Deleted Added
full compact
vm_glue.c (170307) vm_glue.c (172207)
1/*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
51 * School of Computer Science
52 * Carnegie Mellon University
53 * Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
51 * School of Computer Science
52 * Carnegie Mellon University
53 * Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 170307 2007-06-05 00:00:57Z jeff $");
60__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 172207 2007-09-17 05:31:39Z jeff $");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/sched.h>
74#include <sys/sf_buf.h>
75#include <sys/shm.h>
76#include <sys/vmmeter.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79
80#include <sys/kernel.h>
81#include <sys/ktr.h>
82#include <sys/unistd.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_page.h>
89#include <vm/vm_pageout.h>
90#include <vm/vm_object.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95
96extern int maxslp;
97
98/*
99 * System initialization
100 *
101 * Note: proc0 from proc.h
102 */
103static void vm_init_limits(void *);
104SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
105
106/*
107 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108 *
109 * Note: run scheduling should be divorced from the vm system.
110 */
111static void scheduler(void *);
112SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
113
114#ifndef NO_SWAPPING
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/sched.h>
74#include <sys/sf_buf.h>
75#include <sys/shm.h>
76#include <sys/vmmeter.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79
80#include <sys/kernel.h>
81#include <sys/ktr.h>
82#include <sys/unistd.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_page.h>
89#include <vm/vm_pageout.h>
90#include <vm/vm_object.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95
96extern int maxslp;
97
98/*
99 * System initialization
100 *
101 * Note: proc0 from proc.h
102 */
103static void vm_init_limits(void *);
104SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
105
106/*
107 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108 *
109 * Note: run scheduling should be divorced from the vm system.
110 */
111static void scheduler(void *);
112SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
113
114#ifndef NO_SWAPPING
115static void swapout(struct proc *);
115static int swapout(struct proc *);
116static void swapclear(struct proc *);
116#endif
117
118
119static volatile int proc0_rescan;
120
121
122/*
123 * MPSAFE
124 *
125 * WARNING! This code calls vm_map_check_protection() which only checks
126 * the associated vm_map_entry range. It does not determine whether the
127 * contents of the memory is actually readable or writable. In most cases
128 * just checking the vm_map_entry is sufficient within the kernel's address
129 * space.
130 */
131int
132kernacc(addr, len, rw)
133 void *addr;
134 int len, rw;
135{
136 boolean_t rv;
137 vm_offset_t saddr, eaddr;
138 vm_prot_t prot;
139
140 KASSERT((rw & ~VM_PROT_ALL) == 0,
141 ("illegal ``rw'' argument to kernacc (%x)\n", rw));
142
143 if ((vm_offset_t)addr + len > kernel_map->max_offset ||
144 (vm_offset_t)addr + len < (vm_offset_t)addr)
145 return (FALSE);
146
147 prot = rw;
148 saddr = trunc_page((vm_offset_t)addr);
149 eaddr = round_page((vm_offset_t)addr + len);
150 vm_map_lock_read(kernel_map);
151 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
152 vm_map_unlock_read(kernel_map);
153 return (rv == TRUE);
154}
155
156/*
157 * MPSAFE
158 *
159 * WARNING! This code calls vm_map_check_protection() which only checks
160 * the associated vm_map_entry range. It does not determine whether the
161 * contents of the memory is actually readable or writable. vmapbuf(),
162 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
163 * used in conjuction with this call.
164 */
165int
166useracc(addr, len, rw)
167 void *addr;
168 int len, rw;
169{
170 boolean_t rv;
171 vm_prot_t prot;
172 vm_map_t map;
173
174 KASSERT((rw & ~VM_PROT_ALL) == 0,
175 ("illegal ``rw'' argument to useracc (%x)\n", rw));
176 prot = rw;
177 map = &curproc->p_vmspace->vm_map;
178 if ((vm_offset_t)addr + len > vm_map_max(map) ||
179 (vm_offset_t)addr + len < (vm_offset_t)addr) {
180 return (FALSE);
181 }
182 vm_map_lock_read(map);
183 rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
184 round_page((vm_offset_t)addr + len), prot);
185 vm_map_unlock_read(map);
186 return (rv == TRUE);
187}
188
189int
190vslock(void *addr, size_t len)
191{
192 vm_offset_t end, last, start;
193 vm_size_t npages;
194 int error;
195
196 last = (vm_offset_t)addr + len;
197 start = trunc_page((vm_offset_t)addr);
198 end = round_page(last);
199 if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
200 return (EINVAL);
201 npages = atop(end - start);
202 if (npages > vm_page_max_wired)
203 return (ENOMEM);
204 PROC_LOCK(curproc);
205 if (ptoa(npages +
206 pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
207 lim_cur(curproc, RLIMIT_MEMLOCK)) {
208 PROC_UNLOCK(curproc);
209 return (ENOMEM);
210 }
211 PROC_UNLOCK(curproc);
212#if 0
213 /*
214 * XXX - not yet
215 *
216 * The limit for transient usage of wired pages should be
217 * larger than for "permanent" wired pages (mlock()).
218 *
219 * Also, the sysctl code, which is the only present user
220 * of vslock(), does a hard loop on EAGAIN.
221 */
222 if (npages + cnt.v_wire_count > vm_page_max_wired)
223 return (EAGAIN);
224#endif
225 error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
226 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
227 /*
228 * Return EFAULT on error to match copy{in,out}() behaviour
229 * rather than returning ENOMEM like mlock() would.
230 */
231 return (error == KERN_SUCCESS ? 0 : EFAULT);
232}
233
234void
235vsunlock(void *addr, size_t len)
236{
237
238 /* Rely on the parameter sanity checks performed by vslock(). */
239 (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
240 trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
241 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
242}
243
244/*
245 * Pin the page contained within the given object at the given offset. If the
246 * page is not resident, allocate and load it using the given object's pager.
247 * Return the pinned page if successful; otherwise, return NULL.
248 */
249static vm_page_t
250vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
251{
252 vm_page_t m, ma[1];
253 vm_pindex_t pindex;
254 int rv;
255
256 VM_OBJECT_LOCK(object);
257 pindex = OFF_TO_IDX(offset);
258 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
259 if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
260 ma[0] = m;
261 rv = vm_pager_get_pages(object, ma, 1, 0);
262 m = vm_page_lookup(object, pindex);
263 if (m == NULL)
264 goto out;
265 if (m->valid == 0 || rv != VM_PAGER_OK) {
266 vm_page_lock_queues();
267 vm_page_free(m);
268 vm_page_unlock_queues();
269 m = NULL;
270 goto out;
271 }
272 }
273 vm_page_lock_queues();
274 vm_page_hold(m);
275 vm_page_unlock_queues();
276 vm_page_wakeup(m);
277out:
278 VM_OBJECT_UNLOCK(object);
279 return (m);
280}
281
282/*
283 * Return a CPU private mapping to the page at the given offset within the
284 * given object. The page is pinned before it is mapped.
285 */
286struct sf_buf *
287vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
288{
289 vm_page_t m;
290
291 m = vm_imgact_hold_page(object, offset);
292 if (m == NULL)
293 return (NULL);
294 sched_pin();
295 return (sf_buf_alloc(m, SFB_CPUPRIVATE));
296}
297
298/*
299 * Destroy the given CPU private mapping and unpin the page that it mapped.
300 */
301void
302vm_imgact_unmap_page(struct sf_buf *sf)
303{
304 vm_page_t m;
305
306 m = sf_buf_page(sf);
307 sf_buf_free(sf);
308 sched_unpin();
309 vm_page_lock_queues();
310 vm_page_unhold(m);
311 vm_page_unlock_queues();
312}
313
314#ifndef KSTACK_MAX_PAGES
315#define KSTACK_MAX_PAGES 32
316#endif
317
318/*
319 * Create the kernel stack (including pcb for i386) for a new thread.
320 * This routine directly affects the fork perf for a process and
321 * create performance for a thread.
322 */
323void
324vm_thread_new(struct thread *td, int pages)
325{
326 vm_object_t ksobj;
327 vm_offset_t ks;
328 vm_page_t m, ma[KSTACK_MAX_PAGES];
329 int i;
330
331 /* Bounds check */
332 if (pages <= 1)
333 pages = KSTACK_PAGES;
334 else if (pages > KSTACK_MAX_PAGES)
335 pages = KSTACK_MAX_PAGES;
336 /*
337 * Allocate an object for the kstack.
338 */
339 ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
340 td->td_kstack_obj = ksobj;
341 /*
342 * Get a kernel virtual address for this thread's kstack.
343 */
344 ks = kmem_alloc_nofault(kernel_map,
345 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
346 if (ks == 0)
347 panic("vm_thread_new: kstack allocation failed");
348 if (KSTACK_GUARD_PAGES != 0) {
349 pmap_qremove(ks, KSTACK_GUARD_PAGES);
350 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
351 }
352 td->td_kstack = ks;
353 /*
354 * Knowing the number of pages allocated is useful when you
355 * want to deallocate them.
356 */
357 td->td_kstack_pages = pages;
358 /*
359 * For the length of the stack, link in a real page of ram for each
360 * page of stack.
361 */
362 VM_OBJECT_LOCK(ksobj);
363 for (i = 0; i < pages; i++) {
364 /*
365 * Get a kernel stack page.
366 */
367 m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
368 VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
369 ma[i] = m;
370 m->valid = VM_PAGE_BITS_ALL;
371 }
372 VM_OBJECT_UNLOCK(ksobj);
373 pmap_qenter(ks, ma, pages);
374}
375
376/*
377 * Dispose of a thread's kernel stack.
378 */
379void
380vm_thread_dispose(struct thread *td)
381{
382 vm_object_t ksobj;
383 vm_offset_t ks;
384 vm_page_t m;
385 int i, pages;
386
387 pages = td->td_kstack_pages;
388 ksobj = td->td_kstack_obj;
389 ks = td->td_kstack;
390 pmap_qremove(ks, pages);
391 VM_OBJECT_LOCK(ksobj);
392 for (i = 0; i < pages; i++) {
393 m = vm_page_lookup(ksobj, i);
394 if (m == NULL)
395 panic("vm_thread_dispose: kstack already missing?");
396 vm_page_lock_queues();
397 vm_page_unwire(m, 0);
398 vm_page_free(m);
399 vm_page_unlock_queues();
400 }
401 VM_OBJECT_UNLOCK(ksobj);
402 vm_object_deallocate(ksobj);
403 kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
404 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
405}
406
407/*
408 * Allow a thread's kernel stack to be paged out.
409 */
410void
411vm_thread_swapout(struct thread *td)
412{
413 vm_object_t ksobj;
414 vm_page_t m;
415 int i, pages;
416
417 cpu_thread_swapout(td);
418 pages = td->td_kstack_pages;
419 ksobj = td->td_kstack_obj;
420 pmap_qremove(td->td_kstack, pages);
421 VM_OBJECT_LOCK(ksobj);
422 for (i = 0; i < pages; i++) {
423 m = vm_page_lookup(ksobj, i);
424 if (m == NULL)
425 panic("vm_thread_swapout: kstack already missing?");
426 vm_page_lock_queues();
427 vm_page_dirty(m);
428 vm_page_unwire(m, 0);
429 vm_page_unlock_queues();
430 }
431 VM_OBJECT_UNLOCK(ksobj);
432}
433
434/*
435 * Bring the kernel stack for a specified thread back in.
436 */
437void
438vm_thread_swapin(struct thread *td)
439{
440 vm_object_t ksobj;
441 vm_page_t m, ma[KSTACK_MAX_PAGES];
442 int i, pages, rv;
443
444 pages = td->td_kstack_pages;
445 ksobj = td->td_kstack_obj;
446 VM_OBJECT_LOCK(ksobj);
447 for (i = 0; i < pages; i++) {
448 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
449 if (m->valid != VM_PAGE_BITS_ALL) {
450 rv = vm_pager_get_pages(ksobj, &m, 1, 0);
451 if (rv != VM_PAGER_OK)
452 panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
453 m = vm_page_lookup(ksobj, i);
454 m->valid = VM_PAGE_BITS_ALL;
455 }
456 ma[i] = m;
457 vm_page_lock_queues();
458 vm_page_wire(m);
459 vm_page_unlock_queues();
460 vm_page_wakeup(m);
461 }
462 VM_OBJECT_UNLOCK(ksobj);
463 pmap_qenter(td->td_kstack, ma, pages);
464 cpu_thread_swapin(td);
465}
466
467/*
468 * Set up a variable-sized alternate kstack.
469 */
470void
471vm_thread_new_altkstack(struct thread *td, int pages)
472{
473
474 td->td_altkstack = td->td_kstack;
475 td->td_altkstack_obj = td->td_kstack_obj;
476 td->td_altkstack_pages = td->td_kstack_pages;
477
478 vm_thread_new(td, pages);
479}
480
481/*
482 * Restore the original kstack.
483 */
484void
485vm_thread_dispose_altkstack(struct thread *td)
486{
487
488 vm_thread_dispose(td);
489
490 td->td_kstack = td->td_altkstack;
491 td->td_kstack_obj = td->td_altkstack_obj;
492 td->td_kstack_pages = td->td_altkstack_pages;
493 td->td_altkstack = 0;
494 td->td_altkstack_obj = NULL;
495 td->td_altkstack_pages = 0;
496}
497
498/*
499 * Implement fork's actions on an address space.
500 * Here we arrange for the address space to be copied or referenced,
501 * allocate a user struct (pcb and kernel stack), then call the
502 * machine-dependent layer to fill those in and make the new process
503 * ready to run. The new process is set up so that it returns directly
504 * to user mode to avoid stack copying and relocation problems.
505 */
506void
507vm_forkproc(td, p2, td2, flags)
508 struct thread *td;
509 struct proc *p2;
510 struct thread *td2;
511 int flags;
512{
513 struct proc *p1 = td->td_proc;
514
515 if ((flags & RFPROC) == 0) {
516 /*
517 * Divorce the memory, if it is shared, essentially
518 * this changes shared memory amongst threads, into
519 * COW locally.
520 */
521 if ((flags & RFMEM) == 0) {
522 if (p1->p_vmspace->vm_refcnt > 1) {
523 vmspace_unshare(p1);
524 }
525 }
526 cpu_fork(td, p2, td2, flags);
527 return;
528 }
529
530 if (flags & RFMEM) {
531 p2->p_vmspace = p1->p_vmspace;
532 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
533 }
534
535 while (vm_page_count_severe()) {
536 VM_WAIT;
537 }
538
539 if ((flags & RFMEM) == 0) {
540 p2->p_vmspace = vmspace_fork(p1->p_vmspace);
541 if (p1->p_vmspace->vm_shm)
542 shmfork(p1, p2);
543 }
544
545 /*
546 * cpu_fork will copy and update the pcb, set up the kernel stack,
547 * and make the child ready to run.
548 */
549 cpu_fork(td, p2, td2, flags);
550}
551
552/*
553 * Called after process has been wait(2)'ed apon and is being reaped.
554 * The idea is to reclaim resources that we could not reclaim while
555 * the process was still executing.
556 */
557void
558vm_waitproc(p)
559 struct proc *p;
560{
561
562 vmspace_exitfree(p); /* and clean-out the vmspace */
563}
564
565/*
566 * Set default limits for VM system.
567 * Called for proc 0, and then inherited by all others.
568 *
569 * XXX should probably act directly on proc0.
570 */
571static void
572vm_init_limits(udata)
573 void *udata;
574{
575 struct proc *p = udata;
576 struct plimit *limp;
577 int rss_limit;
578
579 /*
580 * Set up the initial limits on process VM. Set the maximum resident
581 * set size to be half of (reasonably) available memory. Since this
582 * is a soft limit, it comes into effect only when the system is out
583 * of memory - half of main memory helps to favor smaller processes,
584 * and reduces thrashing of the object cache.
585 */
586 limp = p->p_limit;
587 limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
588 limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
589 limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
590 limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
591 /* limit the limit to no less than 2MB */
592 rss_limit = max(cnt.v_free_count, 512);
593 limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
594 limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
595}
596
597void
598faultin(p)
599 struct proc *p;
600{
601#ifdef NO_SWAPPING
602
603 PROC_LOCK_ASSERT(p, MA_OWNED);
117#endif
118
119
120static volatile int proc0_rescan;
121
122
123/*
124 * MPSAFE
125 *
126 * WARNING! This code calls vm_map_check_protection() which only checks
127 * the associated vm_map_entry range. It does not determine whether the
128 * contents of the memory is actually readable or writable. In most cases
129 * just checking the vm_map_entry is sufficient within the kernel's address
130 * space.
131 */
132int
133kernacc(addr, len, rw)
134 void *addr;
135 int len, rw;
136{
137 boolean_t rv;
138 vm_offset_t saddr, eaddr;
139 vm_prot_t prot;
140
141 KASSERT((rw & ~VM_PROT_ALL) == 0,
142 ("illegal ``rw'' argument to kernacc (%x)\n", rw));
143
144 if ((vm_offset_t)addr + len > kernel_map->max_offset ||
145 (vm_offset_t)addr + len < (vm_offset_t)addr)
146 return (FALSE);
147
148 prot = rw;
149 saddr = trunc_page((vm_offset_t)addr);
150 eaddr = round_page((vm_offset_t)addr + len);
151 vm_map_lock_read(kernel_map);
152 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
153 vm_map_unlock_read(kernel_map);
154 return (rv == TRUE);
155}
156
157/*
158 * MPSAFE
159 *
160 * WARNING! This code calls vm_map_check_protection() which only checks
161 * the associated vm_map_entry range. It does not determine whether the
162 * contents of the memory is actually readable or writable. vmapbuf(),
163 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
164 * used in conjuction with this call.
165 */
166int
167useracc(addr, len, rw)
168 void *addr;
169 int len, rw;
170{
171 boolean_t rv;
172 vm_prot_t prot;
173 vm_map_t map;
174
175 KASSERT((rw & ~VM_PROT_ALL) == 0,
176 ("illegal ``rw'' argument to useracc (%x)\n", rw));
177 prot = rw;
178 map = &curproc->p_vmspace->vm_map;
179 if ((vm_offset_t)addr + len > vm_map_max(map) ||
180 (vm_offset_t)addr + len < (vm_offset_t)addr) {
181 return (FALSE);
182 }
183 vm_map_lock_read(map);
184 rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
185 round_page((vm_offset_t)addr + len), prot);
186 vm_map_unlock_read(map);
187 return (rv == TRUE);
188}
189
190int
191vslock(void *addr, size_t len)
192{
193 vm_offset_t end, last, start;
194 vm_size_t npages;
195 int error;
196
197 last = (vm_offset_t)addr + len;
198 start = trunc_page((vm_offset_t)addr);
199 end = round_page(last);
200 if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
201 return (EINVAL);
202 npages = atop(end - start);
203 if (npages > vm_page_max_wired)
204 return (ENOMEM);
205 PROC_LOCK(curproc);
206 if (ptoa(npages +
207 pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
208 lim_cur(curproc, RLIMIT_MEMLOCK)) {
209 PROC_UNLOCK(curproc);
210 return (ENOMEM);
211 }
212 PROC_UNLOCK(curproc);
213#if 0
214 /*
215 * XXX - not yet
216 *
217 * The limit for transient usage of wired pages should be
218 * larger than for "permanent" wired pages (mlock()).
219 *
220 * Also, the sysctl code, which is the only present user
221 * of vslock(), does a hard loop on EAGAIN.
222 */
223 if (npages + cnt.v_wire_count > vm_page_max_wired)
224 return (EAGAIN);
225#endif
226 error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
227 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
228 /*
229 * Return EFAULT on error to match copy{in,out}() behaviour
230 * rather than returning ENOMEM like mlock() would.
231 */
232 return (error == KERN_SUCCESS ? 0 : EFAULT);
233}
234
235void
236vsunlock(void *addr, size_t len)
237{
238
239 /* Rely on the parameter sanity checks performed by vslock(). */
240 (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
241 trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
242 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
243}
244
245/*
246 * Pin the page contained within the given object at the given offset. If the
247 * page is not resident, allocate and load it using the given object's pager.
248 * Return the pinned page if successful; otherwise, return NULL.
249 */
250static vm_page_t
251vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
252{
253 vm_page_t m, ma[1];
254 vm_pindex_t pindex;
255 int rv;
256
257 VM_OBJECT_LOCK(object);
258 pindex = OFF_TO_IDX(offset);
259 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
260 if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
261 ma[0] = m;
262 rv = vm_pager_get_pages(object, ma, 1, 0);
263 m = vm_page_lookup(object, pindex);
264 if (m == NULL)
265 goto out;
266 if (m->valid == 0 || rv != VM_PAGER_OK) {
267 vm_page_lock_queues();
268 vm_page_free(m);
269 vm_page_unlock_queues();
270 m = NULL;
271 goto out;
272 }
273 }
274 vm_page_lock_queues();
275 vm_page_hold(m);
276 vm_page_unlock_queues();
277 vm_page_wakeup(m);
278out:
279 VM_OBJECT_UNLOCK(object);
280 return (m);
281}
282
283/*
284 * Return a CPU private mapping to the page at the given offset within the
285 * given object. The page is pinned before it is mapped.
286 */
287struct sf_buf *
288vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
289{
290 vm_page_t m;
291
292 m = vm_imgact_hold_page(object, offset);
293 if (m == NULL)
294 return (NULL);
295 sched_pin();
296 return (sf_buf_alloc(m, SFB_CPUPRIVATE));
297}
298
299/*
300 * Destroy the given CPU private mapping and unpin the page that it mapped.
301 */
302void
303vm_imgact_unmap_page(struct sf_buf *sf)
304{
305 vm_page_t m;
306
307 m = sf_buf_page(sf);
308 sf_buf_free(sf);
309 sched_unpin();
310 vm_page_lock_queues();
311 vm_page_unhold(m);
312 vm_page_unlock_queues();
313}
314
315#ifndef KSTACK_MAX_PAGES
316#define KSTACK_MAX_PAGES 32
317#endif
318
319/*
320 * Create the kernel stack (including pcb for i386) for a new thread.
321 * This routine directly affects the fork perf for a process and
322 * create performance for a thread.
323 */
324void
325vm_thread_new(struct thread *td, int pages)
326{
327 vm_object_t ksobj;
328 vm_offset_t ks;
329 vm_page_t m, ma[KSTACK_MAX_PAGES];
330 int i;
331
332 /* Bounds check */
333 if (pages <= 1)
334 pages = KSTACK_PAGES;
335 else if (pages > KSTACK_MAX_PAGES)
336 pages = KSTACK_MAX_PAGES;
337 /*
338 * Allocate an object for the kstack.
339 */
340 ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
341 td->td_kstack_obj = ksobj;
342 /*
343 * Get a kernel virtual address for this thread's kstack.
344 */
345 ks = kmem_alloc_nofault(kernel_map,
346 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
347 if (ks == 0)
348 panic("vm_thread_new: kstack allocation failed");
349 if (KSTACK_GUARD_PAGES != 0) {
350 pmap_qremove(ks, KSTACK_GUARD_PAGES);
351 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
352 }
353 td->td_kstack = ks;
354 /*
355 * Knowing the number of pages allocated is useful when you
356 * want to deallocate them.
357 */
358 td->td_kstack_pages = pages;
359 /*
360 * For the length of the stack, link in a real page of ram for each
361 * page of stack.
362 */
363 VM_OBJECT_LOCK(ksobj);
364 for (i = 0; i < pages; i++) {
365 /*
366 * Get a kernel stack page.
367 */
368 m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
369 VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
370 ma[i] = m;
371 m->valid = VM_PAGE_BITS_ALL;
372 }
373 VM_OBJECT_UNLOCK(ksobj);
374 pmap_qenter(ks, ma, pages);
375}
376
377/*
378 * Dispose of a thread's kernel stack.
379 */
380void
381vm_thread_dispose(struct thread *td)
382{
383 vm_object_t ksobj;
384 vm_offset_t ks;
385 vm_page_t m;
386 int i, pages;
387
388 pages = td->td_kstack_pages;
389 ksobj = td->td_kstack_obj;
390 ks = td->td_kstack;
391 pmap_qremove(ks, pages);
392 VM_OBJECT_LOCK(ksobj);
393 for (i = 0; i < pages; i++) {
394 m = vm_page_lookup(ksobj, i);
395 if (m == NULL)
396 panic("vm_thread_dispose: kstack already missing?");
397 vm_page_lock_queues();
398 vm_page_unwire(m, 0);
399 vm_page_free(m);
400 vm_page_unlock_queues();
401 }
402 VM_OBJECT_UNLOCK(ksobj);
403 vm_object_deallocate(ksobj);
404 kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
405 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
406}
407
408/*
409 * Allow a thread's kernel stack to be paged out.
410 */
411void
412vm_thread_swapout(struct thread *td)
413{
414 vm_object_t ksobj;
415 vm_page_t m;
416 int i, pages;
417
418 cpu_thread_swapout(td);
419 pages = td->td_kstack_pages;
420 ksobj = td->td_kstack_obj;
421 pmap_qremove(td->td_kstack, pages);
422 VM_OBJECT_LOCK(ksobj);
423 for (i = 0; i < pages; i++) {
424 m = vm_page_lookup(ksobj, i);
425 if (m == NULL)
426 panic("vm_thread_swapout: kstack already missing?");
427 vm_page_lock_queues();
428 vm_page_dirty(m);
429 vm_page_unwire(m, 0);
430 vm_page_unlock_queues();
431 }
432 VM_OBJECT_UNLOCK(ksobj);
433}
434
435/*
436 * Bring the kernel stack for a specified thread back in.
437 */
438void
439vm_thread_swapin(struct thread *td)
440{
441 vm_object_t ksobj;
442 vm_page_t m, ma[KSTACK_MAX_PAGES];
443 int i, pages, rv;
444
445 pages = td->td_kstack_pages;
446 ksobj = td->td_kstack_obj;
447 VM_OBJECT_LOCK(ksobj);
448 for (i = 0; i < pages; i++) {
449 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
450 if (m->valid != VM_PAGE_BITS_ALL) {
451 rv = vm_pager_get_pages(ksobj, &m, 1, 0);
452 if (rv != VM_PAGER_OK)
453 panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
454 m = vm_page_lookup(ksobj, i);
455 m->valid = VM_PAGE_BITS_ALL;
456 }
457 ma[i] = m;
458 vm_page_lock_queues();
459 vm_page_wire(m);
460 vm_page_unlock_queues();
461 vm_page_wakeup(m);
462 }
463 VM_OBJECT_UNLOCK(ksobj);
464 pmap_qenter(td->td_kstack, ma, pages);
465 cpu_thread_swapin(td);
466}
467
468/*
469 * Set up a variable-sized alternate kstack.
470 */
471void
472vm_thread_new_altkstack(struct thread *td, int pages)
473{
474
475 td->td_altkstack = td->td_kstack;
476 td->td_altkstack_obj = td->td_kstack_obj;
477 td->td_altkstack_pages = td->td_kstack_pages;
478
479 vm_thread_new(td, pages);
480}
481
482/*
483 * Restore the original kstack.
484 */
485void
486vm_thread_dispose_altkstack(struct thread *td)
487{
488
489 vm_thread_dispose(td);
490
491 td->td_kstack = td->td_altkstack;
492 td->td_kstack_obj = td->td_altkstack_obj;
493 td->td_kstack_pages = td->td_altkstack_pages;
494 td->td_altkstack = 0;
495 td->td_altkstack_obj = NULL;
496 td->td_altkstack_pages = 0;
497}
498
499/*
500 * Implement fork's actions on an address space.
501 * Here we arrange for the address space to be copied or referenced,
502 * allocate a user struct (pcb and kernel stack), then call the
503 * machine-dependent layer to fill those in and make the new process
504 * ready to run. The new process is set up so that it returns directly
505 * to user mode to avoid stack copying and relocation problems.
506 */
507void
508vm_forkproc(td, p2, td2, flags)
509 struct thread *td;
510 struct proc *p2;
511 struct thread *td2;
512 int flags;
513{
514 struct proc *p1 = td->td_proc;
515
516 if ((flags & RFPROC) == 0) {
517 /*
518 * Divorce the memory, if it is shared, essentially
519 * this changes shared memory amongst threads, into
520 * COW locally.
521 */
522 if ((flags & RFMEM) == 0) {
523 if (p1->p_vmspace->vm_refcnt > 1) {
524 vmspace_unshare(p1);
525 }
526 }
527 cpu_fork(td, p2, td2, flags);
528 return;
529 }
530
531 if (flags & RFMEM) {
532 p2->p_vmspace = p1->p_vmspace;
533 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
534 }
535
536 while (vm_page_count_severe()) {
537 VM_WAIT;
538 }
539
540 if ((flags & RFMEM) == 0) {
541 p2->p_vmspace = vmspace_fork(p1->p_vmspace);
542 if (p1->p_vmspace->vm_shm)
543 shmfork(p1, p2);
544 }
545
546 /*
547 * cpu_fork will copy and update the pcb, set up the kernel stack,
548 * and make the child ready to run.
549 */
550 cpu_fork(td, p2, td2, flags);
551}
552
553/*
554 * Called after process has been wait(2)'ed apon and is being reaped.
555 * The idea is to reclaim resources that we could not reclaim while
556 * the process was still executing.
557 */
558void
559vm_waitproc(p)
560 struct proc *p;
561{
562
563 vmspace_exitfree(p); /* and clean-out the vmspace */
564}
565
566/*
567 * Set default limits for VM system.
568 * Called for proc 0, and then inherited by all others.
569 *
570 * XXX should probably act directly on proc0.
571 */
572static void
573vm_init_limits(udata)
574 void *udata;
575{
576 struct proc *p = udata;
577 struct plimit *limp;
578 int rss_limit;
579
580 /*
581 * Set up the initial limits on process VM. Set the maximum resident
582 * set size to be half of (reasonably) available memory. Since this
583 * is a soft limit, it comes into effect only when the system is out
584 * of memory - half of main memory helps to favor smaller processes,
585 * and reduces thrashing of the object cache.
586 */
587 limp = p->p_limit;
588 limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
589 limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
590 limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
591 limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
592 /* limit the limit to no less than 2MB */
593 rss_limit = max(cnt.v_free_count, 512);
594 limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
595 limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
596}
597
598void
599faultin(p)
600 struct proc *p;
601{
602#ifdef NO_SWAPPING
603
604 PROC_LOCK_ASSERT(p, MA_OWNED);
604 if ((p->p_sflag & PS_INMEM) == 0)
605 if ((p->p_flag & P_INMEM) == 0)
605 panic("faultin: proc swapped out with NO_SWAPPING!");
606#else /* !NO_SWAPPING */
607 struct thread *td;
608
609 PROC_LOCK_ASSERT(p, MA_OWNED);
610 /*
611 * If another process is swapping in this process,
612 * just wait until it finishes.
613 */
606 panic("faultin: proc swapped out with NO_SWAPPING!");
607#else /* !NO_SWAPPING */
608 struct thread *td;
609
610 PROC_LOCK_ASSERT(p, MA_OWNED);
611 /*
612 * If another process is swapping in this process,
613 * just wait until it finishes.
614 */
614 if (p->p_sflag & PS_SWAPPINGIN)
615 msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
616 else if ((p->p_sflag & PS_INMEM) == 0) {
615 if (p->p_flag & P_SWAPPINGIN) {
616 while (p->p_flag & P_SWAPPINGIN)
617 msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
618 return;
619 }
620 if ((p->p_flag & P_INMEM) == 0) {
617 /*
618 * Don't let another thread swap process p out while we are
619 * busy swapping it in.
620 */
621 ++p->p_lock;
621 /*
622 * Don't let another thread swap process p out while we are
623 * busy swapping it in.
624 */
625 ++p->p_lock;
622 PROC_SLOCK(p);
623 p->p_sflag |= PS_SWAPPINGIN;
624 PROC_SUNLOCK(p);
626 p->p_flag |= P_SWAPPINGIN;
625 PROC_UNLOCK(p);
626
627 PROC_UNLOCK(p);
628
629 /*
630 * We hold no lock here because the list of threads
631 * can not change while all threads in the process are
632 * swapped out.
633 */
627 FOREACH_THREAD_IN_PROC(p, td)
628 vm_thread_swapin(td);
634 FOREACH_THREAD_IN_PROC(p, td)
635 vm_thread_swapin(td);
629
630 PROC_LOCK(p);
631 PROC_SLOCK(p);
636 PROC_LOCK(p);
637 PROC_SLOCK(p);
632 p->p_sflag &= ~PS_SWAPPINGIN;
633 p->p_sflag |= PS_INMEM;
634 FOREACH_THREAD_IN_PROC(p, td) {
635 thread_lock(td);
636 TD_CLR_SWAPPED(td);
637 if (TD_CAN_RUN(td))
638 setrunnable(td);
639 thread_unlock(td);
640 }
638 swapclear(p);
639 p->p_swtime = 0;
641 PROC_SUNLOCK(p);
642
640 PROC_SUNLOCK(p);
641
643 wakeup(&p->p_sflag);
642 wakeup(&p->p_flag);
644
645 /* Allow other threads to swap p out now. */
646 --p->p_lock;
647 }
648#endif /* NO_SWAPPING */
649}
650
651/*
652 * This swapin algorithm attempts to swap-in processes only if there
653 * is enough space for them. Of course, if a process waits for a long
654 * time, it will be swapped in anyway.
655 *
656 * XXXKSE - process with the thread with highest priority counts..
657 *
658 * Giant is held on entry.
659 */
660/* ARGSUSED*/
661static void
662scheduler(dummy)
663 void *dummy;
664{
665 struct proc *p;
666 struct thread *td;
667 int pri;
668 struct proc *pp;
669 int ppri;
670
671 mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
672 mtx_unlock(&Giant);
673
674loop:
675 if (vm_page_count_min()) {
676 VM_WAIT;
677 thread_lock(&thread0);
678 proc0_rescan = 0;
679 thread_unlock(&thread0);
680 goto loop;
681 }
682
683 pp = NULL;
684 ppri = INT_MIN;
685 sx_slock(&allproc_lock);
686 FOREACH_PROC_IN_SYSTEM(p) {
643
644 /* Allow other threads to swap p out now. */
645 --p->p_lock;
646 }
647#endif /* NO_SWAPPING */
648}
649
650/*
651 * This swapin algorithm attempts to swap-in processes only if there
652 * is enough space for them. Of course, if a process waits for a long
653 * time, it will be swapped in anyway.
654 *
655 * XXXKSE - process with the thread with highest priority counts..
656 *
657 * Giant is held on entry.
658 */
659/* ARGSUSED*/
660static void
661scheduler(dummy)
662 void *dummy;
663{
664 struct proc *p;
665 struct thread *td;
666 int pri;
667 struct proc *pp;
668 int ppri;
669
670 mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
671 mtx_unlock(&Giant);
672
673loop:
674 if (vm_page_count_min()) {
675 VM_WAIT;
676 thread_lock(&thread0);
677 proc0_rescan = 0;
678 thread_unlock(&thread0);
679 goto loop;
680 }
681
682 pp = NULL;
683 ppri = INT_MIN;
684 sx_slock(&allproc_lock);
685 FOREACH_PROC_IN_SYSTEM(p) {
687 if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
686 PROC_LOCK(p);
687 if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
688 PROC_UNLOCK(p);
688 continue;
689 }
690 PROC_SLOCK(p);
691 FOREACH_THREAD_IN_PROC(p, td) {
692 /*
693 * An otherwise runnable thread of a process
694 * swapped out has only the TDI_SWAPPED bit set.
695 *
696 */
697 thread_lock(td);
698 if (td->td_inhibitors == TDI_SWAPPED) {
699 pri = p->p_swtime + td->td_slptime;
689 continue;
690 }
691 PROC_SLOCK(p);
692 FOREACH_THREAD_IN_PROC(p, td) {
693 /*
694 * An otherwise runnable thread of a process
695 * swapped out has only the TDI_SWAPPED bit set.
696 *
697 */
698 thread_lock(td);
699 if (td->td_inhibitors == TDI_SWAPPED) {
700 pri = p->p_swtime + td->td_slptime;
700 if ((p->p_sflag & PS_SWAPINREQ) == 0) {
701 if ((td->td_flags & TDF_SWAPINREQ) == 0)
701 pri -= p->p_nice * 8;
702 pri -= p->p_nice * 8;
702 }
703
704 /*
705 * if this thread is higher priority
706 * and there is enough space, then select
707 * this process instead of the previous
708 * selection.
709 */
710 if (pri > ppri) {
711 pp = p;
712 ppri = pri;
713 }
714 }
715 thread_unlock(td);
716 }
717 PROC_SUNLOCK(p);
703 /*
704 * if this thread is higher priority
705 * and there is enough space, then select
706 * this process instead of the previous
707 * selection.
708 */
709 if (pri > ppri) {
710 pp = p;
711 ppri = pri;
712 }
713 }
714 thread_unlock(td);
715 }
716 PROC_SUNLOCK(p);
717 PROC_UNLOCK(p);
718 }
719 sx_sunlock(&allproc_lock);
720
721 /*
722 * Nothing to do, back to sleep.
723 */
724 if ((p = pp) == NULL) {
725 thread_lock(&thread0);
726 if (!proc0_rescan) {
727 TD_SET_IWAIT(&thread0);
728 mi_switch(SW_VOL, NULL);
729 }
730 proc0_rescan = 0;
731 thread_unlock(&thread0);
732 goto loop;
733 }
734 PROC_LOCK(p);
735
736 /*
737 * Another process may be bringing or may have already
738 * brought this process in while we traverse all threads.
739 * Or, this process may even be being swapped out again.
740 */
718 }
719 sx_sunlock(&allproc_lock);
720
721 /*
722 * Nothing to do, back to sleep.
723 */
724 if ((p = pp) == NULL) {
725 thread_lock(&thread0);
726 if (!proc0_rescan) {
727 TD_SET_IWAIT(&thread0);
728 mi_switch(SW_VOL, NULL);
729 }
730 proc0_rescan = 0;
731 thread_unlock(&thread0);
732 goto loop;
733 }
734 PROC_LOCK(p);
735
736 /*
737 * Another process may be bringing or may have already
738 * brought this process in while we traverse all threads.
739 * Or, this process may even be being swapped out again.
740 */
741 if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
741 if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
742 PROC_UNLOCK(p);
743 thread_lock(&thread0);
744 proc0_rescan = 0;
745 thread_unlock(&thread0);
746 goto loop;
747 }
748
742 PROC_UNLOCK(p);
743 thread_lock(&thread0);
744 proc0_rescan = 0;
745 thread_unlock(&thread0);
746 goto loop;
747 }
748
749 PROC_SLOCK(p);
750 p->p_sflag &= ~PS_SWAPINREQ;
751 PROC_SUNLOCK(p);
752
753 /*
754 * We would like to bring someone in. (only if there is space).
755 * [What checks the space? ]
756 */
757 faultin(p);
758 PROC_UNLOCK(p);
749 /*
750 * We would like to bring someone in. (only if there is space).
751 * [What checks the space? ]
752 */
753 faultin(p);
754 PROC_UNLOCK(p);
759 PROC_SLOCK(p);
760 p->p_swtime = 0;
761 PROC_SUNLOCK(p);
762 thread_lock(&thread0);
763 proc0_rescan = 0;
764 thread_unlock(&thread0);
765 goto loop;
766}
767
768void kick_proc0(void)
769{
770 struct thread *td = &thread0;
771
772 /* XXX This will probably cause a LOR in some cases */
773 thread_lock(td);
774 if (TD_AWAITING_INTR(td)) {
775 CTR2(KTR_INTR, "%s: sched_add %d", __func__, 0);
776 TD_CLR_IWAIT(td);
777 sched_add(td, SRQ_INTR);
778 } else {
779 proc0_rescan = 1;
780 CTR2(KTR_INTR, "%s: state %d",
781 __func__, td->td_state);
782 }
783 thread_unlock(td);
784
785}
786
787
788#ifndef NO_SWAPPING
789
790/*
791 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
792 */
793static int swap_idle_threshold1 = 2;
794SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
795 &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
796
797/*
798 * Swap_idle_threshold2 is the time that a process can be idle before
799 * it will be swapped out, if idle swapping is enabled.
800 */
801static int swap_idle_threshold2 = 10;
802SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
803 &swap_idle_threshold2, 0, "Time before a process will be swapped out");
804
805/*
806 * Swapout is driven by the pageout daemon. Very simple, we find eligible
755 thread_lock(&thread0);
756 proc0_rescan = 0;
757 thread_unlock(&thread0);
758 goto loop;
759}
760
761void kick_proc0(void)
762{
763 struct thread *td = &thread0;
764
765 /* XXX This will probably cause a LOR in some cases */
766 thread_lock(td);
767 if (TD_AWAITING_INTR(td)) {
768 CTR2(KTR_INTR, "%s: sched_add %d", __func__, 0);
769 TD_CLR_IWAIT(td);
770 sched_add(td, SRQ_INTR);
771 } else {
772 proc0_rescan = 1;
773 CTR2(KTR_INTR, "%s: state %d",
774 __func__, td->td_state);
775 }
776 thread_unlock(td);
777
778}
779
780
781#ifndef NO_SWAPPING
782
783/*
784 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
785 */
786static int swap_idle_threshold1 = 2;
787SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
788 &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
789
790/*
791 * Swap_idle_threshold2 is the time that a process can be idle before
792 * it will be swapped out, if idle swapping is enabled.
793 */
794static int swap_idle_threshold2 = 10;
795SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
796 &swap_idle_threshold2, 0, "Time before a process will be swapped out");
797
798/*
799 * Swapout is driven by the pageout daemon. Very simple, we find eligible
807 * procs and unwire their u-areas. We try to always "swap" at least one
800 * procs and swap out their stacks. We try to always "swap" at least one
808 * process in case we need the room for a swapin.
809 * If any procs have been sleeping/stopped for at least maxslp seconds,
810 * they are swapped. Else, we swap the longest-sleeping or stopped process,
811 * if any, otherwise the longest-resident process.
812 */
813void
814swapout_procs(action)
815int action;
816{
817 struct proc *p;
818 struct thread *td;
819 int didswap = 0;
820
821retry:
822 sx_slock(&allproc_lock);
823 FOREACH_PROC_IN_SYSTEM(p) {
824 struct vmspace *vm;
825 int minslptime = 100000;
826
827 /*
828 * Watch out for a process in
829 * creation. It may have no
830 * address space or lock yet.
831 */
801 * process in case we need the room for a swapin.
802 * If any procs have been sleeping/stopped for at least maxslp seconds,
803 * they are swapped. Else, we swap the longest-sleeping or stopped process,
804 * if any, otherwise the longest-resident process.
805 */
806void
807swapout_procs(action)
808int action;
809{
810 struct proc *p;
811 struct thread *td;
812 int didswap = 0;
813
814retry:
815 sx_slock(&allproc_lock);
816 FOREACH_PROC_IN_SYSTEM(p) {
817 struct vmspace *vm;
818 int minslptime = 100000;
819
820 /*
821 * Watch out for a process in
822 * creation. It may have no
823 * address space or lock yet.
824 */
832 PROC_SLOCK(p);
833 if (p->p_state == PRS_NEW) {
834 PROC_SUNLOCK(p);
825 if (p->p_state == PRS_NEW)
835 continue;
826 continue;
836 }
837 PROC_SUNLOCK(p);
838
839 /*
840 * An aio daemon switches its
841 * address space while running.
842 * Perform a quick check whether
843 * a process has P_SYSTEM.
844 */
845 if ((p->p_flag & P_SYSTEM) != 0)
846 continue;
827 /*
828 * An aio daemon switches its
829 * address space while running.
830 * Perform a quick check whether
831 * a process has P_SYSTEM.
832 */
833 if ((p->p_flag & P_SYSTEM) != 0)
834 continue;
847
848 /*
849 * Do not swapout a process that
850 * is waiting for VM data
851 * structures as there is a possible
852 * deadlock. Test this first as
853 * this may block.
854 *
855 * Lock the map until swapout
856 * finishes, or a thread of this
857 * process may attempt to alter
858 * the map.
859 */
860 vm = vmspace_acquire_ref(p);
861 if (vm == NULL)
862 continue;
863 if (!vm_map_trylock(&vm->vm_map))
864 goto nextproc1;
865
866 PROC_LOCK(p);
867 if (p->p_lock != 0 ||
868 (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
869 ) != 0) {
870 goto nextproc2;
871 }
872 /*
873 * only aiod changes vmspace, however it will be
874 * skipped because of the if statement above checking
875 * for P_SYSTEM
876 */
835 /*
836 * Do not swapout a process that
837 * is waiting for VM data
838 * structures as there is a possible
839 * deadlock. Test this first as
840 * this may block.
841 *
842 * Lock the map until swapout
843 * finishes, or a thread of this
844 * process may attempt to alter
845 * the map.
846 */
847 vm = vmspace_acquire_ref(p);
848 if (vm == NULL)
849 continue;
850 if (!vm_map_trylock(&vm->vm_map))
851 goto nextproc1;
852
853 PROC_LOCK(p);
854 if (p->p_lock != 0 ||
855 (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
856 ) != 0) {
857 goto nextproc2;
858 }
859 /*
860 * only aiod changes vmspace, however it will be
861 * skipped because of the if statement above checking
862 * for P_SYSTEM
863 */
877 if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
864 if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
878 goto nextproc2;
879
880 switch (p->p_state) {
881 default:
882 /* Don't swap out processes in any sort
883 * of 'special' state. */
884 break;
885
886 case PRS_NORMAL:
887 PROC_SLOCK(p);
888 /*
889 * do not swapout a realtime process
890 * Check all the thread groups..
891 */
892 FOREACH_THREAD_IN_PROC(p, td) {
865 goto nextproc2;
866
867 switch (p->p_state) {
868 default:
869 /* Don't swap out processes in any sort
870 * of 'special' state. */
871 break;
872
873 case PRS_NORMAL:
874 PROC_SLOCK(p);
875 /*
876 * do not swapout a realtime process
877 * Check all the thread groups..
878 */
879 FOREACH_THREAD_IN_PROC(p, td) {
893 if (PRI_IS_REALTIME(td->td_pri_class))
880 thread_lock(td);
881 if (PRI_IS_REALTIME(td->td_pri_class)) {
882 thread_unlock(td);
894 goto nextproc;
883 goto nextproc;
884 }
895
896 /*
897 * Guarantee swap_idle_threshold1
898 * time in memory.
899 */
885
886 /*
887 * Guarantee swap_idle_threshold1
888 * time in memory.
889 */
900 if (td->td_slptime < swap_idle_threshold1)
890 if (td->td_slptime < swap_idle_threshold1) {
891 thread_unlock(td);
901 goto nextproc;
892 goto nextproc;
893 }
902
903 /*
904 * Do not swapout a process if it is
905 * waiting on a critical event of some
906 * kind or there is a thread whose
907 * pageable memory may be accessed.
908 *
909 * This could be refined to support
910 * swapping out a thread.
911 */
912 if ((td->td_priority) < PSOCK ||
894
895 /*
896 * Do not swapout a process if it is
897 * waiting on a critical event of some
898 * kind or there is a thread whose
899 * pageable memory may be accessed.
900 *
901 * This could be refined to support
902 * swapping out a thread.
903 */
904 if ((td->td_priority) < PSOCK ||
913 !thread_safetoswapout(td))
905 !thread_safetoswapout(td)) {
906 thread_unlock(td);
914 goto nextproc;
907 goto nextproc;
908 }
915 /*
916 * If the system is under memory stress,
917 * or if we are swapping
918 * idle processes >= swap_idle_threshold2,
919 * then swap the process out.
920 */
921 if (((action & VM_SWAP_NORMAL) == 0) &&
922 (((action & VM_SWAP_IDLE) == 0) ||
909 /*
910 * If the system is under memory stress,
911 * or if we are swapping
912 * idle processes >= swap_idle_threshold2,
913 * then swap the process out.
914 */
915 if (((action & VM_SWAP_NORMAL) == 0) &&
916 (((action & VM_SWAP_IDLE) == 0) ||
923 (td->td_slptime < swap_idle_threshold2)))
917 (td->td_slptime < swap_idle_threshold2))) {
918 thread_unlock(td);
924 goto nextproc;
919 goto nextproc;
920 }
925
926 if (minslptime > td->td_slptime)
927 minslptime = td->td_slptime;
921
922 if (minslptime > td->td_slptime)
923 minslptime = td->td_slptime;
924 thread_unlock(td);
928 }
929
930 /*
931 * If the pageout daemon didn't free enough pages,
932 * or if this process is idle and the system is
933 * configured to swap proactively, swap it out.
934 */
935 if ((action & VM_SWAP_NORMAL) ||
936 ((action & VM_SWAP_IDLE) &&
937 (minslptime > swap_idle_threshold2))) {
925 }
926
927 /*
928 * If the pageout daemon didn't free enough pages,
929 * or if this process is idle and the system is
930 * configured to swap proactively, swap it out.
931 */
932 if ((action & VM_SWAP_NORMAL) ||
933 ((action & VM_SWAP_IDLE) &&
934 (minslptime > swap_idle_threshold2))) {
938 swapout(p);
939 didswap++;
935 if (swapout(p) == 0)
936 didswap++;
940 PROC_SUNLOCK(p);
941 PROC_UNLOCK(p);
942 vm_map_unlock(&vm->vm_map);
943 vmspace_free(vm);
944 sx_sunlock(&allproc_lock);
945 goto retry;
946 }
947nextproc:
948 PROC_SUNLOCK(p);
949 }
950nextproc2:
951 PROC_UNLOCK(p);
952 vm_map_unlock(&vm->vm_map);
953nextproc1:
954 vmspace_free(vm);
955 continue;
956 }
957 sx_sunlock(&allproc_lock);
958 /*
959 * If we swapped something out, and another process needed memory,
960 * then wakeup the sched process.
961 */
962 if (didswap)
963 wakeup(&proc0);
964}
965
966static void
937 PROC_SUNLOCK(p);
938 PROC_UNLOCK(p);
939 vm_map_unlock(&vm->vm_map);
940 vmspace_free(vm);
941 sx_sunlock(&allproc_lock);
942 goto retry;
943 }
944nextproc:
945 PROC_SUNLOCK(p);
946 }
947nextproc2:
948 PROC_UNLOCK(p);
949 vm_map_unlock(&vm->vm_map);
950nextproc1:
951 vmspace_free(vm);
952 continue;
953 }
954 sx_sunlock(&allproc_lock);
955 /*
956 * If we swapped something out, and another process needed memory,
957 * then wakeup the sched process.
958 */
959 if (didswap)
960 wakeup(&proc0);
961}
962
963static void
964swapclear(p)
965 struct proc *p;
966{
967 struct thread *td;
968
969 PROC_LOCK_ASSERT(p, MA_OWNED);
970 PROC_SLOCK_ASSERT(p, MA_OWNED);
971
972 FOREACH_THREAD_IN_PROC(p, td) {
973 thread_lock(td);
974 td->td_flags |= TDF_INMEM;
975 td->td_flags &= ~TDF_SWAPINREQ;
976 TD_CLR_SWAPPED(td);
977 if (TD_CAN_RUN(td))
978 setrunnable(td);
979 thread_unlock(td);
980 }
981 p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
982 p->p_flag |= P_INMEM;
983}
984
985static int
967swapout(p)
968 struct proc *p;
969{
970 struct thread *td;
971
972 PROC_LOCK_ASSERT(p, MA_OWNED);
986swapout(p)
987 struct proc *p;
988{
989 struct thread *td;
990
991 PROC_LOCK_ASSERT(p, MA_OWNED);
973 mtx_assert(&p->p_slock, MA_OWNED | MA_NOTRECURSED);
992 PROC_SLOCK_ASSERT(p, MA_OWNED | MA_NOTRECURSED);
974#if defined(SWAP_DEBUG)
975 printf("swapping out %d\n", p->p_pid);
976#endif
977
978 /*
979 * The states of this process and its threads may have changed
980 * by now. Assuming that there is only one pageout daemon thread,
981 * this process should still be in memory.
982 */
993#if defined(SWAP_DEBUG)
994 printf("swapping out %d\n", p->p_pid);
995#endif
996
997 /*
998 * The states of this process and its threads may have changed
999 * by now. Assuming that there is only one pageout daemon thread,
1000 * this process should still be in memory.
1001 */
983 KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
1002 KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
984 ("swapout: lost a swapout race?"));
985
1003 ("swapout: lost a swapout race?"));
1004
986#if defined(INVARIANTS)
987 /*
1005 /*
988 * Make sure that all threads are safe to be swapped out.
989 *
990 * Alternatively, we could swap out only safe threads.
991 */
992 FOREACH_THREAD_IN_PROC(p, td) {
993 KASSERT(thread_safetoswapout(td),
994 ("swapout: there is a thread not safe for swapout"));
995 }
996#endif /* INVARIANTS */
997 td = FIRST_THREAD_IN_PROC(p);
998 ++td->td_ru.ru_nswap;
999 /*
1000 * remember the process resident count
1001 */
1002 p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1006 * remember the process resident count
1007 */
1008 p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1003
1004 p->p_sflag &= ~PS_INMEM;
1005 p->p_sflag |= PS_SWAPPINGOUT;
1006 PROC_UNLOCK(p);
1009 /*
1010 * Check and mark all threads before we proceed.
1011 */
1012 p->p_flag &= ~P_INMEM;
1013 p->p_flag |= P_SWAPPINGOUT;
1007 FOREACH_THREAD_IN_PROC(p, td) {
1008 thread_lock(td);
1014 FOREACH_THREAD_IN_PROC(p, td) {
1015 thread_lock(td);
1016 if (!thread_safetoswapout(td)) {
1017 thread_unlock(td);
1018 swapclear(p);
1019 return (EBUSY);
1020 }
1021 td->td_flags &= ~TDF_INMEM;
1009 TD_SET_SWAPPED(td);
1010 thread_unlock(td);
1011 }
1022 TD_SET_SWAPPED(td);
1023 thread_unlock(td);
1024 }
1025 td = FIRST_THREAD_IN_PROC(p);
1026 ++td->td_ru.ru_nswap;
1012 PROC_SUNLOCK(p);
1027 PROC_SUNLOCK(p);
1028 PROC_UNLOCK(p);
1013
1029
1030 /*
1031 * This list is stable because all threads are now prevented from
1032 * running. The list is only modified in the context of a running
1033 * thread in this process.
1034 */
1014 FOREACH_THREAD_IN_PROC(p, td)
1015 vm_thread_swapout(td);
1016
1017 PROC_LOCK(p);
1035 FOREACH_THREAD_IN_PROC(p, td)
1036 vm_thread_swapout(td);
1037
1038 PROC_LOCK(p);
1039 p->p_flag &= ~P_SWAPPINGOUT;
1018 PROC_SLOCK(p);
1040 PROC_SLOCK(p);
1019 p->p_sflag &= ~PS_SWAPPINGOUT;
1020 p->p_swtime = 0;
1041 p->p_swtime = 0;
1042 return (0);
1021}
1022#endif /* !NO_SWAPPING */
1043}
1044#endif /* !NO_SWAPPING */