Deleted Added
full compact
uma_int.h (103531) uma_int.h (103623)
1/*
1/*
2 * Copyright (c) 2002, Jeffrey Roberson <jroberson@chesapeake.net>
2 * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: head/sys/vm/uma_int.h 103531 2002-09-18 08:26:30Z jeff $
26 * $FreeBSD: head/sys/vm/uma_int.h 103623 2002-09-19 06:05:32Z jeff $
27 *
28 */
29
30/*
27 *
28 */
29
30/*
31 *
32 * Jeff Roberson <jroberson@chesapeake.net>
33 *
34 * This file includes definitions, structures, prototypes, and inlines that
35 * should not be used outside of the actual implementation of UMA.
31 * This file includes definitions, structures, prototypes, and inlines that
32 * should not be used outside of the actual implementation of UMA.
36 *
37 */
38
39/*
40 * Here's a quick description of the relationship between the objects:
41 *
42 * Zones contain lists of slabs which are stored in either the full bin, empty
43 * bin, or partially allocated bin, to reduce fragmentation. They also contain
44 * the user supplied value for size, which is adjusted for alignment purposes
45 * and rsize is the result of that. The zone also stores information for
46 * managing a hash of page addresses that maps pages to uma_slab_t structures
47 * for pages that don't have embedded uma_slab_t's.
48 *
49 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
50 * be allocated off the page from a special slab zone. The free list within a
51 * slab is managed with a linked list of indexes, which are 8 bit values. If
52 * UMA_SLAB_SIZE is defined to be too large I will have to switch to 16bit
53 * values. Currently on alpha you can get 250 or so 32 byte items and on x86
54 * you can get 250 or so 16byte items. For item sizes that would yield more
55 * than 10% memory waste we potentially allocate a separate uma_slab_t if this
56 * will improve the number of items per slab that will fit.
57 *
58 * Other potential space optimizations are storing the 8bit of linkage in space
59 * wasted between items due to alignment problems. This may yield a much better
60 * memory footprint for certain sizes of objects. Another alternative is to
61 * increase the UMA_SLAB_SIZE, or allow for dynamic slab sizes. I prefer
62 * dynamic slab sizes because we could stick with 8 bit indexes and only use
63 * large slab sizes for zones with a lot of waste per slab. This may create
64 * ineffeciencies in the vm subsystem due to fragmentation in the address space.
65 *
66 * The only really gross cases, with regards to memory waste, are for those
67 * items that are just over half the page size. You can get nearly 50% waste,
68 * so you fall back to the memory footprint of the power of two allocator. I
69 * have looked at memory allocation sizes on many of the machines available to
70 * me, and there does not seem to be an abundance of allocations at this range
71 * so at this time it may not make sense to optimize for it. This can, of
72 * course, be solved with dynamic slab sizes.
73 *
74 */
75
76/*
77 * This is the representation for normal (Non OFFPAGE slab)
78 *
79 * i == item
80 * s == slab pointer
81 *
82 * <---------------- Page (UMA_SLAB_SIZE) ------------------>
83 * ___________________________________________________________
84 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
85 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
86 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
87 * |___________________________________________________________|
88 *
89 *
90 * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
91 *
92 * ___________________________________________________________
93 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
94 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
95 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
96 * |___________________________________________________________|
97 * ___________ ^
98 * |slab header| |
99 * |___________|---*
100 *
101 */
102
103#ifndef VM_UMA_INT_H
104#define VM_UMA_INT_H
105
106#define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
107#define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
108#define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
109
110#define UMA_BOOT_PAGES 30 /* Number of pages allocated for startup */
111#define UMA_WORKING_TIME 20 /* Seconds worth of items to keep */
112
113
114/* Max waste before going to off page slab management */
115#define UMA_MAX_WASTE (UMA_SLAB_SIZE / 10)
116
117/*
118 * I doubt there will be many cases where this is exceeded. This is the initial
119 * size of the hash table for uma_slabs that are managed off page. This hash
120 * does expand by powers of two. Currently it doesn't get smaller.
121 */
122#define UMA_HASH_SIZE_INIT 32
123
124
125/*
126 * I should investigate other hashing algorithms. This should yield a low
127 * number of collisions if the pages are relatively contiguous.
128 *
129 * This is the same algorithm that most processor caches use.
130 *
131 * I'm shifting and masking instead of % because it should be faster.
132 */
133
134#define UMA_HASH(h, s) ((((unsigned long)s) >> UMA_SLAB_SHIFT) & \
135 (h)->uh_hashmask)
136
137#define UMA_HASH_INSERT(h, s, mem) \
138 SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
139 (mem))], (s), us_hlink);
140#define UMA_HASH_REMOVE(h, s, mem) \
141 SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h), \
142 (mem))], (s), uma_slab, us_hlink);
143
144/* Page management structure */
145
146/* Sorry for the union, but space efficiency is important */
147struct uma_slab {
148 uma_zone_t us_zone; /* Zone we live in */
149 union {
150 LIST_ENTRY(uma_slab) us_link; /* slabs in zone */
151 unsigned long us_size; /* Size of allocation */
152 } us_type;
153 SLIST_ENTRY(uma_slab) us_hlink; /* Link for hash table */
154 u_int8_t *us_data; /* First item */
155 u_int8_t us_flags; /* Page flags see uma.h */
156 u_int8_t us_freecount; /* How many are free? */
157 u_int8_t us_firstfree; /* First free item index */
158 u_int8_t us_freelist[1]; /* Free List (actually larger) */
159};
160
161#define us_link us_type.us_link
162#define us_size us_type.us_size
163
164typedef struct uma_slab * uma_slab_t;
165
166/* Hash table for freed address -> slab translation */
167
168SLIST_HEAD(slabhead, uma_slab);
169
170struct uma_hash {
171 struct slabhead *uh_slab_hash; /* Hash table for slabs */
172 int uh_hashsize; /* Current size of the hash table */
173 int uh_hashmask; /* Mask used during hashing */
174};
175
176/*
177 * Structures for per cpu queues.
178 */
179
180/*
181 * This size was chosen so that the struct bucket size is roughly
182 * 128 * sizeof(void *). This is exactly true for x86, and for alpha
183 * it will would be 32bits smaller if it didn't have alignment adjustments.
184 */
185
186#define UMA_BUCKET_SIZE 125
187
188struct uma_bucket {
189 LIST_ENTRY(uma_bucket) ub_link; /* Link into the zone */
190 int16_t ub_ptr; /* Pointer to current item */
191 void *ub_bucket[UMA_BUCKET_SIZE]; /* actual allocation storage */
192};
193
194typedef struct uma_bucket * uma_bucket_t;
195
196struct uma_cache {
197 struct mtx uc_lock; /* Spin lock on this cpu's bucket */
198 uma_bucket_t uc_freebucket; /* Bucket we're freeing to */
199 uma_bucket_t uc_allocbucket; /* Bucket to allocate from */
200 u_int64_t uc_allocs; /* Count of allocations */
201};
202
203typedef struct uma_cache * uma_cache_t;
204
205#define LOCKNAME_LEN 16 /* Length of the name for cpu locks */
206
207/*
208 * Zone management structure
209 *
210 * TODO: Optimize for cache line size
211 *
212 */
213struct uma_zone {
214 char uz_lname[LOCKNAME_LEN]; /* Text name for the cpu lock */
215 char *uz_name; /* Text name of the zone */
216 LIST_ENTRY(uma_zone) uz_link; /* List of all zones */
217 u_int32_t uz_align; /* Alignment mask */
218 u_int32_t uz_pages; /* Total page count */
219
220/* Used during alloc / free */
221 struct mtx uz_lock; /* Lock for the zone */
222 u_int32_t uz_free; /* Count of items free in slabs */
223 u_int16_t uz_ipers; /* Items per slab */
224 u_int16_t uz_flags; /* Internal flags */
225
226 LIST_HEAD(,uma_slab) uz_part_slab; /* partially allocated slabs */
227 LIST_HEAD(,uma_slab) uz_free_slab; /* empty slab list */
228 LIST_HEAD(,uma_slab) uz_full_slab; /* full slabs */
229 LIST_HEAD(,uma_bucket) uz_full_bucket; /* full buckets */
230 LIST_HEAD(,uma_bucket) uz_free_bucket; /* Buckets for frees */
231 u_int32_t uz_size; /* Requested size of each item */
232 u_int32_t uz_rsize; /* Real size of each item */
233
234 struct uma_hash uz_hash;
235 u_int16_t uz_pgoff; /* Offset to uma_slab struct */
236 u_int16_t uz_ppera; /* pages per allocation from backend */
237 u_int16_t uz_cacheoff; /* Next cache offset */
238 u_int16_t uz_cachemax; /* Max cache offset */
239
240 uma_ctor uz_ctor; /* Constructor for each allocation */
241 uma_dtor uz_dtor; /* Destructor */
242 u_int64_t uz_allocs; /* Total number of allocations */
243
244 uma_init uz_init; /* Initializer for each item */
245 uma_fini uz_fini; /* Discards memory */
246 uma_alloc uz_allocf; /* Allocation function */
247 uma_free uz_freef; /* Free routine */
248 struct vm_object *uz_obj; /* Zone specific object */
249 vm_offset_t uz_kva; /* Base kva for zones with objs */
250 u_int32_t uz_maxpages; /* Maximum number of pages to alloc */
251 u_int32_t uz_cachefree; /* Last count of items free in caches */
252 u_int64_t uz_oallocs; /* old allocs count */
253 u_int64_t uz_wssize; /* Working set size */
254 int uz_recurse; /* Allocation recursion count */
255 uint16_t uz_fills; /* Outstanding bucket fills */
256 uint16_t uz_count; /* Highest value ub_ptr can have */
257 /*
258 * This HAS to be the last item because we adjust the zone size
259 * based on NCPU and then allocate the space for the zones.
260 */
261 struct uma_cache uz_cpu[1]; /* Per cpu caches */
262};
263
264#define UMA_CACHE_INC 16 /* How much will we move data */
265
266#define UMA_ZFLAG_OFFPAGE 0x0001 /* Struct slab/freelist off page */
267#define UMA_ZFLAG_PRIVALLOC 0x0002 /* Zone has supplied it's own alloc */
268#define UMA_ZFLAG_INTERNAL 0x0004 /* Internal zone, no offpage no PCPU */
269#define UMA_ZFLAG_MALLOC 0x0008 /* Zone created by malloc */
270#define UMA_ZFLAG_NOFREE 0x0010 /* Don't free data from this zone */
271#define UMA_ZFLAG_FULL 0x0020 /* This zone reached uz_maxpages */
272#define UMA_ZFLAG_BUCKETCACHE 0x0040 /* Only allocate buckets from cache */
273#define UMA_ZFLAG_HASH 0x0080 /* Look up slab via hash */
274
275/* This lives in uflags */
276#define UMA_ZONE_INTERNAL 0x1000 /* Internal zone for uflags */
277
278/* Internal prototypes */
279static __inline uma_slab_t hash_sfind(struct uma_hash *hash, u_int8_t *data);
280void *uma_large_malloc(int size, int wait);
281void uma_large_free(uma_slab_t slab);
282
283/* Lock Macros */
284
285#define ZONE_LOCK_INIT(z, lc) \
286 do { \
287 if ((lc)) \
288 mtx_init(&(z)->uz_lock, (z)->uz_name, \
289 (z)->uz_name, MTX_DEF | MTX_DUPOK); \
290 else \
291 mtx_init(&(z)->uz_lock, (z)->uz_name, \
292 "UMA zone", MTX_DEF | MTX_DUPOK); \
293 } while (0)
294
295#define ZONE_LOCK_FINI(z) mtx_destroy(&(z)->uz_lock)
296#define ZONE_LOCK(z) mtx_lock(&(z)->uz_lock)
297#define ZONE_UNLOCK(z) mtx_unlock(&(z)->uz_lock)
298
299#define CPU_LOCK_INIT(z, cpu, lc) \
300 do { \
301 if ((lc)) \
302 mtx_init(&(z)->uz_cpu[(cpu)].uc_lock, \
303 (z)->uz_lname, (z)->uz_lname, \
304 MTX_DEF | MTX_DUPOK); \
305 else \
306 mtx_init(&(z)->uz_cpu[(cpu)].uc_lock, \
307 (z)->uz_lname, "UMA cpu", \
308 MTX_DEF | MTX_DUPOK); \
309 } while (0)
310
311#define CPU_LOCK_FINI(z, cpu) \
312 mtx_destroy(&(z)->uz_cpu[(cpu)].uc_lock)
313
314#define CPU_LOCK(z, cpu) \
315 mtx_lock(&(z)->uz_cpu[(cpu)].uc_lock)
316
317#define CPU_UNLOCK(z, cpu) \
318 mtx_unlock(&(z)->uz_cpu[(cpu)].uc_lock)
319
320/*
321 * Find a slab within a hash table. This is used for OFFPAGE zones to lookup
322 * the slab structure.
323 *
324 * Arguments:
325 * hash The hash table to search.
326 * data The base page of the item.
327 *
328 * Returns:
329 * A pointer to a slab if successful, else NULL.
330 */
331static __inline uma_slab_t
332hash_sfind(struct uma_hash *hash, u_int8_t *data)
333{
334 uma_slab_t slab;
335 int hval;
336
337 hval = UMA_HASH(hash, data);
338
339 SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
340 if ((u_int8_t *)slab->us_data == data)
341 return (slab);
342 }
343 return (NULL);
344}
345
346static __inline uma_slab_t
347vtoslab(vm_offset_t va)
348{
349 vm_page_t p;
350 uma_slab_t slab;
351
352 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
353 slab = (uma_slab_t )p->object;
354
355 if (p->flags & PG_SLAB)
356 return (slab);
357 else
358 return (NULL);
359}
360
361static __inline void
362vsetslab(vm_offset_t va, uma_slab_t slab)
363{
364 vm_page_t p;
365
366 p = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)va));
367 p->object = (vm_object_t)slab;
368 p->flags |= PG_SLAB;
369}
370
371static __inline void
372vsetobj(vm_offset_t va, vm_object_t obj)
373{
374 vm_page_t p;
375
376 p = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)va));
377 p->object = obj;
378 p->flags &= ~PG_SLAB;
379}
380
381#endif /* VM_UMA_INT_H */
33 */
34
35/*
36 * Here's a quick description of the relationship between the objects:
37 *
38 * Zones contain lists of slabs which are stored in either the full bin, empty
39 * bin, or partially allocated bin, to reduce fragmentation. They also contain
40 * the user supplied value for size, which is adjusted for alignment purposes
41 * and rsize is the result of that. The zone also stores information for
42 * managing a hash of page addresses that maps pages to uma_slab_t structures
43 * for pages that don't have embedded uma_slab_t's.
44 *
45 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
46 * be allocated off the page from a special slab zone. The free list within a
47 * slab is managed with a linked list of indexes, which are 8 bit values. If
48 * UMA_SLAB_SIZE is defined to be too large I will have to switch to 16bit
49 * values. Currently on alpha you can get 250 or so 32 byte items and on x86
50 * you can get 250 or so 16byte items. For item sizes that would yield more
51 * than 10% memory waste we potentially allocate a separate uma_slab_t if this
52 * will improve the number of items per slab that will fit.
53 *
54 * Other potential space optimizations are storing the 8bit of linkage in space
55 * wasted between items due to alignment problems. This may yield a much better
56 * memory footprint for certain sizes of objects. Another alternative is to
57 * increase the UMA_SLAB_SIZE, or allow for dynamic slab sizes. I prefer
58 * dynamic slab sizes because we could stick with 8 bit indexes and only use
59 * large slab sizes for zones with a lot of waste per slab. This may create
60 * ineffeciencies in the vm subsystem due to fragmentation in the address space.
61 *
62 * The only really gross cases, with regards to memory waste, are for those
63 * items that are just over half the page size. You can get nearly 50% waste,
64 * so you fall back to the memory footprint of the power of two allocator. I
65 * have looked at memory allocation sizes on many of the machines available to
66 * me, and there does not seem to be an abundance of allocations at this range
67 * so at this time it may not make sense to optimize for it. This can, of
68 * course, be solved with dynamic slab sizes.
69 *
70 */
71
72/*
73 * This is the representation for normal (Non OFFPAGE slab)
74 *
75 * i == item
76 * s == slab pointer
77 *
78 * <---------------- Page (UMA_SLAB_SIZE) ------------------>
79 * ___________________________________________________________
80 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
81 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
82 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
83 * |___________________________________________________________|
84 *
85 *
86 * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
87 *
88 * ___________________________________________________________
89 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
90 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
91 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
92 * |___________________________________________________________|
93 * ___________ ^
94 * |slab header| |
95 * |___________|---*
96 *
97 */
98
99#ifndef VM_UMA_INT_H
100#define VM_UMA_INT_H
101
102#define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
103#define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
104#define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
105
106#define UMA_BOOT_PAGES 30 /* Number of pages allocated for startup */
107#define UMA_WORKING_TIME 20 /* Seconds worth of items to keep */
108
109
110/* Max waste before going to off page slab management */
111#define UMA_MAX_WASTE (UMA_SLAB_SIZE / 10)
112
113/*
114 * I doubt there will be many cases where this is exceeded. This is the initial
115 * size of the hash table for uma_slabs that are managed off page. This hash
116 * does expand by powers of two. Currently it doesn't get smaller.
117 */
118#define UMA_HASH_SIZE_INIT 32
119
120
121/*
122 * I should investigate other hashing algorithms. This should yield a low
123 * number of collisions if the pages are relatively contiguous.
124 *
125 * This is the same algorithm that most processor caches use.
126 *
127 * I'm shifting and masking instead of % because it should be faster.
128 */
129
130#define UMA_HASH(h, s) ((((unsigned long)s) >> UMA_SLAB_SHIFT) & \
131 (h)->uh_hashmask)
132
133#define UMA_HASH_INSERT(h, s, mem) \
134 SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
135 (mem))], (s), us_hlink);
136#define UMA_HASH_REMOVE(h, s, mem) \
137 SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h), \
138 (mem))], (s), uma_slab, us_hlink);
139
140/* Page management structure */
141
142/* Sorry for the union, but space efficiency is important */
143struct uma_slab {
144 uma_zone_t us_zone; /* Zone we live in */
145 union {
146 LIST_ENTRY(uma_slab) us_link; /* slabs in zone */
147 unsigned long us_size; /* Size of allocation */
148 } us_type;
149 SLIST_ENTRY(uma_slab) us_hlink; /* Link for hash table */
150 u_int8_t *us_data; /* First item */
151 u_int8_t us_flags; /* Page flags see uma.h */
152 u_int8_t us_freecount; /* How many are free? */
153 u_int8_t us_firstfree; /* First free item index */
154 u_int8_t us_freelist[1]; /* Free List (actually larger) */
155};
156
157#define us_link us_type.us_link
158#define us_size us_type.us_size
159
160typedef struct uma_slab * uma_slab_t;
161
162/* Hash table for freed address -> slab translation */
163
164SLIST_HEAD(slabhead, uma_slab);
165
166struct uma_hash {
167 struct slabhead *uh_slab_hash; /* Hash table for slabs */
168 int uh_hashsize; /* Current size of the hash table */
169 int uh_hashmask; /* Mask used during hashing */
170};
171
172/*
173 * Structures for per cpu queues.
174 */
175
176/*
177 * This size was chosen so that the struct bucket size is roughly
178 * 128 * sizeof(void *). This is exactly true for x86, and for alpha
179 * it will would be 32bits smaller if it didn't have alignment adjustments.
180 */
181
182#define UMA_BUCKET_SIZE 125
183
184struct uma_bucket {
185 LIST_ENTRY(uma_bucket) ub_link; /* Link into the zone */
186 int16_t ub_ptr; /* Pointer to current item */
187 void *ub_bucket[UMA_BUCKET_SIZE]; /* actual allocation storage */
188};
189
190typedef struct uma_bucket * uma_bucket_t;
191
192struct uma_cache {
193 struct mtx uc_lock; /* Spin lock on this cpu's bucket */
194 uma_bucket_t uc_freebucket; /* Bucket we're freeing to */
195 uma_bucket_t uc_allocbucket; /* Bucket to allocate from */
196 u_int64_t uc_allocs; /* Count of allocations */
197};
198
199typedef struct uma_cache * uma_cache_t;
200
201#define LOCKNAME_LEN 16 /* Length of the name for cpu locks */
202
203/*
204 * Zone management structure
205 *
206 * TODO: Optimize for cache line size
207 *
208 */
209struct uma_zone {
210 char uz_lname[LOCKNAME_LEN]; /* Text name for the cpu lock */
211 char *uz_name; /* Text name of the zone */
212 LIST_ENTRY(uma_zone) uz_link; /* List of all zones */
213 u_int32_t uz_align; /* Alignment mask */
214 u_int32_t uz_pages; /* Total page count */
215
216/* Used during alloc / free */
217 struct mtx uz_lock; /* Lock for the zone */
218 u_int32_t uz_free; /* Count of items free in slabs */
219 u_int16_t uz_ipers; /* Items per slab */
220 u_int16_t uz_flags; /* Internal flags */
221
222 LIST_HEAD(,uma_slab) uz_part_slab; /* partially allocated slabs */
223 LIST_HEAD(,uma_slab) uz_free_slab; /* empty slab list */
224 LIST_HEAD(,uma_slab) uz_full_slab; /* full slabs */
225 LIST_HEAD(,uma_bucket) uz_full_bucket; /* full buckets */
226 LIST_HEAD(,uma_bucket) uz_free_bucket; /* Buckets for frees */
227 u_int32_t uz_size; /* Requested size of each item */
228 u_int32_t uz_rsize; /* Real size of each item */
229
230 struct uma_hash uz_hash;
231 u_int16_t uz_pgoff; /* Offset to uma_slab struct */
232 u_int16_t uz_ppera; /* pages per allocation from backend */
233 u_int16_t uz_cacheoff; /* Next cache offset */
234 u_int16_t uz_cachemax; /* Max cache offset */
235
236 uma_ctor uz_ctor; /* Constructor for each allocation */
237 uma_dtor uz_dtor; /* Destructor */
238 u_int64_t uz_allocs; /* Total number of allocations */
239
240 uma_init uz_init; /* Initializer for each item */
241 uma_fini uz_fini; /* Discards memory */
242 uma_alloc uz_allocf; /* Allocation function */
243 uma_free uz_freef; /* Free routine */
244 struct vm_object *uz_obj; /* Zone specific object */
245 vm_offset_t uz_kva; /* Base kva for zones with objs */
246 u_int32_t uz_maxpages; /* Maximum number of pages to alloc */
247 u_int32_t uz_cachefree; /* Last count of items free in caches */
248 u_int64_t uz_oallocs; /* old allocs count */
249 u_int64_t uz_wssize; /* Working set size */
250 int uz_recurse; /* Allocation recursion count */
251 uint16_t uz_fills; /* Outstanding bucket fills */
252 uint16_t uz_count; /* Highest value ub_ptr can have */
253 /*
254 * This HAS to be the last item because we adjust the zone size
255 * based on NCPU and then allocate the space for the zones.
256 */
257 struct uma_cache uz_cpu[1]; /* Per cpu caches */
258};
259
260#define UMA_CACHE_INC 16 /* How much will we move data */
261
262#define UMA_ZFLAG_OFFPAGE 0x0001 /* Struct slab/freelist off page */
263#define UMA_ZFLAG_PRIVALLOC 0x0002 /* Zone has supplied it's own alloc */
264#define UMA_ZFLAG_INTERNAL 0x0004 /* Internal zone, no offpage no PCPU */
265#define UMA_ZFLAG_MALLOC 0x0008 /* Zone created by malloc */
266#define UMA_ZFLAG_NOFREE 0x0010 /* Don't free data from this zone */
267#define UMA_ZFLAG_FULL 0x0020 /* This zone reached uz_maxpages */
268#define UMA_ZFLAG_BUCKETCACHE 0x0040 /* Only allocate buckets from cache */
269#define UMA_ZFLAG_HASH 0x0080 /* Look up slab via hash */
270
271/* This lives in uflags */
272#define UMA_ZONE_INTERNAL 0x1000 /* Internal zone for uflags */
273
274/* Internal prototypes */
275static __inline uma_slab_t hash_sfind(struct uma_hash *hash, u_int8_t *data);
276void *uma_large_malloc(int size, int wait);
277void uma_large_free(uma_slab_t slab);
278
279/* Lock Macros */
280
281#define ZONE_LOCK_INIT(z, lc) \
282 do { \
283 if ((lc)) \
284 mtx_init(&(z)->uz_lock, (z)->uz_name, \
285 (z)->uz_name, MTX_DEF | MTX_DUPOK); \
286 else \
287 mtx_init(&(z)->uz_lock, (z)->uz_name, \
288 "UMA zone", MTX_DEF | MTX_DUPOK); \
289 } while (0)
290
291#define ZONE_LOCK_FINI(z) mtx_destroy(&(z)->uz_lock)
292#define ZONE_LOCK(z) mtx_lock(&(z)->uz_lock)
293#define ZONE_UNLOCK(z) mtx_unlock(&(z)->uz_lock)
294
295#define CPU_LOCK_INIT(z, cpu, lc) \
296 do { \
297 if ((lc)) \
298 mtx_init(&(z)->uz_cpu[(cpu)].uc_lock, \
299 (z)->uz_lname, (z)->uz_lname, \
300 MTX_DEF | MTX_DUPOK); \
301 else \
302 mtx_init(&(z)->uz_cpu[(cpu)].uc_lock, \
303 (z)->uz_lname, "UMA cpu", \
304 MTX_DEF | MTX_DUPOK); \
305 } while (0)
306
307#define CPU_LOCK_FINI(z, cpu) \
308 mtx_destroy(&(z)->uz_cpu[(cpu)].uc_lock)
309
310#define CPU_LOCK(z, cpu) \
311 mtx_lock(&(z)->uz_cpu[(cpu)].uc_lock)
312
313#define CPU_UNLOCK(z, cpu) \
314 mtx_unlock(&(z)->uz_cpu[(cpu)].uc_lock)
315
316/*
317 * Find a slab within a hash table. This is used for OFFPAGE zones to lookup
318 * the slab structure.
319 *
320 * Arguments:
321 * hash The hash table to search.
322 * data The base page of the item.
323 *
324 * Returns:
325 * A pointer to a slab if successful, else NULL.
326 */
327static __inline uma_slab_t
328hash_sfind(struct uma_hash *hash, u_int8_t *data)
329{
330 uma_slab_t slab;
331 int hval;
332
333 hval = UMA_HASH(hash, data);
334
335 SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
336 if ((u_int8_t *)slab->us_data == data)
337 return (slab);
338 }
339 return (NULL);
340}
341
342static __inline uma_slab_t
343vtoslab(vm_offset_t va)
344{
345 vm_page_t p;
346 uma_slab_t slab;
347
348 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
349 slab = (uma_slab_t )p->object;
350
351 if (p->flags & PG_SLAB)
352 return (slab);
353 else
354 return (NULL);
355}
356
357static __inline void
358vsetslab(vm_offset_t va, uma_slab_t slab)
359{
360 vm_page_t p;
361
362 p = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)va));
363 p->object = (vm_object_t)slab;
364 p->flags |= PG_SLAB;
365}
366
367static __inline void
368vsetobj(vm_offset_t va, vm_object_t obj)
369{
370 vm_page_t p;
371
372 p = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)va));
373 p->object = obj;
374 p->flags &= ~PG_SLAB;
375}
376
377#endif /* VM_UMA_INT_H */