Deleted Added
full compact
vm_map.c (92588) vm_map.c (92654)
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
1/*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 *
64 * $FreeBSD: head/sys/vm/vm_map.c 92588 2002-03-18 15:08:09Z green $
64 * $FreeBSD: head/sys/vm/vm_map.c 92654 2002-03-19 09:11:49Z jeff $
65 */
66
67/*
68 * Virtual memory mapping module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/ktr.h>
74#include <sys/lock.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/vnode.h>
80#include <sys/resourcevar.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_page.h>
87#include <vm/vm_object.h>
88#include <vm/vm_pager.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_extern.h>
65 */
66
67/*
68 * Virtual memory mapping module.
69 */
70
71#include <sys/param.h>
72#include <sys/systm.h>
73#include <sys/ktr.h>
74#include <sys/lock.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/vmmeter.h>
78#include <sys/mman.h>
79#include <sys/vnode.h>
80#include <sys/resourcevar.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_page.h>
87#include <vm/vm_object.h>
88#include <vm/vm_pager.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_zone.h>
92#include <vm/swap_pager.h>
93
94/*
95 * Virtual memory maps provide for the mapping, protection,
96 * and sharing of virtual memory objects. In addition,
97 * this module provides for an efficient virtual copy of
98 * memory from one map to another.
99 *
100 * Synchronization is required prior to most operations.
101 *
102 * Maps consist of an ordered doubly-linked list of simple
103 * entries; a single hint is used to speed up lookups.
104 *
105 * Since portions of maps are specified by start/end addresses,
106 * which may not align with existing map entries, all
107 * routines merely "clip" entries to these start/end values.
108 * [That is, an entry is split into two, bordering at a
109 * start or end value.] Note that these clippings may not
110 * always be necessary (as the two resulting entries are then
111 * not changed); however, the clipping is done for convenience.
112 *
113 * As mentioned above, virtual copy operations are performed
114 * by copying VM object references from one map to
115 * another, and then marking both regions as copy-on-write.
116 */
117
118/*
119 * vm_map_startup:
120 *
121 * Initialize the vm_map module. Must be called before
122 * any other vm_map routines.
123 *
124 * Map and entry structures are allocated from the general
125 * purpose memory pool with some exceptions:
126 *
127 * - The kernel map and kmem submap are allocated statically.
128 * - Kernel map entries are allocated out of a static pool.
129 *
130 * These restrictions are necessary since malloc() uses the
131 * maps and requires map entries.
132 */
133
91#include <vm/swap_pager.h>
92
93/*
94 * Virtual memory maps provide for the mapping, protection,
95 * and sharing of virtual memory objects. In addition,
96 * this module provides for an efficient virtual copy of
97 * memory from one map to another.
98 *
99 * Synchronization is required prior to most operations.
100 *
101 * Maps consist of an ordered doubly-linked list of simple
102 * entries; a single hint is used to speed up lookups.
103 *
104 * Since portions of maps are specified by start/end addresses,
105 * which may not align with existing map entries, all
106 * routines merely "clip" entries to these start/end values.
107 * [That is, an entry is split into two, bordering at a
108 * start or end value.] Note that these clippings may not
109 * always be necessary (as the two resulting entries are then
110 * not changed); however, the clipping is done for convenience.
111 *
112 * As mentioned above, virtual copy operations are performed
113 * by copying VM object references from one map to
114 * another, and then marking both regions as copy-on-write.
115 */
116
117/*
118 * vm_map_startup:
119 *
120 * Initialize the vm_map module. Must be called before
121 * any other vm_map routines.
122 *
123 * Map and entry structures are allocated from the general
124 * purpose memory pool with some exceptions:
125 *
126 * - The kernel map and kmem submap are allocated statically.
127 * - Kernel map entries are allocated out of a static pool.
128 *
129 * These restrictions are necessary since malloc() uses the
130 * maps and requires map entries.
131 */
132
134static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store;
135static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone;
136static struct vm_object kmapentobj, mapentobj, mapobj;
133static uma_zone_t mapentzone;
134static uma_zone_t kmapentzone;
135static uma_zone_t mapzone;
136static uma_zone_t vmspace_zone;
137static struct vm_object kmapentobj;
138static void vmspace_zinit(void *mem, int size);
139static void vmspace_zfini(void *mem, int size);
140static void vm_map_zinit(void *mem, int size);
141static void vm_map_zfini(void *mem, int size);
142static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
137
143
138static struct vm_map_entry map_entry_init[MAX_MAPENT];
139static struct vm_map_entry kmap_entry_init[MAX_KMAPENT];
140static struct vm_map map_init[MAX_KMAP];
144#ifdef INVARIANTS
145static void vm_map_zdtor(void *mem, int size, void *arg);
146static void vmspace_zdtor(void *mem, int size, void *arg);
147#endif
141
142void
143vm_map_startup(void)
144{
148
149void
150vm_map_startup(void)
151{
145 mapzone = &mapzone_store;
146 zbootinit(mapzone, "MAP", sizeof (struct vm_map),
147 map_init, MAX_KMAP);
148 kmapentzone = &kmapentzone_store;
149 zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry),
150 kmap_entry_init, MAX_KMAPENT);
151 mapentzone = &mapentzone_store;
152 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
153 map_entry_init, MAX_MAPENT);
152 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
153#ifdef INVARIANTS
154 vm_map_zdtor,
155#else
156 NULL,
157#endif
158 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
159 uma_prealloc(mapzone, MAX_KMAP);
160 kmapentzone = zinit("KMAP ENTRY", sizeof(struct vm_map_entry), 0, 0, 0); uma_prealloc(kmapentzone, MAX_KMAPENT);
161 mapentzone = zinit("MAP ENTRY", sizeof(struct vm_map_entry), 0, 0, 0);
162 uma_prealloc(mapentzone, MAX_MAPENT);
154}
155
163}
164
165static void
166vmspace_zfini(void *mem, int size)
167{
168 struct vmspace *vm;
169
170 vm = (struct vmspace *)mem;
171
172 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
173}
174
175static void
176vmspace_zinit(void *mem, int size)
177{
178 struct vmspace *vm;
179
180 vm = (struct vmspace *)mem;
181
182 vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map));
183}
184
185static void
186vm_map_zfini(void *mem, int size)
187{
188 vm_map_t map;
189
190 GIANT_REQUIRED;
191 map = (vm_map_t)mem;
192
193 lockdestroy(&map->lock);
194}
195
196static void
197vm_map_zinit(void *mem, int size)
198{
199 vm_map_t map;
200
201 GIANT_REQUIRED;
202
203 map = (vm_map_t)mem;
204 map->nentries = 0;
205 map->size = 0;
206 map->infork = 0;
207 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
208}
209
210#ifdef INVARIANTS
211static void
212vmspace_zdtor(void *mem, int size, void *arg)
213{
214 struct vmspace *vm;
215
216 vm = (struct vmspace *)mem;
217
218 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
219}
220static void
221vm_map_zdtor(void *mem, int size, void *arg)
222{
223 vm_map_t map;
224
225 map = (vm_map_t)mem;
226 KASSERT(map->nentries == 0,
227 ("map %p nentries == %d on free.",
228 map, map->nentries));
229 KASSERT(map->size == 0,
230 ("map %p size == %lu on free.",
231 map, map->size));
232 KASSERT(map->infork == 0,
233 ("map %p infork == %d on free.",
234 map, map->infork));
235}
236#endif /* INVARIANTS */
237
156/*
157 * Allocate a vmspace structure, including a vm_map and pmap,
158 * and initialize those structures. The refcnt is set to 1.
159 * The remaining fields must be initialized by the caller.
160 */
161struct vmspace *
162vmspace_alloc(min, max)
163 vm_offset_t min, max;
164{
165 struct vmspace *vm;
166
167 GIANT_REQUIRED;
238/*
239 * Allocate a vmspace structure, including a vm_map and pmap,
240 * and initialize those structures. The refcnt is set to 1.
241 * The remaining fields must be initialized by the caller.
242 */
243struct vmspace *
244vmspace_alloc(min, max)
245 vm_offset_t min, max;
246{
247 struct vmspace *vm;
248
249 GIANT_REQUIRED;
168 vm = zalloc(vmspace_zone);
250 vm = uma_zalloc(vmspace_zone, M_WAITOK);
169 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
251 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
170 vm_map_init(&vm->vm_map, min, max);
252 _vm_map_init(&vm->vm_map, min, max);
171 pmap_pinit(vmspace_pmap(vm));
172 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
173 vm->vm_refcnt = 1;
174 vm->vm_shm = NULL;
175 vm->vm_freer = NULL;
176 return (vm);
177}
178
179void
180vm_init2(void)
181{
253 pmap_pinit(vmspace_pmap(vm));
254 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
255 vm->vm_refcnt = 1;
256 vm->vm_shm = NULL;
257 vm->vm_freer = NULL;
258 return (vm);
259}
260
261void
262vm_init2(void)
263{
182 zinitna(kmapentzone, &kmapentobj,
183 NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1);
184 zinitna(mapentzone, &mapentobj,
185 NULL, 0, 0, 0, 1);
186 zinitna(mapzone, &mapobj,
187 NULL, 0, 0, 0, 1);
188 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
264 uma_zone_set_obj(kmapentzone, &kmapentobj, cnt.v_page_count / 4);
265 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
266#ifdef INVARIANTS
267 vmspace_zdtor,
268#else
269 NULL,
270#endif
271 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
189 pmap_init2();
190 vm_object_init2();
191}
192
193static __inline void
194vmspace_dofree(struct vmspace *vm)
195{
196 CTR1(KTR_VM, "vmspace_free: %p", vm);
197 /*
198 * Lock the map, to wait out all other references to it.
199 * Delete all of the mappings and pages they hold, then call
200 * the pmap module to reclaim anything left.
201 */
202 vm_map_lock(&vm->vm_map);
203 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
204 vm->vm_map.max_offset);
205 vm_map_unlock(&vm->vm_map);
272 pmap_init2();
273 vm_object_init2();
274}
275
276static __inline void
277vmspace_dofree(struct vmspace *vm)
278{
279 CTR1(KTR_VM, "vmspace_free: %p", vm);
280 /*
281 * Lock the map, to wait out all other references to it.
282 * Delete all of the mappings and pages they hold, then call
283 * the pmap module to reclaim anything left.
284 */
285 vm_map_lock(&vm->vm_map);
286 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
287 vm->vm_map.max_offset);
288 vm_map_unlock(&vm->vm_map);
289
206 pmap_release(vmspace_pmap(vm));
290 pmap_release(vmspace_pmap(vm));
207 vm_map_destroy(&vm->vm_map);
208 zfree(vmspace_zone, vm);
291 uma_zfree(vmspace_zone, vm);
209}
210
211void
212vmspace_free(struct vmspace *vm)
213{
214 GIANT_REQUIRED;
215
216 if (vm->vm_refcnt == 0)
217 panic("vmspace_free: attempt to free already freed vmspace");
218
219 if (--vm->vm_refcnt == 0)
220 vmspace_dofree(vm);
221}
222
223void
224vmspace_exitfree(struct proc *p)
225{
226 GIANT_REQUIRED;
227
228 if (p == p->p_vmspace->vm_freer)
229 vmspace_dofree(p->p_vmspace);
230}
231
232/*
233 * vmspace_swap_count() - count the approximate swap useage in pages for a
234 * vmspace.
235 *
236 * Swap useage is determined by taking the proportional swap used by
237 * VM objects backing the VM map. To make up for fractional losses,
238 * if the VM object has any swap use at all the associated map entries
239 * count for at least 1 swap page.
240 */
241int
242vmspace_swap_count(struct vmspace *vmspace)
243{
244 vm_map_t map = &vmspace->vm_map;
245 vm_map_entry_t cur;
246 int count = 0;
247
248 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
249 vm_object_t object;
250
251 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
252 (object = cur->object.vm_object) != NULL &&
253 object->type == OBJT_SWAP
254 ) {
255 int n = (cur->end - cur->start) / PAGE_SIZE;
256
257 if (object->un_pager.swp.swp_bcount) {
258 count += object->un_pager.swp.swp_bcount *
259 SWAP_META_PAGES * n / object->size + 1;
260 }
261 }
262 }
263 return (count);
264}
265
266u_char
267vm_map_entry_behavior(struct vm_map_entry *entry)
268{
269 return entry->eflags & MAP_ENTRY_BEHAV_MASK;
270}
271
272void
273vm_map_entry_set_behavior(struct vm_map_entry *entry, u_char behavior)
274{
275 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
276 (behavior & MAP_ENTRY_BEHAV_MASK);
277}
278
279void
280vm_map_lock(vm_map_t map)
281{
282 vm_map_printf("locking map LK_EXCLUSIVE: %p\n", map);
283 if (lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread) != 0)
284 panic("vm_map_lock: failed to get lock");
285 map->timestamp++;
286}
287
288void
289vm_map_unlock(vm_map_t map)
290{
291 vm_map_printf("locking map LK_RELEASE: %p\n", map);
292 lockmgr(&(map)->lock, LK_RELEASE, NULL, curthread);
293}
294
295void
296vm_map_lock_read(vm_map_t map)
297{
298 vm_map_printf("locking map LK_SHARED: %p\n", map);
299 lockmgr(&(map)->lock, LK_SHARED, NULL, curthread);
300}
301
302void
303vm_map_unlock_read(vm_map_t map)
304{
305 vm_map_printf("locking map LK_RELEASE: %p\n", map);
306 lockmgr(&(map)->lock, LK_RELEASE, NULL, curthread);
307}
308
309static __inline__ int
310_vm_map_lock_upgrade(vm_map_t map, struct thread *td) {
311 int error;
312
313 vm_map_printf("locking map LK_EXCLUPGRADE: %p\n", map);
314 error = lockmgr(&map->lock, LK_EXCLUPGRADE, NULL, td);
315 if (error == 0)
316 map->timestamp++;
317 return error;
318}
319
320int
321vm_map_lock_upgrade(vm_map_t map)
322{
323 return (_vm_map_lock_upgrade(map, curthread));
324}
325
326void
327vm_map_lock_downgrade(vm_map_t map)
328{
329 vm_map_printf("locking map LK_DOWNGRADE: %p\n", map);
330 lockmgr(&map->lock, LK_DOWNGRADE, NULL, curthread);
331}
332
333void
334vm_map_set_recursive(vm_map_t map)
335{
336 mtx_lock((map)->lock.lk_interlock);
337 map->lock.lk_flags |= LK_CANRECURSE;
338 mtx_unlock((map)->lock.lk_interlock);
339}
340
341void
342vm_map_clear_recursive(vm_map_t map)
343{
344 mtx_lock((map)->lock.lk_interlock);
345 map->lock.lk_flags &= ~LK_CANRECURSE;
346 mtx_unlock((map)->lock.lk_interlock);
347}
348
349vm_offset_t
350vm_map_min(vm_map_t map)
351{
352 return (map->min_offset);
353}
354
355vm_offset_t
356vm_map_max(vm_map_t map)
357{
358 return (map->max_offset);
359}
360
361struct pmap *
362vm_map_pmap(vm_map_t map)
363{
364 return (map->pmap);
365}
366
367struct pmap *
368vmspace_pmap(struct vmspace *vmspace)
369{
370 return &vmspace->vm_pmap;
371}
372
373long
374vmspace_resident_count(struct vmspace *vmspace)
375{
376 return pmap_resident_count(vmspace_pmap(vmspace));
377}
378
379/*
380 * vm_map_create:
381 *
382 * Creates and returns a new empty VM map with
383 * the given physical map structure, and having
384 * the given lower and upper address bounds.
385 */
386vm_map_t
387vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
388{
389 vm_map_t result;
390
391 GIANT_REQUIRED;
392
292}
293
294void
295vmspace_free(struct vmspace *vm)
296{
297 GIANT_REQUIRED;
298
299 if (vm->vm_refcnt == 0)
300 panic("vmspace_free: attempt to free already freed vmspace");
301
302 if (--vm->vm_refcnt == 0)
303 vmspace_dofree(vm);
304}
305
306void
307vmspace_exitfree(struct proc *p)
308{
309 GIANT_REQUIRED;
310
311 if (p == p->p_vmspace->vm_freer)
312 vmspace_dofree(p->p_vmspace);
313}
314
315/*
316 * vmspace_swap_count() - count the approximate swap useage in pages for a
317 * vmspace.
318 *
319 * Swap useage is determined by taking the proportional swap used by
320 * VM objects backing the VM map. To make up for fractional losses,
321 * if the VM object has any swap use at all the associated map entries
322 * count for at least 1 swap page.
323 */
324int
325vmspace_swap_count(struct vmspace *vmspace)
326{
327 vm_map_t map = &vmspace->vm_map;
328 vm_map_entry_t cur;
329 int count = 0;
330
331 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
332 vm_object_t object;
333
334 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
335 (object = cur->object.vm_object) != NULL &&
336 object->type == OBJT_SWAP
337 ) {
338 int n = (cur->end - cur->start) / PAGE_SIZE;
339
340 if (object->un_pager.swp.swp_bcount) {
341 count += object->un_pager.swp.swp_bcount *
342 SWAP_META_PAGES * n / object->size + 1;
343 }
344 }
345 }
346 return (count);
347}
348
349u_char
350vm_map_entry_behavior(struct vm_map_entry *entry)
351{
352 return entry->eflags & MAP_ENTRY_BEHAV_MASK;
353}
354
355void
356vm_map_entry_set_behavior(struct vm_map_entry *entry, u_char behavior)
357{
358 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
359 (behavior & MAP_ENTRY_BEHAV_MASK);
360}
361
362void
363vm_map_lock(vm_map_t map)
364{
365 vm_map_printf("locking map LK_EXCLUSIVE: %p\n", map);
366 if (lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread) != 0)
367 panic("vm_map_lock: failed to get lock");
368 map->timestamp++;
369}
370
371void
372vm_map_unlock(vm_map_t map)
373{
374 vm_map_printf("locking map LK_RELEASE: %p\n", map);
375 lockmgr(&(map)->lock, LK_RELEASE, NULL, curthread);
376}
377
378void
379vm_map_lock_read(vm_map_t map)
380{
381 vm_map_printf("locking map LK_SHARED: %p\n", map);
382 lockmgr(&(map)->lock, LK_SHARED, NULL, curthread);
383}
384
385void
386vm_map_unlock_read(vm_map_t map)
387{
388 vm_map_printf("locking map LK_RELEASE: %p\n", map);
389 lockmgr(&(map)->lock, LK_RELEASE, NULL, curthread);
390}
391
392static __inline__ int
393_vm_map_lock_upgrade(vm_map_t map, struct thread *td) {
394 int error;
395
396 vm_map_printf("locking map LK_EXCLUPGRADE: %p\n", map);
397 error = lockmgr(&map->lock, LK_EXCLUPGRADE, NULL, td);
398 if (error == 0)
399 map->timestamp++;
400 return error;
401}
402
403int
404vm_map_lock_upgrade(vm_map_t map)
405{
406 return (_vm_map_lock_upgrade(map, curthread));
407}
408
409void
410vm_map_lock_downgrade(vm_map_t map)
411{
412 vm_map_printf("locking map LK_DOWNGRADE: %p\n", map);
413 lockmgr(&map->lock, LK_DOWNGRADE, NULL, curthread);
414}
415
416void
417vm_map_set_recursive(vm_map_t map)
418{
419 mtx_lock((map)->lock.lk_interlock);
420 map->lock.lk_flags |= LK_CANRECURSE;
421 mtx_unlock((map)->lock.lk_interlock);
422}
423
424void
425vm_map_clear_recursive(vm_map_t map)
426{
427 mtx_lock((map)->lock.lk_interlock);
428 map->lock.lk_flags &= ~LK_CANRECURSE;
429 mtx_unlock((map)->lock.lk_interlock);
430}
431
432vm_offset_t
433vm_map_min(vm_map_t map)
434{
435 return (map->min_offset);
436}
437
438vm_offset_t
439vm_map_max(vm_map_t map)
440{
441 return (map->max_offset);
442}
443
444struct pmap *
445vm_map_pmap(vm_map_t map)
446{
447 return (map->pmap);
448}
449
450struct pmap *
451vmspace_pmap(struct vmspace *vmspace)
452{
453 return &vmspace->vm_pmap;
454}
455
456long
457vmspace_resident_count(struct vmspace *vmspace)
458{
459 return pmap_resident_count(vmspace_pmap(vmspace));
460}
461
462/*
463 * vm_map_create:
464 *
465 * Creates and returns a new empty VM map with
466 * the given physical map structure, and having
467 * the given lower and upper address bounds.
468 */
469vm_map_t
470vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
471{
472 vm_map_t result;
473
474 GIANT_REQUIRED;
475
393 result = zalloc(mapzone);
476 result = uma_zalloc(mapzone, M_WAITOK);
394 CTR1(KTR_VM, "vm_map_create: %p", result);
477 CTR1(KTR_VM, "vm_map_create: %p", result);
395 vm_map_init(result, min, max);
478 _vm_map_init(result, min, max);
396 result->pmap = pmap;
397 return (result);
398}
399
400/*
401 * Initialize an existing vm_map structure
402 * such as that in the vmspace structure.
403 * The pmap is set elsewhere.
404 */
479 result->pmap = pmap;
480 return (result);
481}
482
483/*
484 * Initialize an existing vm_map structure
485 * such as that in the vmspace structure.
486 * The pmap is set elsewhere.
487 */
405void
406vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
488static void
489_vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
407{
408 GIANT_REQUIRED;
409
410 map->header.next = map->header.prev = &map->header;
490{
491 GIANT_REQUIRED;
492
493 map->header.next = map->header.prev = &map->header;
411 map->nentries = 0;
412 map->size = 0;
413 map->system_map = 0;
494 map->system_map = 0;
414 map->infork = 0;
415 map->min_offset = min;
416 map->max_offset = max;
417 map->first_free = &map->header;
418 map->hint = &map->header;
419 map->timestamp = 0;
495 map->min_offset = min;
496 map->max_offset = max;
497 map->first_free = &map->header;
498 map->hint = &map->header;
499 map->timestamp = 0;
420 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
421}
422
423void
500}
501
502void
424vm_map_destroy(map)
425 struct vm_map *map;
503vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
426{
504{
427 GIANT_REQUIRED;
428 lockdestroy(&map->lock);
505 _vm_map_init(map, min, max);
506 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
429}
430
431/*
432 * vm_map_entry_dispose: [ internal use only ]
433 *
434 * Inverse of vm_map_entry_create.
435 */
436static void
437vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
438{
507}
508
509/*
510 * vm_map_entry_dispose: [ internal use only ]
511 *
512 * Inverse of vm_map_entry_create.
513 */
514static void
515vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
516{
439 zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry);
517 uma_zfree((map->system_map || !mapentzone)
518 ? kmapentzone : mapentzone, entry);
440}
441
442/*
443 * vm_map_entry_create: [ internal use only ]
444 *
445 * Allocates a VM map entry for insertion.
446 * No entry fields are filled in.
447 */
448static vm_map_entry_t
449vm_map_entry_create(vm_map_t map)
450{
451 vm_map_entry_t new_entry;
452
519}
520
521/*
522 * vm_map_entry_create: [ internal use only ]
523 *
524 * Allocates a VM map entry for insertion.
525 * No entry fields are filled in.
526 */
527static vm_map_entry_t
528vm_map_entry_create(vm_map_t map)
529{
530 vm_map_entry_t new_entry;
531
453 new_entry = zalloc((map->system_map || !mapentzone) ?
454 kmapentzone : mapentzone);
532 new_entry = uma_zalloc((map->system_map || !mapentzone) ?
533 kmapentzone : mapentzone, M_WAITOK);
455 if (new_entry == NULL)
456 panic("vm_map_entry_create: kernel resources exhausted");
457 return (new_entry);
458}
459
460/*
461 * vm_map_entry_{un,}link:
462 *
463 * Insert/remove entries from maps.
464 */
465static __inline void
466vm_map_entry_link(vm_map_t map,
467 vm_map_entry_t after_where,
468 vm_map_entry_t entry)
469{
470
471 CTR4(KTR_VM,
472 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
473 map->nentries, entry, after_where);
474 map->nentries++;
475 entry->prev = after_where;
476 entry->next = after_where->next;
477 entry->next->prev = entry;
478 after_where->next = entry;
479}
480
481static __inline void
482vm_map_entry_unlink(vm_map_t map,
483 vm_map_entry_t entry)
484{
485 vm_map_entry_t prev = entry->prev;
486 vm_map_entry_t next = entry->next;
487
488 next->prev = prev;
489 prev->next = next;
490 map->nentries--;
491 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
492 map->nentries, entry);
493}
494
495/*
496 * SAVE_HINT:
497 *
498 * Saves the specified entry as the hint for
499 * future lookups.
500 */
501#define SAVE_HINT(map,value) \
502 (map)->hint = (value);
503
504/*
505 * vm_map_lookup_entry: [ internal use only ]
506 *
507 * Finds the map entry containing (or
508 * immediately preceding) the specified address
509 * in the given map; the entry is returned
510 * in the "entry" parameter. The boolean
511 * result indicates whether the address is
512 * actually contained in the map.
513 */
514boolean_t
515vm_map_lookup_entry(
516 vm_map_t map,
517 vm_offset_t address,
518 vm_map_entry_t *entry) /* OUT */
519{
520 vm_map_entry_t cur;
521 vm_map_entry_t last;
522
523 GIANT_REQUIRED;
524 /*
525 * Start looking either from the head of the list, or from the hint.
526 */
527 cur = map->hint;
528
529 if (cur == &map->header)
530 cur = cur->next;
531
532 if (address >= cur->start) {
533 /*
534 * Go from hint to end of list.
535 *
536 * But first, make a quick check to see if we are already looking
537 * at the entry we want (which is usually the case). Note also
538 * that we don't need to save the hint here... it is the same
539 * hint (unless we are at the header, in which case the hint
540 * didn't buy us anything anyway).
541 */
542 last = &map->header;
543 if ((cur != last) && (cur->end > address)) {
544 *entry = cur;
545 return (TRUE);
546 }
547 } else {
548 /*
549 * Go from start to hint, *inclusively*
550 */
551 last = cur->next;
552 cur = map->header.next;
553 }
554
555 /*
556 * Search linearly
557 */
558 while (cur != last) {
559 if (cur->end > address) {
560 if (address >= cur->start) {
561 /*
562 * Save this lookup for future hints, and
563 * return
564 */
565 *entry = cur;
566 SAVE_HINT(map, cur);
567 return (TRUE);
568 }
569 break;
570 }
571 cur = cur->next;
572 }
573 *entry = cur->prev;
574 SAVE_HINT(map, *entry);
575 return (FALSE);
576}
577
578/*
579 * vm_map_insert:
580 *
581 * Inserts the given whole VM object into the target
582 * map at the specified address range. The object's
583 * size should match that of the address range.
584 *
585 * Requires that the map be locked, and leaves it so.
586 *
587 * If object is non-NULL, ref count must be bumped by caller
588 * prior to making call to account for the new entry.
589 */
590int
591vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
592 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
593 int cow)
594{
595 vm_map_entry_t new_entry;
596 vm_map_entry_t prev_entry;
597 vm_map_entry_t temp_entry;
598 vm_eflags_t protoeflags;
599
600 GIANT_REQUIRED;
601
602 /*
603 * Check that the start and end points are not bogus.
604 */
605 if ((start < map->min_offset) || (end > map->max_offset) ||
606 (start >= end))
607 return (KERN_INVALID_ADDRESS);
608
609 /*
610 * Find the entry prior to the proposed starting address; if it's part
611 * of an existing entry, this range is bogus.
612 */
613 if (vm_map_lookup_entry(map, start, &temp_entry))
614 return (KERN_NO_SPACE);
615
616 prev_entry = temp_entry;
617
618 /*
619 * Assert that the next entry doesn't overlap the end point.
620 */
621 if ((prev_entry->next != &map->header) &&
622 (prev_entry->next->start < end))
623 return (KERN_NO_SPACE);
624
625 protoeflags = 0;
626
627 if (cow & MAP_COPY_ON_WRITE)
628 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
629
630 if (cow & MAP_NOFAULT) {
631 protoeflags |= MAP_ENTRY_NOFAULT;
632
633 KASSERT(object == NULL,
634 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
635 }
636 if (cow & MAP_DISABLE_SYNCER)
637 protoeflags |= MAP_ENTRY_NOSYNC;
638 if (cow & MAP_DISABLE_COREDUMP)
639 protoeflags |= MAP_ENTRY_NOCOREDUMP;
640
641 if (object) {
642 /*
643 * When object is non-NULL, it could be shared with another
644 * process. We have to set or clear OBJ_ONEMAPPING
645 * appropriately.
646 */
647 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
648 vm_object_clear_flag(object, OBJ_ONEMAPPING);
649 }
650 }
651 else if ((prev_entry != &map->header) &&
652 (prev_entry->eflags == protoeflags) &&
653 (prev_entry->end == start) &&
654 (prev_entry->wired_count == 0) &&
655 ((prev_entry->object.vm_object == NULL) ||
656 vm_object_coalesce(prev_entry->object.vm_object,
657 OFF_TO_IDX(prev_entry->offset),
658 (vm_size_t)(prev_entry->end - prev_entry->start),
659 (vm_size_t)(end - prev_entry->end)))) {
660 /*
661 * We were able to extend the object. Determine if we
662 * can extend the previous map entry to include the
663 * new range as well.
664 */
665 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
666 (prev_entry->protection == prot) &&
667 (prev_entry->max_protection == max)) {
668 map->size += (end - prev_entry->end);
669 prev_entry->end = end;
670 vm_map_simplify_entry(map, prev_entry);
671 return (KERN_SUCCESS);
672 }
673
674 /*
675 * If we can extend the object but cannot extend the
676 * map entry, we have to create a new map entry. We
677 * must bump the ref count on the extended object to
678 * account for it. object may be NULL.
679 */
680 object = prev_entry->object.vm_object;
681 offset = prev_entry->offset +
682 (prev_entry->end - prev_entry->start);
683 vm_object_reference(object);
684 }
685
686 /*
687 * NOTE: if conditionals fail, object can be NULL here. This occurs
688 * in things like the buffer map where we manage kva but do not manage
689 * backing objects.
690 */
691
692 /*
693 * Create a new entry
694 */
695 new_entry = vm_map_entry_create(map);
696 new_entry->start = start;
697 new_entry->end = end;
698
699 new_entry->eflags = protoeflags;
700 new_entry->object.vm_object = object;
701 new_entry->offset = offset;
702 new_entry->avail_ssize = 0;
703
704 new_entry->inheritance = VM_INHERIT_DEFAULT;
705 new_entry->protection = prot;
706 new_entry->max_protection = max;
707 new_entry->wired_count = 0;
708
709 /*
710 * Insert the new entry into the list
711 */
712 vm_map_entry_link(map, prev_entry, new_entry);
713 map->size += new_entry->end - new_entry->start;
714
715 /*
716 * Update the free space hint
717 */
718 if ((map->first_free == prev_entry) &&
719 (prev_entry->end >= new_entry->start)) {
720 map->first_free = new_entry;
721 }
722
723#if 0
724 /*
725 * Temporarily removed to avoid MAP_STACK panic, due to
726 * MAP_STACK being a huge hack. Will be added back in
727 * when MAP_STACK (and the user stack mapping) is fixed.
728 */
729 /*
730 * It may be possible to simplify the entry
731 */
732 vm_map_simplify_entry(map, new_entry);
733#endif
734
735 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
736 pmap_object_init_pt(map->pmap, start,
737 object, OFF_TO_IDX(offset), end - start,
738 cow & MAP_PREFAULT_PARTIAL);
739 }
740
741 return (KERN_SUCCESS);
742}
743
744/*
745 * Find sufficient space for `length' bytes in the given map, starting at
746 * `start'. The map must be locked. Returns 0 on success, 1 on no space.
747 */
748int
749vm_map_findspace(
750 vm_map_t map,
751 vm_offset_t start,
752 vm_size_t length,
753 vm_offset_t *addr)
754{
755 vm_map_entry_t entry, next;
756 vm_offset_t end;
757
758 GIANT_REQUIRED;
759 if (start < map->min_offset)
760 start = map->min_offset;
761 if (start > map->max_offset)
762 return (1);
763
764 /*
765 * Look for the first possible address; if there's already something
766 * at this address, we have to start after it.
767 */
768 if (start == map->min_offset) {
769 if ((entry = map->first_free) != &map->header)
770 start = entry->end;
771 } else {
772 vm_map_entry_t tmp;
773
774 if (vm_map_lookup_entry(map, start, &tmp))
775 start = tmp->end;
776 entry = tmp;
777 }
778
779 /*
780 * Look through the rest of the map, trying to fit a new region in the
781 * gap between existing regions, or after the very last region.
782 */
783 for (;; start = (entry = next)->end) {
784 /*
785 * Find the end of the proposed new region. Be sure we didn't
786 * go beyond the end of the map, or wrap around the address;
787 * if so, we lose. Otherwise, if this is the last entry, or
788 * if the proposed new region fits before the next entry, we
789 * win.
790 */
791 end = start + length;
792 if (end > map->max_offset || end < start)
793 return (1);
794 next = entry->next;
795 if (next == &map->header || next->start >= end)
796 break;
797 }
798 SAVE_HINT(map, entry);
799 *addr = start;
800 if (map == kernel_map) {
801 vm_offset_t ksize;
802 if ((ksize = round_page(start + length)) > kernel_vm_end) {
803 pmap_growkernel(ksize);
804 }
805 }
806 return (0);
807}
808
809/*
810 * vm_map_find finds an unallocated region in the target address
811 * map with the given length. The search is defined to be
812 * first-fit from the specified address; the region found is
813 * returned in the same parameter.
814 *
815 * If object is non-NULL, ref count must be bumped by caller
816 * prior to making call to account for the new entry.
817 */
818int
819vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
820 vm_offset_t *addr, /* IN/OUT */
821 vm_size_t length, boolean_t find_space, vm_prot_t prot,
822 vm_prot_t max, int cow)
823{
824 vm_offset_t start;
825 int result, s = 0;
826
827 GIANT_REQUIRED;
828
829 start = *addr;
830
831 if (map == kmem_map)
832 s = splvm();
833
834 vm_map_lock(map);
835 if (find_space) {
836 if (vm_map_findspace(map, start, length, addr)) {
837 vm_map_unlock(map);
838 if (map == kmem_map)
839 splx(s);
840 return (KERN_NO_SPACE);
841 }
842 start = *addr;
843 }
844 result = vm_map_insert(map, object, offset,
845 start, start + length, prot, max, cow);
846 vm_map_unlock(map);
847
848 if (map == kmem_map)
849 splx(s);
850
851 return (result);
852}
853
854/*
855 * vm_map_simplify_entry:
856 *
857 * Simplify the given map entry by merging with either neighbor. This
858 * routine also has the ability to merge with both neighbors.
859 *
860 * The map must be locked.
861 *
862 * This routine guarentees that the passed entry remains valid (though
863 * possibly extended). When merging, this routine may delete one or
864 * both neighbors.
865 */
866void
867vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
868{
869 vm_map_entry_t next, prev;
870 vm_size_t prevsize, esize;
871
872 GIANT_REQUIRED;
873
874 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
875 return;
876
877 prev = entry->prev;
878 if (prev != &map->header) {
879 prevsize = prev->end - prev->start;
880 if ( (prev->end == entry->start) &&
881 (prev->object.vm_object == entry->object.vm_object) &&
882 (!prev->object.vm_object ||
883 (prev->offset + prevsize == entry->offset)) &&
884 (prev->eflags == entry->eflags) &&
885 (prev->protection == entry->protection) &&
886 (prev->max_protection == entry->max_protection) &&
887 (prev->inheritance == entry->inheritance) &&
888 (prev->wired_count == entry->wired_count)) {
889 if (map->first_free == prev)
890 map->first_free = entry;
891 if (map->hint == prev)
892 map->hint = entry;
893 vm_map_entry_unlink(map, prev);
894 entry->start = prev->start;
895 entry->offset = prev->offset;
896 if (prev->object.vm_object)
897 vm_object_deallocate(prev->object.vm_object);
898 vm_map_entry_dispose(map, prev);
899 }
900 }
901
902 next = entry->next;
903 if (next != &map->header) {
904 esize = entry->end - entry->start;
905 if ((entry->end == next->start) &&
906 (next->object.vm_object == entry->object.vm_object) &&
907 (!entry->object.vm_object ||
908 (entry->offset + esize == next->offset)) &&
909 (next->eflags == entry->eflags) &&
910 (next->protection == entry->protection) &&
911 (next->max_protection == entry->max_protection) &&
912 (next->inheritance == entry->inheritance) &&
913 (next->wired_count == entry->wired_count)) {
914 if (map->first_free == next)
915 map->first_free = entry;
916 if (map->hint == next)
917 map->hint = entry;
918 vm_map_entry_unlink(map, next);
919 entry->end = next->end;
920 if (next->object.vm_object)
921 vm_object_deallocate(next->object.vm_object);
922 vm_map_entry_dispose(map, next);
923 }
924 }
925}
926/*
927 * vm_map_clip_start: [ internal use only ]
928 *
929 * Asserts that the given entry begins at or after
930 * the specified address; if necessary,
931 * it splits the entry into two.
932 */
933#define vm_map_clip_start(map, entry, startaddr) \
934{ \
935 if (startaddr > entry->start) \
936 _vm_map_clip_start(map, entry, startaddr); \
937}
938
939/*
940 * This routine is called only when it is known that
941 * the entry must be split.
942 */
943static void
944_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
945{
946 vm_map_entry_t new_entry;
947
948 /*
949 * Split off the front portion -- note that we must insert the new
950 * entry BEFORE this one, so that this entry has the specified
951 * starting address.
952 */
953 vm_map_simplify_entry(map, entry);
954
955 /*
956 * If there is no object backing this entry, we might as well create
957 * one now. If we defer it, an object can get created after the map
958 * is clipped, and individual objects will be created for the split-up
959 * map. This is a bit of a hack, but is also about the best place to
960 * put this improvement.
961 */
962 if (entry->object.vm_object == NULL && !map->system_map) {
963 vm_object_t object;
964 object = vm_object_allocate(OBJT_DEFAULT,
965 atop(entry->end - entry->start));
966 entry->object.vm_object = object;
967 entry->offset = 0;
968 }
969
970 new_entry = vm_map_entry_create(map);
971 *new_entry = *entry;
972
973 new_entry->end = start;
974 entry->offset += (start - entry->start);
975 entry->start = start;
976
977 vm_map_entry_link(map, entry->prev, new_entry);
978
979 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
980 vm_object_reference(new_entry->object.vm_object);
981 }
982}
983
984/*
985 * vm_map_clip_end: [ internal use only ]
986 *
987 * Asserts that the given entry ends at or before
988 * the specified address; if necessary,
989 * it splits the entry into two.
990 */
991#define vm_map_clip_end(map, entry, endaddr) \
992{ \
993 if (endaddr < entry->end) \
994 _vm_map_clip_end(map, entry, endaddr); \
995}
996
997/*
998 * This routine is called only when it is known that
999 * the entry must be split.
1000 */
1001static void
1002_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1003{
1004 vm_map_entry_t new_entry;
1005
1006 /*
1007 * If there is no object backing this entry, we might as well create
1008 * one now. If we defer it, an object can get created after the map
1009 * is clipped, and individual objects will be created for the split-up
1010 * map. This is a bit of a hack, but is also about the best place to
1011 * put this improvement.
1012 */
1013 if (entry->object.vm_object == NULL && !map->system_map) {
1014 vm_object_t object;
1015 object = vm_object_allocate(OBJT_DEFAULT,
1016 atop(entry->end - entry->start));
1017 entry->object.vm_object = object;
1018 entry->offset = 0;
1019 }
1020
1021 /*
1022 * Create a new entry and insert it AFTER the specified entry
1023 */
1024 new_entry = vm_map_entry_create(map);
1025 *new_entry = *entry;
1026
1027 new_entry->start = entry->end = end;
1028 new_entry->offset += (end - entry->start);
1029
1030 vm_map_entry_link(map, entry, new_entry);
1031
1032 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1033 vm_object_reference(new_entry->object.vm_object);
1034 }
1035}
1036
1037/*
1038 * VM_MAP_RANGE_CHECK: [ internal use only ]
1039 *
1040 * Asserts that the starting and ending region
1041 * addresses fall within the valid range of the map.
1042 */
1043#define VM_MAP_RANGE_CHECK(map, start, end) \
1044 { \
1045 if (start < vm_map_min(map)) \
1046 start = vm_map_min(map); \
1047 if (end > vm_map_max(map)) \
1048 end = vm_map_max(map); \
1049 if (start > end) \
1050 start = end; \
1051 }
1052
1053/*
1054 * vm_map_submap: [ kernel use only ]
1055 *
1056 * Mark the given range as handled by a subordinate map.
1057 *
1058 * This range must have been created with vm_map_find,
1059 * and no other operations may have been performed on this
1060 * range prior to calling vm_map_submap.
1061 *
1062 * Only a limited number of operations can be performed
1063 * within this rage after calling vm_map_submap:
1064 * vm_fault
1065 * [Don't try vm_map_copy!]
1066 *
1067 * To remove a submapping, one must first remove the
1068 * range from the superior map, and then destroy the
1069 * submap (if desired). [Better yet, don't try it.]
1070 */
1071int
1072vm_map_submap(
1073 vm_map_t map,
1074 vm_offset_t start,
1075 vm_offset_t end,
1076 vm_map_t submap)
1077{
1078 vm_map_entry_t entry;
1079 int result = KERN_INVALID_ARGUMENT;
1080
1081 GIANT_REQUIRED;
1082
1083 vm_map_lock(map);
1084
1085 VM_MAP_RANGE_CHECK(map, start, end);
1086
1087 if (vm_map_lookup_entry(map, start, &entry)) {
1088 vm_map_clip_start(map, entry, start);
1089 } else
1090 entry = entry->next;
1091
1092 vm_map_clip_end(map, entry, end);
1093
1094 if ((entry->start == start) && (entry->end == end) &&
1095 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1096 (entry->object.vm_object == NULL)) {
1097 entry->object.sub_map = submap;
1098 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1099 result = KERN_SUCCESS;
1100 }
1101 vm_map_unlock(map);
1102
1103 return (result);
1104}
1105
1106/*
1107 * vm_map_protect:
1108 *
1109 * Sets the protection of the specified address
1110 * region in the target map. If "set_max" is
1111 * specified, the maximum protection is to be set;
1112 * otherwise, only the current protection is affected.
1113 */
1114int
1115vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1116 vm_prot_t new_prot, boolean_t set_max)
1117{
1118 vm_map_entry_t current;
1119 vm_map_entry_t entry;
1120
1121 GIANT_REQUIRED;
1122 vm_map_lock(map);
1123
1124 VM_MAP_RANGE_CHECK(map, start, end);
1125
1126 if (vm_map_lookup_entry(map, start, &entry)) {
1127 vm_map_clip_start(map, entry, start);
1128 } else {
1129 entry = entry->next;
1130 }
1131
1132 /*
1133 * Make a first pass to check for protection violations.
1134 */
1135 current = entry;
1136 while ((current != &map->header) && (current->start < end)) {
1137 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1138 vm_map_unlock(map);
1139 return (KERN_INVALID_ARGUMENT);
1140 }
1141 if ((new_prot & current->max_protection) != new_prot) {
1142 vm_map_unlock(map);
1143 return (KERN_PROTECTION_FAILURE);
1144 }
1145 current = current->next;
1146 }
1147
1148 /*
1149 * Go back and fix up protections. [Note that clipping is not
1150 * necessary the second time.]
1151 */
1152 current = entry;
1153 while ((current != &map->header) && (current->start < end)) {
1154 vm_prot_t old_prot;
1155
1156 vm_map_clip_end(map, current, end);
1157
1158 old_prot = current->protection;
1159 if (set_max)
1160 current->protection =
1161 (current->max_protection = new_prot) &
1162 old_prot;
1163 else
1164 current->protection = new_prot;
1165
1166 /*
1167 * Update physical map if necessary. Worry about copy-on-write
1168 * here -- CHECK THIS XXX
1169 */
1170 if (current->protection != old_prot) {
1171#define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1172 VM_PROT_ALL)
1173 pmap_protect(map->pmap, current->start,
1174 current->end,
1175 current->protection & MASK(current));
1176#undef MASK
1177 }
1178 vm_map_simplify_entry(map, current);
1179 current = current->next;
1180 }
1181 vm_map_unlock(map);
1182 return (KERN_SUCCESS);
1183}
1184
1185/*
1186 * vm_map_madvise:
1187 *
1188 * This routine traverses a processes map handling the madvise
1189 * system call. Advisories are classified as either those effecting
1190 * the vm_map_entry structure, or those effecting the underlying
1191 * objects.
1192 */
1193int
1194vm_map_madvise(
1195 vm_map_t map,
1196 vm_offset_t start,
1197 vm_offset_t end,
1198 int behav)
1199{
1200 vm_map_entry_t current, entry;
1201 int modify_map = 0;
1202
1203 GIANT_REQUIRED;
1204
1205 /*
1206 * Some madvise calls directly modify the vm_map_entry, in which case
1207 * we need to use an exclusive lock on the map and we need to perform
1208 * various clipping operations. Otherwise we only need a read-lock
1209 * on the map.
1210 */
1211 switch(behav) {
1212 case MADV_NORMAL:
1213 case MADV_SEQUENTIAL:
1214 case MADV_RANDOM:
1215 case MADV_NOSYNC:
1216 case MADV_AUTOSYNC:
1217 case MADV_NOCORE:
1218 case MADV_CORE:
1219 modify_map = 1;
1220 vm_map_lock(map);
1221 break;
1222 case MADV_WILLNEED:
1223 case MADV_DONTNEED:
1224 case MADV_FREE:
1225 vm_map_lock_read(map);
1226 break;
1227 default:
1228 return (KERN_INVALID_ARGUMENT);
1229 }
1230
1231 /*
1232 * Locate starting entry and clip if necessary.
1233 */
1234 VM_MAP_RANGE_CHECK(map, start, end);
1235
1236 if (vm_map_lookup_entry(map, start, &entry)) {
1237 if (modify_map)
1238 vm_map_clip_start(map, entry, start);
1239 } else {
1240 entry = entry->next;
1241 }
1242
1243 if (modify_map) {
1244 /*
1245 * madvise behaviors that are implemented in the vm_map_entry.
1246 *
1247 * We clip the vm_map_entry so that behavioral changes are
1248 * limited to the specified address range.
1249 */
1250 for (current = entry;
1251 (current != &map->header) && (current->start < end);
1252 current = current->next
1253 ) {
1254 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1255 continue;
1256
1257 vm_map_clip_end(map, current, end);
1258
1259 switch (behav) {
1260 case MADV_NORMAL:
1261 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1262 break;
1263 case MADV_SEQUENTIAL:
1264 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1265 break;
1266 case MADV_RANDOM:
1267 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1268 break;
1269 case MADV_NOSYNC:
1270 current->eflags |= MAP_ENTRY_NOSYNC;
1271 break;
1272 case MADV_AUTOSYNC:
1273 current->eflags &= ~MAP_ENTRY_NOSYNC;
1274 break;
1275 case MADV_NOCORE:
1276 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1277 break;
1278 case MADV_CORE:
1279 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1280 break;
1281 default:
1282 break;
1283 }
1284 vm_map_simplify_entry(map, current);
1285 }
1286 vm_map_unlock(map);
1287 } else {
1288 vm_pindex_t pindex;
1289 int count;
1290
1291 /*
1292 * madvise behaviors that are implemented in the underlying
1293 * vm_object.
1294 *
1295 * Since we don't clip the vm_map_entry, we have to clip
1296 * the vm_object pindex and count.
1297 */
1298 for (current = entry;
1299 (current != &map->header) && (current->start < end);
1300 current = current->next
1301 ) {
1302 vm_offset_t useStart;
1303
1304 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1305 continue;
1306
1307 pindex = OFF_TO_IDX(current->offset);
1308 count = atop(current->end - current->start);
1309 useStart = current->start;
1310
1311 if (current->start < start) {
1312 pindex += atop(start - current->start);
1313 count -= atop(start - current->start);
1314 useStart = start;
1315 }
1316 if (current->end > end)
1317 count -= atop(current->end - end);
1318
1319 if (count <= 0)
1320 continue;
1321
1322 vm_object_madvise(current->object.vm_object,
1323 pindex, count, behav);
1324 if (behav == MADV_WILLNEED) {
1325 pmap_object_init_pt(
1326 map->pmap,
1327 useStart,
1328 current->object.vm_object,
1329 pindex,
1330 (count << PAGE_SHIFT),
1331 MAP_PREFAULT_MADVISE
1332 );
1333 }
1334 }
1335 vm_map_unlock_read(map);
1336 }
1337 return (0);
1338}
1339
1340
1341/*
1342 * vm_map_inherit:
1343 *
1344 * Sets the inheritance of the specified address
1345 * range in the target map. Inheritance
1346 * affects how the map will be shared with
1347 * child maps at the time of vm_map_fork.
1348 */
1349int
1350vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1351 vm_inherit_t new_inheritance)
1352{
1353 vm_map_entry_t entry;
1354 vm_map_entry_t temp_entry;
1355
1356 GIANT_REQUIRED;
1357
1358 switch (new_inheritance) {
1359 case VM_INHERIT_NONE:
1360 case VM_INHERIT_COPY:
1361 case VM_INHERIT_SHARE:
1362 break;
1363 default:
1364 return (KERN_INVALID_ARGUMENT);
1365 }
1366
1367 vm_map_lock(map);
1368
1369 VM_MAP_RANGE_CHECK(map, start, end);
1370
1371 if (vm_map_lookup_entry(map, start, &temp_entry)) {
1372 entry = temp_entry;
1373 vm_map_clip_start(map, entry, start);
1374 } else
1375 entry = temp_entry->next;
1376
1377 while ((entry != &map->header) && (entry->start < end)) {
1378 vm_map_clip_end(map, entry, end);
1379
1380 entry->inheritance = new_inheritance;
1381
1382 vm_map_simplify_entry(map, entry);
1383
1384 entry = entry->next;
1385 }
1386
1387 vm_map_unlock(map);
1388 return (KERN_SUCCESS);
1389}
1390
1391/*
1392 * Implement the semantics of mlock
1393 */
1394int
1395vm_map_user_pageable(
1396 vm_map_t map,
1397 vm_offset_t start,
1398 vm_offset_t end,
1399 boolean_t new_pageable)
1400{
1401 vm_map_entry_t entry;
1402 vm_map_entry_t start_entry;
1403 vm_offset_t estart;
1404 vm_offset_t eend;
1405 int rv;
1406
1407 vm_map_lock(map);
1408 VM_MAP_RANGE_CHECK(map, start, end);
1409
1410 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1411 vm_map_unlock(map);
1412 return (KERN_INVALID_ADDRESS);
1413 }
1414
1415 if (new_pageable) {
1416
1417 entry = start_entry;
1418 vm_map_clip_start(map, entry, start);
1419
1420 /*
1421 * Now decrement the wiring count for each region. If a region
1422 * becomes completely unwired, unwire its physical pages and
1423 * mappings.
1424 */
1425 while ((entry != &map->header) && (entry->start < end)) {
1426 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1427 vm_map_clip_end(map, entry, end);
1428 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1429 entry->wired_count--;
1430 if (entry->wired_count == 0)
1431 vm_fault_unwire(map, entry->start, entry->end);
1432 }
1433 vm_map_simplify_entry(map,entry);
1434 entry = entry->next;
1435 }
1436 } else {
1437
1438 entry = start_entry;
1439
1440 while ((entry != &map->header) && (entry->start < end)) {
1441
1442 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1443 entry = entry->next;
1444 continue;
1445 }
1446
1447 if (entry->wired_count != 0) {
1448 entry->wired_count++;
1449 entry->eflags |= MAP_ENTRY_USER_WIRED;
1450 entry = entry->next;
1451 continue;
1452 }
1453
1454 /* Here on entry being newly wired */
1455
1456 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1457 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1458 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1459
1460 vm_object_shadow(&entry->object.vm_object,
1461 &entry->offset,
1462 atop(entry->end - entry->start));
1463 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1464
1465 } else if (entry->object.vm_object == NULL &&
1466 !map->system_map) {
1467
1468 entry->object.vm_object =
1469 vm_object_allocate(OBJT_DEFAULT,
1470 atop(entry->end - entry->start));
1471 entry->offset = (vm_offset_t) 0;
1472
1473 }
1474 }
1475
1476 vm_map_clip_start(map, entry, start);
1477 vm_map_clip_end(map, entry, end);
1478
1479 entry->wired_count++;
1480 entry->eflags |= MAP_ENTRY_USER_WIRED;
1481 estart = entry->start;
1482 eend = entry->end;
1483
1484 /* First we need to allow map modifications */
1485 vm_map_set_recursive(map);
1486 vm_map_lock_downgrade(map);
1487 map->timestamp++;
1488
1489 rv = vm_fault_user_wire(map, entry->start, entry->end);
1490 if (rv) {
1491
1492 entry->wired_count--;
1493 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1494
1495 vm_map_clear_recursive(map);
1496 vm_map_unlock(map);
1497
1498 /*
1499 * At this point, the map is unlocked, and
1500 * entry might no longer be valid. Use copy
1501 * of entry start value obtained while entry
1502 * was valid.
1503 */
1504 (void) vm_map_user_pageable(map, start, estart,
1505 TRUE);
1506 return rv;
1507 }
1508
1509 vm_map_clear_recursive(map);
1510 if (vm_map_lock_upgrade(map)) {
1511 vm_map_lock(map);
1512 if (vm_map_lookup_entry(map, estart, &entry)
1513 == FALSE) {
1514 vm_map_unlock(map);
1515 /*
1516 * vm_fault_user_wire succeded, thus
1517 * the area between start and eend
1518 * is wired and has to be unwired
1519 * here as part of the cleanup.
1520 */
1521 (void) vm_map_user_pageable(map,
1522 start,
1523 eend,
1524 TRUE);
1525 return (KERN_INVALID_ADDRESS);
1526 }
1527 }
1528 vm_map_simplify_entry(map,entry);
1529 }
1530 }
1531 map->timestamp++;
1532 vm_map_unlock(map);
1533 return KERN_SUCCESS;
1534}
1535
1536/*
1537 * vm_map_pageable:
1538 *
1539 * Sets the pageability of the specified address
1540 * range in the target map. Regions specified
1541 * as not pageable require locked-down physical
1542 * memory and physical page maps.
1543 *
1544 * The map must not be locked, but a reference
1545 * must remain to the map throughout the call.
1546 */
1547int
1548vm_map_pageable(
1549 vm_map_t map,
1550 vm_offset_t start,
1551 vm_offset_t end,
1552 boolean_t new_pageable)
1553{
1554 vm_map_entry_t entry;
1555 vm_map_entry_t start_entry;
1556 vm_offset_t failed = 0;
1557 int rv;
1558
1559 GIANT_REQUIRED;
1560
1561 vm_map_lock(map);
1562
1563 VM_MAP_RANGE_CHECK(map, start, end);
1564
1565 /*
1566 * Only one pageability change may take place at one time, since
1567 * vm_fault assumes it will be called only once for each
1568 * wiring/unwiring. Therefore, we have to make sure we're actually
1569 * changing the pageability for the entire region. We do so before
1570 * making any changes.
1571 */
1572 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1573 vm_map_unlock(map);
1574 return (KERN_INVALID_ADDRESS);
1575 }
1576 entry = start_entry;
1577
1578 /*
1579 * Actions are rather different for wiring and unwiring, so we have
1580 * two separate cases.
1581 */
1582 if (new_pageable) {
1583 vm_map_clip_start(map, entry, start);
1584
1585 /*
1586 * Unwiring. First ensure that the range to be unwired is
1587 * really wired down and that there are no holes.
1588 */
1589 while ((entry != &map->header) && (entry->start < end)) {
1590 if (entry->wired_count == 0 ||
1591 (entry->end < end &&
1592 (entry->next == &map->header ||
1593 entry->next->start > entry->end))) {
1594 vm_map_unlock(map);
1595 return (KERN_INVALID_ARGUMENT);
1596 }
1597 entry = entry->next;
1598 }
1599
1600 /*
1601 * Now decrement the wiring count for each region. If a region
1602 * becomes completely unwired, unwire its physical pages and
1603 * mappings.
1604 */
1605 entry = start_entry;
1606 while ((entry != &map->header) && (entry->start < end)) {
1607 vm_map_clip_end(map, entry, end);
1608
1609 entry->wired_count--;
1610 if (entry->wired_count == 0)
1611 vm_fault_unwire(map, entry->start, entry->end);
1612
1613 vm_map_simplify_entry(map, entry);
1614
1615 entry = entry->next;
1616 }
1617 } else {
1618 /*
1619 * Wiring. We must do this in two passes:
1620 *
1621 * 1. Holding the write lock, we create any shadow or zero-fill
1622 * objects that need to be created. Then we clip each map
1623 * entry to the region to be wired and increment its wiring
1624 * count. We create objects before clipping the map entries
1625 * to avoid object proliferation.
1626 *
1627 * 2. We downgrade to a read lock, and call vm_fault_wire to
1628 * fault in the pages for any newly wired area (wired_count is
1629 * 1).
1630 *
1631 * Downgrading to a read lock for vm_fault_wire avoids a possible
1632 * deadlock with another process that may have faulted on one
1633 * of the pages to be wired (it would mark the page busy,
1634 * blocking us, then in turn block on the map lock that we
1635 * hold). Because of problems in the recursive lock package,
1636 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
1637 * any actions that require the write lock must be done
1638 * beforehand. Because we keep the read lock on the map, the
1639 * copy-on-write status of the entries we modify here cannot
1640 * change.
1641 */
1642
1643 /*
1644 * Pass 1.
1645 */
1646 while ((entry != &map->header) && (entry->start < end)) {
1647 if (entry->wired_count == 0) {
1648
1649 /*
1650 * Perform actions of vm_map_lookup that need
1651 * the write lock on the map: create a shadow
1652 * object for a copy-on-write region, or an
1653 * object for a zero-fill region.
1654 *
1655 * We don't have to do this for entries that
1656 * point to sub maps, because we won't
1657 * hold the lock on the sub map.
1658 */
1659 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1660 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1661 if (copyflag &&
1662 ((entry->protection & VM_PROT_WRITE) != 0)) {
1663
1664 vm_object_shadow(&entry->object.vm_object,
1665 &entry->offset,
1666 atop(entry->end - entry->start));
1667 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1668 } else if (entry->object.vm_object == NULL &&
1669 !map->system_map) {
1670 entry->object.vm_object =
1671 vm_object_allocate(OBJT_DEFAULT,
1672 atop(entry->end - entry->start));
1673 entry->offset = (vm_offset_t) 0;
1674 }
1675 }
1676 }
1677 vm_map_clip_start(map, entry, start);
1678 vm_map_clip_end(map, entry, end);
1679 entry->wired_count++;
1680
1681 /*
1682 * Check for holes
1683 */
1684 if (entry->end < end &&
1685 (entry->next == &map->header ||
1686 entry->next->start > entry->end)) {
1687 /*
1688 * Found one. Object creation actions do not
1689 * need to be undone, but the wired counts
1690 * need to be restored.
1691 */
1692 while (entry != &map->header && entry->end > start) {
1693 entry->wired_count--;
1694 entry = entry->prev;
1695 }
1696 vm_map_unlock(map);
1697 return (KERN_INVALID_ARGUMENT);
1698 }
1699 entry = entry->next;
1700 }
1701
1702 /*
1703 * Pass 2.
1704 */
1705
1706 /*
1707 * HACK HACK HACK HACK
1708 *
1709 * If we are wiring in the kernel map or a submap of it,
1710 * unlock the map to avoid deadlocks. We trust that the
1711 * kernel is well-behaved, and therefore will not do
1712 * anything destructive to this region of the map while
1713 * we have it unlocked. We cannot trust user processes
1714 * to do the same.
1715 *
1716 * HACK HACK HACK HACK
1717 */
1718 if (vm_map_pmap(map) == kernel_pmap) {
1719 vm_map_unlock(map); /* trust me ... */
1720 } else {
1721 vm_map_lock_downgrade(map);
1722 }
1723
1724 rv = 0;
1725 entry = start_entry;
1726 while (entry != &map->header && entry->start < end) {
1727 /*
1728 * If vm_fault_wire fails for any page we need to undo
1729 * what has been done. We decrement the wiring count
1730 * for those pages which have not yet been wired (now)
1731 * and unwire those that have (later).
1732 *
1733 * XXX this violates the locking protocol on the map,
1734 * needs to be fixed.
1735 */
1736 if (rv)
1737 entry->wired_count--;
1738 else if (entry->wired_count == 1) {
1739 rv = vm_fault_wire(map, entry->start, entry->end);
1740 if (rv) {
1741 failed = entry->start;
1742 entry->wired_count--;
1743 }
1744 }
1745 entry = entry->next;
1746 }
1747
1748 if (vm_map_pmap(map) == kernel_pmap) {
1749 vm_map_lock(map);
1750 }
1751 if (rv) {
1752 vm_map_unlock(map);
1753 (void) vm_map_pageable(map, start, failed, TRUE);
1754 return (rv);
1755 }
1756 /*
1757 * An exclusive lock on the map is needed in order to call
1758 * vm_map_simplify_entry(). If the current lock on the map
1759 * is only a shared lock, an upgrade is needed.
1760 */
1761 if (vm_map_pmap(map) != kernel_pmap &&
1762 vm_map_lock_upgrade(map)) {
1763 vm_map_lock(map);
1764 if (vm_map_lookup_entry(map, start, &start_entry) ==
1765 FALSE) {
1766 vm_map_unlock(map);
1767 return KERN_SUCCESS;
1768 }
1769 }
1770 vm_map_simplify_entry(map, start_entry);
1771 }
1772
1773 vm_map_unlock(map);
1774
1775 return (KERN_SUCCESS);
1776}
1777
1778/*
1779 * vm_map_clean
1780 *
1781 * Push any dirty cached pages in the address range to their pager.
1782 * If syncio is TRUE, dirty pages are written synchronously.
1783 * If invalidate is TRUE, any cached pages are freed as well.
1784 *
1785 * Returns an error if any part of the specified range is not mapped.
1786 */
1787int
1788vm_map_clean(
1789 vm_map_t map,
1790 vm_offset_t start,
1791 vm_offset_t end,
1792 boolean_t syncio,
1793 boolean_t invalidate)
1794{
1795 vm_map_entry_t current;
1796 vm_map_entry_t entry;
1797 vm_size_t size;
1798 vm_object_t object;
1799 vm_ooffset_t offset;
1800
1801 GIANT_REQUIRED;
1802
1803 vm_map_lock_read(map);
1804 VM_MAP_RANGE_CHECK(map, start, end);
1805 if (!vm_map_lookup_entry(map, start, &entry)) {
1806 vm_map_unlock_read(map);
1807 return (KERN_INVALID_ADDRESS);
1808 }
1809 /*
1810 * Make a first pass to check for holes.
1811 */
1812 for (current = entry; current->start < end; current = current->next) {
1813 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1814 vm_map_unlock_read(map);
1815 return (KERN_INVALID_ARGUMENT);
1816 }
1817 if (end > current->end &&
1818 (current->next == &map->header ||
1819 current->end != current->next->start)) {
1820 vm_map_unlock_read(map);
1821 return (KERN_INVALID_ADDRESS);
1822 }
1823 }
1824
1825 if (invalidate)
1826 pmap_remove(vm_map_pmap(map), start, end);
1827 /*
1828 * Make a second pass, cleaning/uncaching pages from the indicated
1829 * objects as we go.
1830 */
1831 for (current = entry; current->start < end; current = current->next) {
1832 offset = current->offset + (start - current->start);
1833 size = (end <= current->end ? end : current->end) - start;
1834 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1835 vm_map_t smap;
1836 vm_map_entry_t tentry;
1837 vm_size_t tsize;
1838
1839 smap = current->object.sub_map;
1840 vm_map_lock_read(smap);
1841 (void) vm_map_lookup_entry(smap, offset, &tentry);
1842 tsize = tentry->end - offset;
1843 if (tsize < size)
1844 size = tsize;
1845 object = tentry->object.vm_object;
1846 offset = tentry->offset + (offset - tentry->start);
1847 vm_map_unlock_read(smap);
1848 } else {
1849 object = current->object.vm_object;
1850 }
1851 /*
1852 * Note that there is absolutely no sense in writing out
1853 * anonymous objects, so we track down the vnode object
1854 * to write out.
1855 * We invalidate (remove) all pages from the address space
1856 * anyway, for semantic correctness.
1857 *
1858 * note: certain anonymous maps, such as MAP_NOSYNC maps,
1859 * may start out with a NULL object.
1860 */
1861 while (object && object->backing_object) {
1862 object = object->backing_object;
1863 offset += object->backing_object_offset;
1864 if (object->size < OFF_TO_IDX(offset + size))
1865 size = IDX_TO_OFF(object->size) - offset;
1866 }
1867 if (object && (object->type == OBJT_VNODE) &&
1868 (current->protection & VM_PROT_WRITE)) {
1869 /*
1870 * Flush pages if writing is allowed, invalidate them
1871 * if invalidation requested. Pages undergoing I/O
1872 * will be ignored by vm_object_page_remove().
1873 *
1874 * We cannot lock the vnode and then wait for paging
1875 * to complete without deadlocking against vm_fault.
1876 * Instead we simply call vm_object_page_remove() and
1877 * allow it to block internally on a page-by-page
1878 * basis when it encounters pages undergoing async
1879 * I/O.
1880 */
1881 int flags;
1882
1883 vm_object_reference(object);
1884 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
1885 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1886 flags |= invalidate ? OBJPC_INVAL : 0;
1887 vm_object_page_clean(object,
1888 OFF_TO_IDX(offset),
1889 OFF_TO_IDX(offset + size + PAGE_MASK),
1890 flags);
1891 if (invalidate) {
1892 /*vm_object_pip_wait(object, "objmcl");*/
1893 vm_object_page_remove(object,
1894 OFF_TO_IDX(offset),
1895 OFF_TO_IDX(offset + size + PAGE_MASK),
1896 FALSE);
1897 }
1898 VOP_UNLOCK(object->handle, 0, curthread);
1899 vm_object_deallocate(object);
1900 }
1901 start += size;
1902 }
1903
1904 vm_map_unlock_read(map);
1905 return (KERN_SUCCESS);
1906}
1907
1908/*
1909 * vm_map_entry_unwire: [ internal use only ]
1910 *
1911 * Make the region specified by this entry pageable.
1912 *
1913 * The map in question should be locked.
1914 * [This is the reason for this routine's existence.]
1915 */
1916static void
1917vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
1918{
1919 vm_fault_unwire(map, entry->start, entry->end);
1920 entry->wired_count = 0;
1921}
1922
1923/*
1924 * vm_map_entry_delete: [ internal use only ]
1925 *
1926 * Deallocate the given entry from the target map.
1927 */
1928static void
1929vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
1930{
1931 vm_map_entry_unlink(map, entry);
1932 map->size -= entry->end - entry->start;
1933
1934 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1935 vm_object_deallocate(entry->object.vm_object);
1936 }
1937
1938 vm_map_entry_dispose(map, entry);
1939}
1940
1941/*
1942 * vm_map_delete: [ internal use only ]
1943 *
1944 * Deallocates the given address range from the target
1945 * map.
1946 */
1947int
1948vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
1949{
1950 vm_object_t object;
1951 vm_map_entry_t entry;
1952 vm_map_entry_t first_entry;
1953
1954 GIANT_REQUIRED;
1955
1956 /*
1957 * Find the start of the region, and clip it
1958 */
1959 if (!vm_map_lookup_entry(map, start, &first_entry))
1960 entry = first_entry->next;
1961 else {
1962 entry = first_entry;
1963 vm_map_clip_start(map, entry, start);
1964 /*
1965 * Fix the lookup hint now, rather than each time though the
1966 * loop.
1967 */
1968 SAVE_HINT(map, entry->prev);
1969 }
1970
1971 /*
1972 * Save the free space hint
1973 */
1974 if (entry == &map->header) {
1975 map->first_free = &map->header;
1976 } else if (map->first_free->start >= start) {
1977 map->first_free = entry->prev;
1978 }
1979
1980 /*
1981 * Step through all entries in this region
1982 */
1983 while ((entry != &map->header) && (entry->start < end)) {
1984 vm_map_entry_t next;
1985 vm_offset_t s, e;
1986 vm_pindex_t offidxstart, offidxend, count;
1987
1988 vm_map_clip_end(map, entry, end);
1989
1990 s = entry->start;
1991 e = entry->end;
1992 next = entry->next;
1993
1994 offidxstart = OFF_TO_IDX(entry->offset);
1995 count = OFF_TO_IDX(e - s);
1996 object = entry->object.vm_object;
1997
1998 /*
1999 * Unwire before removing addresses from the pmap; otherwise,
2000 * unwiring will put the entries back in the pmap.
2001 */
2002 if (entry->wired_count != 0) {
2003 vm_map_entry_unwire(map, entry);
2004 }
2005
2006 offidxend = offidxstart + count;
2007
2008 if ((object == kernel_object) || (object == kmem_object)) {
2009 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2010 } else {
2011 pmap_remove(map->pmap, s, e);
2012 if (object != NULL &&
2013 object->ref_count != 1 &&
2014 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2015 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2016 vm_object_collapse(object);
2017 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2018 if (object->type == OBJT_SWAP) {
2019 swap_pager_freespace(object, offidxstart, count);
2020 }
2021 if (offidxend >= object->size &&
2022 offidxstart < object->size) {
2023 object->size = offidxstart;
2024 }
2025 }
2026 }
2027
2028 /*
2029 * Delete the entry (which may delete the object) only after
2030 * removing all pmap entries pointing to its pages.
2031 * (Otherwise, its page frames may be reallocated, and any
2032 * modify bits will be set in the wrong object!)
2033 */
2034 vm_map_entry_delete(map, entry);
2035 entry = next;
2036 }
2037 return (KERN_SUCCESS);
2038}
2039
2040/*
2041 * vm_map_remove:
2042 *
2043 * Remove the given address range from the target map.
2044 * This is the exported form of vm_map_delete.
2045 */
2046int
2047vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2048{
2049 int result, s = 0;
2050
2051 GIANT_REQUIRED;
2052
2053 if (map == kmem_map)
2054 s = splvm();
2055
2056 vm_map_lock(map);
2057 VM_MAP_RANGE_CHECK(map, start, end);
2058 result = vm_map_delete(map, start, end);
2059 vm_map_unlock(map);
2060
2061 if (map == kmem_map)
2062 splx(s);
2063
2064 return (result);
2065}
2066
2067/*
2068 * vm_map_check_protection:
2069 *
2070 * Assert that the target map allows the specified
2071 * privilege on the entire address region given.
2072 * The entire region must be allocated.
2073 */
2074boolean_t
2075vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2076 vm_prot_t protection)
2077{
2078 vm_map_entry_t entry;
2079 vm_map_entry_t tmp_entry;
2080
2081 GIANT_REQUIRED;
2082
2083 vm_map_lock_read(map);
2084 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2085 vm_map_unlock_read(map);
2086 return (FALSE);
2087 }
2088 entry = tmp_entry;
2089
2090 while (start < end) {
2091 if (entry == &map->header) {
2092 vm_map_unlock_read(map);
2093 return (FALSE);
2094 }
2095 /*
2096 * No holes allowed!
2097 */
2098 if (start < entry->start) {
2099 vm_map_unlock_read(map);
2100 return (FALSE);
2101 }
2102 /*
2103 * Check protection associated with entry.
2104 */
2105 if ((entry->protection & protection) != protection) {
2106 vm_map_unlock_read(map);
2107 return (FALSE);
2108 }
2109 /* go to next entry */
2110 start = entry->end;
2111 entry = entry->next;
2112 }
2113 vm_map_unlock_read(map);
2114 return (TRUE);
2115}
2116
2117/*
2118 * Split the pages in a map entry into a new object. This affords
2119 * easier removal of unused pages, and keeps object inheritance from
2120 * being a negative impact on memory usage.
2121 */
2122static void
2123vm_map_split(vm_map_entry_t entry)
2124{
2125 vm_page_t m;
2126 vm_object_t orig_object, new_object, source;
2127 vm_offset_t s, e;
2128 vm_pindex_t offidxstart, offidxend, idx;
2129 vm_size_t size;
2130 vm_ooffset_t offset;
2131
2132 GIANT_REQUIRED;
2133
2134 orig_object = entry->object.vm_object;
2135 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2136 return;
2137 if (orig_object->ref_count <= 1)
2138 return;
2139
2140 offset = entry->offset;
2141 s = entry->start;
2142 e = entry->end;
2143
2144 offidxstart = OFF_TO_IDX(offset);
2145 offidxend = offidxstart + OFF_TO_IDX(e - s);
2146 size = offidxend - offidxstart;
2147
2148 new_object = vm_pager_allocate(orig_object->type,
2149 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2150 if (new_object == NULL)
2151 return;
2152
2153 source = orig_object->backing_object;
2154 if (source != NULL) {
2155 vm_object_reference(source); /* Referenced by new_object */
2156 TAILQ_INSERT_TAIL(&source->shadow_head,
2157 new_object, shadow_list);
2158 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2159 new_object->backing_object_offset =
2160 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2161 new_object->backing_object = source;
2162 source->shadow_count++;
2163 source->generation++;
2164 }
2165
2166 for (idx = 0; idx < size; idx++) {
2167 vm_page_t m;
2168
2169 retry:
2170 m = vm_page_lookup(orig_object, offidxstart + idx);
2171 if (m == NULL)
2172 continue;
2173
2174 /*
2175 * We must wait for pending I/O to complete before we can
2176 * rename the page.
2177 *
2178 * We do not have to VM_PROT_NONE the page as mappings should
2179 * not be changed by this operation.
2180 */
2181 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2182 goto retry;
2183
2184 vm_page_busy(m);
2185 vm_page_rename(m, new_object, idx);
2186 /* page automatically made dirty by rename and cache handled */
2187 vm_page_busy(m);
2188 }
2189
2190 if (orig_object->type == OBJT_SWAP) {
2191 vm_object_pip_add(orig_object, 1);
2192 /*
2193 * copy orig_object pages into new_object
2194 * and destroy unneeded pages in
2195 * shadow object.
2196 */
2197 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2198 vm_object_pip_wakeup(orig_object);
2199 }
2200
2201 for (idx = 0; idx < size; idx++) {
2202 m = vm_page_lookup(new_object, idx);
2203 if (m) {
2204 vm_page_wakeup(m);
2205 }
2206 }
2207
2208 entry->object.vm_object = new_object;
2209 entry->offset = 0LL;
2210 vm_object_deallocate(orig_object);
2211}
2212
2213/*
2214 * vm_map_copy_entry:
2215 *
2216 * Copies the contents of the source entry to the destination
2217 * entry. The entries *must* be aligned properly.
2218 */
2219static void
2220vm_map_copy_entry(
2221 vm_map_t src_map,
2222 vm_map_t dst_map,
2223 vm_map_entry_t src_entry,
2224 vm_map_entry_t dst_entry)
2225{
2226 vm_object_t src_object;
2227
2228 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2229 return;
2230
2231 if (src_entry->wired_count == 0) {
2232
2233 /*
2234 * If the source entry is marked needs_copy, it is already
2235 * write-protected.
2236 */
2237 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2238 pmap_protect(src_map->pmap,
2239 src_entry->start,
2240 src_entry->end,
2241 src_entry->protection & ~VM_PROT_WRITE);
2242 }
2243
2244 /*
2245 * Make a copy of the object.
2246 */
2247 if ((src_object = src_entry->object.vm_object) != NULL) {
2248
2249 if ((src_object->handle == NULL) &&
2250 (src_object->type == OBJT_DEFAULT ||
2251 src_object->type == OBJT_SWAP)) {
2252 vm_object_collapse(src_object);
2253 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2254 vm_map_split(src_entry);
2255 src_object = src_entry->object.vm_object;
2256 }
2257 }
2258
2259 vm_object_reference(src_object);
2260 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2261 dst_entry->object.vm_object = src_object;
2262 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2263 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2264 dst_entry->offset = src_entry->offset;
2265 } else {
2266 dst_entry->object.vm_object = NULL;
2267 dst_entry->offset = 0;
2268 }
2269
2270 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2271 dst_entry->end - dst_entry->start, src_entry->start);
2272 } else {
2273 /*
2274 * Of course, wired down pages can't be set copy-on-write.
2275 * Cause wired pages to be copied into the new map by
2276 * simulating faults (the new pages are pageable)
2277 */
2278 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2279 }
2280}
2281
2282/*
2283 * vmspace_fork:
2284 * Create a new process vmspace structure and vm_map
2285 * based on those of an existing process. The new map
2286 * is based on the old map, according to the inheritance
2287 * values on the regions in that map.
2288 *
2289 * The source map must not be locked.
2290 */
2291struct vmspace *
2292vmspace_fork(struct vmspace *vm1)
2293{
2294 struct vmspace *vm2;
2295 vm_map_t old_map = &vm1->vm_map;
2296 vm_map_t new_map;
2297 vm_map_entry_t old_entry;
2298 vm_map_entry_t new_entry;
2299 vm_object_t object;
2300
2301 GIANT_REQUIRED;
2302
2303 vm_map_lock(old_map);
2304 old_map->infork = 1;
2305
2306 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2307 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2308 (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy);
2309 new_map = &vm2->vm_map; /* XXX */
2310 new_map->timestamp = 1;
2311
2312 old_entry = old_map->header.next;
2313
2314 while (old_entry != &old_map->header) {
2315 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2316 panic("vm_map_fork: encountered a submap");
2317
2318 switch (old_entry->inheritance) {
2319 case VM_INHERIT_NONE:
2320 break;
2321
2322 case VM_INHERIT_SHARE:
2323 /*
2324 * Clone the entry, creating the shared object if necessary.
2325 */
2326 object = old_entry->object.vm_object;
2327 if (object == NULL) {
2328 object = vm_object_allocate(OBJT_DEFAULT,
2329 atop(old_entry->end - old_entry->start));
2330 old_entry->object.vm_object = object;
2331 old_entry->offset = (vm_offset_t) 0;
2332 }
2333
2334 /*
2335 * Add the reference before calling vm_object_shadow
2336 * to insure that a shadow object is created.
2337 */
2338 vm_object_reference(object);
2339 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2340 vm_object_shadow(&old_entry->object.vm_object,
2341 &old_entry->offset,
2342 atop(old_entry->end - old_entry->start));
2343 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2344 /* Transfer the second reference too. */
2345 vm_object_reference(
2346 old_entry->object.vm_object);
2347 vm_object_deallocate(object);
2348 object = old_entry->object.vm_object;
2349 }
2350 vm_object_clear_flag(object, OBJ_ONEMAPPING);
2351
2352 /*
2353 * Clone the entry, referencing the shared object.
2354 */
2355 new_entry = vm_map_entry_create(new_map);
2356 *new_entry = *old_entry;
2357 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2358 new_entry->wired_count = 0;
2359
2360 /*
2361 * Insert the entry into the new map -- we know we're
2362 * inserting at the end of the new map.
2363 */
2364 vm_map_entry_link(new_map, new_map->header.prev,
2365 new_entry);
2366
2367 /*
2368 * Update the physical map
2369 */
2370 pmap_copy(new_map->pmap, old_map->pmap,
2371 new_entry->start,
2372 (old_entry->end - old_entry->start),
2373 old_entry->start);
2374 break;
2375
2376 case VM_INHERIT_COPY:
2377 /*
2378 * Clone the entry and link into the map.
2379 */
2380 new_entry = vm_map_entry_create(new_map);
2381 *new_entry = *old_entry;
2382 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2383 new_entry->wired_count = 0;
2384 new_entry->object.vm_object = NULL;
2385 vm_map_entry_link(new_map, new_map->header.prev,
2386 new_entry);
2387 vm_map_copy_entry(old_map, new_map, old_entry,
2388 new_entry);
2389 break;
2390 }
2391 old_entry = old_entry->next;
2392 }
2393
2394 new_map->size = old_map->size;
2395 old_map->infork = 0;
2396 vm_map_unlock(old_map);
2397
2398 return (vm2);
2399}
2400
2401int
2402vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2403 vm_prot_t prot, vm_prot_t max, int cow)
2404{
2405 vm_map_entry_t prev_entry;
2406 vm_map_entry_t new_stack_entry;
2407 vm_size_t init_ssize;
2408 int rv;
2409
2410 GIANT_REQUIRED;
2411
2412 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2413 return (KERN_NO_SPACE);
2414
2415 if (max_ssize < sgrowsiz)
2416 init_ssize = max_ssize;
2417 else
2418 init_ssize = sgrowsiz;
2419
2420 vm_map_lock(map);
2421
2422 /* If addr is already mapped, no go */
2423 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2424 vm_map_unlock(map);
2425 return (KERN_NO_SPACE);
2426 }
2427
2428 /* If we can't accomodate max_ssize in the current mapping,
2429 * no go. However, we need to be aware that subsequent user
2430 * mappings might map into the space we have reserved for
2431 * stack, and currently this space is not protected.
2432 *
2433 * Hopefully we will at least detect this condition
2434 * when we try to grow the stack.
2435 */
2436 if ((prev_entry->next != &map->header) &&
2437 (prev_entry->next->start < addrbos + max_ssize)) {
2438 vm_map_unlock(map);
2439 return (KERN_NO_SPACE);
2440 }
2441
2442 /* We initially map a stack of only init_ssize. We will
2443 * grow as needed later. Since this is to be a grow
2444 * down stack, we map at the top of the range.
2445 *
2446 * Note: we would normally expect prot and max to be
2447 * VM_PROT_ALL, and cow to be 0. Possibly we should
2448 * eliminate these as input parameters, and just
2449 * pass these values here in the insert call.
2450 */
2451 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2452 addrbos + max_ssize, prot, max, cow);
2453
2454 /* Now set the avail_ssize amount */
2455 if (rv == KERN_SUCCESS){
2456 if (prev_entry != &map->header)
2457 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2458 new_stack_entry = prev_entry->next;
2459 if (new_stack_entry->end != addrbos + max_ssize ||
2460 new_stack_entry->start != addrbos + max_ssize - init_ssize)
2461 panic ("Bad entry start/end for new stack entry");
2462 else
2463 new_stack_entry->avail_ssize = max_ssize - init_ssize;
2464 }
2465
2466 vm_map_unlock(map);
2467 return (rv);
2468}
2469
2470/* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
2471 * desired address is already mapped, or if we successfully grow
2472 * the stack. Also returns KERN_SUCCESS if addr is outside the
2473 * stack range (this is strange, but preserves compatibility with
2474 * the grow function in vm_machdep.c).
2475 */
2476int
2477vm_map_growstack (struct proc *p, vm_offset_t addr)
2478{
2479 vm_map_entry_t prev_entry;
2480 vm_map_entry_t stack_entry;
2481 vm_map_entry_t new_stack_entry;
2482 struct vmspace *vm = p->p_vmspace;
2483 vm_map_t map = &vm->vm_map;
2484 vm_offset_t end;
2485 int grow_amount;
2486 int rv;
2487 int is_procstack;
2488
2489 GIANT_REQUIRED;
2490
2491Retry:
2492 vm_map_lock_read(map);
2493
2494 /* If addr is already in the entry range, no need to grow.*/
2495 if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2496 vm_map_unlock_read(map);
2497 return (KERN_SUCCESS);
2498 }
2499
2500 if ((stack_entry = prev_entry->next) == &map->header) {
2501 vm_map_unlock_read(map);
2502 return (KERN_SUCCESS);
2503 }
2504 if (prev_entry == &map->header)
2505 end = stack_entry->start - stack_entry->avail_ssize;
2506 else
2507 end = prev_entry->end;
2508
2509 /* This next test mimics the old grow function in vm_machdep.c.
2510 * It really doesn't quite make sense, but we do it anyway
2511 * for compatibility.
2512 *
2513 * If not growable stack, return success. This signals the
2514 * caller to proceed as he would normally with normal vm.
2515 */
2516 if (stack_entry->avail_ssize < 1 ||
2517 addr >= stack_entry->start ||
2518 addr < stack_entry->start - stack_entry->avail_ssize) {
2519 vm_map_unlock_read(map);
2520 return (KERN_SUCCESS);
2521 }
2522
2523 /* Find the minimum grow amount */
2524 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2525 if (grow_amount > stack_entry->avail_ssize) {
2526 vm_map_unlock_read(map);
2527 return (KERN_NO_SPACE);
2528 }
2529
2530 /* If there is no longer enough space between the entries
2531 * nogo, and adjust the available space. Note: this
2532 * should only happen if the user has mapped into the
2533 * stack area after the stack was created, and is
2534 * probably an error.
2535 *
2536 * This also effectively destroys any guard page the user
2537 * might have intended by limiting the stack size.
2538 */
2539 if (grow_amount > stack_entry->start - end) {
2540 if (vm_map_lock_upgrade(map))
2541 goto Retry;
2542
2543 stack_entry->avail_ssize = stack_entry->start - end;
2544
2545 vm_map_unlock(map);
2546 return (KERN_NO_SPACE);
2547 }
2548
2549 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2550
2551 /* If this is the main process stack, see if we're over the
2552 * stack limit.
2553 */
2554 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2555 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2556 vm_map_unlock_read(map);
2557 return (KERN_NO_SPACE);
2558 }
2559
2560 /* Round up the grow amount modulo SGROWSIZ */
2561 grow_amount = roundup (grow_amount, sgrowsiz);
2562 if (grow_amount > stack_entry->avail_ssize) {
2563 grow_amount = stack_entry->avail_ssize;
2564 }
2565 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2566 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2567 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2568 ctob(vm->vm_ssize);
2569 }
2570
2571 if (vm_map_lock_upgrade(map))
2572 goto Retry;
2573
2574 /* Get the preliminary new entry start value */
2575 addr = stack_entry->start - grow_amount;
2576
2577 /* If this puts us into the previous entry, cut back our growth
2578 * to the available space. Also, see the note above.
2579 */
2580 if (addr < end) {
2581 stack_entry->avail_ssize = stack_entry->start - end;
2582 addr = end;
2583 }
2584
2585 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2586 VM_PROT_ALL,
2587 VM_PROT_ALL,
2588 0);
2589
2590 /* Adjust the available stack space by the amount we grew. */
2591 if (rv == KERN_SUCCESS) {
2592 if (prev_entry != &map->header)
2593 vm_map_clip_end(map, prev_entry, addr);
2594 new_stack_entry = prev_entry->next;
2595 if (new_stack_entry->end != stack_entry->start ||
2596 new_stack_entry->start != addr)
2597 panic ("Bad stack grow start/end in new stack entry");
2598 else {
2599 new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2600 (new_stack_entry->end -
2601 new_stack_entry->start);
2602 if (is_procstack)
2603 vm->vm_ssize += btoc(new_stack_entry->end -
2604 new_stack_entry->start);
2605 }
2606 }
2607
2608 vm_map_unlock(map);
2609 return (rv);
2610}
2611
2612/*
2613 * Unshare the specified VM space for exec. If other processes are
2614 * mapped to it, then create a new one. The new vmspace is null.
2615 */
2616void
2617vmspace_exec(struct proc *p)
2618{
2619 struct vmspace *oldvmspace = p->p_vmspace;
2620 struct vmspace *newvmspace;
2621 vm_map_t map = &p->p_vmspace->vm_map;
2622
2623 GIANT_REQUIRED;
2624 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2625 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2626 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2627 /*
2628 * This code is written like this for prototype purposes. The
2629 * goal is to avoid running down the vmspace here, but let the
2630 * other process's that are still using the vmspace to finally
2631 * run it down. Even though there is little or no chance of blocking
2632 * here, it is a good idea to keep this form for future mods.
2633 */
2634 p->p_vmspace = newvmspace;
2635 pmap_pinit2(vmspace_pmap(newvmspace));
2636 vmspace_free(oldvmspace);
2637 if (p == curthread->td_proc) /* XXXKSE ? */
2638 pmap_activate(curthread);
2639}
2640
2641/*
2642 * Unshare the specified VM space for forcing COW. This
2643 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2644 */
2645void
2646vmspace_unshare(struct proc *p)
2647{
2648 struct vmspace *oldvmspace = p->p_vmspace;
2649 struct vmspace *newvmspace;
2650
2651 GIANT_REQUIRED;
2652 if (oldvmspace->vm_refcnt == 1)
2653 return;
2654 newvmspace = vmspace_fork(oldvmspace);
2655 p->p_vmspace = newvmspace;
2656 pmap_pinit2(vmspace_pmap(newvmspace));
2657 vmspace_free(oldvmspace);
2658 if (p == curthread->td_proc) /* XXXKSE ? */
2659 pmap_activate(curthread);
2660}
2661
2662/*
2663 * vm_map_lookup:
2664 *
2665 * Finds the VM object, offset, and
2666 * protection for a given virtual address in the
2667 * specified map, assuming a page fault of the
2668 * type specified.
2669 *
2670 * Leaves the map in question locked for read; return
2671 * values are guaranteed until a vm_map_lookup_done
2672 * call is performed. Note that the map argument
2673 * is in/out; the returned map must be used in
2674 * the call to vm_map_lookup_done.
2675 *
2676 * A handle (out_entry) is returned for use in
2677 * vm_map_lookup_done, to make that fast.
2678 *
2679 * If a lookup is requested with "write protection"
2680 * specified, the map may be changed to perform virtual
2681 * copying operations, although the data referenced will
2682 * remain the same.
2683 */
2684int
2685vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
2686 vm_offset_t vaddr,
2687 vm_prot_t fault_typea,
2688 vm_map_entry_t *out_entry, /* OUT */
2689 vm_object_t *object, /* OUT */
2690 vm_pindex_t *pindex, /* OUT */
2691 vm_prot_t *out_prot, /* OUT */
2692 boolean_t *wired) /* OUT */
2693{
2694 vm_map_entry_t entry;
2695 vm_map_t map = *var_map;
2696 vm_prot_t prot;
2697 vm_prot_t fault_type = fault_typea;
2698
2699 GIANT_REQUIRED;
2700RetryLookup:;
2701 /*
2702 * Lookup the faulting address.
2703 */
2704
2705 vm_map_lock_read(map);
2706#define RETURN(why) \
2707 { \
2708 vm_map_unlock_read(map); \
2709 return (why); \
2710 }
2711
2712 /*
2713 * If the map has an interesting hint, try it before calling full
2714 * blown lookup routine.
2715 */
2716 entry = map->hint;
2717 *out_entry = entry;
2718 if ((entry == &map->header) ||
2719 (vaddr < entry->start) || (vaddr >= entry->end)) {
2720 vm_map_entry_t tmp_entry;
2721
2722 /*
2723 * Entry was either not a valid hint, or the vaddr was not
2724 * contained in the entry, so do a full lookup.
2725 */
2726 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry))
2727 RETURN(KERN_INVALID_ADDRESS);
2728
2729 entry = tmp_entry;
2730 *out_entry = entry;
2731 }
2732
2733 /*
2734 * Handle submaps.
2735 */
2736 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2737 vm_map_t old_map = map;
2738
2739 *var_map = map = entry->object.sub_map;
2740 vm_map_unlock_read(old_map);
2741 goto RetryLookup;
2742 }
2743
2744 /*
2745 * Check whether this task is allowed to have this page.
2746 * Note the special case for MAP_ENTRY_COW
2747 * pages with an override. This is to implement a forced
2748 * COW for debuggers.
2749 */
2750 if (fault_type & VM_PROT_OVERRIDE_WRITE)
2751 prot = entry->max_protection;
2752 else
2753 prot = entry->protection;
2754 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2755 if ((fault_type & prot) != fault_type) {
2756 RETURN(KERN_PROTECTION_FAILURE);
2757 }
2758 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2759 (entry->eflags & MAP_ENTRY_COW) &&
2760 (fault_type & VM_PROT_WRITE) &&
2761 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2762 RETURN(KERN_PROTECTION_FAILURE);
2763 }
2764
2765 /*
2766 * If this page is not pageable, we have to get it for all possible
2767 * accesses.
2768 */
2769 *wired = (entry->wired_count != 0);
2770 if (*wired)
2771 prot = fault_type = entry->protection;
2772
2773 /*
2774 * If the entry was copy-on-write, we either ...
2775 */
2776 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2777 /*
2778 * If we want to write the page, we may as well handle that
2779 * now since we've got the map locked.
2780 *
2781 * If we don't need to write the page, we just demote the
2782 * permissions allowed.
2783 */
2784 if (fault_type & VM_PROT_WRITE) {
2785 /*
2786 * Make a new object, and place it in the object
2787 * chain. Note that no new references have appeared
2788 * -- one just moved from the map to the new
2789 * object.
2790 */
2791 if (vm_map_lock_upgrade(map))
2792 goto RetryLookup;
2793 vm_object_shadow(
2794 &entry->object.vm_object,
2795 &entry->offset,
2796 atop(entry->end - entry->start));
2797 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2798 vm_map_lock_downgrade(map);
2799 } else {
2800 /*
2801 * We're attempting to read a copy-on-write page --
2802 * don't allow writes.
2803 */
2804 prot &= ~VM_PROT_WRITE;
2805 }
2806 }
2807
2808 /*
2809 * Create an object if necessary.
2810 */
2811 if (entry->object.vm_object == NULL &&
2812 !map->system_map) {
2813 if (vm_map_lock_upgrade(map))
2814 goto RetryLookup;
2815 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2816 atop(entry->end - entry->start));
2817 entry->offset = 0;
2818 vm_map_lock_downgrade(map);
2819 }
2820
2821 /*
2822 * Return the object/offset from this entry. If the entry was
2823 * copy-on-write or empty, it has been fixed up.
2824 */
2825 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2826 *object = entry->object.vm_object;
2827
2828 /*
2829 * Return whether this is the only map sharing this data.
2830 */
2831 *out_prot = prot;
2832 return (KERN_SUCCESS);
2833
2834#undef RETURN
2835}
2836
2837/*
2838 * vm_map_lookup_done:
2839 *
2840 * Releases locks acquired by a vm_map_lookup
2841 * (according to the handle returned by that lookup).
2842 */
2843void
2844vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
2845{
2846 /*
2847 * Unlock the main-level map
2848 */
2849 GIANT_REQUIRED;
2850 vm_map_unlock_read(map);
2851}
2852
2853/*
2854 * Implement uiomove with VM operations. This handles (and collateral changes)
2855 * support every combination of source object modification, and COW type
2856 * operations.
2857 */
2858int
2859vm_uiomove(
2860 vm_map_t mapa,
2861 vm_object_t srcobject,
2862 off_t cp,
2863 int cnta,
2864 vm_offset_t uaddra,
2865 int *npages)
2866{
2867 vm_map_t map;
2868 vm_object_t first_object, oldobject, object;
2869 vm_map_entry_t entry;
2870 vm_prot_t prot;
2871 boolean_t wired;
2872 int tcnt, rv;
2873 vm_offset_t uaddr, start, end, tend;
2874 vm_pindex_t first_pindex, osize, oindex;
2875 off_t ooffset;
2876 int cnt;
2877
2878 GIANT_REQUIRED;
2879
2880 if (npages)
2881 *npages = 0;
2882
2883 cnt = cnta;
2884 uaddr = uaddra;
2885
2886 while (cnt > 0) {
2887 map = mapa;
2888
2889 if ((vm_map_lookup(&map, uaddr,
2890 VM_PROT_READ, &entry, &first_object,
2891 &first_pindex, &prot, &wired)) != KERN_SUCCESS) {
2892 return EFAULT;
2893 }
2894
2895 vm_map_clip_start(map, entry, uaddr);
2896
2897 tcnt = cnt;
2898 tend = uaddr + tcnt;
2899 if (tend > entry->end) {
2900 tcnt = entry->end - uaddr;
2901 tend = entry->end;
2902 }
2903
2904 vm_map_clip_end(map, entry, tend);
2905
2906 start = entry->start;
2907 end = entry->end;
2908
2909 osize = atop(tcnt);
2910
2911 oindex = OFF_TO_IDX(cp);
2912 if (npages) {
2913 vm_pindex_t idx;
2914 for (idx = 0; idx < osize; idx++) {
2915 vm_page_t m;
2916 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2917 vm_map_lookup_done(map, entry);
2918 return 0;
2919 }
2920 /*
2921 * disallow busy or invalid pages, but allow
2922 * m->busy pages if they are entirely valid.
2923 */
2924 if ((m->flags & PG_BUSY) ||
2925 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
2926 vm_map_lookup_done(map, entry);
2927 return 0;
2928 }
2929 }
2930 }
2931
2932/*
2933 * If we are changing an existing map entry, just redirect
2934 * the object, and change mappings.
2935 */
2936 if ((first_object->type == OBJT_VNODE) &&
2937 ((oldobject = entry->object.vm_object) == first_object)) {
2938
2939 if ((entry->offset != cp) || (oldobject != srcobject)) {
2940 /*
2941 * Remove old window into the file
2942 */
2943 pmap_remove (map->pmap, uaddr, tend);
2944
2945 /*
2946 * Force copy on write for mmaped regions
2947 */
2948 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2949
2950 /*
2951 * Point the object appropriately
2952 */
2953 if (oldobject != srcobject) {
2954
2955 /*
2956 * Set the object optimization hint flag
2957 */
2958 vm_object_set_flag(srcobject, OBJ_OPT);
2959 vm_object_reference(srcobject);
2960 entry->object.vm_object = srcobject;
2961
2962 if (oldobject) {
2963 vm_object_deallocate(oldobject);
2964 }
2965 }
2966
2967 entry->offset = cp;
2968 map->timestamp++;
2969 } else {
2970 pmap_remove (map->pmap, uaddr, tend);
2971 }
2972
2973 } else if ((first_object->ref_count == 1) &&
2974 (first_object->size == osize) &&
2975 ((first_object->type == OBJT_DEFAULT) ||
2976 (first_object->type == OBJT_SWAP)) ) {
2977
2978 oldobject = first_object->backing_object;
2979
2980 if ((first_object->backing_object_offset != cp) ||
2981 (oldobject != srcobject)) {
2982 /*
2983 * Remove old window into the file
2984 */
2985 pmap_remove (map->pmap, uaddr, tend);
2986
2987 /*
2988 * Remove unneeded old pages
2989 */
2990 vm_object_page_remove(first_object, 0, 0, 0);
2991
2992 /*
2993 * Invalidate swap space
2994 */
2995 if (first_object->type == OBJT_SWAP) {
2996 swap_pager_freespace(first_object,
2997 0,
2998 first_object->size);
2999 }
3000
3001 /*
3002 * Force copy on write for mmaped regions
3003 */
3004 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3005
3006 /*
3007 * Point the object appropriately
3008 */
3009 if (oldobject != srcobject) {
3010 /*
3011 * Set the object optimization hint flag
3012 */
3013 vm_object_set_flag(srcobject, OBJ_OPT);
3014 vm_object_reference(srcobject);
3015
3016 if (oldobject) {
3017 TAILQ_REMOVE(&oldobject->shadow_head,
3018 first_object, shadow_list);
3019 oldobject->shadow_count--;
3020 /* XXX bump generation? */
3021 vm_object_deallocate(oldobject);
3022 }
3023
3024 TAILQ_INSERT_TAIL(&srcobject->shadow_head,
3025 first_object, shadow_list);
3026 srcobject->shadow_count++;
3027 /* XXX bump generation? */
3028
3029 first_object->backing_object = srcobject;
3030 }
3031 first_object->backing_object_offset = cp;
3032 map->timestamp++;
3033 } else {
3034 pmap_remove (map->pmap, uaddr, tend);
3035 }
3036/*
3037 * Otherwise, we have to do a logical mmap.
3038 */
3039 } else {
3040
3041 vm_object_set_flag(srcobject, OBJ_OPT);
3042 vm_object_reference(srcobject);
3043
3044 pmap_remove (map->pmap, uaddr, tend);
3045
3046 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3047 vm_map_lock_upgrade(map);
3048
3049 if (entry == &map->header) {
3050 map->first_free = &map->header;
3051 } else if (map->first_free->start >= start) {
3052 map->first_free = entry->prev;
3053 }
3054
3055 SAVE_HINT(map, entry->prev);
3056 vm_map_entry_delete(map, entry);
3057
3058 object = srcobject;
3059 ooffset = cp;
3060
3061 rv = vm_map_insert(map, object, ooffset, start, tend,
3062 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3063
3064 if (rv != KERN_SUCCESS)
3065 panic("vm_uiomove: could not insert new entry: %d", rv);
3066 }
3067
3068/*
3069 * Map the window directly, if it is already in memory
3070 */
3071 pmap_object_init_pt(map->pmap, uaddr,
3072 srcobject, oindex, tcnt, 0);
3073
3074 map->timestamp++;
3075 vm_map_unlock(map);
3076
3077 cnt -= tcnt;
3078 uaddr += tcnt;
3079 cp += tcnt;
3080 if (npages)
3081 *npages += osize;
3082 }
3083 return 0;
3084}
3085
3086/*
3087 * Performs the copy_on_write operations necessary to allow the virtual copies
3088 * into user space to work. This has to be called for write(2) system calls
3089 * from other processes, file unlinking, and file size shrinkage.
3090 */
3091void
3092vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
3093{
3094 int rv;
3095 vm_object_t robject;
3096 vm_pindex_t idx;
3097
3098 GIANT_REQUIRED;
3099 if ((object == NULL) ||
3100 ((object->flags & OBJ_OPT) == 0))
3101 return;
3102
3103 if (object->shadow_count > object->ref_count)
3104 panic("vm_freeze_copyopts: sc > rc");
3105
3106 while ((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
3107 vm_pindex_t bo_pindex;
3108 vm_page_t m_in, m_out;
3109
3110 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3111
3112 vm_object_reference(robject);
3113
3114 vm_object_pip_wait(robject, "objfrz");
3115
3116 if (robject->ref_count == 1) {
3117 vm_object_deallocate(robject);
3118 continue;
3119 }
3120
3121 vm_object_pip_add(robject, 1);
3122
3123 for (idx = 0; idx < robject->size; idx++) {
3124
3125 m_out = vm_page_grab(robject, idx,
3126 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3127
3128 if (m_out->valid == 0) {
3129 m_in = vm_page_grab(object, bo_pindex + idx,
3130 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3131 if (m_in->valid == 0) {
3132 rv = vm_pager_get_pages(object, &m_in, 1, 0);
3133 if (rv != VM_PAGER_OK) {
3134 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3135 continue;
3136 }
3137 vm_page_deactivate(m_in);
3138 }
3139
3140 vm_page_protect(m_in, VM_PROT_NONE);
3141 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3142 m_out->valid = m_in->valid;
3143 vm_page_dirty(m_out);
3144 vm_page_activate(m_out);
3145 vm_page_wakeup(m_in);
3146 }
3147 vm_page_wakeup(m_out);
3148 }
3149
3150 object->shadow_count--;
3151 object->ref_count--;
3152 TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
3153 robject->backing_object = NULL;
3154 robject->backing_object_offset = 0;
3155
3156 vm_object_pip_wakeup(robject);
3157 vm_object_deallocate(robject);
3158 }
3159
3160 vm_object_clear_flag(object, OBJ_OPT);
3161}
3162
3163#include "opt_ddb.h"
3164#ifdef DDB
3165#include <sys/kernel.h>
3166
3167#include <ddb/ddb.h>
3168
3169/*
3170 * vm_map_print: [ debug ]
3171 */
3172DB_SHOW_COMMAND(map, vm_map_print)
3173{
3174 static int nlines;
3175 /* XXX convert args. */
3176 vm_map_t map = (vm_map_t)addr;
3177 boolean_t full = have_addr;
3178
3179 vm_map_entry_t entry;
3180
3181 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3182 (void *)map,
3183 (void *)map->pmap, map->nentries, map->timestamp);
3184 nlines++;
3185
3186 if (!full && db_indent)
3187 return;
3188
3189 db_indent += 2;
3190 for (entry = map->header.next; entry != &map->header;
3191 entry = entry->next) {
3192 db_iprintf("map entry %p: start=%p, end=%p\n",
3193 (void *)entry, (void *)entry->start, (void *)entry->end);
3194 nlines++;
3195 {
3196 static char *inheritance_name[4] =
3197 {"share", "copy", "none", "donate_copy"};
3198
3199 db_iprintf(" prot=%x/%x/%s",
3200 entry->protection,
3201 entry->max_protection,
3202 inheritance_name[(int)(unsigned char)entry->inheritance]);
3203 if (entry->wired_count != 0)
3204 db_printf(", wired");
3205 }
3206 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3207 /* XXX no %qd in kernel. Truncate entry->offset. */
3208 db_printf(", share=%p, offset=0x%lx\n",
3209 (void *)entry->object.sub_map,
3210 (long)entry->offset);
3211 nlines++;
3212 if ((entry->prev == &map->header) ||
3213 (entry->prev->object.sub_map !=
3214 entry->object.sub_map)) {
3215 db_indent += 2;
3216 vm_map_print((db_expr_t)(intptr_t)
3217 entry->object.sub_map,
3218 full, 0, (char *)0);
3219 db_indent -= 2;
3220 }
3221 } else {
3222 /* XXX no %qd in kernel. Truncate entry->offset. */
3223 db_printf(", object=%p, offset=0x%lx",
3224 (void *)entry->object.vm_object,
3225 (long)entry->offset);
3226 if (entry->eflags & MAP_ENTRY_COW)
3227 db_printf(", copy (%s)",
3228 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3229 db_printf("\n");
3230 nlines++;
3231
3232 if ((entry->prev == &map->header) ||
3233 (entry->prev->object.vm_object !=
3234 entry->object.vm_object)) {
3235 db_indent += 2;
3236 vm_object_print((db_expr_t)(intptr_t)
3237 entry->object.vm_object,
3238 full, 0, (char *)0);
3239 nlines += 4;
3240 db_indent -= 2;
3241 }
3242 }
3243 }
3244 db_indent -= 2;
3245 if (db_indent == 0)
3246 nlines = 0;
3247}
3248
3249
3250DB_SHOW_COMMAND(procvm, procvm)
3251{
3252 struct proc *p;
3253
3254 if (have_addr) {
3255 p = (struct proc *) addr;
3256 } else {
3257 p = curproc;
3258 }
3259
3260 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3261 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3262 (void *)vmspace_pmap(p->p_vmspace));
3263
3264 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3265}
3266
3267#endif /* DDB */
534 if (new_entry == NULL)
535 panic("vm_map_entry_create: kernel resources exhausted");
536 return (new_entry);
537}
538
539/*
540 * vm_map_entry_{un,}link:
541 *
542 * Insert/remove entries from maps.
543 */
544static __inline void
545vm_map_entry_link(vm_map_t map,
546 vm_map_entry_t after_where,
547 vm_map_entry_t entry)
548{
549
550 CTR4(KTR_VM,
551 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
552 map->nentries, entry, after_where);
553 map->nentries++;
554 entry->prev = after_where;
555 entry->next = after_where->next;
556 entry->next->prev = entry;
557 after_where->next = entry;
558}
559
560static __inline void
561vm_map_entry_unlink(vm_map_t map,
562 vm_map_entry_t entry)
563{
564 vm_map_entry_t prev = entry->prev;
565 vm_map_entry_t next = entry->next;
566
567 next->prev = prev;
568 prev->next = next;
569 map->nentries--;
570 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
571 map->nentries, entry);
572}
573
574/*
575 * SAVE_HINT:
576 *
577 * Saves the specified entry as the hint for
578 * future lookups.
579 */
580#define SAVE_HINT(map,value) \
581 (map)->hint = (value);
582
583/*
584 * vm_map_lookup_entry: [ internal use only ]
585 *
586 * Finds the map entry containing (or
587 * immediately preceding) the specified address
588 * in the given map; the entry is returned
589 * in the "entry" parameter. The boolean
590 * result indicates whether the address is
591 * actually contained in the map.
592 */
593boolean_t
594vm_map_lookup_entry(
595 vm_map_t map,
596 vm_offset_t address,
597 vm_map_entry_t *entry) /* OUT */
598{
599 vm_map_entry_t cur;
600 vm_map_entry_t last;
601
602 GIANT_REQUIRED;
603 /*
604 * Start looking either from the head of the list, or from the hint.
605 */
606 cur = map->hint;
607
608 if (cur == &map->header)
609 cur = cur->next;
610
611 if (address >= cur->start) {
612 /*
613 * Go from hint to end of list.
614 *
615 * But first, make a quick check to see if we are already looking
616 * at the entry we want (which is usually the case). Note also
617 * that we don't need to save the hint here... it is the same
618 * hint (unless we are at the header, in which case the hint
619 * didn't buy us anything anyway).
620 */
621 last = &map->header;
622 if ((cur != last) && (cur->end > address)) {
623 *entry = cur;
624 return (TRUE);
625 }
626 } else {
627 /*
628 * Go from start to hint, *inclusively*
629 */
630 last = cur->next;
631 cur = map->header.next;
632 }
633
634 /*
635 * Search linearly
636 */
637 while (cur != last) {
638 if (cur->end > address) {
639 if (address >= cur->start) {
640 /*
641 * Save this lookup for future hints, and
642 * return
643 */
644 *entry = cur;
645 SAVE_HINT(map, cur);
646 return (TRUE);
647 }
648 break;
649 }
650 cur = cur->next;
651 }
652 *entry = cur->prev;
653 SAVE_HINT(map, *entry);
654 return (FALSE);
655}
656
657/*
658 * vm_map_insert:
659 *
660 * Inserts the given whole VM object into the target
661 * map at the specified address range. The object's
662 * size should match that of the address range.
663 *
664 * Requires that the map be locked, and leaves it so.
665 *
666 * If object is non-NULL, ref count must be bumped by caller
667 * prior to making call to account for the new entry.
668 */
669int
670vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
671 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
672 int cow)
673{
674 vm_map_entry_t new_entry;
675 vm_map_entry_t prev_entry;
676 vm_map_entry_t temp_entry;
677 vm_eflags_t protoeflags;
678
679 GIANT_REQUIRED;
680
681 /*
682 * Check that the start and end points are not bogus.
683 */
684 if ((start < map->min_offset) || (end > map->max_offset) ||
685 (start >= end))
686 return (KERN_INVALID_ADDRESS);
687
688 /*
689 * Find the entry prior to the proposed starting address; if it's part
690 * of an existing entry, this range is bogus.
691 */
692 if (vm_map_lookup_entry(map, start, &temp_entry))
693 return (KERN_NO_SPACE);
694
695 prev_entry = temp_entry;
696
697 /*
698 * Assert that the next entry doesn't overlap the end point.
699 */
700 if ((prev_entry->next != &map->header) &&
701 (prev_entry->next->start < end))
702 return (KERN_NO_SPACE);
703
704 protoeflags = 0;
705
706 if (cow & MAP_COPY_ON_WRITE)
707 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
708
709 if (cow & MAP_NOFAULT) {
710 protoeflags |= MAP_ENTRY_NOFAULT;
711
712 KASSERT(object == NULL,
713 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
714 }
715 if (cow & MAP_DISABLE_SYNCER)
716 protoeflags |= MAP_ENTRY_NOSYNC;
717 if (cow & MAP_DISABLE_COREDUMP)
718 protoeflags |= MAP_ENTRY_NOCOREDUMP;
719
720 if (object) {
721 /*
722 * When object is non-NULL, it could be shared with another
723 * process. We have to set or clear OBJ_ONEMAPPING
724 * appropriately.
725 */
726 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
727 vm_object_clear_flag(object, OBJ_ONEMAPPING);
728 }
729 }
730 else if ((prev_entry != &map->header) &&
731 (prev_entry->eflags == protoeflags) &&
732 (prev_entry->end == start) &&
733 (prev_entry->wired_count == 0) &&
734 ((prev_entry->object.vm_object == NULL) ||
735 vm_object_coalesce(prev_entry->object.vm_object,
736 OFF_TO_IDX(prev_entry->offset),
737 (vm_size_t)(prev_entry->end - prev_entry->start),
738 (vm_size_t)(end - prev_entry->end)))) {
739 /*
740 * We were able to extend the object. Determine if we
741 * can extend the previous map entry to include the
742 * new range as well.
743 */
744 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
745 (prev_entry->protection == prot) &&
746 (prev_entry->max_protection == max)) {
747 map->size += (end - prev_entry->end);
748 prev_entry->end = end;
749 vm_map_simplify_entry(map, prev_entry);
750 return (KERN_SUCCESS);
751 }
752
753 /*
754 * If we can extend the object but cannot extend the
755 * map entry, we have to create a new map entry. We
756 * must bump the ref count on the extended object to
757 * account for it. object may be NULL.
758 */
759 object = prev_entry->object.vm_object;
760 offset = prev_entry->offset +
761 (prev_entry->end - prev_entry->start);
762 vm_object_reference(object);
763 }
764
765 /*
766 * NOTE: if conditionals fail, object can be NULL here. This occurs
767 * in things like the buffer map where we manage kva but do not manage
768 * backing objects.
769 */
770
771 /*
772 * Create a new entry
773 */
774 new_entry = vm_map_entry_create(map);
775 new_entry->start = start;
776 new_entry->end = end;
777
778 new_entry->eflags = protoeflags;
779 new_entry->object.vm_object = object;
780 new_entry->offset = offset;
781 new_entry->avail_ssize = 0;
782
783 new_entry->inheritance = VM_INHERIT_DEFAULT;
784 new_entry->protection = prot;
785 new_entry->max_protection = max;
786 new_entry->wired_count = 0;
787
788 /*
789 * Insert the new entry into the list
790 */
791 vm_map_entry_link(map, prev_entry, new_entry);
792 map->size += new_entry->end - new_entry->start;
793
794 /*
795 * Update the free space hint
796 */
797 if ((map->first_free == prev_entry) &&
798 (prev_entry->end >= new_entry->start)) {
799 map->first_free = new_entry;
800 }
801
802#if 0
803 /*
804 * Temporarily removed to avoid MAP_STACK panic, due to
805 * MAP_STACK being a huge hack. Will be added back in
806 * when MAP_STACK (and the user stack mapping) is fixed.
807 */
808 /*
809 * It may be possible to simplify the entry
810 */
811 vm_map_simplify_entry(map, new_entry);
812#endif
813
814 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
815 pmap_object_init_pt(map->pmap, start,
816 object, OFF_TO_IDX(offset), end - start,
817 cow & MAP_PREFAULT_PARTIAL);
818 }
819
820 return (KERN_SUCCESS);
821}
822
823/*
824 * Find sufficient space for `length' bytes in the given map, starting at
825 * `start'. The map must be locked. Returns 0 on success, 1 on no space.
826 */
827int
828vm_map_findspace(
829 vm_map_t map,
830 vm_offset_t start,
831 vm_size_t length,
832 vm_offset_t *addr)
833{
834 vm_map_entry_t entry, next;
835 vm_offset_t end;
836
837 GIANT_REQUIRED;
838 if (start < map->min_offset)
839 start = map->min_offset;
840 if (start > map->max_offset)
841 return (1);
842
843 /*
844 * Look for the first possible address; if there's already something
845 * at this address, we have to start after it.
846 */
847 if (start == map->min_offset) {
848 if ((entry = map->first_free) != &map->header)
849 start = entry->end;
850 } else {
851 vm_map_entry_t tmp;
852
853 if (vm_map_lookup_entry(map, start, &tmp))
854 start = tmp->end;
855 entry = tmp;
856 }
857
858 /*
859 * Look through the rest of the map, trying to fit a new region in the
860 * gap between existing regions, or after the very last region.
861 */
862 for (;; start = (entry = next)->end) {
863 /*
864 * Find the end of the proposed new region. Be sure we didn't
865 * go beyond the end of the map, or wrap around the address;
866 * if so, we lose. Otherwise, if this is the last entry, or
867 * if the proposed new region fits before the next entry, we
868 * win.
869 */
870 end = start + length;
871 if (end > map->max_offset || end < start)
872 return (1);
873 next = entry->next;
874 if (next == &map->header || next->start >= end)
875 break;
876 }
877 SAVE_HINT(map, entry);
878 *addr = start;
879 if (map == kernel_map) {
880 vm_offset_t ksize;
881 if ((ksize = round_page(start + length)) > kernel_vm_end) {
882 pmap_growkernel(ksize);
883 }
884 }
885 return (0);
886}
887
888/*
889 * vm_map_find finds an unallocated region in the target address
890 * map with the given length. The search is defined to be
891 * first-fit from the specified address; the region found is
892 * returned in the same parameter.
893 *
894 * If object is non-NULL, ref count must be bumped by caller
895 * prior to making call to account for the new entry.
896 */
897int
898vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
899 vm_offset_t *addr, /* IN/OUT */
900 vm_size_t length, boolean_t find_space, vm_prot_t prot,
901 vm_prot_t max, int cow)
902{
903 vm_offset_t start;
904 int result, s = 0;
905
906 GIANT_REQUIRED;
907
908 start = *addr;
909
910 if (map == kmem_map)
911 s = splvm();
912
913 vm_map_lock(map);
914 if (find_space) {
915 if (vm_map_findspace(map, start, length, addr)) {
916 vm_map_unlock(map);
917 if (map == kmem_map)
918 splx(s);
919 return (KERN_NO_SPACE);
920 }
921 start = *addr;
922 }
923 result = vm_map_insert(map, object, offset,
924 start, start + length, prot, max, cow);
925 vm_map_unlock(map);
926
927 if (map == kmem_map)
928 splx(s);
929
930 return (result);
931}
932
933/*
934 * vm_map_simplify_entry:
935 *
936 * Simplify the given map entry by merging with either neighbor. This
937 * routine also has the ability to merge with both neighbors.
938 *
939 * The map must be locked.
940 *
941 * This routine guarentees that the passed entry remains valid (though
942 * possibly extended). When merging, this routine may delete one or
943 * both neighbors.
944 */
945void
946vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
947{
948 vm_map_entry_t next, prev;
949 vm_size_t prevsize, esize;
950
951 GIANT_REQUIRED;
952
953 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
954 return;
955
956 prev = entry->prev;
957 if (prev != &map->header) {
958 prevsize = prev->end - prev->start;
959 if ( (prev->end == entry->start) &&
960 (prev->object.vm_object == entry->object.vm_object) &&
961 (!prev->object.vm_object ||
962 (prev->offset + prevsize == entry->offset)) &&
963 (prev->eflags == entry->eflags) &&
964 (prev->protection == entry->protection) &&
965 (prev->max_protection == entry->max_protection) &&
966 (prev->inheritance == entry->inheritance) &&
967 (prev->wired_count == entry->wired_count)) {
968 if (map->first_free == prev)
969 map->first_free = entry;
970 if (map->hint == prev)
971 map->hint = entry;
972 vm_map_entry_unlink(map, prev);
973 entry->start = prev->start;
974 entry->offset = prev->offset;
975 if (prev->object.vm_object)
976 vm_object_deallocate(prev->object.vm_object);
977 vm_map_entry_dispose(map, prev);
978 }
979 }
980
981 next = entry->next;
982 if (next != &map->header) {
983 esize = entry->end - entry->start;
984 if ((entry->end == next->start) &&
985 (next->object.vm_object == entry->object.vm_object) &&
986 (!entry->object.vm_object ||
987 (entry->offset + esize == next->offset)) &&
988 (next->eflags == entry->eflags) &&
989 (next->protection == entry->protection) &&
990 (next->max_protection == entry->max_protection) &&
991 (next->inheritance == entry->inheritance) &&
992 (next->wired_count == entry->wired_count)) {
993 if (map->first_free == next)
994 map->first_free = entry;
995 if (map->hint == next)
996 map->hint = entry;
997 vm_map_entry_unlink(map, next);
998 entry->end = next->end;
999 if (next->object.vm_object)
1000 vm_object_deallocate(next->object.vm_object);
1001 vm_map_entry_dispose(map, next);
1002 }
1003 }
1004}
1005/*
1006 * vm_map_clip_start: [ internal use only ]
1007 *
1008 * Asserts that the given entry begins at or after
1009 * the specified address; if necessary,
1010 * it splits the entry into two.
1011 */
1012#define vm_map_clip_start(map, entry, startaddr) \
1013{ \
1014 if (startaddr > entry->start) \
1015 _vm_map_clip_start(map, entry, startaddr); \
1016}
1017
1018/*
1019 * This routine is called only when it is known that
1020 * the entry must be split.
1021 */
1022static void
1023_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1024{
1025 vm_map_entry_t new_entry;
1026
1027 /*
1028 * Split off the front portion -- note that we must insert the new
1029 * entry BEFORE this one, so that this entry has the specified
1030 * starting address.
1031 */
1032 vm_map_simplify_entry(map, entry);
1033
1034 /*
1035 * If there is no object backing this entry, we might as well create
1036 * one now. If we defer it, an object can get created after the map
1037 * is clipped, and individual objects will be created for the split-up
1038 * map. This is a bit of a hack, but is also about the best place to
1039 * put this improvement.
1040 */
1041 if (entry->object.vm_object == NULL && !map->system_map) {
1042 vm_object_t object;
1043 object = vm_object_allocate(OBJT_DEFAULT,
1044 atop(entry->end - entry->start));
1045 entry->object.vm_object = object;
1046 entry->offset = 0;
1047 }
1048
1049 new_entry = vm_map_entry_create(map);
1050 *new_entry = *entry;
1051
1052 new_entry->end = start;
1053 entry->offset += (start - entry->start);
1054 entry->start = start;
1055
1056 vm_map_entry_link(map, entry->prev, new_entry);
1057
1058 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1059 vm_object_reference(new_entry->object.vm_object);
1060 }
1061}
1062
1063/*
1064 * vm_map_clip_end: [ internal use only ]
1065 *
1066 * Asserts that the given entry ends at or before
1067 * the specified address; if necessary,
1068 * it splits the entry into two.
1069 */
1070#define vm_map_clip_end(map, entry, endaddr) \
1071{ \
1072 if (endaddr < entry->end) \
1073 _vm_map_clip_end(map, entry, endaddr); \
1074}
1075
1076/*
1077 * This routine is called only when it is known that
1078 * the entry must be split.
1079 */
1080static void
1081_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1082{
1083 vm_map_entry_t new_entry;
1084
1085 /*
1086 * If there is no object backing this entry, we might as well create
1087 * one now. If we defer it, an object can get created after the map
1088 * is clipped, and individual objects will be created for the split-up
1089 * map. This is a bit of a hack, but is also about the best place to
1090 * put this improvement.
1091 */
1092 if (entry->object.vm_object == NULL && !map->system_map) {
1093 vm_object_t object;
1094 object = vm_object_allocate(OBJT_DEFAULT,
1095 atop(entry->end - entry->start));
1096 entry->object.vm_object = object;
1097 entry->offset = 0;
1098 }
1099
1100 /*
1101 * Create a new entry and insert it AFTER the specified entry
1102 */
1103 new_entry = vm_map_entry_create(map);
1104 *new_entry = *entry;
1105
1106 new_entry->start = entry->end = end;
1107 new_entry->offset += (end - entry->start);
1108
1109 vm_map_entry_link(map, entry, new_entry);
1110
1111 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1112 vm_object_reference(new_entry->object.vm_object);
1113 }
1114}
1115
1116/*
1117 * VM_MAP_RANGE_CHECK: [ internal use only ]
1118 *
1119 * Asserts that the starting and ending region
1120 * addresses fall within the valid range of the map.
1121 */
1122#define VM_MAP_RANGE_CHECK(map, start, end) \
1123 { \
1124 if (start < vm_map_min(map)) \
1125 start = vm_map_min(map); \
1126 if (end > vm_map_max(map)) \
1127 end = vm_map_max(map); \
1128 if (start > end) \
1129 start = end; \
1130 }
1131
1132/*
1133 * vm_map_submap: [ kernel use only ]
1134 *
1135 * Mark the given range as handled by a subordinate map.
1136 *
1137 * This range must have been created with vm_map_find,
1138 * and no other operations may have been performed on this
1139 * range prior to calling vm_map_submap.
1140 *
1141 * Only a limited number of operations can be performed
1142 * within this rage after calling vm_map_submap:
1143 * vm_fault
1144 * [Don't try vm_map_copy!]
1145 *
1146 * To remove a submapping, one must first remove the
1147 * range from the superior map, and then destroy the
1148 * submap (if desired). [Better yet, don't try it.]
1149 */
1150int
1151vm_map_submap(
1152 vm_map_t map,
1153 vm_offset_t start,
1154 vm_offset_t end,
1155 vm_map_t submap)
1156{
1157 vm_map_entry_t entry;
1158 int result = KERN_INVALID_ARGUMENT;
1159
1160 GIANT_REQUIRED;
1161
1162 vm_map_lock(map);
1163
1164 VM_MAP_RANGE_CHECK(map, start, end);
1165
1166 if (vm_map_lookup_entry(map, start, &entry)) {
1167 vm_map_clip_start(map, entry, start);
1168 } else
1169 entry = entry->next;
1170
1171 vm_map_clip_end(map, entry, end);
1172
1173 if ((entry->start == start) && (entry->end == end) &&
1174 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1175 (entry->object.vm_object == NULL)) {
1176 entry->object.sub_map = submap;
1177 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1178 result = KERN_SUCCESS;
1179 }
1180 vm_map_unlock(map);
1181
1182 return (result);
1183}
1184
1185/*
1186 * vm_map_protect:
1187 *
1188 * Sets the protection of the specified address
1189 * region in the target map. If "set_max" is
1190 * specified, the maximum protection is to be set;
1191 * otherwise, only the current protection is affected.
1192 */
1193int
1194vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1195 vm_prot_t new_prot, boolean_t set_max)
1196{
1197 vm_map_entry_t current;
1198 vm_map_entry_t entry;
1199
1200 GIANT_REQUIRED;
1201 vm_map_lock(map);
1202
1203 VM_MAP_RANGE_CHECK(map, start, end);
1204
1205 if (vm_map_lookup_entry(map, start, &entry)) {
1206 vm_map_clip_start(map, entry, start);
1207 } else {
1208 entry = entry->next;
1209 }
1210
1211 /*
1212 * Make a first pass to check for protection violations.
1213 */
1214 current = entry;
1215 while ((current != &map->header) && (current->start < end)) {
1216 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1217 vm_map_unlock(map);
1218 return (KERN_INVALID_ARGUMENT);
1219 }
1220 if ((new_prot & current->max_protection) != new_prot) {
1221 vm_map_unlock(map);
1222 return (KERN_PROTECTION_FAILURE);
1223 }
1224 current = current->next;
1225 }
1226
1227 /*
1228 * Go back and fix up protections. [Note that clipping is not
1229 * necessary the second time.]
1230 */
1231 current = entry;
1232 while ((current != &map->header) && (current->start < end)) {
1233 vm_prot_t old_prot;
1234
1235 vm_map_clip_end(map, current, end);
1236
1237 old_prot = current->protection;
1238 if (set_max)
1239 current->protection =
1240 (current->max_protection = new_prot) &
1241 old_prot;
1242 else
1243 current->protection = new_prot;
1244
1245 /*
1246 * Update physical map if necessary. Worry about copy-on-write
1247 * here -- CHECK THIS XXX
1248 */
1249 if (current->protection != old_prot) {
1250#define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1251 VM_PROT_ALL)
1252 pmap_protect(map->pmap, current->start,
1253 current->end,
1254 current->protection & MASK(current));
1255#undef MASK
1256 }
1257 vm_map_simplify_entry(map, current);
1258 current = current->next;
1259 }
1260 vm_map_unlock(map);
1261 return (KERN_SUCCESS);
1262}
1263
1264/*
1265 * vm_map_madvise:
1266 *
1267 * This routine traverses a processes map handling the madvise
1268 * system call. Advisories are classified as either those effecting
1269 * the vm_map_entry structure, or those effecting the underlying
1270 * objects.
1271 */
1272int
1273vm_map_madvise(
1274 vm_map_t map,
1275 vm_offset_t start,
1276 vm_offset_t end,
1277 int behav)
1278{
1279 vm_map_entry_t current, entry;
1280 int modify_map = 0;
1281
1282 GIANT_REQUIRED;
1283
1284 /*
1285 * Some madvise calls directly modify the vm_map_entry, in which case
1286 * we need to use an exclusive lock on the map and we need to perform
1287 * various clipping operations. Otherwise we only need a read-lock
1288 * on the map.
1289 */
1290 switch(behav) {
1291 case MADV_NORMAL:
1292 case MADV_SEQUENTIAL:
1293 case MADV_RANDOM:
1294 case MADV_NOSYNC:
1295 case MADV_AUTOSYNC:
1296 case MADV_NOCORE:
1297 case MADV_CORE:
1298 modify_map = 1;
1299 vm_map_lock(map);
1300 break;
1301 case MADV_WILLNEED:
1302 case MADV_DONTNEED:
1303 case MADV_FREE:
1304 vm_map_lock_read(map);
1305 break;
1306 default:
1307 return (KERN_INVALID_ARGUMENT);
1308 }
1309
1310 /*
1311 * Locate starting entry and clip if necessary.
1312 */
1313 VM_MAP_RANGE_CHECK(map, start, end);
1314
1315 if (vm_map_lookup_entry(map, start, &entry)) {
1316 if (modify_map)
1317 vm_map_clip_start(map, entry, start);
1318 } else {
1319 entry = entry->next;
1320 }
1321
1322 if (modify_map) {
1323 /*
1324 * madvise behaviors that are implemented in the vm_map_entry.
1325 *
1326 * We clip the vm_map_entry so that behavioral changes are
1327 * limited to the specified address range.
1328 */
1329 for (current = entry;
1330 (current != &map->header) && (current->start < end);
1331 current = current->next
1332 ) {
1333 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1334 continue;
1335
1336 vm_map_clip_end(map, current, end);
1337
1338 switch (behav) {
1339 case MADV_NORMAL:
1340 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1341 break;
1342 case MADV_SEQUENTIAL:
1343 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1344 break;
1345 case MADV_RANDOM:
1346 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1347 break;
1348 case MADV_NOSYNC:
1349 current->eflags |= MAP_ENTRY_NOSYNC;
1350 break;
1351 case MADV_AUTOSYNC:
1352 current->eflags &= ~MAP_ENTRY_NOSYNC;
1353 break;
1354 case MADV_NOCORE:
1355 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1356 break;
1357 case MADV_CORE:
1358 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1359 break;
1360 default:
1361 break;
1362 }
1363 vm_map_simplify_entry(map, current);
1364 }
1365 vm_map_unlock(map);
1366 } else {
1367 vm_pindex_t pindex;
1368 int count;
1369
1370 /*
1371 * madvise behaviors that are implemented in the underlying
1372 * vm_object.
1373 *
1374 * Since we don't clip the vm_map_entry, we have to clip
1375 * the vm_object pindex and count.
1376 */
1377 for (current = entry;
1378 (current != &map->header) && (current->start < end);
1379 current = current->next
1380 ) {
1381 vm_offset_t useStart;
1382
1383 if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1384 continue;
1385
1386 pindex = OFF_TO_IDX(current->offset);
1387 count = atop(current->end - current->start);
1388 useStart = current->start;
1389
1390 if (current->start < start) {
1391 pindex += atop(start - current->start);
1392 count -= atop(start - current->start);
1393 useStart = start;
1394 }
1395 if (current->end > end)
1396 count -= atop(current->end - end);
1397
1398 if (count <= 0)
1399 continue;
1400
1401 vm_object_madvise(current->object.vm_object,
1402 pindex, count, behav);
1403 if (behav == MADV_WILLNEED) {
1404 pmap_object_init_pt(
1405 map->pmap,
1406 useStart,
1407 current->object.vm_object,
1408 pindex,
1409 (count << PAGE_SHIFT),
1410 MAP_PREFAULT_MADVISE
1411 );
1412 }
1413 }
1414 vm_map_unlock_read(map);
1415 }
1416 return (0);
1417}
1418
1419
1420/*
1421 * vm_map_inherit:
1422 *
1423 * Sets the inheritance of the specified address
1424 * range in the target map. Inheritance
1425 * affects how the map will be shared with
1426 * child maps at the time of vm_map_fork.
1427 */
1428int
1429vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1430 vm_inherit_t new_inheritance)
1431{
1432 vm_map_entry_t entry;
1433 vm_map_entry_t temp_entry;
1434
1435 GIANT_REQUIRED;
1436
1437 switch (new_inheritance) {
1438 case VM_INHERIT_NONE:
1439 case VM_INHERIT_COPY:
1440 case VM_INHERIT_SHARE:
1441 break;
1442 default:
1443 return (KERN_INVALID_ARGUMENT);
1444 }
1445
1446 vm_map_lock(map);
1447
1448 VM_MAP_RANGE_CHECK(map, start, end);
1449
1450 if (vm_map_lookup_entry(map, start, &temp_entry)) {
1451 entry = temp_entry;
1452 vm_map_clip_start(map, entry, start);
1453 } else
1454 entry = temp_entry->next;
1455
1456 while ((entry != &map->header) && (entry->start < end)) {
1457 vm_map_clip_end(map, entry, end);
1458
1459 entry->inheritance = new_inheritance;
1460
1461 vm_map_simplify_entry(map, entry);
1462
1463 entry = entry->next;
1464 }
1465
1466 vm_map_unlock(map);
1467 return (KERN_SUCCESS);
1468}
1469
1470/*
1471 * Implement the semantics of mlock
1472 */
1473int
1474vm_map_user_pageable(
1475 vm_map_t map,
1476 vm_offset_t start,
1477 vm_offset_t end,
1478 boolean_t new_pageable)
1479{
1480 vm_map_entry_t entry;
1481 vm_map_entry_t start_entry;
1482 vm_offset_t estart;
1483 vm_offset_t eend;
1484 int rv;
1485
1486 vm_map_lock(map);
1487 VM_MAP_RANGE_CHECK(map, start, end);
1488
1489 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1490 vm_map_unlock(map);
1491 return (KERN_INVALID_ADDRESS);
1492 }
1493
1494 if (new_pageable) {
1495
1496 entry = start_entry;
1497 vm_map_clip_start(map, entry, start);
1498
1499 /*
1500 * Now decrement the wiring count for each region. If a region
1501 * becomes completely unwired, unwire its physical pages and
1502 * mappings.
1503 */
1504 while ((entry != &map->header) && (entry->start < end)) {
1505 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1506 vm_map_clip_end(map, entry, end);
1507 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1508 entry->wired_count--;
1509 if (entry->wired_count == 0)
1510 vm_fault_unwire(map, entry->start, entry->end);
1511 }
1512 vm_map_simplify_entry(map,entry);
1513 entry = entry->next;
1514 }
1515 } else {
1516
1517 entry = start_entry;
1518
1519 while ((entry != &map->header) && (entry->start < end)) {
1520
1521 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1522 entry = entry->next;
1523 continue;
1524 }
1525
1526 if (entry->wired_count != 0) {
1527 entry->wired_count++;
1528 entry->eflags |= MAP_ENTRY_USER_WIRED;
1529 entry = entry->next;
1530 continue;
1531 }
1532
1533 /* Here on entry being newly wired */
1534
1535 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1536 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1537 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1538
1539 vm_object_shadow(&entry->object.vm_object,
1540 &entry->offset,
1541 atop(entry->end - entry->start));
1542 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1543
1544 } else if (entry->object.vm_object == NULL &&
1545 !map->system_map) {
1546
1547 entry->object.vm_object =
1548 vm_object_allocate(OBJT_DEFAULT,
1549 atop(entry->end - entry->start));
1550 entry->offset = (vm_offset_t) 0;
1551
1552 }
1553 }
1554
1555 vm_map_clip_start(map, entry, start);
1556 vm_map_clip_end(map, entry, end);
1557
1558 entry->wired_count++;
1559 entry->eflags |= MAP_ENTRY_USER_WIRED;
1560 estart = entry->start;
1561 eend = entry->end;
1562
1563 /* First we need to allow map modifications */
1564 vm_map_set_recursive(map);
1565 vm_map_lock_downgrade(map);
1566 map->timestamp++;
1567
1568 rv = vm_fault_user_wire(map, entry->start, entry->end);
1569 if (rv) {
1570
1571 entry->wired_count--;
1572 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1573
1574 vm_map_clear_recursive(map);
1575 vm_map_unlock(map);
1576
1577 /*
1578 * At this point, the map is unlocked, and
1579 * entry might no longer be valid. Use copy
1580 * of entry start value obtained while entry
1581 * was valid.
1582 */
1583 (void) vm_map_user_pageable(map, start, estart,
1584 TRUE);
1585 return rv;
1586 }
1587
1588 vm_map_clear_recursive(map);
1589 if (vm_map_lock_upgrade(map)) {
1590 vm_map_lock(map);
1591 if (vm_map_lookup_entry(map, estart, &entry)
1592 == FALSE) {
1593 vm_map_unlock(map);
1594 /*
1595 * vm_fault_user_wire succeded, thus
1596 * the area between start and eend
1597 * is wired and has to be unwired
1598 * here as part of the cleanup.
1599 */
1600 (void) vm_map_user_pageable(map,
1601 start,
1602 eend,
1603 TRUE);
1604 return (KERN_INVALID_ADDRESS);
1605 }
1606 }
1607 vm_map_simplify_entry(map,entry);
1608 }
1609 }
1610 map->timestamp++;
1611 vm_map_unlock(map);
1612 return KERN_SUCCESS;
1613}
1614
1615/*
1616 * vm_map_pageable:
1617 *
1618 * Sets the pageability of the specified address
1619 * range in the target map. Regions specified
1620 * as not pageable require locked-down physical
1621 * memory and physical page maps.
1622 *
1623 * The map must not be locked, but a reference
1624 * must remain to the map throughout the call.
1625 */
1626int
1627vm_map_pageable(
1628 vm_map_t map,
1629 vm_offset_t start,
1630 vm_offset_t end,
1631 boolean_t new_pageable)
1632{
1633 vm_map_entry_t entry;
1634 vm_map_entry_t start_entry;
1635 vm_offset_t failed = 0;
1636 int rv;
1637
1638 GIANT_REQUIRED;
1639
1640 vm_map_lock(map);
1641
1642 VM_MAP_RANGE_CHECK(map, start, end);
1643
1644 /*
1645 * Only one pageability change may take place at one time, since
1646 * vm_fault assumes it will be called only once for each
1647 * wiring/unwiring. Therefore, we have to make sure we're actually
1648 * changing the pageability for the entire region. We do so before
1649 * making any changes.
1650 */
1651 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1652 vm_map_unlock(map);
1653 return (KERN_INVALID_ADDRESS);
1654 }
1655 entry = start_entry;
1656
1657 /*
1658 * Actions are rather different for wiring and unwiring, so we have
1659 * two separate cases.
1660 */
1661 if (new_pageable) {
1662 vm_map_clip_start(map, entry, start);
1663
1664 /*
1665 * Unwiring. First ensure that the range to be unwired is
1666 * really wired down and that there are no holes.
1667 */
1668 while ((entry != &map->header) && (entry->start < end)) {
1669 if (entry->wired_count == 0 ||
1670 (entry->end < end &&
1671 (entry->next == &map->header ||
1672 entry->next->start > entry->end))) {
1673 vm_map_unlock(map);
1674 return (KERN_INVALID_ARGUMENT);
1675 }
1676 entry = entry->next;
1677 }
1678
1679 /*
1680 * Now decrement the wiring count for each region. If a region
1681 * becomes completely unwired, unwire its physical pages and
1682 * mappings.
1683 */
1684 entry = start_entry;
1685 while ((entry != &map->header) && (entry->start < end)) {
1686 vm_map_clip_end(map, entry, end);
1687
1688 entry->wired_count--;
1689 if (entry->wired_count == 0)
1690 vm_fault_unwire(map, entry->start, entry->end);
1691
1692 vm_map_simplify_entry(map, entry);
1693
1694 entry = entry->next;
1695 }
1696 } else {
1697 /*
1698 * Wiring. We must do this in two passes:
1699 *
1700 * 1. Holding the write lock, we create any shadow or zero-fill
1701 * objects that need to be created. Then we clip each map
1702 * entry to the region to be wired and increment its wiring
1703 * count. We create objects before clipping the map entries
1704 * to avoid object proliferation.
1705 *
1706 * 2. We downgrade to a read lock, and call vm_fault_wire to
1707 * fault in the pages for any newly wired area (wired_count is
1708 * 1).
1709 *
1710 * Downgrading to a read lock for vm_fault_wire avoids a possible
1711 * deadlock with another process that may have faulted on one
1712 * of the pages to be wired (it would mark the page busy,
1713 * blocking us, then in turn block on the map lock that we
1714 * hold). Because of problems in the recursive lock package,
1715 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
1716 * any actions that require the write lock must be done
1717 * beforehand. Because we keep the read lock on the map, the
1718 * copy-on-write status of the entries we modify here cannot
1719 * change.
1720 */
1721
1722 /*
1723 * Pass 1.
1724 */
1725 while ((entry != &map->header) && (entry->start < end)) {
1726 if (entry->wired_count == 0) {
1727
1728 /*
1729 * Perform actions of vm_map_lookup that need
1730 * the write lock on the map: create a shadow
1731 * object for a copy-on-write region, or an
1732 * object for a zero-fill region.
1733 *
1734 * We don't have to do this for entries that
1735 * point to sub maps, because we won't
1736 * hold the lock on the sub map.
1737 */
1738 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1739 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1740 if (copyflag &&
1741 ((entry->protection & VM_PROT_WRITE) != 0)) {
1742
1743 vm_object_shadow(&entry->object.vm_object,
1744 &entry->offset,
1745 atop(entry->end - entry->start));
1746 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1747 } else if (entry->object.vm_object == NULL &&
1748 !map->system_map) {
1749 entry->object.vm_object =
1750 vm_object_allocate(OBJT_DEFAULT,
1751 atop(entry->end - entry->start));
1752 entry->offset = (vm_offset_t) 0;
1753 }
1754 }
1755 }
1756 vm_map_clip_start(map, entry, start);
1757 vm_map_clip_end(map, entry, end);
1758 entry->wired_count++;
1759
1760 /*
1761 * Check for holes
1762 */
1763 if (entry->end < end &&
1764 (entry->next == &map->header ||
1765 entry->next->start > entry->end)) {
1766 /*
1767 * Found one. Object creation actions do not
1768 * need to be undone, but the wired counts
1769 * need to be restored.
1770 */
1771 while (entry != &map->header && entry->end > start) {
1772 entry->wired_count--;
1773 entry = entry->prev;
1774 }
1775 vm_map_unlock(map);
1776 return (KERN_INVALID_ARGUMENT);
1777 }
1778 entry = entry->next;
1779 }
1780
1781 /*
1782 * Pass 2.
1783 */
1784
1785 /*
1786 * HACK HACK HACK HACK
1787 *
1788 * If we are wiring in the kernel map or a submap of it,
1789 * unlock the map to avoid deadlocks. We trust that the
1790 * kernel is well-behaved, and therefore will not do
1791 * anything destructive to this region of the map while
1792 * we have it unlocked. We cannot trust user processes
1793 * to do the same.
1794 *
1795 * HACK HACK HACK HACK
1796 */
1797 if (vm_map_pmap(map) == kernel_pmap) {
1798 vm_map_unlock(map); /* trust me ... */
1799 } else {
1800 vm_map_lock_downgrade(map);
1801 }
1802
1803 rv = 0;
1804 entry = start_entry;
1805 while (entry != &map->header && entry->start < end) {
1806 /*
1807 * If vm_fault_wire fails for any page we need to undo
1808 * what has been done. We decrement the wiring count
1809 * for those pages which have not yet been wired (now)
1810 * and unwire those that have (later).
1811 *
1812 * XXX this violates the locking protocol on the map,
1813 * needs to be fixed.
1814 */
1815 if (rv)
1816 entry->wired_count--;
1817 else if (entry->wired_count == 1) {
1818 rv = vm_fault_wire(map, entry->start, entry->end);
1819 if (rv) {
1820 failed = entry->start;
1821 entry->wired_count--;
1822 }
1823 }
1824 entry = entry->next;
1825 }
1826
1827 if (vm_map_pmap(map) == kernel_pmap) {
1828 vm_map_lock(map);
1829 }
1830 if (rv) {
1831 vm_map_unlock(map);
1832 (void) vm_map_pageable(map, start, failed, TRUE);
1833 return (rv);
1834 }
1835 /*
1836 * An exclusive lock on the map is needed in order to call
1837 * vm_map_simplify_entry(). If the current lock on the map
1838 * is only a shared lock, an upgrade is needed.
1839 */
1840 if (vm_map_pmap(map) != kernel_pmap &&
1841 vm_map_lock_upgrade(map)) {
1842 vm_map_lock(map);
1843 if (vm_map_lookup_entry(map, start, &start_entry) ==
1844 FALSE) {
1845 vm_map_unlock(map);
1846 return KERN_SUCCESS;
1847 }
1848 }
1849 vm_map_simplify_entry(map, start_entry);
1850 }
1851
1852 vm_map_unlock(map);
1853
1854 return (KERN_SUCCESS);
1855}
1856
1857/*
1858 * vm_map_clean
1859 *
1860 * Push any dirty cached pages in the address range to their pager.
1861 * If syncio is TRUE, dirty pages are written synchronously.
1862 * If invalidate is TRUE, any cached pages are freed as well.
1863 *
1864 * Returns an error if any part of the specified range is not mapped.
1865 */
1866int
1867vm_map_clean(
1868 vm_map_t map,
1869 vm_offset_t start,
1870 vm_offset_t end,
1871 boolean_t syncio,
1872 boolean_t invalidate)
1873{
1874 vm_map_entry_t current;
1875 vm_map_entry_t entry;
1876 vm_size_t size;
1877 vm_object_t object;
1878 vm_ooffset_t offset;
1879
1880 GIANT_REQUIRED;
1881
1882 vm_map_lock_read(map);
1883 VM_MAP_RANGE_CHECK(map, start, end);
1884 if (!vm_map_lookup_entry(map, start, &entry)) {
1885 vm_map_unlock_read(map);
1886 return (KERN_INVALID_ADDRESS);
1887 }
1888 /*
1889 * Make a first pass to check for holes.
1890 */
1891 for (current = entry; current->start < end; current = current->next) {
1892 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1893 vm_map_unlock_read(map);
1894 return (KERN_INVALID_ARGUMENT);
1895 }
1896 if (end > current->end &&
1897 (current->next == &map->header ||
1898 current->end != current->next->start)) {
1899 vm_map_unlock_read(map);
1900 return (KERN_INVALID_ADDRESS);
1901 }
1902 }
1903
1904 if (invalidate)
1905 pmap_remove(vm_map_pmap(map), start, end);
1906 /*
1907 * Make a second pass, cleaning/uncaching pages from the indicated
1908 * objects as we go.
1909 */
1910 for (current = entry; current->start < end; current = current->next) {
1911 offset = current->offset + (start - current->start);
1912 size = (end <= current->end ? end : current->end) - start;
1913 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1914 vm_map_t smap;
1915 vm_map_entry_t tentry;
1916 vm_size_t tsize;
1917
1918 smap = current->object.sub_map;
1919 vm_map_lock_read(smap);
1920 (void) vm_map_lookup_entry(smap, offset, &tentry);
1921 tsize = tentry->end - offset;
1922 if (tsize < size)
1923 size = tsize;
1924 object = tentry->object.vm_object;
1925 offset = tentry->offset + (offset - tentry->start);
1926 vm_map_unlock_read(smap);
1927 } else {
1928 object = current->object.vm_object;
1929 }
1930 /*
1931 * Note that there is absolutely no sense in writing out
1932 * anonymous objects, so we track down the vnode object
1933 * to write out.
1934 * We invalidate (remove) all pages from the address space
1935 * anyway, for semantic correctness.
1936 *
1937 * note: certain anonymous maps, such as MAP_NOSYNC maps,
1938 * may start out with a NULL object.
1939 */
1940 while (object && object->backing_object) {
1941 object = object->backing_object;
1942 offset += object->backing_object_offset;
1943 if (object->size < OFF_TO_IDX(offset + size))
1944 size = IDX_TO_OFF(object->size) - offset;
1945 }
1946 if (object && (object->type == OBJT_VNODE) &&
1947 (current->protection & VM_PROT_WRITE)) {
1948 /*
1949 * Flush pages if writing is allowed, invalidate them
1950 * if invalidation requested. Pages undergoing I/O
1951 * will be ignored by vm_object_page_remove().
1952 *
1953 * We cannot lock the vnode and then wait for paging
1954 * to complete without deadlocking against vm_fault.
1955 * Instead we simply call vm_object_page_remove() and
1956 * allow it to block internally on a page-by-page
1957 * basis when it encounters pages undergoing async
1958 * I/O.
1959 */
1960 int flags;
1961
1962 vm_object_reference(object);
1963 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
1964 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1965 flags |= invalidate ? OBJPC_INVAL : 0;
1966 vm_object_page_clean(object,
1967 OFF_TO_IDX(offset),
1968 OFF_TO_IDX(offset + size + PAGE_MASK),
1969 flags);
1970 if (invalidate) {
1971 /*vm_object_pip_wait(object, "objmcl");*/
1972 vm_object_page_remove(object,
1973 OFF_TO_IDX(offset),
1974 OFF_TO_IDX(offset + size + PAGE_MASK),
1975 FALSE);
1976 }
1977 VOP_UNLOCK(object->handle, 0, curthread);
1978 vm_object_deallocate(object);
1979 }
1980 start += size;
1981 }
1982
1983 vm_map_unlock_read(map);
1984 return (KERN_SUCCESS);
1985}
1986
1987/*
1988 * vm_map_entry_unwire: [ internal use only ]
1989 *
1990 * Make the region specified by this entry pageable.
1991 *
1992 * The map in question should be locked.
1993 * [This is the reason for this routine's existence.]
1994 */
1995static void
1996vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
1997{
1998 vm_fault_unwire(map, entry->start, entry->end);
1999 entry->wired_count = 0;
2000}
2001
2002/*
2003 * vm_map_entry_delete: [ internal use only ]
2004 *
2005 * Deallocate the given entry from the target map.
2006 */
2007static void
2008vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2009{
2010 vm_map_entry_unlink(map, entry);
2011 map->size -= entry->end - entry->start;
2012
2013 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2014 vm_object_deallocate(entry->object.vm_object);
2015 }
2016
2017 vm_map_entry_dispose(map, entry);
2018}
2019
2020/*
2021 * vm_map_delete: [ internal use only ]
2022 *
2023 * Deallocates the given address range from the target
2024 * map.
2025 */
2026int
2027vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2028{
2029 vm_object_t object;
2030 vm_map_entry_t entry;
2031 vm_map_entry_t first_entry;
2032
2033 GIANT_REQUIRED;
2034
2035 /*
2036 * Find the start of the region, and clip it
2037 */
2038 if (!vm_map_lookup_entry(map, start, &first_entry))
2039 entry = first_entry->next;
2040 else {
2041 entry = first_entry;
2042 vm_map_clip_start(map, entry, start);
2043 /*
2044 * Fix the lookup hint now, rather than each time though the
2045 * loop.
2046 */
2047 SAVE_HINT(map, entry->prev);
2048 }
2049
2050 /*
2051 * Save the free space hint
2052 */
2053 if (entry == &map->header) {
2054 map->first_free = &map->header;
2055 } else if (map->first_free->start >= start) {
2056 map->first_free = entry->prev;
2057 }
2058
2059 /*
2060 * Step through all entries in this region
2061 */
2062 while ((entry != &map->header) && (entry->start < end)) {
2063 vm_map_entry_t next;
2064 vm_offset_t s, e;
2065 vm_pindex_t offidxstart, offidxend, count;
2066
2067 vm_map_clip_end(map, entry, end);
2068
2069 s = entry->start;
2070 e = entry->end;
2071 next = entry->next;
2072
2073 offidxstart = OFF_TO_IDX(entry->offset);
2074 count = OFF_TO_IDX(e - s);
2075 object = entry->object.vm_object;
2076
2077 /*
2078 * Unwire before removing addresses from the pmap; otherwise,
2079 * unwiring will put the entries back in the pmap.
2080 */
2081 if (entry->wired_count != 0) {
2082 vm_map_entry_unwire(map, entry);
2083 }
2084
2085 offidxend = offidxstart + count;
2086
2087 if ((object == kernel_object) || (object == kmem_object)) {
2088 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2089 } else {
2090 pmap_remove(map->pmap, s, e);
2091 if (object != NULL &&
2092 object->ref_count != 1 &&
2093 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2094 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2095 vm_object_collapse(object);
2096 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2097 if (object->type == OBJT_SWAP) {
2098 swap_pager_freespace(object, offidxstart, count);
2099 }
2100 if (offidxend >= object->size &&
2101 offidxstart < object->size) {
2102 object->size = offidxstart;
2103 }
2104 }
2105 }
2106
2107 /*
2108 * Delete the entry (which may delete the object) only after
2109 * removing all pmap entries pointing to its pages.
2110 * (Otherwise, its page frames may be reallocated, and any
2111 * modify bits will be set in the wrong object!)
2112 */
2113 vm_map_entry_delete(map, entry);
2114 entry = next;
2115 }
2116 return (KERN_SUCCESS);
2117}
2118
2119/*
2120 * vm_map_remove:
2121 *
2122 * Remove the given address range from the target map.
2123 * This is the exported form of vm_map_delete.
2124 */
2125int
2126vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2127{
2128 int result, s = 0;
2129
2130 GIANT_REQUIRED;
2131
2132 if (map == kmem_map)
2133 s = splvm();
2134
2135 vm_map_lock(map);
2136 VM_MAP_RANGE_CHECK(map, start, end);
2137 result = vm_map_delete(map, start, end);
2138 vm_map_unlock(map);
2139
2140 if (map == kmem_map)
2141 splx(s);
2142
2143 return (result);
2144}
2145
2146/*
2147 * vm_map_check_protection:
2148 *
2149 * Assert that the target map allows the specified
2150 * privilege on the entire address region given.
2151 * The entire region must be allocated.
2152 */
2153boolean_t
2154vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2155 vm_prot_t protection)
2156{
2157 vm_map_entry_t entry;
2158 vm_map_entry_t tmp_entry;
2159
2160 GIANT_REQUIRED;
2161
2162 vm_map_lock_read(map);
2163 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2164 vm_map_unlock_read(map);
2165 return (FALSE);
2166 }
2167 entry = tmp_entry;
2168
2169 while (start < end) {
2170 if (entry == &map->header) {
2171 vm_map_unlock_read(map);
2172 return (FALSE);
2173 }
2174 /*
2175 * No holes allowed!
2176 */
2177 if (start < entry->start) {
2178 vm_map_unlock_read(map);
2179 return (FALSE);
2180 }
2181 /*
2182 * Check protection associated with entry.
2183 */
2184 if ((entry->protection & protection) != protection) {
2185 vm_map_unlock_read(map);
2186 return (FALSE);
2187 }
2188 /* go to next entry */
2189 start = entry->end;
2190 entry = entry->next;
2191 }
2192 vm_map_unlock_read(map);
2193 return (TRUE);
2194}
2195
2196/*
2197 * Split the pages in a map entry into a new object. This affords
2198 * easier removal of unused pages, and keeps object inheritance from
2199 * being a negative impact on memory usage.
2200 */
2201static void
2202vm_map_split(vm_map_entry_t entry)
2203{
2204 vm_page_t m;
2205 vm_object_t orig_object, new_object, source;
2206 vm_offset_t s, e;
2207 vm_pindex_t offidxstart, offidxend, idx;
2208 vm_size_t size;
2209 vm_ooffset_t offset;
2210
2211 GIANT_REQUIRED;
2212
2213 orig_object = entry->object.vm_object;
2214 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2215 return;
2216 if (orig_object->ref_count <= 1)
2217 return;
2218
2219 offset = entry->offset;
2220 s = entry->start;
2221 e = entry->end;
2222
2223 offidxstart = OFF_TO_IDX(offset);
2224 offidxend = offidxstart + OFF_TO_IDX(e - s);
2225 size = offidxend - offidxstart;
2226
2227 new_object = vm_pager_allocate(orig_object->type,
2228 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2229 if (new_object == NULL)
2230 return;
2231
2232 source = orig_object->backing_object;
2233 if (source != NULL) {
2234 vm_object_reference(source); /* Referenced by new_object */
2235 TAILQ_INSERT_TAIL(&source->shadow_head,
2236 new_object, shadow_list);
2237 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2238 new_object->backing_object_offset =
2239 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2240 new_object->backing_object = source;
2241 source->shadow_count++;
2242 source->generation++;
2243 }
2244
2245 for (idx = 0; idx < size; idx++) {
2246 vm_page_t m;
2247
2248 retry:
2249 m = vm_page_lookup(orig_object, offidxstart + idx);
2250 if (m == NULL)
2251 continue;
2252
2253 /*
2254 * We must wait for pending I/O to complete before we can
2255 * rename the page.
2256 *
2257 * We do not have to VM_PROT_NONE the page as mappings should
2258 * not be changed by this operation.
2259 */
2260 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2261 goto retry;
2262
2263 vm_page_busy(m);
2264 vm_page_rename(m, new_object, idx);
2265 /* page automatically made dirty by rename and cache handled */
2266 vm_page_busy(m);
2267 }
2268
2269 if (orig_object->type == OBJT_SWAP) {
2270 vm_object_pip_add(orig_object, 1);
2271 /*
2272 * copy orig_object pages into new_object
2273 * and destroy unneeded pages in
2274 * shadow object.
2275 */
2276 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2277 vm_object_pip_wakeup(orig_object);
2278 }
2279
2280 for (idx = 0; idx < size; idx++) {
2281 m = vm_page_lookup(new_object, idx);
2282 if (m) {
2283 vm_page_wakeup(m);
2284 }
2285 }
2286
2287 entry->object.vm_object = new_object;
2288 entry->offset = 0LL;
2289 vm_object_deallocate(orig_object);
2290}
2291
2292/*
2293 * vm_map_copy_entry:
2294 *
2295 * Copies the contents of the source entry to the destination
2296 * entry. The entries *must* be aligned properly.
2297 */
2298static void
2299vm_map_copy_entry(
2300 vm_map_t src_map,
2301 vm_map_t dst_map,
2302 vm_map_entry_t src_entry,
2303 vm_map_entry_t dst_entry)
2304{
2305 vm_object_t src_object;
2306
2307 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2308 return;
2309
2310 if (src_entry->wired_count == 0) {
2311
2312 /*
2313 * If the source entry is marked needs_copy, it is already
2314 * write-protected.
2315 */
2316 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2317 pmap_protect(src_map->pmap,
2318 src_entry->start,
2319 src_entry->end,
2320 src_entry->protection & ~VM_PROT_WRITE);
2321 }
2322
2323 /*
2324 * Make a copy of the object.
2325 */
2326 if ((src_object = src_entry->object.vm_object) != NULL) {
2327
2328 if ((src_object->handle == NULL) &&
2329 (src_object->type == OBJT_DEFAULT ||
2330 src_object->type == OBJT_SWAP)) {
2331 vm_object_collapse(src_object);
2332 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2333 vm_map_split(src_entry);
2334 src_object = src_entry->object.vm_object;
2335 }
2336 }
2337
2338 vm_object_reference(src_object);
2339 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2340 dst_entry->object.vm_object = src_object;
2341 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2342 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2343 dst_entry->offset = src_entry->offset;
2344 } else {
2345 dst_entry->object.vm_object = NULL;
2346 dst_entry->offset = 0;
2347 }
2348
2349 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2350 dst_entry->end - dst_entry->start, src_entry->start);
2351 } else {
2352 /*
2353 * Of course, wired down pages can't be set copy-on-write.
2354 * Cause wired pages to be copied into the new map by
2355 * simulating faults (the new pages are pageable)
2356 */
2357 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2358 }
2359}
2360
2361/*
2362 * vmspace_fork:
2363 * Create a new process vmspace structure and vm_map
2364 * based on those of an existing process. The new map
2365 * is based on the old map, according to the inheritance
2366 * values on the regions in that map.
2367 *
2368 * The source map must not be locked.
2369 */
2370struct vmspace *
2371vmspace_fork(struct vmspace *vm1)
2372{
2373 struct vmspace *vm2;
2374 vm_map_t old_map = &vm1->vm_map;
2375 vm_map_t new_map;
2376 vm_map_entry_t old_entry;
2377 vm_map_entry_t new_entry;
2378 vm_object_t object;
2379
2380 GIANT_REQUIRED;
2381
2382 vm_map_lock(old_map);
2383 old_map->infork = 1;
2384
2385 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2386 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2387 (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy);
2388 new_map = &vm2->vm_map; /* XXX */
2389 new_map->timestamp = 1;
2390
2391 old_entry = old_map->header.next;
2392
2393 while (old_entry != &old_map->header) {
2394 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2395 panic("vm_map_fork: encountered a submap");
2396
2397 switch (old_entry->inheritance) {
2398 case VM_INHERIT_NONE:
2399 break;
2400
2401 case VM_INHERIT_SHARE:
2402 /*
2403 * Clone the entry, creating the shared object if necessary.
2404 */
2405 object = old_entry->object.vm_object;
2406 if (object == NULL) {
2407 object = vm_object_allocate(OBJT_DEFAULT,
2408 atop(old_entry->end - old_entry->start));
2409 old_entry->object.vm_object = object;
2410 old_entry->offset = (vm_offset_t) 0;
2411 }
2412
2413 /*
2414 * Add the reference before calling vm_object_shadow
2415 * to insure that a shadow object is created.
2416 */
2417 vm_object_reference(object);
2418 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2419 vm_object_shadow(&old_entry->object.vm_object,
2420 &old_entry->offset,
2421 atop(old_entry->end - old_entry->start));
2422 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2423 /* Transfer the second reference too. */
2424 vm_object_reference(
2425 old_entry->object.vm_object);
2426 vm_object_deallocate(object);
2427 object = old_entry->object.vm_object;
2428 }
2429 vm_object_clear_flag(object, OBJ_ONEMAPPING);
2430
2431 /*
2432 * Clone the entry, referencing the shared object.
2433 */
2434 new_entry = vm_map_entry_create(new_map);
2435 *new_entry = *old_entry;
2436 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2437 new_entry->wired_count = 0;
2438
2439 /*
2440 * Insert the entry into the new map -- we know we're
2441 * inserting at the end of the new map.
2442 */
2443 vm_map_entry_link(new_map, new_map->header.prev,
2444 new_entry);
2445
2446 /*
2447 * Update the physical map
2448 */
2449 pmap_copy(new_map->pmap, old_map->pmap,
2450 new_entry->start,
2451 (old_entry->end - old_entry->start),
2452 old_entry->start);
2453 break;
2454
2455 case VM_INHERIT_COPY:
2456 /*
2457 * Clone the entry and link into the map.
2458 */
2459 new_entry = vm_map_entry_create(new_map);
2460 *new_entry = *old_entry;
2461 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2462 new_entry->wired_count = 0;
2463 new_entry->object.vm_object = NULL;
2464 vm_map_entry_link(new_map, new_map->header.prev,
2465 new_entry);
2466 vm_map_copy_entry(old_map, new_map, old_entry,
2467 new_entry);
2468 break;
2469 }
2470 old_entry = old_entry->next;
2471 }
2472
2473 new_map->size = old_map->size;
2474 old_map->infork = 0;
2475 vm_map_unlock(old_map);
2476
2477 return (vm2);
2478}
2479
2480int
2481vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2482 vm_prot_t prot, vm_prot_t max, int cow)
2483{
2484 vm_map_entry_t prev_entry;
2485 vm_map_entry_t new_stack_entry;
2486 vm_size_t init_ssize;
2487 int rv;
2488
2489 GIANT_REQUIRED;
2490
2491 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2492 return (KERN_NO_SPACE);
2493
2494 if (max_ssize < sgrowsiz)
2495 init_ssize = max_ssize;
2496 else
2497 init_ssize = sgrowsiz;
2498
2499 vm_map_lock(map);
2500
2501 /* If addr is already mapped, no go */
2502 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2503 vm_map_unlock(map);
2504 return (KERN_NO_SPACE);
2505 }
2506
2507 /* If we can't accomodate max_ssize in the current mapping,
2508 * no go. However, we need to be aware that subsequent user
2509 * mappings might map into the space we have reserved for
2510 * stack, and currently this space is not protected.
2511 *
2512 * Hopefully we will at least detect this condition
2513 * when we try to grow the stack.
2514 */
2515 if ((prev_entry->next != &map->header) &&
2516 (prev_entry->next->start < addrbos + max_ssize)) {
2517 vm_map_unlock(map);
2518 return (KERN_NO_SPACE);
2519 }
2520
2521 /* We initially map a stack of only init_ssize. We will
2522 * grow as needed later. Since this is to be a grow
2523 * down stack, we map at the top of the range.
2524 *
2525 * Note: we would normally expect prot and max to be
2526 * VM_PROT_ALL, and cow to be 0. Possibly we should
2527 * eliminate these as input parameters, and just
2528 * pass these values here in the insert call.
2529 */
2530 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2531 addrbos + max_ssize, prot, max, cow);
2532
2533 /* Now set the avail_ssize amount */
2534 if (rv == KERN_SUCCESS){
2535 if (prev_entry != &map->header)
2536 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2537 new_stack_entry = prev_entry->next;
2538 if (new_stack_entry->end != addrbos + max_ssize ||
2539 new_stack_entry->start != addrbos + max_ssize - init_ssize)
2540 panic ("Bad entry start/end for new stack entry");
2541 else
2542 new_stack_entry->avail_ssize = max_ssize - init_ssize;
2543 }
2544
2545 vm_map_unlock(map);
2546 return (rv);
2547}
2548
2549/* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
2550 * desired address is already mapped, or if we successfully grow
2551 * the stack. Also returns KERN_SUCCESS if addr is outside the
2552 * stack range (this is strange, but preserves compatibility with
2553 * the grow function in vm_machdep.c).
2554 */
2555int
2556vm_map_growstack (struct proc *p, vm_offset_t addr)
2557{
2558 vm_map_entry_t prev_entry;
2559 vm_map_entry_t stack_entry;
2560 vm_map_entry_t new_stack_entry;
2561 struct vmspace *vm = p->p_vmspace;
2562 vm_map_t map = &vm->vm_map;
2563 vm_offset_t end;
2564 int grow_amount;
2565 int rv;
2566 int is_procstack;
2567
2568 GIANT_REQUIRED;
2569
2570Retry:
2571 vm_map_lock_read(map);
2572
2573 /* If addr is already in the entry range, no need to grow.*/
2574 if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2575 vm_map_unlock_read(map);
2576 return (KERN_SUCCESS);
2577 }
2578
2579 if ((stack_entry = prev_entry->next) == &map->header) {
2580 vm_map_unlock_read(map);
2581 return (KERN_SUCCESS);
2582 }
2583 if (prev_entry == &map->header)
2584 end = stack_entry->start - stack_entry->avail_ssize;
2585 else
2586 end = prev_entry->end;
2587
2588 /* This next test mimics the old grow function in vm_machdep.c.
2589 * It really doesn't quite make sense, but we do it anyway
2590 * for compatibility.
2591 *
2592 * If not growable stack, return success. This signals the
2593 * caller to proceed as he would normally with normal vm.
2594 */
2595 if (stack_entry->avail_ssize < 1 ||
2596 addr >= stack_entry->start ||
2597 addr < stack_entry->start - stack_entry->avail_ssize) {
2598 vm_map_unlock_read(map);
2599 return (KERN_SUCCESS);
2600 }
2601
2602 /* Find the minimum grow amount */
2603 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2604 if (grow_amount > stack_entry->avail_ssize) {
2605 vm_map_unlock_read(map);
2606 return (KERN_NO_SPACE);
2607 }
2608
2609 /* If there is no longer enough space between the entries
2610 * nogo, and adjust the available space. Note: this
2611 * should only happen if the user has mapped into the
2612 * stack area after the stack was created, and is
2613 * probably an error.
2614 *
2615 * This also effectively destroys any guard page the user
2616 * might have intended by limiting the stack size.
2617 */
2618 if (grow_amount > stack_entry->start - end) {
2619 if (vm_map_lock_upgrade(map))
2620 goto Retry;
2621
2622 stack_entry->avail_ssize = stack_entry->start - end;
2623
2624 vm_map_unlock(map);
2625 return (KERN_NO_SPACE);
2626 }
2627
2628 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2629
2630 /* If this is the main process stack, see if we're over the
2631 * stack limit.
2632 */
2633 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2634 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2635 vm_map_unlock_read(map);
2636 return (KERN_NO_SPACE);
2637 }
2638
2639 /* Round up the grow amount modulo SGROWSIZ */
2640 grow_amount = roundup (grow_amount, sgrowsiz);
2641 if (grow_amount > stack_entry->avail_ssize) {
2642 grow_amount = stack_entry->avail_ssize;
2643 }
2644 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2645 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2646 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2647 ctob(vm->vm_ssize);
2648 }
2649
2650 if (vm_map_lock_upgrade(map))
2651 goto Retry;
2652
2653 /* Get the preliminary new entry start value */
2654 addr = stack_entry->start - grow_amount;
2655
2656 /* If this puts us into the previous entry, cut back our growth
2657 * to the available space. Also, see the note above.
2658 */
2659 if (addr < end) {
2660 stack_entry->avail_ssize = stack_entry->start - end;
2661 addr = end;
2662 }
2663
2664 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2665 VM_PROT_ALL,
2666 VM_PROT_ALL,
2667 0);
2668
2669 /* Adjust the available stack space by the amount we grew. */
2670 if (rv == KERN_SUCCESS) {
2671 if (prev_entry != &map->header)
2672 vm_map_clip_end(map, prev_entry, addr);
2673 new_stack_entry = prev_entry->next;
2674 if (new_stack_entry->end != stack_entry->start ||
2675 new_stack_entry->start != addr)
2676 panic ("Bad stack grow start/end in new stack entry");
2677 else {
2678 new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2679 (new_stack_entry->end -
2680 new_stack_entry->start);
2681 if (is_procstack)
2682 vm->vm_ssize += btoc(new_stack_entry->end -
2683 new_stack_entry->start);
2684 }
2685 }
2686
2687 vm_map_unlock(map);
2688 return (rv);
2689}
2690
2691/*
2692 * Unshare the specified VM space for exec. If other processes are
2693 * mapped to it, then create a new one. The new vmspace is null.
2694 */
2695void
2696vmspace_exec(struct proc *p)
2697{
2698 struct vmspace *oldvmspace = p->p_vmspace;
2699 struct vmspace *newvmspace;
2700 vm_map_t map = &p->p_vmspace->vm_map;
2701
2702 GIANT_REQUIRED;
2703 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2704 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2705 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2706 /*
2707 * This code is written like this for prototype purposes. The
2708 * goal is to avoid running down the vmspace here, but let the
2709 * other process's that are still using the vmspace to finally
2710 * run it down. Even though there is little or no chance of blocking
2711 * here, it is a good idea to keep this form for future mods.
2712 */
2713 p->p_vmspace = newvmspace;
2714 pmap_pinit2(vmspace_pmap(newvmspace));
2715 vmspace_free(oldvmspace);
2716 if (p == curthread->td_proc) /* XXXKSE ? */
2717 pmap_activate(curthread);
2718}
2719
2720/*
2721 * Unshare the specified VM space for forcing COW. This
2722 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2723 */
2724void
2725vmspace_unshare(struct proc *p)
2726{
2727 struct vmspace *oldvmspace = p->p_vmspace;
2728 struct vmspace *newvmspace;
2729
2730 GIANT_REQUIRED;
2731 if (oldvmspace->vm_refcnt == 1)
2732 return;
2733 newvmspace = vmspace_fork(oldvmspace);
2734 p->p_vmspace = newvmspace;
2735 pmap_pinit2(vmspace_pmap(newvmspace));
2736 vmspace_free(oldvmspace);
2737 if (p == curthread->td_proc) /* XXXKSE ? */
2738 pmap_activate(curthread);
2739}
2740
2741/*
2742 * vm_map_lookup:
2743 *
2744 * Finds the VM object, offset, and
2745 * protection for a given virtual address in the
2746 * specified map, assuming a page fault of the
2747 * type specified.
2748 *
2749 * Leaves the map in question locked for read; return
2750 * values are guaranteed until a vm_map_lookup_done
2751 * call is performed. Note that the map argument
2752 * is in/out; the returned map must be used in
2753 * the call to vm_map_lookup_done.
2754 *
2755 * A handle (out_entry) is returned for use in
2756 * vm_map_lookup_done, to make that fast.
2757 *
2758 * If a lookup is requested with "write protection"
2759 * specified, the map may be changed to perform virtual
2760 * copying operations, although the data referenced will
2761 * remain the same.
2762 */
2763int
2764vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
2765 vm_offset_t vaddr,
2766 vm_prot_t fault_typea,
2767 vm_map_entry_t *out_entry, /* OUT */
2768 vm_object_t *object, /* OUT */
2769 vm_pindex_t *pindex, /* OUT */
2770 vm_prot_t *out_prot, /* OUT */
2771 boolean_t *wired) /* OUT */
2772{
2773 vm_map_entry_t entry;
2774 vm_map_t map = *var_map;
2775 vm_prot_t prot;
2776 vm_prot_t fault_type = fault_typea;
2777
2778 GIANT_REQUIRED;
2779RetryLookup:;
2780 /*
2781 * Lookup the faulting address.
2782 */
2783
2784 vm_map_lock_read(map);
2785#define RETURN(why) \
2786 { \
2787 vm_map_unlock_read(map); \
2788 return (why); \
2789 }
2790
2791 /*
2792 * If the map has an interesting hint, try it before calling full
2793 * blown lookup routine.
2794 */
2795 entry = map->hint;
2796 *out_entry = entry;
2797 if ((entry == &map->header) ||
2798 (vaddr < entry->start) || (vaddr >= entry->end)) {
2799 vm_map_entry_t tmp_entry;
2800
2801 /*
2802 * Entry was either not a valid hint, or the vaddr was not
2803 * contained in the entry, so do a full lookup.
2804 */
2805 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry))
2806 RETURN(KERN_INVALID_ADDRESS);
2807
2808 entry = tmp_entry;
2809 *out_entry = entry;
2810 }
2811
2812 /*
2813 * Handle submaps.
2814 */
2815 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2816 vm_map_t old_map = map;
2817
2818 *var_map = map = entry->object.sub_map;
2819 vm_map_unlock_read(old_map);
2820 goto RetryLookup;
2821 }
2822
2823 /*
2824 * Check whether this task is allowed to have this page.
2825 * Note the special case for MAP_ENTRY_COW
2826 * pages with an override. This is to implement a forced
2827 * COW for debuggers.
2828 */
2829 if (fault_type & VM_PROT_OVERRIDE_WRITE)
2830 prot = entry->max_protection;
2831 else
2832 prot = entry->protection;
2833 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2834 if ((fault_type & prot) != fault_type) {
2835 RETURN(KERN_PROTECTION_FAILURE);
2836 }
2837 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2838 (entry->eflags & MAP_ENTRY_COW) &&
2839 (fault_type & VM_PROT_WRITE) &&
2840 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2841 RETURN(KERN_PROTECTION_FAILURE);
2842 }
2843
2844 /*
2845 * If this page is not pageable, we have to get it for all possible
2846 * accesses.
2847 */
2848 *wired = (entry->wired_count != 0);
2849 if (*wired)
2850 prot = fault_type = entry->protection;
2851
2852 /*
2853 * If the entry was copy-on-write, we either ...
2854 */
2855 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2856 /*
2857 * If we want to write the page, we may as well handle that
2858 * now since we've got the map locked.
2859 *
2860 * If we don't need to write the page, we just demote the
2861 * permissions allowed.
2862 */
2863 if (fault_type & VM_PROT_WRITE) {
2864 /*
2865 * Make a new object, and place it in the object
2866 * chain. Note that no new references have appeared
2867 * -- one just moved from the map to the new
2868 * object.
2869 */
2870 if (vm_map_lock_upgrade(map))
2871 goto RetryLookup;
2872 vm_object_shadow(
2873 &entry->object.vm_object,
2874 &entry->offset,
2875 atop(entry->end - entry->start));
2876 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2877 vm_map_lock_downgrade(map);
2878 } else {
2879 /*
2880 * We're attempting to read a copy-on-write page --
2881 * don't allow writes.
2882 */
2883 prot &= ~VM_PROT_WRITE;
2884 }
2885 }
2886
2887 /*
2888 * Create an object if necessary.
2889 */
2890 if (entry->object.vm_object == NULL &&
2891 !map->system_map) {
2892 if (vm_map_lock_upgrade(map))
2893 goto RetryLookup;
2894 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2895 atop(entry->end - entry->start));
2896 entry->offset = 0;
2897 vm_map_lock_downgrade(map);
2898 }
2899
2900 /*
2901 * Return the object/offset from this entry. If the entry was
2902 * copy-on-write or empty, it has been fixed up.
2903 */
2904 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2905 *object = entry->object.vm_object;
2906
2907 /*
2908 * Return whether this is the only map sharing this data.
2909 */
2910 *out_prot = prot;
2911 return (KERN_SUCCESS);
2912
2913#undef RETURN
2914}
2915
2916/*
2917 * vm_map_lookup_done:
2918 *
2919 * Releases locks acquired by a vm_map_lookup
2920 * (according to the handle returned by that lookup).
2921 */
2922void
2923vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
2924{
2925 /*
2926 * Unlock the main-level map
2927 */
2928 GIANT_REQUIRED;
2929 vm_map_unlock_read(map);
2930}
2931
2932/*
2933 * Implement uiomove with VM operations. This handles (and collateral changes)
2934 * support every combination of source object modification, and COW type
2935 * operations.
2936 */
2937int
2938vm_uiomove(
2939 vm_map_t mapa,
2940 vm_object_t srcobject,
2941 off_t cp,
2942 int cnta,
2943 vm_offset_t uaddra,
2944 int *npages)
2945{
2946 vm_map_t map;
2947 vm_object_t first_object, oldobject, object;
2948 vm_map_entry_t entry;
2949 vm_prot_t prot;
2950 boolean_t wired;
2951 int tcnt, rv;
2952 vm_offset_t uaddr, start, end, tend;
2953 vm_pindex_t first_pindex, osize, oindex;
2954 off_t ooffset;
2955 int cnt;
2956
2957 GIANT_REQUIRED;
2958
2959 if (npages)
2960 *npages = 0;
2961
2962 cnt = cnta;
2963 uaddr = uaddra;
2964
2965 while (cnt > 0) {
2966 map = mapa;
2967
2968 if ((vm_map_lookup(&map, uaddr,
2969 VM_PROT_READ, &entry, &first_object,
2970 &first_pindex, &prot, &wired)) != KERN_SUCCESS) {
2971 return EFAULT;
2972 }
2973
2974 vm_map_clip_start(map, entry, uaddr);
2975
2976 tcnt = cnt;
2977 tend = uaddr + tcnt;
2978 if (tend > entry->end) {
2979 tcnt = entry->end - uaddr;
2980 tend = entry->end;
2981 }
2982
2983 vm_map_clip_end(map, entry, tend);
2984
2985 start = entry->start;
2986 end = entry->end;
2987
2988 osize = atop(tcnt);
2989
2990 oindex = OFF_TO_IDX(cp);
2991 if (npages) {
2992 vm_pindex_t idx;
2993 for (idx = 0; idx < osize; idx++) {
2994 vm_page_t m;
2995 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2996 vm_map_lookup_done(map, entry);
2997 return 0;
2998 }
2999 /*
3000 * disallow busy or invalid pages, but allow
3001 * m->busy pages if they are entirely valid.
3002 */
3003 if ((m->flags & PG_BUSY) ||
3004 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3005 vm_map_lookup_done(map, entry);
3006 return 0;
3007 }
3008 }
3009 }
3010
3011/*
3012 * If we are changing an existing map entry, just redirect
3013 * the object, and change mappings.
3014 */
3015 if ((first_object->type == OBJT_VNODE) &&
3016 ((oldobject = entry->object.vm_object) == first_object)) {
3017
3018 if ((entry->offset != cp) || (oldobject != srcobject)) {
3019 /*
3020 * Remove old window into the file
3021 */
3022 pmap_remove (map->pmap, uaddr, tend);
3023
3024 /*
3025 * Force copy on write for mmaped regions
3026 */
3027 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3028
3029 /*
3030 * Point the object appropriately
3031 */
3032 if (oldobject != srcobject) {
3033
3034 /*
3035 * Set the object optimization hint flag
3036 */
3037 vm_object_set_flag(srcobject, OBJ_OPT);
3038 vm_object_reference(srcobject);
3039 entry->object.vm_object = srcobject;
3040
3041 if (oldobject) {
3042 vm_object_deallocate(oldobject);
3043 }
3044 }
3045
3046 entry->offset = cp;
3047 map->timestamp++;
3048 } else {
3049 pmap_remove (map->pmap, uaddr, tend);
3050 }
3051
3052 } else if ((first_object->ref_count == 1) &&
3053 (first_object->size == osize) &&
3054 ((first_object->type == OBJT_DEFAULT) ||
3055 (first_object->type == OBJT_SWAP)) ) {
3056
3057 oldobject = first_object->backing_object;
3058
3059 if ((first_object->backing_object_offset != cp) ||
3060 (oldobject != srcobject)) {
3061 /*
3062 * Remove old window into the file
3063 */
3064 pmap_remove (map->pmap, uaddr, tend);
3065
3066 /*
3067 * Remove unneeded old pages
3068 */
3069 vm_object_page_remove(first_object, 0, 0, 0);
3070
3071 /*
3072 * Invalidate swap space
3073 */
3074 if (first_object->type == OBJT_SWAP) {
3075 swap_pager_freespace(first_object,
3076 0,
3077 first_object->size);
3078 }
3079
3080 /*
3081 * Force copy on write for mmaped regions
3082 */
3083 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3084
3085 /*
3086 * Point the object appropriately
3087 */
3088 if (oldobject != srcobject) {
3089 /*
3090 * Set the object optimization hint flag
3091 */
3092 vm_object_set_flag(srcobject, OBJ_OPT);
3093 vm_object_reference(srcobject);
3094
3095 if (oldobject) {
3096 TAILQ_REMOVE(&oldobject->shadow_head,
3097 first_object, shadow_list);
3098 oldobject->shadow_count--;
3099 /* XXX bump generation? */
3100 vm_object_deallocate(oldobject);
3101 }
3102
3103 TAILQ_INSERT_TAIL(&srcobject->shadow_head,
3104 first_object, shadow_list);
3105 srcobject->shadow_count++;
3106 /* XXX bump generation? */
3107
3108 first_object->backing_object = srcobject;
3109 }
3110 first_object->backing_object_offset = cp;
3111 map->timestamp++;
3112 } else {
3113 pmap_remove (map->pmap, uaddr, tend);
3114 }
3115/*
3116 * Otherwise, we have to do a logical mmap.
3117 */
3118 } else {
3119
3120 vm_object_set_flag(srcobject, OBJ_OPT);
3121 vm_object_reference(srcobject);
3122
3123 pmap_remove (map->pmap, uaddr, tend);
3124
3125 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3126 vm_map_lock_upgrade(map);
3127
3128 if (entry == &map->header) {
3129 map->first_free = &map->header;
3130 } else if (map->first_free->start >= start) {
3131 map->first_free = entry->prev;
3132 }
3133
3134 SAVE_HINT(map, entry->prev);
3135 vm_map_entry_delete(map, entry);
3136
3137 object = srcobject;
3138 ooffset = cp;
3139
3140 rv = vm_map_insert(map, object, ooffset, start, tend,
3141 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3142
3143 if (rv != KERN_SUCCESS)
3144 panic("vm_uiomove: could not insert new entry: %d", rv);
3145 }
3146
3147/*
3148 * Map the window directly, if it is already in memory
3149 */
3150 pmap_object_init_pt(map->pmap, uaddr,
3151 srcobject, oindex, tcnt, 0);
3152
3153 map->timestamp++;
3154 vm_map_unlock(map);
3155
3156 cnt -= tcnt;
3157 uaddr += tcnt;
3158 cp += tcnt;
3159 if (npages)
3160 *npages += osize;
3161 }
3162 return 0;
3163}
3164
3165/*
3166 * Performs the copy_on_write operations necessary to allow the virtual copies
3167 * into user space to work. This has to be called for write(2) system calls
3168 * from other processes, file unlinking, and file size shrinkage.
3169 */
3170void
3171vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
3172{
3173 int rv;
3174 vm_object_t robject;
3175 vm_pindex_t idx;
3176
3177 GIANT_REQUIRED;
3178 if ((object == NULL) ||
3179 ((object->flags & OBJ_OPT) == 0))
3180 return;
3181
3182 if (object->shadow_count > object->ref_count)
3183 panic("vm_freeze_copyopts: sc > rc");
3184
3185 while ((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
3186 vm_pindex_t bo_pindex;
3187 vm_page_t m_in, m_out;
3188
3189 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3190
3191 vm_object_reference(robject);
3192
3193 vm_object_pip_wait(robject, "objfrz");
3194
3195 if (robject->ref_count == 1) {
3196 vm_object_deallocate(robject);
3197 continue;
3198 }
3199
3200 vm_object_pip_add(robject, 1);
3201
3202 for (idx = 0; idx < robject->size; idx++) {
3203
3204 m_out = vm_page_grab(robject, idx,
3205 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3206
3207 if (m_out->valid == 0) {
3208 m_in = vm_page_grab(object, bo_pindex + idx,
3209 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3210 if (m_in->valid == 0) {
3211 rv = vm_pager_get_pages(object, &m_in, 1, 0);
3212 if (rv != VM_PAGER_OK) {
3213 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3214 continue;
3215 }
3216 vm_page_deactivate(m_in);
3217 }
3218
3219 vm_page_protect(m_in, VM_PROT_NONE);
3220 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3221 m_out->valid = m_in->valid;
3222 vm_page_dirty(m_out);
3223 vm_page_activate(m_out);
3224 vm_page_wakeup(m_in);
3225 }
3226 vm_page_wakeup(m_out);
3227 }
3228
3229 object->shadow_count--;
3230 object->ref_count--;
3231 TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
3232 robject->backing_object = NULL;
3233 robject->backing_object_offset = 0;
3234
3235 vm_object_pip_wakeup(robject);
3236 vm_object_deallocate(robject);
3237 }
3238
3239 vm_object_clear_flag(object, OBJ_OPT);
3240}
3241
3242#include "opt_ddb.h"
3243#ifdef DDB
3244#include <sys/kernel.h>
3245
3246#include <ddb/ddb.h>
3247
3248/*
3249 * vm_map_print: [ debug ]
3250 */
3251DB_SHOW_COMMAND(map, vm_map_print)
3252{
3253 static int nlines;
3254 /* XXX convert args. */
3255 vm_map_t map = (vm_map_t)addr;
3256 boolean_t full = have_addr;
3257
3258 vm_map_entry_t entry;
3259
3260 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3261 (void *)map,
3262 (void *)map->pmap, map->nentries, map->timestamp);
3263 nlines++;
3264
3265 if (!full && db_indent)
3266 return;
3267
3268 db_indent += 2;
3269 for (entry = map->header.next; entry != &map->header;
3270 entry = entry->next) {
3271 db_iprintf("map entry %p: start=%p, end=%p\n",
3272 (void *)entry, (void *)entry->start, (void *)entry->end);
3273 nlines++;
3274 {
3275 static char *inheritance_name[4] =
3276 {"share", "copy", "none", "donate_copy"};
3277
3278 db_iprintf(" prot=%x/%x/%s",
3279 entry->protection,
3280 entry->max_protection,
3281 inheritance_name[(int)(unsigned char)entry->inheritance]);
3282 if (entry->wired_count != 0)
3283 db_printf(", wired");
3284 }
3285 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3286 /* XXX no %qd in kernel. Truncate entry->offset. */
3287 db_printf(", share=%p, offset=0x%lx\n",
3288 (void *)entry->object.sub_map,
3289 (long)entry->offset);
3290 nlines++;
3291 if ((entry->prev == &map->header) ||
3292 (entry->prev->object.sub_map !=
3293 entry->object.sub_map)) {
3294 db_indent += 2;
3295 vm_map_print((db_expr_t)(intptr_t)
3296 entry->object.sub_map,
3297 full, 0, (char *)0);
3298 db_indent -= 2;
3299 }
3300 } else {
3301 /* XXX no %qd in kernel. Truncate entry->offset. */
3302 db_printf(", object=%p, offset=0x%lx",
3303 (void *)entry->object.vm_object,
3304 (long)entry->offset);
3305 if (entry->eflags & MAP_ENTRY_COW)
3306 db_printf(", copy (%s)",
3307 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3308 db_printf("\n");
3309 nlines++;
3310
3311 if ((entry->prev == &map->header) ||
3312 (entry->prev->object.vm_object !=
3313 entry->object.vm_object)) {
3314 db_indent += 2;
3315 vm_object_print((db_expr_t)(intptr_t)
3316 entry->object.vm_object,
3317 full, 0, (char *)0);
3318 nlines += 4;
3319 db_indent -= 2;
3320 }
3321 }
3322 }
3323 db_indent -= 2;
3324 if (db_indent == 0)
3325 nlines = 0;
3326}
3327
3328
3329DB_SHOW_COMMAND(procvm, procvm)
3330{
3331 struct proc *p;
3332
3333 if (have_addr) {
3334 p = (struct proc *) addr;
3335 } else {
3336 p = curproc;
3337 }
3338
3339 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3340 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3341 (void *)vmspace_pmap(p->p_vmspace));
3342
3343 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3344}
3345
3346#endif /* DDB */