_map_t)addr;
3255 boolean_t full = have_addr;
3256
3257 vm_map_entry_t entry;
3258
3259 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3260 (void *)map,
3261 (void *)map->pmap, map->nentries, map->timestamp);
3262 nlines++;
3263
3264 if (!full && db_indent)
3265 return;
3266
3267 db_indent += 2;
3268 for (entry = map->header.next; entry != &map->header;
3269 entry = entry->next) {
3270 db_iprintf("map entry %p: start=%p, end=%p\n",
3271 (void *)entry, (void *)entry->start, (void *)entry->end);
3272 nlines++;
3273 {
3274 static char *inheritance_name[4] =
3275 {"share", "copy", "none", "donate_copy"};
3276
3277 db_iprintf(" prot=%x/%x/%s",
3278 entry->protection,
3279 entry->max_protection,
3280 inheritance_name[(int)(unsigned char)entry->inheritance]);
3281 if (entry->wired_count != 0)
3282 db_printf(", wired");
3283 }
3284 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3285 /* XXX no %qd in kernel. Truncate entry->offset. */
3286 db_printf(", share=%p, offset=0x%lx\n",
3287 (void *)entry->object.sub_map,
3288 (long)entry->offset);
3289 nlines++;
3290 if ((entry->prev == &map->header) ||
3291 (entry->prev->object.sub_map !=
3292 entry->object.sub_map)) {
3293 db_indent += 2;
3294 vm_map_print((db_expr_t)(intptr_t)
3295 entry->object.sub_map,
3296 full, 0, (char *)0);
3297 db_indent -= 2;
3298 }
3299 } else {
3300 /* XXX no %qd in kernel. Truncate entry->offset. */
3301 db_printf(", object=%p, offset=0x%lx",
3302 (void *)entry->object.vm_object,
3303 (long)entry->offset);
3304 if (entry->eflags & MAP_ENTRY_COW)
3305 db_printf(", copy (%s)",
3306 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3307 db_printf("\n");
3308 nlines++;
3309
3310 if ((entry->prev == &map->header) ||
3311 (entry->prev->object.vm_object !=
3312 entry->object.vm_object)) {
3313 db_indent += 2;
3314 vm_object_print((db_expr_t)(intptr_t)
3315 entry->object.vm_object,
3316 full, 0, (char *)0);
3317 nlines += 4;
3318 db_indent -= 2;
3319 }
3320 }
3321 }
3322 db_indent -= 2;
3323 if (db_indent == 0)
3324 nlines = 0;
3325}
3326
3327
3328DB_SHOW_COMMAND(procvm, procvm)
3329{
3330 struct proc *p;
3331
3332 if (have_addr) {
3333 p = (struct proc *) addr;
3334 } else {
3335 p = curproc;
3336 }
3337
3338 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3339 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3340 (void *)vmspace_pmap(p->p_vmspace));
3341
3342 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3343}
3344
3345#endif /* DDB */